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k-field, char(k) 6= 2

(Vq, q) − quadratic form over k,

where Vq is a k-vector space and Vq
q→ k is the diagonal

part of some symmetric bi-linear form on Vq.
We are interested in non-degenerate forms only.

Over R and C such structures are close to trivial, but over
an arbitrary field they are really rich.
In contrast to vector spaces they have ”forms”:

p 6∼= q, but pk
∼= qk.

Moreover, all quadratic forms of a given dimension n are
”forms” of a fixed one (say, a sum of squares x2

1 + . . .+ x2
n),

and are described by the orthogonal group O(n):

The set of isom. classes of n− dim. forms = H1
et(k,O(n)),

where the latter is the 1-st cohomology of the absolute
Galois group G of k with coefficients in O(n; k).
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In the 1950’s Kaplansky had introduced two invariants:

s(k) = max. n s.t. x2
1 + . . .+ x2

n is ”anisotropic” over k

(does not represent 0 non-trivially)

u(k) = max. dim. of anisotropic quadr. form over k.
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Examples:

1) u(C) = s(C) = 1;

2) u(R) = s(R) =∞;

3) u(Fq) = 2, which follows from the fact that any
3-dimensional form over a finite field is isotropic, while
F∗

q/(F∗
q)2 ∼= Z/2;

4) u(Qp) = 4.
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Conjecture (Kaplansky, 1953)

1) The only values of s(k) are 2r and∞;
2) The only values of u(k) are 2r and∞.

This conjecture demonstrates how little was known about
quadratic forms back then. People did not see much
difference between the sum of squares and arbitrary
quadratic form.
Now we know that the world of quadratic forms is much
more complex. But in 1953 even the class of the ”best
possible” forms was not discovered yet. These are ”Pfister
forms” introduced in the middle of 60-s.
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Pfister forms

An n-fold Pfister form is a 2n-dimensional form

〈〈a1, . . . , an〉〉 := 〈〈a1〉〉 ⊗ . . .⊗ 〈〈an〉〉,

where 〈〈a〉〉 = 〈1,−a〉 = x2 − ay2, a ∈ k∗.
For n = 1, 2, 3 these are norms/reduced norms in the
quadratic extension k(

√
a),

the (generalized) quaternion algebra

Quat({a, b}; k) = k < u, v > /(u2 = a, v2 = b, uv = −vu),

and the (generalized) octonion algebra O({a, b, c}; k),
respectively.
More explicitly, these forms are given by: 〈1,−a〉,
〈1,−a,−b, ab〉, and 〈1,−a,−b,−c, ab, bc, ca,−abc〉.
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In particular, on Pfister forms of foldness 0, 1, 2, 3 we have
a multiplicative structure: a bilinear map

Vq × Vq
µ→ Vq, such that q(µ(u, v)) = q(u) · q(v).

And no other forms have this property.

Pfister forms of foldness > 4 do not have a multiplicative
structure, but they satisfy:

∀L/k, πL − isotropic ⇔ πL − hyperbolic (∼= x1y1 + . . .+ xryr

in appr. coord.)

In other words, as soon as we have an isotropic vector, we
have a totally isotropic subspace of half the dimension.
This is the main property of Pfister forms, and (modulo
scalar factors) no other forms posses it.
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Definition

A subform p ⊂ π of a Pfister forms whose dimension is
> dim(π)

2 is called a ”Pfister neighbor”.
In such a situation, we have:

∀L/k, pL − isotropic ⇔ πL − isotropic.

(⇒) Evident.
(⇐) πL-isotropic⇒ πL-hyperbolic, that is, it has a totally
isotropic subspace of dimension = dim(π)

2 . But such a
subspace will intersect Vp ⊂ Vπ. �
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The sum of squares x2
1 + . . .+ x2

m is always a Pfister
neighbor of some x2

1 + . . .+ x2
2r = 〈〈−1, . . . ,−1〉〉, and these

two forms will be isotropic simultaneously.

So, if the sum of 2l+1 squares represents zero non-trivially,
then so does the sum of 2l + 1 of them. This proves the first
part of the Conjecture of Kaplansky - due to Pfister (’60-s).
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The general quadratic form is a much more complex
object. One would want to have some sort of classification,
which would permit to compare quadratic forms among
themselves, and would enable one to answer various open
questions.

”qualitative” behavior −→ ”discrete invariants”
The simplest example is the Witt index iW(q) - measures
the maximal dimension of totally isotropic subspace in Vq.
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q = (H ⊥ . . . ⊥ H︸ ︷︷ ︸) ⊥ qan, H = x2 − y2

iW(q)
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A much more sophisticated invariant is provided by the
Splitting Pattern SP(q) - the collection of all possible Witt
indices of q over all field extensions F/k.
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Splitting Pattern SP(q) - the collection of all possible Witt
indices of q over all field extensions F/k.

r − fold Pfister : SP(q) = (0, 2r−1);

”generic” of dimension n : SP(q) = (0, 1, 2, . . . , [n/2]).



The general quadratic form is a much more complex
object. One would want to have some sort of classification,
which would permit to compare quadratic forms among
themselves, and would enable one to answer various open
questions.

”qualitative” behavior −→ ”discrete invariants”
The simplest example is the Witt index iW(q) - measures
the maximal dimension of totally isotropic subspace in Vq.
A much more sophisticated invariant is provided by the
Splitting Pattern SP(q) - the collection of all possible Witt
indices of q over all field extensions F/k.
Still, some important information is not detected by SP(q).



Discrete invariants - Geometric approach

q −→ Q = G(Q; 0),G(Q; 1), . . . ,G(Q, d)
- the homogeneous varieties (quadratic Grassmannians)
associated to our quadratic form. Here d = [dim(Q)

2 ].
Generic Discrete Invariant
Over algebraic closure, G(Q; i)k is a ”cellular variety” (can
be cut into pieces isomorphic to Aj).
Hence, CH∗(G(Q; i)k) is a free abelian group with
generators parametrized by some sort of Young diagrams
which is identical to the singular cohomology of the
respective complex variety.

GDI(Q; i) := image(CH∗(G(Q; i))/2→ CH∗(G(Q; i)k)/2)

This invariant of geometric nature contains most of known
discrete invariants.
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The ”Generic Discrete Invariant” contains the most
important information about quadratic form, and has a lot of
structure provided by natural geometric correspondences
between various Grassmannians, and by Steenrod
operations. But it is rather complicated to work with.

Elementary Discrete Invariant
Here we study the ”rationality” not of all elements of
CH∗(G(Q; i)k), but only of the ”good” ones.
Elementary classes
For each i, the ring CH∗(G(Q; i)k) is generated by the
so-called ”elementary classes” yi,j, j = 0, . . . , d and the
Chern classes of the tautological vector bundle. Here the
Chern classes do not represent any interest for us, as they
are always defined over k. In contrast, the rationality of
”elementary classes” carries a very intersting information
about q.
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Chern classes do not represent any interest for us, as they
are always defined over k. In contrast, the rationality of
”elementary classes” carries a very intersting information
about q.
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For G(Q; 0) = Q the elementary class y0,j is lj-the class of
projective subspace of dimension j on Qk.

And for an arbitrary Grassmannian these classes are
obtained from those on Q. Namely, we have natural
forgetful maps

G(Q; 0)
α←− F(Q; 0, i)

β−→ G(Q; i)

from the flag variety of pairs (π0 ⊂ πi) to the quadric and
the Grassmannian. Then yi,j := β∗α

∗(lj). In other words,
the class yi,j is given by the locus of those i-dimensional
planes on Qk which intersect a given j-dimensional plane.
The EDI(Q) measures which classes yi,j are defined over
k. It can be visualized as a d × d-square, where integral
nodes are marked if the respective elementary classes are
k-rational.



For G(Q; 0) = Q the elementary class y0,j is lj-the class of
projective subspace of dimension j on Qk.
And for an arbitrary Grassmannian these classes are
obtained from those on Q. Namely, we have natural
forgetful maps

G(Q; 0)
α←− F(Q; 0, i)

β−→ G(Q; i)

from the flag variety of pairs (π0 ⊂ πi) to the quadric and
the Grassmannian. Then yi,j := β∗α

∗(lj). In other words,
the class yi,j is given by the locus of those i-dimensional
planes on Qk which intersect a given j-dimensional plane.

The EDI(Q) measures which classes yi,j are defined over
k. It can be visualized as a d × d-square, where integral
nodes are marked if the respective elementary classes are
k-rational.



For G(Q; 0) = Q the elementary class y0,j is lj-the class of
projective subspace of dimension j on Qk.
And for an arbitrary Grassmannian these classes are
obtained from those on Q. Namely, we have natural
forgetful maps

G(Q; 0)
α←− F(Q; 0, i)

β−→ G(Q; i)

from the flag variety of pairs (π0 ⊂ πi) to the quadric and
the Grassmannian. Then yi,j := β∗α

∗(lj). In other words,
the class yi,j is given by the locus of those i-dimensional
planes on Qk which intersect a given j-dimensional plane.
The EDI(Q) measures which classes yi,j are defined over
k. It can be visualized as a d × d-square, where integral
nodes are marked if the respective elementary classes are
k-rational.



◦ ◦ ◦ ◦ ◦ ◦ G(Q; d)

◦ ◦ ◦ ◦ ◦ ◦ .

i ◦ ◦ • ◦ ◦ ◦ .

◦ ◦ ◦ ◦ ◦ ◦ .

◦ ◦ ◦ ◦ ◦ ◦ G(Q; 1)

↑ ◦ ◦ ◦ ◦ ◦ ◦ G(Q; 0) = Q
→ j



• • • ◦ ◦ ◦ G(Q; d)

◦ • • ◦ ◦ ◦ .

i ◦ ◦ • ◦ ◦ ◦ .

◦ ◦ ◦ ◦ ◦ ◦ .

◦ ◦ ◦ ◦ ◦ ◦ G(Q; 1)

↑ ◦ ◦ ◦ ◦ ◦ ◦ G(Q; 0) = Q
→ j



Examples: k = R, q = x2
1 + . . .+ x2

n



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 2
◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 3
◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 4
◦ •

◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 5
• ◦

◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 6
• • ◦

◦ • ◦

◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 7
◦ • •

◦ ◦ •

◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 8
◦ • • •

◦ ◦ • •

◦ ◦ ◦ •

◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 9
• ◦ • •

• ◦ ◦ •

• ◦ ◦ ◦

◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 10
• • • • ◦

• • ◦ • ◦

• • ◦ ◦ ◦

◦ • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 11
• • • • ◦

• • • ◦ ◦

◦ • • ◦ ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 12
• • • • ◦ •

• • • • ◦ ◦

◦ • • • ◦ ◦

◦ ◦ • • ◦ ◦

◦ ◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 13
• • • • • ◦

◦ • • • • ◦

◦ ◦ • • • ◦

◦ ◦ ◦ • • ◦

◦ ◦ ◦ ◦ • ◦

◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 14
• • • • • • ◦

◦ • • • • • ◦

◦ ◦ • • • • ◦

◦ ◦ ◦ • • • ◦

◦ ◦ ◦ ◦ • • ◦

◦ ◦ ◦ ◦ ◦ • ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 15
◦ • • • • • •

◦ ◦ • • • • •

◦ ◦ ◦ • • • •

◦ ◦ ◦ ◦ • • •

◦ ◦ ◦ ◦ ◦ • •

◦ ◦ ◦ ◦ ◦ ◦ •

◦ ◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 16
◦ • • • • • • •

◦ ◦ • • • • • •

◦ ◦ ◦ • • • • •

◦ ◦ ◦ ◦ • • • •

◦ ◦ ◦ ◦ ◦ • • •

◦ ◦ ◦ ◦ ◦ ◦ • •

◦ ◦ ◦ ◦ ◦ ◦ ◦ •

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 17
• ◦ • • • • • •

• ◦ ◦ • • • • •

• ◦ ◦ ◦ • • • •

• ◦ ◦ ◦ ◦ • • •

• ◦ ◦ ◦ ◦ ◦ • •

• ◦ ◦ ◦ ◦ ◦ ◦ •

• ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 18
• • • • • • • • ◦

• • ◦ • • • • • ◦

• • ◦ ◦ • • • • ◦

• • ◦ ◦ ◦ • • • ◦

• • ◦ ◦ ◦ ◦ • • ◦

• • ◦ ◦ ◦ ◦ ◦ • ◦

• • ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 19
• • • • • • • • ◦

• • • ◦ • • • • ◦

• • • ◦ ◦ • • • ◦

• • • ◦ ◦ ◦ • • ◦

• • • ◦ ◦ ◦ ◦ • ◦

• • • ◦ ◦ ◦ ◦ ◦ ◦

◦ • • ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦



Examples: k = R, q = x2
1 + . . .+ x2

n

n = 20
• • • • • • • • ◦ •

• • • • • • • • ◦ ◦

• • • • ◦ • • • ◦ ◦

• • • • ◦ ◦ • • ◦ ◦

• • • • ◦ ◦ ◦ • ◦ ◦

• • • • ◦ ◦ ◦ ◦ ◦ ◦

◦ • • • ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦



The Elementary Discrete Invariant can be applied to the
u-invariant of fields.

The second part of the Conjecture of Kaplansky was
disproven by Merkurjev (1986) who showed that ∀n = 2m
there exists a field with such u-invariant.
Using our methods we can show:

Theorem A
For any r > 3 there exists a field of u-invariant 2r + 1.

The case u = 9 was done by Izhboldin (1999).
It is easy to see that u 6= 3, 5, 7.
Nothing else is known.
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Aside from the Elementary Discrete Invariant, another
major ingredient of the proof of Theorem A is the following
result concerning the ”field of definition” of the cohomology
element.

Theorem B
Let Y be a smooth variety, y ∈ CHm(Yk)/2, and P be a
smooth quadric of dim(P) > 2m. Then

y is defined over k ⇔ y is defined over k(P).

Thus, studying the rationality of y we can assume that all
sufficiently large quadratic forms are isotropic. This helps
to compute EDI(Q).
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The proof of Theorem B is based on the use of ”Symmetric
Operations” in the Algebraic Cobordism Ω∗ of Levine-Morel
(by the way, these operations were discovered in the study
of GDI(Q)).

Ω∗ − is an algebro-geometric analogue of MU∗.

• generators: classes [V v→ X] of projective maps from
smooth varieties + some relations
• Ω∗(Spec(k)) = MU∗(pt) = L ∼= Z[x1, x2, . . .], deg(xi) = i
- the Lazard ring (the coefficient ring of the universal FGL).
• Chow groups (as well as K0) can be reconstructed out of
Ω∗ by the change of coefficients:

CH∗(X) = Ω∗(X)⊗LZ, where xi 7→ 0.
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Idea of the proof of Theorem B:

If dim(P) is sufficiently large w.r. to the codim(y), we can
choose appropriate coefficients so that the result will not
depend on any choices we made, and will give us the
original element, but now defined over k instead of k(P)!
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Thank you!


