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Overview
Part I: Cast of Characters

1. Fractals from complex dynamics: background, motivation, Julia sets, matings

2. Canonical random trees: Brownian motion, continuum random tree

3. Canonical random surfaces: quantum gravity, planar maps, string theory

4. Canonical random paths: walks, interfaces, Schramm-Loewner evolution

5. Canonical random growth: Eden model, DLA, DBM

Part II: Drama

1. Welding random surfaces: a calculus of random surfaces and SLE seams

2. Mating random trees: tree plus tree (conformally mated) equals surface plus path

3. Random growth on random surfaces: dendrites, dragons, surprising tractability

References:

1. Conformal weldings of random surfaces: SLE and the quantum gravity zipper (2010)

2. Imaginary Geometry I-IV (Miller, S., 2012-2013)

3. Quantum Loewner Evolution (Miller, S. 2013)

4. Liouville quantum gravity as a mating of trees (Duplantier, Miller, S. 2014)
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FRACTALS FROM COMPLEX DYNAMICS

Published 1989, by Roger T. Stevens

I Julia sets (Julia, 1918), popularized in 1980’s

I Consider map φ(z) = z2.

I Maps C \ D conformally to self (2 to 1) where
D is unit disc. Repeated iteration takes points
in C \ D to ∞, leaves others bounded.

I If K is another compact set with connected
hull, can construct a similar (2 to 1) conformal
map φK from C \ K to itself.

I Might expect more intricate sets K to yield
more intricate maps. But suppose we take
φK (z) = z2 + c and let K be set of points
remaining bounded under repeated iteration.

I Look at Julia set images, Arnaud Chéritat’s
“mating” animations.

I Popular lexicon: chaos, butterly effect, fractal,
self-similar.

I What about random fractals, only self similar
in law?
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RANDOM TREES

t

Xt

C−Yt

I This is the easiest random fractal to explain.

I Aldous (1993) constructs continuum random tree (CRT) from a Brownian
excursion. To produce tree, start with graph of Brownian excursion and then
identify points connected by horizontal line segment that lies below graph except at
endpoints. Result is a random matric space.

I Discrete analog: Consider a tree embedded in the plane with n edges and a
distinguished root. As one traces the outer boundary of the tree clockwise, distance
from root performs a simple walk on Z+ with 2n steps, starting and ending at 0.

I Simple bijection rooted planar trees and walks of this type.
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RANDOM PATHS

Given a simply connected planar domain D with boundary points a and b and a
parameter κ ∈ [0,∞), the Schramm-Loewner evolution SLEκ is a random
non-self-crossing path in D from a to b.

b

a

η

D

The parameter κ roughly indicates how “windy” the path is. Would like to argue
that SLE is in some sense the “canonical” random non-self-crossing path. What
symmetries characterize SLE?
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Conformal Markov property of SLE

b

a

η

D

φ

D̃ φ ◦ η

φ(a)

φ(b)

If φ conformally maps D to D̃ and η is an SLEκ from a to b in D, then φ ◦ η is an
SLEκ from φ(a) to φ(b) in D̃.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 6 / 47



Markov Property

b

a

η

D

b

D

Given η up to a
stopping time t...

law of remainder is SLE in
D \ η[0, t] from η(t) to b.

η(t)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 7 / 47



Chordal Schramm-Loewner evolution (SLE)

I THEOREM [Oded Schramm]: Conformal invariance and the Markov
property completely determine the law of SLE, up to a single parameter
which we denote by κ ≥ 0.

I Explicit construction: An SLE path γ from 0 to ∞ in the complex upper
half plane H can be defined in an interesting way: given path γ one can
construct conformal maps gt : H \ γ([0, t])→ H (normalized to look like
identity near infinity, i.e., limz→∞ gt(z)− z = 0). In SLEκ, one defines gt via
an ODE (which makes sense for each fixed z):

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z ,

where Wt =
√
κBt =LAW Bκt and Bt is ordinary Brownian motion.
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SLE phases [Rohde, Schramm]

κ ≤ 4 κ ∈ (4, 8) κ ≥ 8
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Radial Schramm-Loewner evolution (SLE)

I Radial SLE: ∂tgt(z) = gt(z) ξt+gt(z)
ξt−gt(z) where ξt = e i

√
κBt .

I Radial measure-driven Loewner evolution: ∂tgt(z)=
∫
gt(z) x+gt(z)

x−gt(z)dmt(x)

where, for each g , mt is a measure on the complex unit circle.
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RANDOM SURFACES

Start out with a sheet of paper
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RANDOM SURFACES

P
E
N

Get out pen and ruler
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RANDOM SURFACES

P
E
N

Measure and mark squares squares of equal size

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 11 / 47



RANDOM SURFACES

Get out scissors
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RANDOM SURFACES

Cut into squares
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RANDOM SURFACES

GLUE

Get out bottle of glue
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RANDOM SURFACES

GLUE

Attach squares along boundaries with glue to form a surface “without holes.”
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What is the structure of a typical quadrangulation when the number of faces is large?
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Background

(Simulation due to J.F. Marckert)

1. First studied by Tutte in 1960s while working
on the four color theorem.

2. Many variants (triangulations,
quadrangulations, etc.) Some come equipped
with extra statistical physics structure (a
distinguished spanning tree, a general
distinguished edge subset, a “spin” function on
vertices, etc.)

3. Can be interpreted as Riemannian manifolds
with conical singularities.

4. Converges in law in Gromov-Hausdorff sense to
random metric space called Brownian map,
homeomorphic to the 2-sphere, Hausdorff
dimension 4 (established in several works by
subsets of Chaissang, Schaefer, Le Gall, Paulin,
Miermont)

5. Important tool: Bijections encoding surface via
pair of trees.
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Random quadrangulation

Packed with Stephenson’s CirclePack.
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Red tree

Packed with Stephenson’s CirclePack.
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Red and blue trees

Packed with Stephenson’s CirclePack.
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Red and blue trees alone do not determine the map structure

Packed with Stephenson’s CirclePack.
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Random quadrangulation with red and blue trees

Packed with Stephenson’s CirclePack.
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Path snaking between the trees. Encodes the trees and how they are glued together.

Packed with Stephenson’s CirclePack.
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How was the graph embedded into R2?

Packed with Stephenson’s CirclePack.
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Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Packed with Stephenson’s CirclePack.
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What is the “limit” of this embedding? Circle packings are related to conformal maps.

Packed with Stephenson’s CirclePack.
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Picking a surface at random in the continuum
Uniformization theorem: every simply connected Riemannian surface can be
conformally mapped to either the unit disk, the plane, or the sphere S2 in R3

ψ

Isothermal coordinates: Metric for the surface takes the form eρ(z)dz for some smooth
function ρ where dz is the Euclidean metric. (See David Gu’s gallery.)
⇒ Can parameterize the space of surfaces with smooth functions.

I If ρ = 0, get the same surface

I If ∆ρ = 0, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat

metric, natural to choose ρ as the canonical perturbation of a harmonic function.
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The Gaussian free field

I The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

I Measure on functions h : D → R for D ⊆ Z2 and
h|∂D = ψ with density respect to Lebesgue
measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(h(x)− h(y))2

)

I Natural perturbation of a harmonic function

I Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f , g)∇ =
1

2π

∫
∇f (x) · ∇g(x)dx .

I Continuum GFF not a function — only a
generalized function
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I Natural perturbation of a harmonic function

I Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f , g)∇ =
1

2π

∫
∇f (x) · ∇g(x)dx .

I Continuum GFF not a function — only a
generalized function
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Liouville quantum gravity

I Liouville quantum gravity: eγh(z)dz
where h is a GFF and γ ∈ [0, 2)

I Introduced by Polyakov in the 1980s

I Does not make literal sense since h
takes values in the space of
distributions

I Can be made sense of as a random
area measure using a regularization
procedure

I Can compute areas of regions
and lengths of curves

γ = 0.5

(Number of subdivisions)
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Continuum space-filling path

Space-filling SLE6 on a LQG surface. Random path which encodes the limit of a RPM.
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RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

0.75

1.36 4.61

0.32
0.16

1.27
1.84

0.47

0.42

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

0.75

1.36 4.61

0.32
0.16

1.27
1.84

0.47

0.42

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



RANDOM GROWTH
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 20 / 47



Markovian formulation
Eden exploration

C0

Sample the cluster Cn+1 from Cn by selecting an edge uniformly at random on ∂Cn, and

then adding the vertex which is attached to it. VARIANT: Choose locations from

harmonic measure (DLA) or harmonic measure to η power (η-DBM).
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Markovian formulation
Eden exploration
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Sample the cluster Cn+1 from Cn by selecting an edge uniformly at random on ∂Cn, and

then adding the vertex which is attached to it. VARIANT: Choose locations from
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Markovian formulation
Eden exploration
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Sample the cluster Cn+1 from Cn by selecting an edge uniformly at random on ∂Cn, and

then adding the vertex which is attached to it. VARIANT: Choose locations from
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Markovian formulation
Eden exploration

C12

Sample the cluster Cn+1 from Cn by selecting an edge uniformly at random on ∂Cn, and

then adding the vertex which is attached to it. VARIANT: Choose locations from
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Euclidean Diffusion Limited Aggregation (DLA) introduced by Witten-Sander 1981.
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DLA in nature: “A DLA cluster grown from a copper sulfate solution in an electrodeposition

cell” (from Wikipedia)
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DLA in nature: Magnese oxide patterns on the surface of a rock. (Halsey, Physics Today 2000)
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DLA in art: “High-voltage dielectric breakdown within a block of plexiglas” (from Wikipedia)
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DLA in physics
Introduced by Witten and Sander in 1981 as a model for crystal growth. (Mineral

deposits, Hele-Shaw flow, electrodeposition, lichen growth, lightning paths, coral, etc.)

An active area of research in physics for the last 33 years:
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DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically
much more well understood.)

Open questions

I Does DLA have a “scaling limit”?

I Is the shape random at large scales?

I Does the macroscopic shape look like a tree?

I What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on Z2

Schramm 2006 ICM proceedings:

What about DLA on random planar maps and Liouville quantum gravity surfaces?
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Part II:
DRAMA
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WELDING RANDOM SURFACES
Can “weld” and “slice” special quantum surfaces called quantum wedges (with “weight”
parameters indicating thickness) to obtain wedges (with other weights).

I Weight parameter W = γ(γ + 2
γ
− α) is additive under the welding operation.

I Interface between welding of independent wedges W1,W2 of weight W1 and W2 is
an SLEκ(W1 − 2;W2 − 2) on combined surface.

I Glue canonical random surfaces, seam becomes canonical random path.
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MATING RANDOM TREES
X ,Y independent Brownian excursions on [0, 1]. Pick C > 0 large so that the graphs of
X and C − Y are disjoint.

t

Xt

C−Yt

I Identify points on the graph of X if they are connected by a horizontal line which is
below the graph; yields a continuum random tree (CRT)

I Same for C − Yt yields an independent CRT

I Glue the CRTs together by declaring points on the vertical lines to be equivalent

Q: What is the resulting structure? A: Sphere with a space-filling path. A peanosphere.
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How to check this?

Theorem (Moore 1925)
Let ∼= be any topologically closed equivalence relation on the sphere S2. Assume
that each equivalence class is connected and not equal to all of S2. Then the
quotient space S2/ ∼= is homeomorphic to S2 if and only if no equivalence class
separates the sphere into two or more connected components.

I An equivalence relation is topologically closed iff for any two sequences (xn)
and (yn) with

I xn ∼= yn for all n
I xn → x and yn → y

I we have that x ∼= y .
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Constructing a sphere from a pair of trees
I X ,Y ind. Brownian excursions on [0, 1]

I Red/green lines give an ∼=-relation on S2

I Types of equivalence classes:

1. Outer boundary of rectangle

2. V line which does not share an endpoint

with a H line

3. H line below X or above C − Y with two

V lines with common endpoint

4. H line below X or above C − Y with two

V lines with common endpoint and a

third V line hitting in the middle
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Gluing independent Lévy trees
Can view SLEκ′ process, κ′ ∈ (4, 8) as a gluing of two κ′

4
-stable Lévy trees.

t

Xt

C−Yt

I The two trees of quantum disks almost surely determine both the SLEκ′ and the
LQG surface on which it is drawn

I Can convert questions about SLEκ′ into questions about κ′

4
-stable processes.

I Scaling limit of “exploration path” on random planar map should be SLE6 on a√
8/3-LQG. Using welding machinery, we can understand well the “bubbles” cut

out by such an exploration process. We can understand conditional law of
unexplored region given what we have seen.
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RANDOM GROWTH ON RANDOM SURFACES

I Can we make sense of η-DBM on a γ-LQG? We have shown how to tile an
LQG surface with diadic squares of “about the same size” so we could run a
DLA on this set of squares and try to take a fine mesh limit.

I Or we could try η-DBM on corresponding RPM, which one would expect to
behave similarly....

I Question: Are there coral reefs, snowflakes, lichen, crystals, plants, lightning
bolts, etc. whose growth rates are affected by a random medium (something
like LQG)? The simulations look similar but have a bit more personality when
γ is larger (as we will see). They look like Chinese dragons.

I We will ultimately want to construct a candidate for the scaling limit, which
we will call (for reasons explained later) quantum Loewner evolution:
QLE(γ2, η).

I But first let’s look at some computer generated images (and some
animations), starting with an Eden exploration.
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Eden model on
√

8/3-LQG
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DLA on a
√

2-LQG
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Eden model on planar map
I Random planar map, random vertex x . Perform FPP from x .

Important observations:

I Conditional law of map given ball at time n only depends on the boundary lengths of
the outside components.

Exploration respects the Markovian structure of the map.

I If we work on an “infinite” planar map, the conditional law of the map in the
unbounded component only depends on the boundary length

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric
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First passage percolation on random planar maps III

Variant:

I Pick two edges on outer boundary
of cluster

I Color vertices between edges blue
and yellow

I Color vertices on rest of map blue
or yellow with prob. 1

2

I Explore percolation (blue/yellow)
interface

I Forget colors

I Repeat

I This exploration also respects the Markovian structure of the map.

I If we work on an “infinite” planar map, the conditional law of the map in the
unbounded component only depends on the boundary length.

I Expect that at large scales this growth process looks the same as FPP, hence the
same as the graph metric ball
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Continuum limit ansatz

I Sample a random planar map

and two edges uniformly at random

I Color vertices blue/yellow with probability 1/2

and draw percolation interface

I Conformally map to the sphere

Ansatz Image of random map converges to a
√

8/3-LQG surface and the image of the

interface converges to an independent SLE6.
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Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE October, 2014 41 / 47



What is QLE(γ2, η)?

QLE(8/3, 0) is a member of a two-parameter family of processes called QLE(γ2, η)

I γ is the type of LQG surface on which the process grows

I η determines the manner in which it grows

Let µHARM (resp. µLEN) be harmonic (resp. length) measure on a γ-LQG surface. The
rate of growth (i.e., rate at which microscopic particles are added) is proportional to(

dµHARM

dµLEN

)η
dµLEN.

I First passage percolation: η = 0

I Diffusion limited aggregation: η = 1

I η-dieletric breakdown model: general values of η
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Discrete approximation of QLE(8/3, 0). Metric ball on a
√

8/3-LQG
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Discrete approximation of QLE(2, 1). DLA on a
√

2-LQG
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QLE(γ2, η) processes we can construct

γ2

η

0

1

−1

1 2 3 4

(2, 1)

(8/3, 0) (4, 1/4)

Each of the QLE(γ2, η) processes with (γ2, η) on the orange curves is built from an

SLEκ process using tip re-randomization.
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Results

What we can do:

I Existence of QLE(γ2, η) on the orange curves as a Markovian exploration of a
γ-LQG surface.

I Derive an SPDE which the measure valued diffusion satisfies

I Continuity of the outer boundary of the growth at a given time

Work in progress:

I Results on phases for sample path behavior: which QLEs are trees, have holes, and
fill space (joint also with Ewain Gwynne and Xin Sun)

I QLE(8/3, 0) endows
√

8/3-LQG with a distance function

I This metric space is isometric to the Brownian map: LQG = TBM

What we would like to do: construct and study QLE(γ2, η) for (γ2, η) pairs off the

orange curves
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ψ

Thanks!
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