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Introduction

The ABC conjecture was made by Masser and Oesterlé in 1985,
inspired by work of Szpiro.

A proof was announced in Sept. 2012 by Mochizuki.
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Outline

Diophantine equations.

The ABC conjecture.

Relation of ABC conjecture to other problems in number
theory.

The ABC conjecture [...] always seems to lie on the boundary of
what is known and what is unknown. D. Goldfeld
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Diophantine equations

A Diophantine equation is a polynomial equation with integral
(or rational) coefficients.

7x + 5y = 1, x2 + y2 = z2, y2 = x3 − 2, x3 − x2y − y3 = 11

Finitely many or infinitely many integral/rational solutions?

If finitely many, describe all or bound their size.

Example. x2 − 7y2 = 1 has infinitely many Z-solutions: (1, 0),
(8, 3), (127, 48), (2024, 765), . . . More generally, for non-square
d > 1, x2 − dy2 = 1 is called Pell’s equation and has infinitely
many Z-solutions.

Example. x3 − 7y3 = 1 has two Z-solutions (1, 0), (2, 1) and
infinitely many Q-solutions: (1/2,−1/2), (−4/5,−3/5),
(−5/4,−3/4), (73/17, 38/17), . . .
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Mordell’s equation

y2 = x3 + k , k ∈ Z− {0}

Mordell (1888-1972) had an interest in this equation all his life.

Theorem (Mordell, 1920)

For each k ∈ Z− {0}, the equation y2 = x3 + k has finitely many
integral solutions, i.e., a square and cube differ by k finitely often.

His proof was ineffective (that is, no explicit, even impractical,
bounds).

Some solutions could be unusually large relative to k .

Example

The integral solutions to y2 = x3 + 24 are

(−2,±4), (1,±5), (10,±32), and (8158,±736844).
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A graph of Mordell’s equation

The equation y2 = x3 + 8 has infinitely many rational solutions:

(−2, 0), (1,±3), (2,±4),

(
−7

4
,±13

8

)
,

(
433

121
,±9765

1331

)
, . . .

x

y

The integral solutions are (−2, 0), (1,±3), (2,±4), (46,±312).

If y2 = x3 + k in Z and k 6= 0, can we bound |x | in terms of |k |?
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Effective finiteness for Mordell’s equation

Theorem (Baker, 1967)

For each k ∈ Z− {0}, if y2 = x3 + k in Z then

|x | ≤ e10
10|k|10000 =

(
e10

10
)|k|10000

.

The exponent on |k | can be reduced to any value greater than 1:

Theorem (Stark, 1973)

For each ε > 0, there is an effectively computable constant Cε > 0
such that for each k ∈ Z− {0}, if y2 = x3 + k in Z then

|x | ≤ C |k|
1+ε

ε , or equivalently, for x 6= 0, log |x | ≤ (log Cε)|k |1+ε.

blah blah
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Effective finiteness for Mordell’s equation

Theorem (Baker, 1967)

For each k ∈ Z− {0}, if y2 = x3 + k in Z then

|x | ≤ e10
10|k|10000 =

(
e10

10
)|k|10000

.

The exponent on |k | can be reduced to any value greater than 1:

Theorem (Stark, 1973)

For each ε > 0, there is an effectively computable constant Cε > 0
such that for each k ∈ Z− {0}, if y2 = x3 + k in Z then

|x | ≤ C |k|
1+ε

ε , or equivalently, for x 6= 0, log |x | ≤ (log Cε)|k |1+ε.

The bound on |x | should be polynomial in |k|, not exponential...
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Hall’s conjecture

Conjecture (Hall, 1971)

There is a constant C > 0 such that if y2 = x3 + k in Z with
k 6= 0 then |x | ≤ C |k |2.

This would be false using |k |2(1−ε) (Danilov, 1982).
Putting known examples into |x | ≤ C |k |2 gives lower bounds on C ,
and data available to Hall suggested C = 25 might suffice.

7368442 = 81583 + 24 =⇒ C ≥ 14.1
2230633472 = 3678063 − 207 =⇒ C ≥ 8.5
1496516106212 = 281873513 + 1090 =⇒ C ≥ 23.7

4478849284284020423079182 = 58538865167812233 − 1641843
=⇒ C ≥ 2171.6

Hall knew the first 3 examples, but not the 4th (Elkies, 1998).
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Hall’s conjecture with an ε

Stark and Trotter proposed around 1980 that Hall’s conjecture
might be true if k2 is replaced with |k|2(1+ε).

Conjecture

For each ε > 0 there is a constant Cε > 0 such that for each
k ∈ Z− {0}, if y2 = x3 + k in Z then |x | ≤ Cε|k |2(1+ε).

If this is true for an ε0, then true for ε > ε0; care about small ε.

Try ε = 1 : |x | ≤ C1|k |4.

7368442 = 81583 + 24 =⇒ C1 ≥ .02,
2230633472 = 3678063 − 207 =⇒ C1 ≥ .0002,
1496516106212 = 281873513 + 1090 =⇒ C1 ≥ 10−5,
4478849284284020423079182 = 58538865167812233 − 1641843

=⇒ C1 ≥ 8 · 10−10.

Hall’s original conjecture has not been disproved, but “Hall’s
conjecture” now is understood to have ε as above.
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might be true if k2 is replaced with |k|2(1+ε).

Conjecture

For each ε > 0 there is a constant Cε > 0 such that for each
k ∈ Z− {0}, if y2 = x3 + k in Z then |x | ≤ Cε|k |2(1+ε).

If this is true for an ε0, then true for ε > ε0; care about small ε.
Try ε = .1 : |x | ≤ C.1|k|2.2.

7368442 = 81583 + 24 =⇒ C.1 ≥ 7.5,
2230633472 = 3678063 − 207 =⇒ C.1 ≥ 2.95,
1496516106212 = 281873513 + 1090 =⇒ C.1 ≥ 5.8,
4478849284284020423079182 = 58538865167812233 − 1641843

=⇒ C.1 ≥ 124.0.

Hall’s original conjecture has not been disproved, but “Hall’s
conjecture” now is understood to have ε as above.
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Exponential Diophantine equations

An exponential Diophantine equation has unknown exponents.

Example (Fermat’s Last Theorem (1630s))

For all n ≥ 3, the equation xn + yn = zn has no solution in
positive integers x , y , z . Settled by Wiles in 1994.

Example (Catalan’s Conjecture (1844))

The only consecutive perfect powers in Z+ are 8 and 9. That is,
the only solution of yn − xm = 1 in Z+ where m, n ≥ 2 is
32 − 23 = 1. Settled by Mihailescu in 2002.

Before work of Mihailescu, analytic methods showed for yn−xm =1
that m, n, x , and y are all explicitly bounded above:

xm < yn < ee
ee

1000

.

Search space is too large to fully check. Mihailescu used algebraic
methods that bypassed computers.
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The ABC Conjecture
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The radical of a number

The ABC conjecture provides a new viewpoint on exponential
Diophantine equations. It involves the following concept.

Definition. For any positive integer n = pe1
1 · · · per

r , its radical is
rad(n) = p1p2 · · · pr .

Examples.

1) rad(1) = 1

2) rad(252) = rad(22 · 32 · 7) = 42

3) rad(10000) = 10

4) rad(am) = rad(a)

Remark. There is no known way to compute rad(n) without
factoring n. By comparison, Euclid’s algorithm computes gcd(m, n)
quickly without factoring.
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The radicals of a, b, and a + b in Z+

For a and b in Z+, obviously a + b ≥ rad(a + b). Consider the
inequality a + b ≥ rad(ab(a + b)) when gcd(a, b) = 1.

Example. Among all 3044 pairs (a, b) such that 1 ≤ a ≤ b ≤ 100
and gcd(a, b) = 1, the inequality a + b ≥ rad(ab(a + b)) holds 7
times: (1, 1), (1, 8), (1, 48), (1, 63), (1, 80), (5, 27), and (32, 49).

Many examples of a + b ≥ rad(ab(a + b)) do exist, but they’re big.

Example. Let a = 1 and b = 32
10 − 1. Then b is divisible by 212,

so

rad(ab(a + b)) = rad(b · 3) ≤ b

211
· 3 < 3

211
(a + b).

Thus a + b >
211

3
rad(ab(a + b))� rad(ab(a + b)).

For b = 32
n − 1, (a + b)/ rad(ab(a + b)) becomes arbitrarily large.
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The ABC conjecture

Definition. An ABC -triple is a triple of positive integers (a, b, c)
such that a + b = c and gcd(a, b, c) = 1 (⇐⇒ gcd(a, b) = 1).

By previous slide, infinitely often c > rad(abc). How much bigger?

Among all known ABC -triples such that c > rad(abc), all fit
c < rad(abc)2, all but 3 fit c < rad(abc)1.6, and all but 13 fit
c < rad(abc)1.5.

Conjecture (Masser, Oesterlé, 1985)

For each ε > 0, all but finitely many ABC -triples (a, b, c) satisfy
c < rad(abc)1+ε.

This would be false using ε = 0.

Numerical evidence is indicated above. Unlike Fermat or Catalan,
this can’t be disproved using a single counterexample.
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The ABC conjecture

Conjecture

For each ε > 0, all but finitely many ABC -triples (a, b, c) satisfy
c < rad(abc)1+ε.

For small ε, right side is “nearly” rad(abc), the product of primes
in a, b, and c once each. Conjecture roughly says it is hard to get

a︸︷︷︸
high

multip.

+ b︸︷︷︸
high

multip.

= c︸︷︷︸
high

multip.

, gcd(a, b) = 1.

Ex: 26+34 = 51 · 191, 24 · 35+311 · 76 · 113 = 1731 · 24591 · 114111.
But conjecture has ε > 0, not ε = 0. Infinitely often x2 + y2 = z2

with gcd(x , y) = 1, and examples with all multiplicities ≥ 3 occur:

27 · 34 · 53 · 73 · 22873 + 173 · 1062193 = 373 · 1973 · 3073.

In this example, c ≈ rad(abc)1.04163.



Introduction Diophantine Equations The ABC conjecture Consequences

The ABC conjecture

Conjecture

For each ε > 0, all but finitely many ABC -triples (a, b, c) satisfy
c < rad(abc)1+ε.

For small ε, right side is “nearly” rad(abc), the product of primes
in a, b, and c once each. Conjecture roughly says it is hard to get

a︸︷︷︸
high

multip.

+ b︸︷︷︸
high

multip.

= c︸︷︷︸
high

multip.

, gcd(a, b) = 1.

Ex: 26+34 = 51 · 191, 24 · 35+311 · 76 · 113 = 1731 · 24591 · 114111.
But conjecture has ε > 0, not ε = 0. Infinitely often x2 + y2 = z2

with gcd(x , y) = 1, and examples with all multiplicities ≥ 3 occur:

27 · 34 · 53 · 73 · 22873 + 173 · 1062193 = 373 · 1973 · 3073.

In this example, c ≈ rad(abc)1.04163.



Introduction Diophantine Equations The ABC conjecture Consequences

The ABC conjecture reformulated

In defn. of ABC -triple, where a + b = c and gcd(a, b, c) = 1, relax
“a, b > 0” to “a, b, c 6= 0”. For n < 0, set rad(n) = rad(|n|).

Conjecture (Allowing nonzero a, b, c)

For each ε > 0, all but finitely many ABC -triples (a, b, c) satisfy
max(|a|, |b|, |c |) < rad(abc)1+ε.

Conjecture (No finite exceptions)

For each ε > 0, there is a constant κε > 0 such that for all
ABC -triples (a, b, c), max(|a|, |b|, |c |) < κε rad(abc)1+ε.
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Motivation for ABC conjecture

Conjecture

For each ε > 0, all but finitely many ABC -triples (a, b, c) satisfy
max(|a|, |b|, |c |) < rad(abc)1+ε.

What led Masser and Oesterlé to the ABC conjecture?

Oesterlé was interested in a new conjecture of Szpiro about
elliptic curves (smooth cubic curves, such as y2 = x3 + 8)
which has applications to number-theoretic properties of
elliptic curves.

Masser heard Oesterlé lecture on Szpiro’s conjecture and
wanted to formulate it without using elliptic curves.

Eventually it turned out that the ABC Conjecture and
Szpiro’s Conjecture are equivalent (and ABC implies Fermat’s
Last Theorem, as we’ll see, but that was not part of the
original motivation).
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Consequences
of the ABC Conjecture
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Using the ABC conjecture

Conjecture

For each ε > 0, all but finitely many ABC -triples (a, b, c) satisfy
max(|a|, |b|, |c |) < rad(abc)1+ε.

Applications use the “for each ε” aspect in different ways:

one choice of ε (without constraints),

one choice of ε below some bound (e.g., ε < 1/5),

all small ε.

Before Mochizuki’s work, nobody had announced a proof for even
a single value of ε.
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ABC conjecture implies Fermat’s last theorem for large exponents

Suppose ABC proved for one ε: max(|a|, |b|, |c |) < rad(abc)1+ε

for all but finitely many ABC -triples. If xn + yn = zn with n ≥ 3
and x , y , z ∈ Z+, we want to show n is bounded. Without loss of
generality gcd(x , y) = 1, which makes (xn, yn, zn) an ABC -triple.

For all but finitely many ABC -triples (xn, yn, zn) in Z+,

zn < rad(xnynzn)1+ε

= rad(xyz)1+ε

≤ (xyz)1+ε

< z3(1+ε)

⇒ n < 3(1 + ε).

For exceptions (xn, yn, zn), zn on finite list & z > 1⇒ n bounded.
Thus FLT true for large exponents, and in an effective way if
exceptions to max(|a|, |b|, |c |) < rad(abc)1+ε are known for one ε.
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ABC conjecture and xn + yn = 5zn

Suppose ABC proved for one ε < 1/3. If xn + yn = 5zn with
x , y , z ∈ Z− {0}, we want to show n is bounded. Without loss of
generality gcd(x , y) = 1, which makes (xn, yn, 5zn) an ABC -triple.

For all but finitely many ABC -triples (xn, yn, 5zn),
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= rad(5xyz)1+ε

≤ (5|xyz |)1+ε.

Let M = max(|x |, |y |, |z |) ≥ 2, so

Mn < (5M3)1+ε =⇒ Mn−3(1+ε) < 51+ε.

If n ≥ 4 and ε < 1/3 then n − 3(1 + ε) > 0, so 2n < 23(1+ε)51+ε.
Thus n bounded for all but finitely many ABC -triples (xn, yn, 5zn).
Each exception can occur for finitely many n, so n is bounded.
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ABC and integral solutions of x3 − 7y3 = 1

Earlier: x2− 7y2 = 1 has inf. many Z-solns, x3− 7y3 = 1 has two.

ABC conjecture for one ε < 1/2 implies x3 − 7y3 = 1 has finitely
many Z-solutions: for all but finitely many (nonzero) x and y ,

|x |3, 7|y |3 < rad(x3(7y3))1+ε = rad(7xy)1+ε ≤ 71+ε|x |1+ε|y |1+ε.

Let M = max(|x |3, 7|y |3) < 71+ε|x |1+ε|y |1+ε, so

M < 72(1+ε)/3(|x |3)(1+ε)/3(7|y |3)(1+ε)/3 ≤ 72(1+ε)/3M2(1+ε)/3.

Therefore M, and thus |x | and |y |, can be bounded in terms of ε:

M(1−2ε)/3 < 72(1+ε)/3 ε<1/2
=⇒ M < 72(1+ε)/(1−2ε).

Similarly, for any n ≥ 3 and d ≥ 2, xn − dyn = 1 has finitely many
integral solutions from ABC conjecture for one ε < n

2 − 1.
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ABC conjecture and Catalan’s conjecture

Theorem. If c < rad(abc)2 for all ABC-triples (a, b, c) in Z+ then
Catalan’s conjecture is true: yn = xm + 1 with x , y ,m, n ≥ 2 only
for 32 = 23 + 1.
Pf: Using (a, b, c) = (xm, 1, yn) we have gcd(a, b, c) = 1, so

yn < rad(xmyn)2 = rad(xy)2 ≤ x2y2.

Also xm = yn − 1 < yn ⇒ x < yn/m, so

yn < (yn/m)2y2 = y2(1+n/m).

From y > 1 we get n < 2(1 + m/n), so 1/2 < 1/m + 1/n. The
only such exponents are

{m, n} = {2, r}, {3, 3}, {3, 4}, {3, 5},

where r ≥ 2, and all of these were shown by the 1960s to have no
solution for x and y in Z+ other than m = 3, n = 2, x = 2, y = 3.
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Comparing Hall’s conjecture and the ABC conjecture

Theorem (ABC implies Hall’s conjecture)

If ABC conj. true then for each ε > 0 there is Cε > 0 such that if
y2 = x3 + k in Z and k 6= 0, then |x | ≤ Cε|k |2(1+ε).

Theorem (ABC implies “radical Hall’s conjecture”)

If ABC conj. true then for each ε > 0 there is C ′ε > 0 such that if
y2 = x3 + k in Z, k 6= 0, gcd(x , y) = 1 then |x | ≤ C ′εrad(k)2(1+ε).

This bound on |x | is typically stronger than Hall, since rad(k) can
be smaller than |k |, but the bound is just for gcd(x , y) = 1.

Theorem

Radical Hall conjecture implies ABC , so they are equivalent.

Thus bounding integral solutions to Mordell’s equation is far more
central (and difficult) than it at first appears to be!
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ABC conjecture and gaps between perfect powers

Going beyond Catalan’s conjecture about yn − xm = 1 and Hall’s
conjecture about y2 = x3 + k, we can consider the exponential
Diophantine equation

yn − xm = k ,

where k is a nonzero integer. The sequence of perfect powers in
Z+ starts out as

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, . . . .

How far apart can two different perfect powers be?

If we fix k as well as m and n (both at least 2), the equation
yn − xm = k has finitely many integral solutions x , y . This is easy
if gcd(m, n) ≥ 2 and hard if gcd(m, n) = 1. Studying gaps between
perfect powers demands that we fix only k ; let x , y ,m, n vary.

The ABC conjecture for one ε < 1/5 implies for each k 6= 0 that
only finitely many perfect powers differ by k (Pillai’s conjecture).
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Good Rational Approximations and the ABC Conjecture

For irrational α ∈ R, inf. many (reduced form) rational a/b satisfy∣∣∣α− a

b

∣∣∣ < 1

b2
.

Example. Let α = 5
√

2 ≈ 1.1486. Compare∣∣∣∣ 5
√

2− 1148

1000

∣∣∣∣� 1

10002
(.0006� .000001),∣∣∣∣ 5

√
2− 309

269

∣∣∣∣ < 1

2692
(.0000005 < .0000138).

The (reduced form) fractions satisfying
∣∣∣ 5
√

2− a

b

∣∣∣ < 1

b2
, in order of

increasing denominator b > 1 (found via “continued fractions”):

7

6
,

8

7
,

15

13
,

23

20
,

31

27
,

54

47
,

85

74
,

139

121
,

224

195
,

309

269
, . . . .
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Good Rational Approximations and the ABC Conjecture

Let
ai
bi

be the (reduced) fractions with

∣∣∣∣ 5
√

2− ai
bi

∣∣∣∣ < 1

b2
i

and

b1 < b2 < b3 < · · · . Set

∣∣∣∣ 5
√

2− ai
bi

∣∣∣∣ =
1

b2+εi
i

, with εi > 0. Below is

a plot of εi for the first 20 such fractions (i = 1, 2, . . . ).

The εi ’s fluctuate, but tend to 0. Thus, for each ε > 0, only

finitely often is
∣∣∣ 5
√

2− a

b

∣∣∣ < 1

b2+ε
<

1

b2
.

This is a special instance

of Roth’s theorem (1958 Fields Medal) on approximating algebraic
irrational numbers like 5

√
2 by rationals. All known proofs are

ineffective in listing the finitely many
a

b
for each ε (esp. small ε).
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ineffective in listing the finitely many
a

b
for each ε (esp. small ε).
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Good Rational Approximations and the ABC Conjecture

Conjecture (First version of ABC)

For each ε > 0, all but finitely many ABC -triples (a, b, c) satisfy
max(|a|, |b|, |c |) < rad(abc)1+ε.

Conjecture (Equivalent form as lower bound on rad(abc))

For each ε ∈ (0, 1), all but finitely many ABC-triples (a, b, c)
satisfy rad(abc) > max(|a|, |b|, |c |)1−ε. Obvious for ε ≥ 1.

Elkies and Langevin showed (indep.) this form of ABC implies for
each ε > 0 that rad(a5 − 2b5) > max(|a|, |b|)3−ε for all but finitely
many rel. prime a and b. That in turn implies Roth’s theorem for

α = 5
√

2, i.e.,
∣∣∣ 5
√

2− a

b

∣∣∣ < 1

b2+ε
finitely often for each ε.

More generally Elkies and Langevin showed ABC implies the full
Roth theorem, and an effective bound on exceptions in Roth’s
theorem would follow from an effective version of ABC .
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FAQ about Mochizuki’s work on the ABC conjecture

1 How does he use a solution to the simple equation a + b = c?

2 Does his approach to the ABC conjecture lead to an explicit
bound on exceptions to max(|a|, |b|, |c |) < rad(abc)1+ε?

1) Associate to a + b = c the Frey curve y2 = x(x − a)(x + b).
He aims to prove Szpiro’s conjecture on elliptic curves, which
implies ABC conjecture when applied to Frey curves.

2) He does not think so. He has one explicit estimate directly
relevant to the ABC conjecture, for “generic” elliptic curves, and
the “non-generic” case requires reduction steps with Belyi maps.
He feels this is incompatible with making ABC explicit.
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Questions?
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