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which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these geodesic normal coordinates the metric
volume form is given by

d,LLh — |:1 — % T]k :U]:Ck + O(’x‘:g)} d,LLEuclideam

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM | h(v,v) =1}

given by
v — (v, V).
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Definition. A Riemannian metric h 1s said to
be Einstein f it has constant Riccit curvature —
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for some constant A € R.

A called Einstein constant.
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Recognition Problem:

Suppose M"™ admits Einstein metric A.
What, if anything, does h then tell us about M7

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover 52, R3. H?. ..

But when n > 5, situation seems hopeless.

{Einstein metrics on S™} /~ is highly disconnected.

When n = 4, situation is more encouraging. . .
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Moduli Spaces of Einstein metrics

& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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When n = 4, Einstein metrics are genuinely non-
trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions
to the existence of Einstein metrics on 4-manifolds.

Some arise from Seiberg-Witten theory, and so are
sensitive to the existence of a symplectic structure:

i.e. a closed non-degenerate 2-form w:

dw =0, w A\ w > 0.
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an

FEinstein metric h (unrelated to w)? What if we
also require A > 07
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Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an

Einstein metric h with A > 0 if and only if
rCPQ#k@Q, 0 <k<Sg,

52 x SQ,
K3,
di
M 2 K37,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).




K3



K3 = Kummer



K3 = Kummer-Kahler



K3 = Kummer-Kahler-Kodaira



K3 = Kummer-Kahler-Kodaira surface.



K3 = Kummer-Kahler-Kodaira surface.

—André Weil



K3 = Kummer-Kahler-Kodaira surface.

*...et de la belle montagne K2 au Cachemire.”

—André Weil, 1958



K3 = Kummer-Kahler-Kodaira surface.



K3 = Kummer-Kahler-Kodaira surface.

Simply connected complex surface with ¢; = 0.



K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Only one deformation type.



K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Only one diffeomorphism type.



K3 = Kummer-Kahler-Kodaira surface.

Simply connected complex surface with ¢; = 0.



K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.



K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.




K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Only one diffeomorphism type.



K3 = Kummer-Kahler-Kodaira manifold.



K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.




K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.

T* = Picard torus of curve of genus 2.



K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.

Remove singularities by deforming equation.



K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.

Remove singularities by deforming equation.



K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.

Remove singularities by deforming equation.



K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.

Remove singularities by deforming equation.



K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.

Remove singularities by deforming equation.



K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Kummer: T4 /2. Singular quartic in CP3.
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K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Calabi/Yau: Admits Ricci-flat Kéahler metrics.
Hitchin: Every Einstein h on /K3 is Calabi-Yau.
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Kahler metrics:
(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

dw =0
W A0

So w is, in particular, a symplectic form.



K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Calabi/Yau: Admits Ricci-flat Kéhler metrics.
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Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an

Einstein metric h with A > 0 if and only if
((CPQ#/C@Q, 0 <k<Sg,

52 x SQ,
K3,
di
M %ﬁ< K3/79,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Zy ® L), T/ (23 © Z3), o T/ (Zy @ Ly).

del Pezzo surtaces,
K3 surface, Enriques surface,
Abelian surtace, Hyper-elliptic surtfaces.
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each del Pezzo (M*,]) admits a com-
patible conformally Kahler, Einstein metric, and
this metric 1s unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber.

Uniqueness: Bando-Mabuchi 87, L, "12.
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Progress to date:
Nice characterizations of known Einstein metrics.

Exactly one connected component of moduli space!
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Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} & H;

where

Hy ={p e T(A") | dyp = 0}
self-dual & anti-self-dual harmonic forms.
Notice these spaces are conformally invariant.
More generally, their dimensions

bs (M) = dimH

are completely metric-independent, and
are oriented homotopy invariants of M.
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pact oriented Einstein 4-manifold that carries a
self-dual harmonic 2-form w such that

W (w,w) >0

everywhere on M. Then M 1s diffeomorphic to a
del Pezzo surface, and h is conformally Kdahler,
with Einstetn constant A > 0.

Conversely, every del Pezzo surface admaits Ein-
stein metrics with W (w, w) > 0.

Corollary. Let M* be the underlying smooth
manifold of any del Pezzo surface. Then the
conformally Kahler, Einstein metrics sweep out
evactly one connected component of the moduli
space & (M) of Einstein metrics on M.
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via Weitzenbock for self-dual harmonic 2-form w:

0= V*Vw — 2W H(w, ) + gw
Taking inner product with w and integrating:

[ wrwwin> [ Spas
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In particular, an Einstein metric with A > 0 has

W (w,w) >0

on average. But result requires this everywhere.
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Kahler = AT = Rw @ ReA2V
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Reasonably satistying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Wu's criterion:

det(W ) > 0.
Wu (2019): cryptic, opaque proof that <.
L (2019): completely different proof;

method also proves more general results.
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Theorem A. Let (M, h) be a simply-connected
compact oriented Einstein 4-manifold, and sup-
pose that its self-dual Weyl curvature

WT AT = AT
satisfies
det(W™") > 0
at every point of M. Then h 1s conformal to an

orientation-compatible Bach-flat extremal Kahler
metric g with scalar curvature s > 0 on M.

Simply connected hypothesis is essential!

Otherwise, (S?x S?)/Zsy would be counter-example,
where antipodal x antipodal generates Zo-action.

However, this example is as bad as it gets. ..
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Proposition. Let (M, h) be a compact oriented
FEinstein 4-manifold with

det(W) > 0.
Then either

(i) m (M) =0, and M admits an orientation-
compatible complex structure J that makes
(M, .J) into a del Pezzo surface, and rela-
tive to which the Einstein metric h becomes
conformally Kahler; or else,

(ii) T (M) = Zs, and M s doubly covered by a
del Pezzo surface (M, .J) of even signature

on which the pull-back of the Einstein met-
ric h becomes conformally Kahler.
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One key idea underlying the proof:
By second Bianchi identity,

h Einstein —
SWH=-V-WT=0
Our strategy:

study weaker equation

SWT =0

as proxy for Einstein equation.

But actually more widely applicable!
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Theorem B. Let (M, h) be a compact oriented
Riemannian 4-manifold with harmonic self-dual
Weyl curvature:

SWT =—-V. Wt =0.

Suppose that b (M) # 0, and that h satisfies

det(TW") > 0 at every point of M. Then M

admits an orientation-compatible Kahler metric

g of scalar curvature s > 0 such that h = s~2g.

Corollary. A smooth compact oriented M* with

b (M) # 0 admits metrics with 6W ™" = 0 and
det(W 1) > 0 if and only if it is diffeomorphic
to a rational or ruled compler surface. When
such metrics exist, their moduli space s always
infinite dimenstonal.
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Theorem C. Let (M, h) be a compact oriented
Riemannian 4-manifold with W™+ = 0. If

5v/2
~ 2121
everywhere on M, then actually det(TV ") > 0.
Thus, after at worst passing to a double cover
M — M, h becomes conformally Kahler, in the
manner described by Theorem B. In partic-
ular, if (M, h) is a simply-connected Finstein
manzifold, 1t actually falls under the purview of
Theorem A.

WH4£0 and det(W ') > W3
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Today’s talk has focused on Einstein 4-manifolds
with A > 0.

But the real moral is that most Einstein 4-manifolds
have A < 0!

We have also learned a huge amount about this
negative case in recent years.

In this setting, Seiberg-Witten theory plays
the starring role.

But that would be the subject of an an entirely
different colloquium!



