WHY EUCLIDEAN DOMAINS ARE BOTH EASIER AND HARDER THAN YOU THINK

Pace P. Nielsen

(Joint work with Chris Conidis and Vandy Tombs) Brigham Young University

Section 1: Generalizations Galore

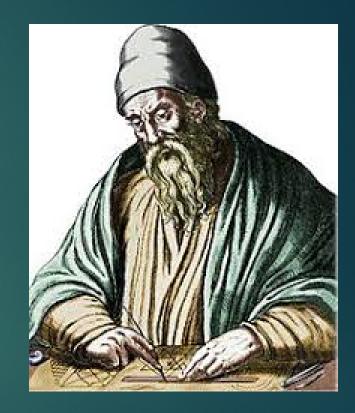
Euclid's Problem

Let n, d be two given integers.

Find GCD(n, d).

What is the "best" way?

Euclid's idea: Repeated subtraction.



Algorithm Example

Take n = 13, d = 8. $13 = 1 \cdot 8 + 5$ $8 = 1 \cdot 5 + 3$ $5 = 1 \cdot 3 + 2$ $3 = 1 \cdot 2 + 1$ $2 = 2 \cdot 1 + 0$

What is a GCD?

- The word "greatest" comes from the order on ideals.
- A GCD domain is:
 - A domain.
 - For any two principal ideals, there is a minimal principal ideal above them.

Problems with this?

► $GCD(a,b) \notin (a,b)$, in general.

No method to find the GCD.

The condition is somewhat ad hoc.

Better Definition

A Bézout domain is:
 A domain.
 (a, b) is always principal.

Problems with this?

Still no method to find the GCD.
No back-forth procedure.
However, much more natural.
Ring of algebraic integers.
Ring of entire functions on C.

Stronger Definition

A quasi-Euclidean domain is:
 A domain.
 For each pair of elements *a*, *b* there is a "terminating division chain."

Terminating Chain

 $a = q_1b + r_1$ $b = q_2r_1 + r_2$: $r_{n-1} = q_{n+1}r_n + 0$

Problems with this?

Still no method to find the GCD.

Still quite natural.
 Cooke: All class number 1 rings of integers.

Another Definition

A unique factorization domain is:
A domain.
Every element has a prime factorization.
The factorization is unique, up to

order and associates.

Problems with this?

Still no method to find the GCD. ► (Unless a factoring algorithm exists.) Often hard to verify this property. Equivalent formulation: GCD-domain + ACCP. ► UFD+Bézout=PID

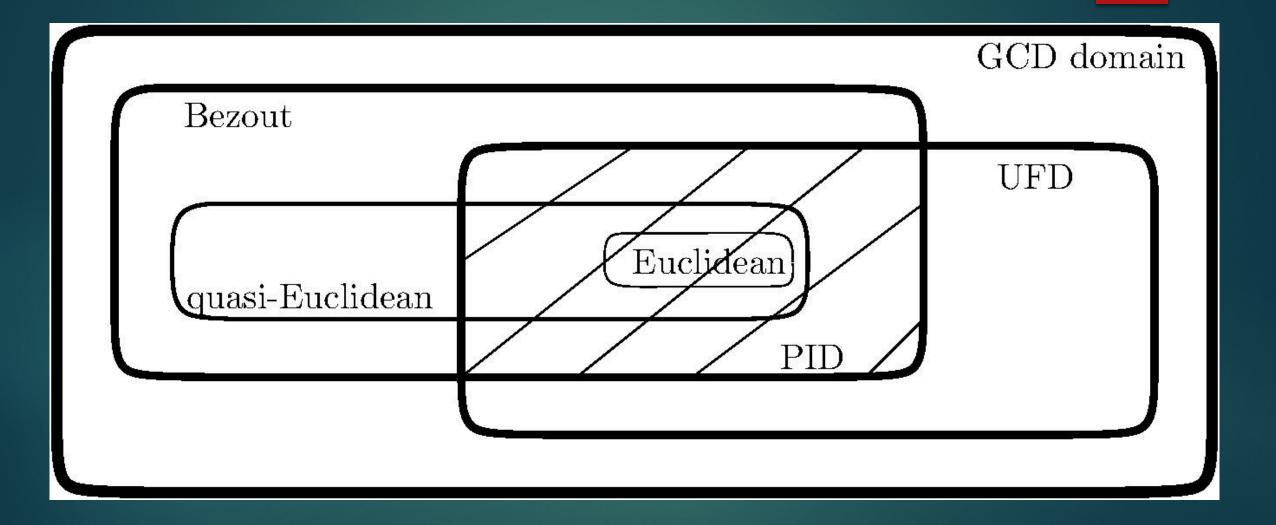
Final Definition?

A Euclidean domain is: $\blacktriangleright A \operatorname{domain} R.$ Equipped with $\varphi: R \setminus \{0\} \to \mathbb{N}$. For every $n, d \in R \setminus \{0\}$: Either d|n, or ► there exist $q \in R$, $\varphi(n - qd) < \varphi(d)$.

Problems with this?

Still no method to find the GCD!
But Euclid's algorithm "exists".

Is it nice algebraically?
 Is the condition natural?
 Answer: Motzkin's Lemma



Section 2: Euclidean

Norms

Some norms are better than others. Take n = 13, d = 8. $13 = 1 \cdot 8 + 5$ $8 = 1 \cdot 5 + 3$ $5 = 1 \cdot 3 + 2$ $3 = 1 \cdot 2 + 1$ $2 = 2 \cdot 1 + 0$

Norms

Take n = 13, d = 8. $13 = 2 \cdot 8 + (-3)$ $8 = (-3) \cdot (-3) + (-1)$ $(-3) = (-3) \cdot (-1) + 0$

Motzkin's Idea

Let the norm measure complexity.

Complexity measured by how easy it is to divide.

Complexity 0: Remainder is zero.Units.

Motzkin's Idea

Complexity 1: Remainders are zero or units.

Universal side divisors.

Complexity 2: Remainders are zero, units, and universal side divisors.

▶ For Z
▶ S₀ = {±1}
▶ S₁ = {±1, ±2, ±3}
▶ S₂ = {±1, ±2, ±3, ±4, ±5, ±6, ±7}

Complexity: $\lfloor \log_2 |x| \rfloor$.

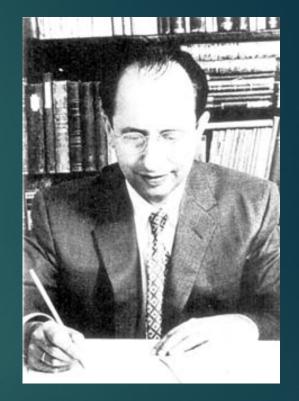
Example

For a field F $S_0 = F \setminus \{0\}$ $S_1 = F$ $S_2 = F$

Complexity: 0.

Motzkin's Lemma

Let *R* be a domain. Recursively define: $\triangleright S_n = \{x \in R : \forall y \in R, \exists r \in S_m \cup$ $\{0\}$ for some $m < n, x | (y - r) \}$. These sets always stabilize. $\blacktriangleright R$ =Euclidean iff $S_{\omega} = \overline{R}$.



Side Note

What is the norm of 0?

Three main options.

Think: Order the ideals.

CHUCK NORRIS CAN DIVIDE BY ZERO.

Co 2 Chinese anno 100 anno 100

Norms

Motzkin: Let R be a Euclidean domain. ► Define $\varphi: R \setminus \{0\} \to \mathbb{N}$ by $\blacktriangleright \varphi(x) = \min(n : x \in S_n).$ Then φ is a Euclidean norm. ►It is minimal: $\blacktriangleright \varphi(x) \leq \psi(x).$

Examples

► For Z $\triangleright \log_2 |x|$ For a field Constant 0 function Lenstra: Worked out for $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$. ► To big to fit in the margins.

Obvious question

Euclidean norms φ: R \ {0} → N. Why N? Why not R?
 Euclid's algorithm terminates.

► Everything still works if we replace N with the ordinals.

Everything?

Motzkin's Lemma: R is transfinitely Euclidean iff $S_{\alpha} = R$.

Transfinitely Euclidean domains are PIDs.

Euclid's algorithm terminates.

Everything?

Motzkin:Minimal norms exist.

Minimal norms are super-additive: $\varphi(xy) \ge \varphi(x) \oplus \varphi(y).$

Everything?

Okay, not everything. ► The stabilization point is different. Fields stabilize at complexity 1. Euclidean domains stabilize at ω . ► Unless they are fields. ► Are there any others?

Transfinite examples

► Hiblot (1975) found an example. ► Nagata (1977-78) found an error, and produced a different example. Hiblot (1977) fixed his example. Both very complicated. Stabilized at ω^2 . ► No other examples.

New Results

• (1) Every transfinite Euclidean domain stabilizes at ω^{α} .

• Proof: Easy consequence of Lenstra's super-additive result.

New Results

• (2) For every α there is a transfinite Euclidean domain which stabilizes at ω^{α} .

- Corollary: Complexity can be arbitrarily large.
- Proof: We'll sketch it later.

New Results

• (3) Euclidean domains without multiplicative norms exist.

• Proof: Modify the construction we sketch below.

- Fix an ordinal α .
- Let $R_0 = F[x_{\{\beta\},0} : 1 \le \beta \le \omega^{\alpha}].$

- Idea: $x_{\{\beta\},0}$ will have complexity β .
- Define such a "norm" φ on R_0 .

- Not Euclidean yet.
- Don't always have quotients to get simpler remainders.

- When GCD(n, d) = 1, $\varphi(n) \ge \varphi(d) \ge 1$, then
- Adjoin a new quotient $q = q_{T,1,n,d}$.

- Let $R_1 = R_0[x_{\{\beta\},1}, q_{T,1,n,d}].$
- Extend φ to R_1 in the obvious way, and

•
$$\varphi(n - q_{T,1,n,d}d) = \max(\beta \in T : \beta < \varphi(d))$$

- Don't always have quotients to get simpler remainders.
- Repeat this process.

- Let $R_{\infty} = \bigcup_{i=0}^{\infty} R_i$.
- Polynomial ring in many variables, not Euclidean.

- Invert all elements of norm zero.
- φ is the minimal norm.

Open Problems

- Is there a Euclidean domain with no (well-ordered) multiplicative norm in \mathbb{R} ?
- More generally, is there a Euclidean domain with no "multiplicative" norm in the ordinals?
- How does the transfinite condition apply to PID number rings?

THANK YOU FOR YOUR ATTENTION