
WHY EUCLIDEAN DOMAINS 
ARE BOTH EASIER AND 

HARDER THAN YOU THINK
Pace P. Nielsen

(Joint work with Chris Conidis and Vandy Tombs)

Brigham Young University



Section 1: 
Generalizations 
Galore



Euclid’s Problem
Let 𝑛𝑛,𝑑𝑑 be two given integers.

Find GCD 𝑛𝑛,𝑑𝑑 .

What is the “best” way?

Euclid’s idea: Repeated subtraction.



Algorithm Example
Take 𝑛𝑛 = 13,𝑑𝑑 = 8.

13 = 1 ⋅ 8 + 5
8 = 1 ⋅ 5 + 3
5 = 1 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1
2 = 2 ⋅ 1 + 0



What is a GCD?
The word “greatest” comes from the 

order on ideals.
A GCD domain is:
A domain.
For any two principal ideals, there is 

a minimal principal ideal above 
them.



Problems with this?
GCD 𝑎𝑎, 𝑏𝑏 ∉ (𝑎𝑎, 𝑏𝑏), in general. 

No method to find the GCD.

The condition is somewhat ad 
hoc.



Better Definition

A Bézout domain is:
A domain.
(𝑎𝑎, 𝑏𝑏) is always principal.



Problems with this?
Still no method to find the GCD.
No back-forth procedure.
However, much more natural.
Ring of algebraic integers.
Ring of entire functions on ℂ.



Stronger Definition

A quasi-Euclidean domain is:
A domain.
For each pair of elements 𝑎𝑎, 𝑏𝑏 there is a 

“terminating division chain.”



Terminating Chain
𝑎𝑎 = 𝑞𝑞1𝑏𝑏 + 𝑟𝑟1
𝑏𝑏 = 𝑞𝑞2𝑟𝑟1 + 𝑟𝑟2
⋮
𝑟𝑟𝑛𝑛−1 = 𝑞𝑞𝑛𝑛+1𝑟𝑟𝑛𝑛 + 0



Problems with this?
Still no method to find the GCD.

Still quite natural.
Cooke: All class number 1 rings of 

integers.



Another Definition
A unique factorization domain is:
A domain.
Every element has a prime 

factorization.
The factorization is unique, up to 

order and associates.



Problems with this?
Still no method to find the GCD.
(Unless a factoring algorithm exists.)
Often hard to verify this property.
Equivalent formulation:             

GCD-domain + ACCP.
UFD+Bézout=PID



Final Definition?
A Euclidean domain is:
A domain 𝑅𝑅.
Equipped with 𝜑𝜑:𝑅𝑅 ∖ {0} → ℕ.
For every 𝑛𝑛,𝑑𝑑 ∈ 𝑅𝑅 ∖ {0}:
Either 𝑑𝑑|𝑛𝑛, or
there exist 𝑞𝑞 ∈ 𝑅𝑅, 𝜑𝜑 𝑛𝑛 − 𝑞𝑞𝑞𝑞 < 𝜑𝜑(𝑑𝑑).



Problems with this?
Still no method to find the GCD!
But Euclid’s algorithm “exists”.

Is it nice algebraically?
Is the condition natural?
Answer: Motzkin’s Lemma





Section 2: 
Euclidean 
Norms



Norms
Some norms are better than others.
Take 𝑛𝑛 = 13,𝑑𝑑 = 8.

13 = 1 ⋅ 8 + 5
8 = 1 ⋅ 5 + 3
5 = 1 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1
2 = 2 ⋅ 1 + 0



Norms
Take 𝑛𝑛 = 13,𝑑𝑑 = 8.
13 = 2 ⋅ 8 + (−3)
8 = (−3) ⋅ (−3) + (−1)
(−3) = (−3) ⋅ (−1) + 0



Motzkin’s Idea
Let the norm measure complexity.

Complexity measured by how easy it is 
to divide.

Complexity 0: Remainder is zero.
Units.



Motzkin’s Idea
Complexity 1: Remainders are zero 

or units.
Universal side divisors.

Complexity 2: Remainders are zero, 
units, and universal side divisors.



Example
For ℤ
𝑆𝑆0 = {±1}
𝑆𝑆1 = {±1, ±2, ±3}
𝑆𝑆2 = {±1, ±2, ±3, ±4, ±5, ±6, ±7}

Complexity: log2 |𝑥𝑥| .



Example
For a field 𝐹𝐹
𝑆𝑆0 = 𝐹𝐹 ∖ {0}
𝑆𝑆1 = 𝐹𝐹
𝑆𝑆2 = 𝐹𝐹

Complexity: 0.



Motzkin’s Lemma
Let 𝑅𝑅 be a domain.
Recursively define:
 𝑆𝑆𝑛𝑛 = {𝑥𝑥 ∈ 𝑅𝑅 ∶ ∀𝑦𝑦 ∈ 𝑅𝑅,∃𝑟𝑟 ∈ 𝑆𝑆𝑚𝑚 ∪

{0} for some 𝑚𝑚 < 𝑛𝑛, 𝑥𝑥|(𝑦𝑦 − 𝑟𝑟) }.
These sets always stabilize.
R=Euclidean iff 𝑆𝑆𝜔𝜔 = 𝑅𝑅.



Side Note
What is the norm of 0?

Three main options.

Think: Order the ideals.



Norms
Motzkin: Let 𝑅𝑅 be a Euclidean domain.
Define 𝜑𝜑:𝑅𝑅 ∖ {0} → ℕ by
𝜑𝜑 𝑥𝑥 = min 𝑛𝑛 ∶ 𝑥𝑥 ∈ 𝑆𝑆𝑛𝑛 .

Then 𝜑𝜑 is a Euclidean norm.
It is minimal:
𝜑𝜑 𝑥𝑥 ≤ 𝜓𝜓 𝑥𝑥 .



Examples
For ℤ
 log2 |𝑥𝑥|

For a field
Constant 0 function

Lenstra: Worked out for ℤ[𝑖𝑖] and ℤ[𝜔𝜔].
To big to fit in the margins.



Obvious question
Euclidean norms 𝜑𝜑:𝑅𝑅 ∖ {0} → ℕ.  

Why ℕ?  Why not ℝ?
Euclid’s algorithm terminates.

Everything still works if we replace ℕ
with the ordinals.



Everything?
Motzkin’s Lemma:
𝑅𝑅 is transfinitely Euclidean iff 𝑆𝑆𝛼𝛼 = 𝑅𝑅.

Transfinitely Euclidean domains are 
PIDs.

Euclid’s algorithm terminates.



Everything?
Motzkin:
Minimal norms exist.

Lenstra:
Minimal norms are super-additive:
𝜑𝜑 𝑥𝑥𝑥𝑥 ≥ 𝜑𝜑 𝑥𝑥 ⊕ 𝜑𝜑 𝑦𝑦 .



Everything?
Okay, not everything.
The stabilization point is different.
Fields stabilize at complexity 1.
Euclidean domains stabilize at 𝜔𝜔.
Unless they are fields.

Are there any others?



Transfinite examples
Hiblot (1975) found an example.
Nagata (1977-78) found an error, and 

produced a different example.
Hiblot (1977) fixed his example.
Both very complicated.
Stabilized at 𝜔𝜔2.
No other examples.



New Results

• (1) Every transfinite Euclidean domain stabilizes at 𝜔𝜔𝛼𝛼.

• Proof: Easy consequence of  Lenstra’s super-additive 
result.



New Results

• (2) For every 𝛼𝛼 there is a transfinite Euclidean domain 
which stabilizes at 𝜔𝜔𝛼𝛼.

• Corollary: Complexity can be arbitrarily large.

• Proof: We’ll sketch it later.



New Results

• (3) Euclidean domains without multiplicative norms exist.

• Proof: Modify the construction we sketch below.



Proof  Sketch

• Fix an ordinal 𝛼𝛼.
• Let 𝑅𝑅0 = 𝐹𝐹[𝑥𝑥 𝛽𝛽 ,0 ∶ 1 ≤ 𝛽𝛽 ≤ 𝜔𝜔𝛼𝛼].

• Idea: 𝑥𝑥 𝛽𝛽 ,0 will have complexity 𝛽𝛽.
• Define such a “norm” 𝜑𝜑 on 𝑅𝑅0.



Proof  Sketch

• Not Euclidean yet.
• Don’t always have quotients to get simpler remainders.

• When GCD 𝑛𝑛,𝑑𝑑 = 1, 𝜑𝜑 𝑛𝑛 ≥ 𝜑𝜑 𝑑𝑑 ≥ 1, then
• Adjoin a new quotient 𝑞𝑞 = 𝑞𝑞𝑇𝑇,1,𝑛𝑛,𝑑𝑑.



Proof  Sketch

• Let 𝑅𝑅1 = 𝑅𝑅0[𝑥𝑥 𝛽𝛽 ,1, 𝑞𝑞𝑇𝑇,1,𝑛𝑛,𝑑𝑑].
• Extend 𝜑𝜑 to 𝑅𝑅1 in the obvious way, and

• 𝜑𝜑 𝑛𝑛 − 𝑞𝑞𝑇𝑇,1,𝑛𝑛,𝑑𝑑𝑑𝑑 = max(𝛽𝛽 ∈ 𝑇𝑇 ∶ 𝛽𝛽 < 𝜑𝜑(𝑑𝑑))

• Don’t always have quotients to get simpler remainders.
• Repeat this process.



Proof  Sketch

• Let 𝑅𝑅∞ = ⋃𝑖𝑖=0
∞ 𝑅𝑅𝑖𝑖 .

• Polynomial ring in many variables, not Euclidean.

• Invert all elements of  norm zero.

• 𝜑𝜑 is the minimal norm.



Open Problems
• Is there a Euclidean domain with no (well-ordered) 

multiplicative norm in ℝ?

• More generally, is there a Euclidean domain with no 
“multiplicative” norm in the ordinals?

• How does the transfinite condition apply to PID 
number rings?



THANK YOU FOR YOUR ATTENTION
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