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(Proof by Viete, ~1600)

Obs: (Leibniz, ~1700) @

(Called “Apollonian” ~19505)
First Question: What is the typical circle size?

N(X) = #{CeP:r(C)>1/X}.
Set k = 1/r, so that
N(X) = #{CeP:k(C) < X}
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N(X)=#{CeP . k(C)< X}
Thm: (K-Oh, '11)
N(X) ~ C- X1.3057...

Here 1.3057... = H.dim(P)
I = <C~'17...,6’4>
< Isom(H3)

limit set of T' = P

Key: Equidistribution
of low-lying horospheres

= DA
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Classical: SLy (Z)\H Let H,=horocycle at

height y — 0.

Note: ((Hy) =1/y — oc.

%i Let ¢ : SLe \H — C be a
il == ikl compactly supported test

function.

Thm (Sarnak '81):
1

H, ny Y
%

1 dxdy
wor J: SLy(Z)\H ¥ 2

Analogue of this to our setting is used to prove

N(X) = #{CeP:k(C)< X} ~ c- X130
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Integral Apollonian Circle Packings

How could this be? Soddy had rediscovered:
Thm: (Descartes ~1650)

If four circles C4,...,Cy are
mutually tangent,

0 -

51‘1”‘?24"@3‘1’”4 = (k1 + ko + kg + Ka)?

Four circles to the kissing come.
The smaller are the bender.
The bend is just the inverse of

The distance from the center. F. Soddy,
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb. Nature (1936)‘

Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends

Is half the square of their sum.
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Integral Apollonian Circle Packings

K2+ K3+ K3+ K] = L(ki+ Ko+ kg + Ka)?

AN

Cor: Given k1, ko, k3, 3 two solutions for k4. (Apollonius!)
Exercise: s/, = 2(k1 + k2 + k3) — k4. (Victe involution)
= k) is a Z-linear combination of previous curvatures.

But every circle C' € P is obtained from the previous ones
by Viete moves.

= (Soddy) If k1, k2, K3, k4 all integral,
then so are all curvatures!
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Q: (GLMWY 2003)
Which numbers arise?
Let €K ={x(C) : C € P}.
L K ={-10,18,23,27,35,... }
<19 Obs: (GLMWY, Fuchs 2010)
W K={2,3,6,11,14,15,
18,23} (mod 24)
Def: n € Z is admissible
. if n(mod 24) is as above.
Local-Global Conjecture:
(GLMWY 2003, Fuchs-Sanden 2011)

Every sufficiently large admissible integer arises in K.

Thm: (Bourgain-K, 2014) #KN[1,X]

Almost all admissible numbers arise. #admissiblesN[1,X

]—>1.

Builds on GLMWY, Sarnak ’07, Fuchs '10, Bourgain-Fuchs ’11
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. #KN[1,X]
Sketch: #admissiblesN[1,X]| — L.

First: Why should every (large) admissible number arise?
Recall
NX)=#{CeP :k(C) <X} ~ ¢ X307

Heuristic: “Typical” admissible n =< X arises in K with
multiplicity ~ X 13057 x % = X0.3057 _y o

Proof Sketch: Use the Circle Method to prove that
the multiplicity is on average as large as it should be.

Tools: Expander graphs, Bilinear Forms,
Equidistribution in Cosets, Exponential Sums,...

(Survey in: K. “From Apollonius to Zaremba” BAMS 2013)

All “old” news...
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New Q: WHY does any of this exist at all?

- Descartes’ Theorem: ri + w3 + k3 + k3 = 3(k1 + k2 + K3 + K4)®

- Viete moves:

Cy

r— <51,...,6*4>
< Isom(H3)
- limit set of T' = P

What is the general setting for this problem?
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Problem: Classify all integral I'-packings.
At first looks hopeless. May not be so!

Def: To a I'-packing P, attach a super-group
r .= (I',P)
E.g. Back to Apollonian:

----------------- r={(C,....C,), and

I = (I',C4,...,C4)= ideal octahedron,
T  with all dihedral angles = /2. ~ SLa(Z[i)).

P:=T1-P

Def: A T'-packing P is super-integral if every

bend in P is an integer.
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SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:)
(K-Nakamura 2016) N

If a I'-packing P is super-integral, then I' is an arithmetic
hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of
integral (but not super-integral) I'-packings for which I" is not
arithmetic.

If true, SuperPAC would be very useful: Thm: (Vinberg,
Nikulin, Long-Maclahlan-Reid, Agol, Agol-Belilopetsky-Storm-
Whyte)

There are only finitely many maximal arithmetic hyperbolic
reflection groups! None once n > 30.

Corollary: SuperPAC = essentially only finitely many
super-integral I'-packings.
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Remark: If n > 3, even constructing I'-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n > 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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Determining whether a given II is integral is non-trivial:
- KAT is an existence proof; actual geometrization is achieved
through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all
bends and centers algebraic! After enough decimal places, guess
the algebraic values, then verify tangencies rigorously.

Even then there are difficulties:

Thm (K-Nakamura 2016):
(7) Infinitely many polyhedra are integrall

This is an immediate corollary of:

(71) Infinitely many distinct polyhedra give rise to the same
circle packing P!

Moreover,

(7i7) There are infinitely many non-isomorphic integral circle
packings!

Proof: Double and glue constructions. (Non-maximal reflection
groups, see also Allcock in higher dimensions.)



Theorem (K-Nakamura ’16):



Theorem (K-Nakamura ’16): The following is a complete list of
integral convex
polyhedra:



Theorem (K-Nakamura ’16): The following is a complete list of
lnteglal convex uniform(faceszregular polygons, vertex-transitive)
polyhedra:



Theorem (K-Nakamura ’16): The following is a complete list of
lnteglal convex uniform(faceszregular polygons, vertex-transitive)

polyhedra: e tetrahedron,

e octahedron (Guettler-Mallows, Zhang),
L Cube (Stange).

Platonic:



Theorem (K-Nakamura ’16): The following is a complete list of
lnteglal convex uniform(faceszregular polygons, vertex-transitive)

polyhedra: e tetrahedron,

e octahedron (Guettler-Mallows, Zhang),
L Cube (Stange).

» Dodec- and icosahedra are “golden”: Z[yp]-integral bends, ¢ = #

Platonic:



Theorem (K-Nakamura ’16): The following is a complete list of
lnteglal convex uniform(faceszregular polygons, vertex-transitive)

polyhedra: e tetrahedron,

e octahedron (Guettler-Mallows, Zhang),
L Cube (Stange).

Platonic:

» Dodec- and icosahedra are “golden”: Z[yp]-integral bends, ¢ = #

e cubeoctahedron,
e truncated tetrahedron,
e truncated octahedron.

Archimedean:



Theorem (K-Nakamura ’16): The following is a complete list of
lnteglal convex uniform(faceszregular polygons, vertex-transitive)

polyhedra: e tetrahedron,

e octahedron (Guettler-Mallows, Zhang),
L Cube (Stange).

Platonic:

» Dodec- and icosahedra are “golden”: Z[yp]-integral bends, ¢ = #

e cubeoctahedron,
e truncated tetrahedron,

e truncated octahedron.
» Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated
Dodec- and Icosahedra, are golden.

Archimedean:



Theorem (K-Nakamura ’16): The following is a complete list of
lnteglal convex uniform(faceszregular polygons, vertex-transitive)

polyhedra: e tetrahedron,

e octahedron (Guettler-Mallows, Zhang),
L Cube (Stange).

Platonic:

» Dodec- and icosahedra are “golden”: Z[yp]-integral bends, ¢ = #

e cubeoctahedron,
e truncated tetrahedron,

e truncated octahedron.
» Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated
Dodec- and Icosahedra, are golden.
» Truncated Cube, and Great/Small Rhombicuboctahedra are “silver”:
Z[p]-integral bends, p = 1+ /2 = [2].
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e cubeoctahedron,

e truncated tetrahedron,

e truncated octahedron.

» Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated
Dodec- and Icosahedra, are golden.

» Truncated Cube, and Great/Small Rhombicuboctahedra are “silver”:
Z[p]-integral bends, p = 1+ /2 = [2].

» Snub Cube has cubic bends, Snub Dodecahedron has sextic bends.
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» Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated
Dodec- and Icosahedra, are golden.
» Truncated Cube, and Great/Small Rhombicuboctahedra are “silver”:
Z[p]-integral bends, p = 1+ /2 = [2].
» Snub Cube has cubic bends, Snub Dodecahedron has sextic bends.
Prisms/Antiprisms: e 3-/4-/6-prisms, and 3-/anti-prism.
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e octahedron (Guettler-Mallows, Zhang),
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Platonic:

» Dodec- and icosahedra are “golden”: Z[yp]-integral bends, ¢ = #

e cubeoctahedron,
e truncated tetrahedron,

e truncated octahedron.
» Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated
Dodec- and Icosahedra, are golden.
» Truncated Cube, and Great/Small Rhombicuboctahedra are “silver”:
Z[p]-integral bends, p = 1+ /2 = [2].
» Snub Cube has cubic bends, Snub Dodecahedron has sextic bends.
Prisms/Antiprisms: e 3-/4-/6-prisms, and 3-/anti-prism.

Moreover, the dual is integral (golden/silver) iff the polyhed is.
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Theorem (K-Nakamura ’16): The following is a complete list of
lnteglal convex uniform(faceszregular polygons, vertex-transitive)

polyhedra: e tetrahedron,

e octahedron (Guettler-Mallows, Zhang),
L Cube (Stange).

Platonic:

» Dodec- and icosahedra are “golden”: Z[yp]-integral bends, ¢ = #

e cubeoctahedron,

e truncated tetrahedron,

e truncated octahedron.
» Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated
Dodec- and Icosahedra, are golden.
» Truncated Cube, and Great/Small Rhombicuboctahedra are “silver”:
Z[p]-integral bends, p = 1+ /2 = [2].
» Snub Cube has cubic bends, Snub Dodecahedron has sextic bends.
Prisms/Antiprisms: e 3-/4-/6-prisms, and 3-/anti-prism.

Moreover, the dual is integral (golden/silver) iff the polyhed is.
So: rhombic dodecahedron, triakis tetrahedron, tetrakis
hexahedron (Catalan solids), and 3-/4-/6-bipyramids and
3-trapezohedra are all integral.

Archimedean:
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II-cluster:



E.g.: [I=Cuboctahedron




E.g.: [I=Cuboctahedron

#{bends< X}
#{admissible< X }
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thm: For all known integral P(II),



