
The Geometry and
Arithmetic of Sphere

Packings

Alex Kontorovich

Rutgers



Apollonian Circle Packings

Thm: (Apollonius, ∼200 BCE)

=⇒
(Proof by Viète, ∼1600)

Obs: (Leibniz, ∼1700)
=⇒ · · · =⇒

(Called “Apollonian” ∼1950s)

First Question: What is the typical circle size?

N (X) := #{C ∈ P : r(C) > 1/X}.

Set κ = 1/r, so that

N (X) = #{C ∈ P : κ(C) < X}.
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N (X) := #{C ∈ P : κ(C) < X}

y = x2

y = N (x)

y = x

Thm: (K-Oh, ’11)

N (X) ∼ c ·X1.3057...

Here 1.3057 . . . = H.dim(P)
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Classical: SL2(Z)\H

Let Hy=horocycle at
height y → 0.

Note: `(Hy) = 1/y →∞.

Let ϕ : SL2 \H→ C be a
compactly supported test
function.

Thm (Sarnak ’81):
1
Hy

∫
Hy
ϕ

→
1

vol

∫
SL2(Z)\H ϕ dxdy

y2

Analogue of this to our setting is used to prove

N (X) = #{C ∈ P : κ(C) < X} ∼ c ·X1.3057...
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Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Leibniz:

=⇒ =⇒ =⇒

Soddy (1936):

Study the “bends” κ = 1/r!

18

23

-10

=⇒ 18

23
27

35

=⇒ 18

23
27

35

62

47
162

78

63

146

=⇒
-10

18

23
27

146

62

234

135
242

123210

47
194

110
207

83
222

135
203

35 162

78
183

147
242

63
242158

107
167

243

Integral Apollonian Circle Packings



Integral Apollonian Circle Packings

-10

18

23 27146
374

359
347

62
234

135
458 242

383

347

123
426

210323462
327

47
194

431

491

110378

207
338

267

498

83
306

222
435

135
482

398

203
287

387

35 162
422

407

371

78
282

183
338

467

147
242

363

407

63
242158

303
498

387

107
386

302

167
243

335
443

How could this be? Soddy had rediscovered:
Thm: (Descartes ∼1650)
If four circles C1, . . . , C4 are
mutually tangent,
C1

C2

C3

C4

=⇒

κ21 + κ22 + κ23 + κ24 = 1
2(κ1 + κ2 + κ3 + κ4)

2

Four circles to the kissing come.
The smaller are the bender.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends

Is half the square of their sum.

F. Soddy,
Nature (1936).
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How could this be? Soddy had rediscovered:
Thm: (Descartes ∼1650)

If four circles C1, . . . , C4 are
mutually tangent,
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=⇒

κ21 + κ22 + κ23 + κ24 = 1
2(κ1 + κ2 + κ3 + κ4)

2

Four circles to the kissing come.
The smaller are the bender.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends

Is half the square of their sum.

F. Soddy,
Nature (1936).
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Cor: Given κ1, κ2, κ3,

∃ two solutions for κ4. (Apollonius!)

C4′

C1

C2

C3

C4

Exercise: κ′4 = 2(κ1 + κ2 + κ3)− κ4. (Viète involution)
=⇒ κ′4 is a Z-linear combination of previous curvatures.

But every circle C ∈ P is obtained from the previous ones
by Viète moves.

C4
�

C3
�

C2
� C1

�

=⇒ (Soddy) If κ1, κ2, κ3, κ4 all integral,
then so are all curvatures!
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Exercise: κ′4 = 2(κ1 + κ2 + κ3)− κ4. (Viète involution)
=⇒ κ′4 is a Z-linear combination of previous curvatures.

But every circle C ∈ P is obtained from the previous ones
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Cor: Given κ1, κ2, κ3, ∃ two solutions for κ4. (Apollonius!)

C4′
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C4

Exercise: κ′4 = 2(κ1 + κ2 + κ3)− κ4. (Viète involution)
=⇒ κ′4 is a Z-linear combination of previous curvatures.

But every circle C ∈ P is obtained from the previous ones
by Viète moves.
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Q: (GLMWY 2003)
Which numbers arise?

Let K = {κ(C) : C ∈ P}.
K = {−10, 18, 23, 27, 35, . . . }

Obs: (GLMWY, Fuchs 2010)
K ≡ {2, 3, 6, 11, 14, 15,

18, 23} (mod 24)
Def: n ∈ Z is admissible

if n(mod 24) is as above.
Local-Global Conjecture:

(GLMWY 2003, Fuchs-Sanden 2011)

Every sufficiently large admissible integer arises in K.

Thm: (Bourgain-K, 2014)
Almost all admissible numbers arise.

#K∩[1,X]
#admissibles∩[1,X] → 1.

Builds on GLMWY, Sarnak ’07, Fuchs ’10, Bourgain-Fuchs ’11
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Obs: (GLMWY, Fuchs 2010)
K ≡ {2, 3, 6, 11, 14, 15,

18, 23} (mod 24)
Def: n ∈ Z is admissible

if n(mod 24) is as above.

Local-Global Conjecture:
(GLMWY 2003, Fuchs-Sanden 2011)

Every sufficiently large admissible integer arises in K.

Thm: (Bourgain-K, 2014)
Almost all admissible numbers arise.

#K∩[1,X]
#admissibles∩[1,X] → 1.

Builds on GLMWY, Sarnak ’07, Fuchs ’10, Bourgain-Fuchs ’11
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Sketch: #K∩[1,X]
#admissibles∩[1,X] → 1.

First: Why should every (large) admissible number arise?
Recall
N (X) = #{C ∈ P : κ(C) < X} ∼ c ·X1.3057...

Heuristic: “Typical” admissible n � X arises in K with
multiplicity ≈ X1.3057 × 1

X = X0.3057 →∞.

Proof Sketch: Use the Circle Method to prove that
the multiplicity is on average as large as it should be.

Tools: Expander graphs, Bilinear Forms,
Equidistribution in Cosets, Exponential Sums,...

(Survey in: K. “From Apollonius to Zaremba” BAMS 2013)

All “old” news...
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New Q: WHY does any of this exist at all?

- Descartes’ Theorem: κ2
1 + κ2

2 + κ2
3 + κ2

4 = 1
2
(κ1 + κ2 + κ3 + κ4)

2

- Viète moves:
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Γ =
〈
C̃1, . . . , C̃4

〉
< Isom(H3)

- limit set of Γ = P̄

What is the general setting for this problem?
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General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres

(or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes)

with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors

and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius.

(In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.

One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants.

Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that

∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,

generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with

limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′.

(′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



General Setting

Def: A packing P of R̂n := Rn ∪ {∞} is a collection of oriented
(n− 1)-spheres (or co-dim-1 planes) with disjoint interiors and
connected tangency graph.

Def: A packing P is dense if any ball in R̂n intersects the
interior of some sphere in P.

Def: A packing P is integral if every sphere in P has integral
“bend”=1/radius. (In higher dim, “curvature” � 1/radius2.)

Classifying infinite, dense, integral packings is hopeless.
One can do whatever one wants. Need structure:

Def: A Γ-packing is an infinite, dense packing P such that
∃ Γ < Isom(Hn+1) discrete, geometrically finite,
generated by reflections, with limit set = P ′. (′=no orientation)

Problem: Classify all integral Γ-packings.



Problem: Classify all integral Γ-packings.

At first looks hopeless. May not be so!

Def: To a Γ-packing P, attach a super-group
Γ̃ := 〈Γ,P〉

E.g. Back to Apollonian:

C4
�

C3
�

C2
� C1

�

Γ =
〈
C̃1, . . . , C̃4

〉
, and

Γ̃ = 〈Γ, C1, . . . , C4〉= ideal octahedron,

with all dihedral angles = π/2. ∼ SL2(Z[i]).

Def: The super-packing P̃ attached to P is:

P̃ := Γ̃ · P

Def: A Γ-packing P is super-integral if every

bend in P̃ is an integer.
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Problem: Classify all (super-)integral Γ-packings.

SuperPAC: (Super-Integral Packing Arithmeticity Conjecture:)

(K-Nakamura 2016)
If a Γ-packing P is super-integral, then Γ̃ is an arithmetic
hyperbolic reflection group.

Remark: Super-integrality is necessary! We have examples of
integral (but not super-integral) Γ-packings for which Γ̃ is not
arithmetic.

If true, SuperPAC would be very useful: Thm: (Vinberg,
Nikulin, Long-Maclahlan-Reid, Agol, Agol-Belilopetsky-Storm-
Whyte)

There are only finitely many maximal arithmetic hyperbolic
reflection groups! None once n ≥ 30.

Corollary: SuperPAC =⇒ essentially only finitely many
super-integral Γ-packings.
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Examples of (super-)integral Γ-packings

Known prior to our work:

(Soddy 1936,
“4-simplex”)
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...),

with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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(Guettler-Mallows 2010,
Zhang 2014, “octahedron”)

(Dias/Nakamura 2014,
“4-orthoplex”)

Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.
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Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).
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Remark: If n ≥ 3, even constructing Γ-packings (nevermind
integrality) is a long-studied problem (Boyd, Maxwell,...), with
many applications, e.g. to rational points on K3 surfaces
(Baragar, Dolgachev,...), to Lorentzian Kac-Moody algebras,...

Remark: The Local-Global problem becomes easier if n ≥ 3,
because the expected multiplicity goes up (K, Dias, Nakamura).

So most interesting/available/difficult setting for examples is
n = 2, i.e., circle packings, thanks to Koebe-Andreev-Thurston.



Polyhedral (Circle) Packings

Thm: (Koebe-Andreev-Thurston/Schramm) Every convex
polyhedron admits a combinatorially equivalent geometrization
with a midsphere. (Tangent to all edges.)
E.g. Cuboctahedron (Archimedean):

(KAT)
=⇒

KAT allows one to attach a Γ-packing to any polyhedron Π:
Once geometrized, the midsphere is also that of the dual, Π̂,

giving two sets of clusters, with tangency graphs ∼= Π and Π̂:

Then Γ :=
〈

reflections through Π̂ cluster
〉

acts on Π cluster giving packing P modeled on Π.

Def: Π is integral if there exists an integral packing P
modeled on Π. Problem: Classify these!
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Problem: Classify Integral Polyhedra

Determining whether a given Π is integral is non-trivial:
- KAT is an existence proof; actual geometrization is achieved
through infinite limiting process (see Stephenson).
- To the rescue: Selberg/Mostow/Prasad rigidity: can make all
bends and centers algebraic! After enough decimal places, guess
the algebraic values, then verify tangencies rigorously.

Even then there are difficulties:

Thm (K-Nakamura 2016):
(i) Infinitely many polyhedra are integral!

This is an immediate corollary of:
(ii) Infinitely many distinct polyhedra give rise to the same
circle packing P!

Moreover,
(iii) There are infinitely many non-isomorphic integral circle
packings!
Proof: Double and glue constructions. (Non-maximal reflection
groups, see also Allcock in higher dimensions.)
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Theorem (K-Nakamura ’16):

The following is a complete list of
integral convex
polyhedra:

uniform(faces=regular polygons, vertex-transitive)

Platonic:

• tetrahedron,
• octahedron (Guettler-Mallows, Zhang),
• cube (Stange).

I Dodec- and icosahedra are “golden”: Z[ϕ]-integral bends, ϕ = 1+
√

5
2

.

Archimedean: • cubeoctahedron,
• truncated tetrahedron,
• truncated octahedron.

I Icosidodecahedron, Great/Small Rhombicosidodecahedra, and Truncated
Dodec- and Icosahedra, are golden.
I Truncated Cube, and Great/Small Rhombicuboctahedra are “silver”:
Z[ρ]-integral bends, ρ = 1 +

√
2 = [2].

I Snub Cube has cubic bends, Snub Dodecahedron has sextic bends.

Prisms/Antiprisms: • 3-/4-/6-prisms, and 3-/anti-prism.

Moreover, the dual is integral (golden/silver) iff the polyhed is.
So: rhombic dodecahedron, triakis tetrahedron, tetrakis
hexahedron (Catalan solids), and 3-/4-/6-bipyramids and
3-trapezohedra are all integral.
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