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cocenter has a standard basis {O}, where O runs over CI(G).
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Representation Theory 101

Let G be a finite group, e.g. GL,(Fp).
Number of (ordinary) irr. repr. =number of conjugacy classes.

Reformulation:
@ LHS=rank of R(G), the Grothendieck group of fin. dim repr.

@ RHS=dim of the cocenter C[G]:= C[G]/[C[G],C[G]]. Here the
cocenter has a standard basis {O}, where O runs over CI(G).

And a natural duality Tr: C[G] = R(G)*, g~ (V ~ Tr(g,V)).

Modular representations: : f irr. repr. /T, =} I-regular conjugacy classes.

Tr:Fi[G] - R(G)* is surjective, but not injective in general. The kernel
is spanned by {O} — {O’}, where O is the I-regular conj. class associated
to O.
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algebra consisting of the Z[p~']-valued functions on G that are
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p-adic groups

Now let G be a p-adic group, e.g. GL,(Qp).
@ We are interested in “nice” representations that are

e smooth, i.e., every point in the representation has open stabilizer

e admissible, i.e., the fixed point of every open compact subgroup is
finite dimensional

@ We do not consider the group algebra, but the Hecke algebra H, the
algebra consisting of the Z[p~']-valued functions on G that are

o locally constant, which corresponds to the smoothness of
representations

e compactly supported, so that the (convolution) product of any two
functions in H makes sense
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Cocenter-Representation duality

e Ordinary and modular representations/alg. closed field of char. # p:
Smooth, admissible repr of G(F) «» repr of H of finite length.
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Cocenter-Representation duality

e Ordinary and modular representations/alg. closed field of char. # p:
Smooth, admissible repr of G(F) «» repr of H of finite length.

[Bernstein-Deligne-Kazhdan '86] for complex representations, the
cocenter H and the representation R(H) are dual to each other.

Our Goal: to understand the cocenter of H, and then use the trace
map Tr: H— R(H)* to obtain information on representations of G.

@ Mod-p repr of G(F) T of pro-p lwahori-Hecke algebra

The relation is still mysterious. But the right hand side is now
well-understood according to Vignéras and H.-Nie.
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Twisted version

One may also consider the twisted version coming from twisted endoscopy.
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Twisted version

One may also consider the twisted version coming from twisted endoscopy.

Here 0 is an automorphism of G and w is a character of G.
We are interested in

@ w-representations of G, i.e. smooth admissible representations m of G
such that 7% =m0 6 is isomorphism W T.

o The twisted cocenter H = H/(f —*f), where f ¢ H,x,g € G and
“f(g) = w()f(x 1gb(x)).

@ The twisted trace map Tr(f o A, 1), where A is a given isomorphism
from w® 7 to 0.
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Difficulties to understand cocenter

For the group algebra of G, we have
@ For any conjugacy class O of G, and g,g’ € O. The image of g and
g’ in the cocenter are the same.

@ The cocenter has a standard basis {[go]}. Here O runs over all the
conjugacy classes of G and go is a representative of O.
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@ For any conjugacy class O of G, and g,g’ € O. The image of g and
g’ in the cocenter are the same.

@ The cocenter has a standard basis {[go]}. Here O runs over all the
conjugacy classes of G and go is a representative of O.

@Such a simple and nice description does not apply to the Hecke algebra.
The reason basically comes from the “locally constant” condition. Because
of it, we are not able to separate a single conjugacy class from the others.
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Difficulties to understand cocenter

For the group algebra of G, we have
@ For any conjugacy class O of G, and g,g’ € O. The image of g and
g’ in the cocenter are the same.

@ The cocenter has a standard basis {[go]}. Here O runs over all the
conjugacy classes of G and go is a representative of O.

@Such a simple and nice description does not apply to the Hecke algebra.
The reason basically comes from the “locally constant” condition. Because
of it, we are not able to separate a single conjugacy class from the others.

@Another major difficulty is that dim H = oo, which makes the
connection of cocenter with representations complicated. We cannot just
count the numbers as we did for finite groups.
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Newton stratification

Solution: to separate nice (geometric) unions of conjugacy classes.
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F a nonarchimedean local field of arbitrary characteristic
F the completion of its maximal unramified extension

o € Gal(F/F) the Frobenius map

G=G(F)
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N
Newton stratification

Solution: to separate nice (geometric) unions of conjugacy classes.

@ F a nonarchimedean local field of arbitrary characteristic

o F the completion of its maximal unramified extension

@ o ¢ Gal(F/F) the Frobenius map

o G=G(F)
The o-twisted conjugacy classes of G(I—g) is classified by Kottwitz.
Roughly speaking, a o-conjugacy class is determined by the Newton point.
E.g. If G = GL,, then the Newton points are (ay,--+,a,) € Q" with

@ The dominance condition: a; > a» > - > ap;

@ The integrality condition: for any reQ, ri{i;aj=r} € Z.
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Newton stratification (Cont’)

We then have G(F) = u,[b,], the Newton stratification.
For split groups, we define G(v) = Gn[b,]. Then

G=u,G(v).
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We then have G(F) = u,[b,], the Newton stratification.
For split groups, we define G(v) = Gn[b,]. Then

G=u,G(v).
® It also works for quasi-split groups under some modification, but not

for non quasi-split groups as the special vertex of buildings over F and
over F do not match.

Xuhua He (UMD) Hecke algebras Stony Brook 8 /18



Newton stratification (Cont’)

We then have G(F) = u,[b,], the Newton stratification.
For split groups, we define G(v) = Gn[b,]. Then

G=u,G(v).

® It also works for quasi-split groups under some modification, but not
for non quasi-split groups as the special vertex of buildings over F and
over F do not match.

® However, | have a different (but more complicated) definition using
combinatorics of Iwahori-Weyl groups that works in the general case. |
skip the details.
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Newton stratification (Cont’)

We then have G(F) = u,[b,], the Newton stratification.
For split groups, we define G(v) = Gn[b,]. Then

G=u,G(v).

® It also works for quasi-split groups under some modification, but not
for non quasi-split groups as the special vertex of buildings over F and
over F do not match.

® However, | have a different (but more complicated) definition using
combinatorics of Iwahori-Weyl groups that works in the general case. |
skip the details.

Note that each G(v) is stable under the conjugation action of G and is
thus a union of conjugacy classes of G. Is it a nice union that we are
looking for?

Xuhua He (UMD) Hecke algebras Stony Brook 8 /18



Newton decomposition

A key feature of the Newton strata is that they are all admissible.
Theorem
The Newton stratum G(v) is open and for any compact subset X of G,

there exists an open compact subgroup K of G such that G(v)n X is
stable under the left/right multiplication by K.
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Newton decomposition

A key feature of the Newton strata is that they are all admissible.
Theorem

The Newton stratum G(v) is open and for any compact subset X of G,
there exists an open compact subgroup K of G such that G(v)n X is
stable under the left/right multiplication by K.

The admissibility of Newton strata guarantees that the Newton strata
works well with the “locally constant” condition of Hecke algebra.

Theorem
We have the Newton decompositions

H=e,H(v), H=ea,H(v).

Here H,, c H consisting of functions supported in G, and H, is its image in
the cocenter H.
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Newton decomposition at a given level

@Note that for a given open compact subgroup K, there is no Newton
decomposition at the Hecke algebra level:

H(G,K)+*e,H(G,K;v).
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Newton decomposition at a given level

@Note that for a given open compact subgroup K, there is no Newton
decomposition at the Hecke algebra level:

H(G,K)+*e,H(G,K;v).

But quite amazingly, the cocenter of H(G, K) (for “good” K) does have
Newton decomposition.
Theorem

Let I, be the n-th congruent subgroup of the Iwahori subgroup |. Then

H(G, 1)) =®,H(G,I,;v).
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Iwahori-Matsumoto presentation

The proof is based on the establishment of the lwahori-Matsumoto
presentation of cocenter.
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Iwahori-Matsumoto presentation

The proof is based on the establishment of the lwahori-Matsumoto
presentation of cocenter.

A quick review of history:

@ Bruhat decomposition G =u, 3 /wl, where W is the Iwahori-Weyl
group;

@ The original lwahori-Matsumoto presentation (IHES, 1965) is for the
affine Hecke algebra H(G,1): H(G,!) has a basis { T} for w e W;

@ For the cocenter of affine Hecke algebra, the I-M presentation is
established in H.-Nie. (Compos. Math) in 2014.

Theorem

The cocenter H(G, 1) has a basis { To}, where O runs over conjugacy
classes of W and Ty is the image of T,, in the cocenter for any Minimal
length representative w € O.
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lwahori-Matsumoto presentation (Cont’)

Let Wm;n be the set of elements in W that are of minimal length in their
conjugacy class. Now we have

Theorem
(1) For any n, B )
H(G,I,) = Z H(G, In)w,

we Wmin

where I:I(G, In)w is the image in the cocenter of l,-biinvariant functions
supported in Iwl.

(2) For any n and Newton point v, we have

I:I(G,/,,;y)z Z I:I(G,/,,)W.

weWphin,Vw=r
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lwahori-Matsumoto presentation (Cont’)

Let Wm;n be the set of elements in W that are of minimal length in their
conjugacy class. Now we have

Theorem
(1) For any n, B )
H(G,I,) = Z H(G, In)w,
WEWmin

where H(G, 1,),, is the image in the cocenter of I,-biinvariant functions
supported in Iwl.
(2) For any n and Newton point v, we have

I:I(G,/,,;y)z Z I:I(G,/,,)W.

weWphin,Vw=r

As a consequence, we have the Newton decomposition for the cocenter of
H(G,I,).
Hecke algebras Stony Brook 12 /18



Application: Howe's conjecture

As we mentioned before, one major difficulty is that dim H = co. We need
some finiteness results.
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As we mentioned before, one major difficulty is that dim H = co. We need
some finiteness results.

Conjecture (Howe)

Let X be a compact subset of G and J(X) be the set of invariant
distributions supported in G - X. Then for any open compact subgroup K
of G,

dim J(X) |H(G,K)< 0.
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Application: Howe's conjecture

As we mentioned before, one major difficulty is that dim H = co. We need
some finiteness results.

Conjecture (Howe)

Let X be a compact subset of G and J(X) be the set of invariant
distributions supported in G - X. Then for any open compact subgroup K
of G,

dim J(X) |H(G,K)< 0.

It is conjectured by Howe in 1973, proved by Clozel (Ann. Math) in 1989
for char(F) = 0 and by Barbasch-Moy (JAMS) in 2000.

The twisted version (for twisted endoscopy), is a new result.
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Application: Howe's conjecture (Cont’)

Now we give a short proof of it, for both the original version and the
twisted version, based on the Iwahori-Matsumoto presentation.
Proof.
@ Any open compact subgroup contains /, for some n.
@ Any compact subset of G is in a finite union of Newton strata G(v).
o By definition, J(G,) |H(6,1,)= H(G, I,;v)*.
Vv, there are only finitely many w € Wpin associated to it.
Vw, dim H(G, I)w <dim H(G, I,)w = §(I,\Iwl/I,) is finite.

H(G,Iyv) = EoweWos: v H(G,1,)y is a finite sum of finite
dimensional spaces. []

(]
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Induction and restriction functors

We consider the representations of G over an algebraically closed field k of

characteristic # p. Let R(G) be the Grothendieck group (®zk).
How to understand it?

Xuhua He (UMD) Hecke algebras Stony Brook 15 / 18



Induction and restriction functors

We consider the representations of G over an algebraically closed field k of

characteristic # p. Let R(G) be the Grothendieck group (®zk).
How to understand it?

An important family of representations comes from inductions.

@ Let M be a (standard) proper Levi subgroup of G;
@ We have iy : R(M) - R(G) and ry: R(G) = R(M).
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Induction and restriction functors

We consider the representations of G over an algebraically closed field k of

characteristic # p. Let R(G) be the Grothendieck group (®zk).
How to understand it?

An important family of representations comes from inductions.
@ Let M be a (standard) proper Levi subgroup of G;
@ We have iy : R(M) - R(G) and ry: R(G) = R(M).
We should have the induction and restriction functors on the cocenter side.

o fy: H(G) — H(M) is dual to iy and can be written down explicitly.

° @The functor ips : H(M) - H(G) is more problematic.

It exists for affine Hecke algebras since H(M,I n M) - H(G,I) via
Bernstein-Lusztig presentation. No such presentation in general.

Xuhua He (UMD) Hecke algebras

Stony Brook 15 / 18



Bernstein-Lusztig presentation for H

Recall that each Newton point v is dominant. Thus its centralizer defines
a standard Levi of G. We then define

HM)srig= > H(M;v).
Zg(V)=M

Xuhua He (UMD) Hecke algebras Stony Brook 16 / 18



Bernstein-Lusztig presentation for H

Recall that each Newton point v is dominant. Thus its centralizer defines
a standard Levi of G. We then define

HM)srig= > H(M;v).
Zg(V)=M

We DO have a canonical (and explicit) map
ITM(,,) :H(M;v) = H(G;v).
That is enough for us since
H(G) = EA|?7M(/:/(M)+,r;g)
and
Tr(im(h), V) = Tr(h,rm(V))  Yhe H(M), g, V € R(G).
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Trace Paley-Wiener Theorem

Now we describe the image of the map Tr: H - R(G)*.
[Bernstein-Deligne-Kazhdan]: f € R(G)* is good if

Q@ VM, o0eR(M), Y f(im(1po)) is regular on unramified char v
@ 3 open compact subgroup K s.t. f(V) =0 if VK ={0}.
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Q@ VM, o0eR(M), Y f(im(1po)) is regular on unramified char v
@ 3 open compact subgroup K s.t. f(V) =0 if VK ={0}.

Theorem (Trace Paley-Wiener Theorem)

The image of Tr: H > R(G)* is the space of good forms.
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Trace Paley-Wiener Theorem

Now we describe the image of the map Tr: H - R(G)*.
[Bernstein-Deligne-Kazhdan]: f € R(G)* is good if

Q@ VM, o0eR(M), Y f(im(1po)) is regular on unramified char v
@ 3 open compact subgroup K s.t. f(V) =0 if VK ={0}.

Theorem (Trace Paley-Wiener Theorem)

The image of Tr: H > R(G)* is the space of good forms.

@ Bernstein-Deligne-kazhdan (J. Anal Math) 1986: representations/C
@ Henniart-Lemaire (Asterisque) 2015: complex w-representations

e (Joint with Ciubotaru in progress): ordinary/modular/twisted
representations under a mild assumption on the char(k)
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Rigid cocenter

A crucial part of the trace Paley-Wiener theorem is to reduce to finite
dimensional case:
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A crucial part of the trace Paley-Wiener theorem is to reduce to finite
dimensional case:

e In [BDK] and [HL], this is obtained by using unitarity, tempered
modules etc. to understand discrete series. Thus only works over C.

@ We use IM-presentation of cocenter/Howe's conjecture instead.
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Rigid cocenter

A crucial part of the trace Paley-Wiener theorem is to reduce to finite
dimensional case:

e In [BDK] and [HL], this is obtained by using unitarity, tempered
modules etc. to understand discrete series. Thus only works over C.

@ We use IM-presentation of cocenter/Howe's conjecture instead.

Moreover, we have the rigid trace Paley-Wiener theorem:
Theorem

Suppose that G is semisimple. The trace map induces a surjection

Tr: I:I(G)Jr,,,-g - R(G)f,-g7

where R(G),, is the set of good forms that are constant on iy (o)
(w.r.t unramified char ).
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