Mass in

Kahler Geometry

Claude LeBrun
Stony Brook University

Colloquium, October 6, 2016



Joint work with



Joint work with

Hans-Joachim Hein
University of Maryland



Joint work with

Hans-Joachim Hein
Fordham University



Joint work with

Hans-Joachim Hein
Fordham University

Comm. Math. Phys. 347 (2016) 621-653.



Definition. A complete, non-compact Rieman-
nian n-manifold (M", g)

@




Definition. A complete, non-compact Rieman-
nian n-manifold (M", g)




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Euclidean




Definition. A complete, non-compact Rieman-

nian n-manifold (M™, g) is called asymptotically
Euclidean (AFE)




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M

—




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M

such that M — K s diffeo-
morphic to R"™ — D"

BN

TN

= :




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/i\

= :

N N

gjr =0+ O(|z) 727°)



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/i\

= :

N N

gk =0+ O(|z[17279)
Gk = O(|z| 7275



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

////f\\\\\

= :

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/////’f\\\\\\\

= :

N N

gk =61 + O(|z' 7279

_n_, 1
Gkt = O(|lxz|"27°), scalar curvature € L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

////f\\\\\

= :

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Here the scalar curvature
s: M —=R

is a standard Riemannian invariant that compares
the volume of small balls to the Euclidean answer:



Here the scalar curvature
s: M —=R

is a standard Riemannian invariant that compares
the volume of small balls to the Euclidean answer:

volg(Be(p)) . 2

FEuclidean answer



Here the scalar curvature
s: M —=R

is a standard Riemannian invariant that compares
the volume of small balls to the Euclidean answer:

volg(Be(p)) . 2

FEuclidean answer

A metric g is called scalar-flat if it satisfies s = 0.



Similarly, the Ricci curvature
r.UI'M — R

is a standard Riemannian invariant comparing the
volume of narrow cones to the Euclidean answer:



Similarly, the Riccr curvature
r.UI'M — R

is a standard Riemannian invariant comparing the
volume of narrow cones to the Euclidean answer:

voly(Ce(p, v,)) ~1—r(v) _ne”_ + 0(53)

6(n+2)
4

Fuclidean answer



Similarly, the Ricci curvature
r.UI'M — R

is a standard Riemannian invariant comparing the
volume of narrow cones to the Euclidean answer:

voly(Ce(p, v,)) ~1—r(v) _ne”_ + 0(53)

6(n+2)
4

Fuclidean answer

A metric ¢ is called Ricci-flat if it satisfies » = 0.
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Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE
4-manifolds they called gravitational instantons.

Their examples have just one end, with
['=Z.,1 CSU2) C OH4).

The G-H metrics are hyper-Kahler, and were soon
independently rediscovered by Hitchin.
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<— 4 almost complex-structure .J with V.J = 0
and g(J-,.J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

Kahler magic:

If we define the Ricci form by
P = T(‘]°7 )

then ip is curvature of canonical line bundle A™U.
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Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE
4-manifolds they called gravitational instantons.

Their examples have just one end, with
['=Z.,1 CSU2) C OH4).

The G-H metrics are hyper-Kahler, and were soon
independently rediscovered by Hitchin.

Hitchin conjectured that similar metrics would exist
for each finite I' C SU(2).

This conjecture was proved by Kronheimer, 1986.
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Any scalar-flat Kéhler surface (M?#, g, J) has a
Penrose Twistor Space (Z°,.J),

which is once again a complex 3-manifold.

The construction of scalar-flat Kahler surfaces and

the study of their twistor spaces was a main focus
of my own work during the decade 1985-1994.

Many of the resulting examples are AE or ALE,
but corresponding classification problem is still open.
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ALE n-manaifold is defined to be

m(M, g) = lim L — g a
where

o Y(0) ~ ST is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;

and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.

Bartnik /Chrusciel (1986): With weak fall-off
conditions, the mass is well-defined & coordinate
independent.
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When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of the
oravitational field far from an isolated source.

In any dimension, reproduces “mass’ of ¢ = 0 hy-
persurface in (n 4 1)-dimensional Schwarzschild

—1
2m
g = (1 - F) do*+0*hgn-1

Scalar-flat-Kahler Burns metric on 62 C C?x CP;:

w:%(?@[u%—?)mlogu], u=|21|* + |20f?

also has mass m.
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Positive Mass Conjecture:

Any AE manifold with s > 0 has m > 0.

Schoen-Yau 1979:

Proved in dimension n < 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

Conjectured true in ALE case, too.

L 1987:
ALE counter-examples.

Scalar-flat Kahler metrics

on line bundles L — CPPy of Chern-class < —3.
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Mass of ALE Kahler manifolds?

Scalar-flat Kahler case”

Lemma. Any ALE Kahler manifold has only
one end.

Main Point:

Mass of an ALE Kahler manifold is unambiguous.

Does not depend on the choice of an end!
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Kahler manifold s a topological invariant.

That is, m(M, g, .J) is completely determined by
e the smooth manifold M,
o the first Chern class ¢ci = c1(M,.J) € H?(M)

of the complex structure, and
o the Kihler class [w] € H*(M) of the metric.

In fact, we will see that there is an explicit formula
for the mass in terms of these datal
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The explicit formula reproduces the mass in cases
where it previously had been laboriously computed
from the definition. But it also allows one to quickly
read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat
Kahler manifold. Arezzo asked whether, conversely;,
an ALE scalar-flat Kahler manifold with zero mass
must be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-
ical types of ALFE scalar-flat Kahler surfaces that
have zero mass, but are not Ricci-flat.

Suffices to examine solutions I had constructed in
1989, for which mass had never been calculated!
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Lemma. Let (M, g) be any ALE manifold of real
dimension n > 4. Then the natural map

HZ(M) — Hjp(M)

1$ an 1somorphism.

Here
kerd: EF(M) = 55“(]\4)
del~ (M)

HE(M) -
where

EL(M) := {Smooth, compactly supported p-forms on M }.
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Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real
dimension n > 4. Then the natural map

HZ(M) — Hjp(M)

1$ an 1somorphism.

Definition. If (M, g, J) is any ALE Kahler man-
ifold, we will use

2 2
& Hin(M)— HZ (M)
to denote the inverse of the natural map
HZ (M) = Hgp(M)

induced by the inclusion of compactly supported
smooth forms into all forms.
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Theorem C. Any ALE Kahler manifold (M, g, J)
of complex dimension m has mass given by

() W™ (m 1)
m(M, g) = = (2m — 1)pm—1 Jr4(2m — 1)x™m /M Sgdilg

where

e s = scalar curvature;

e (/1 = metric volume form;

oc; =c|(M,J)e H*(M) is first Chern class;

o [w] € HX(M) is Kdihler class of (g,J); and

o (. ) is pairing between H2(M) and H*™2(M).
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So the mass is a “boundary correction” to the topo-
logical formula for the total scalar curvature.
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So Theorem A is an immediate consequence!
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Now set 6 = %(8 — ) (log+/det g), so that

p=df

is Ricci form, and

—*d log (\/det g) =260 Nw.

Thus
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SO
1

m(M, ) = ——(#(c1), [

as claimed.
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(General case:

e General m > 2: straightforward. . .

e s # (), compensate by adding [ s dy. ..

o [f m > 2. .Jis always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

One argument proceeds by osculation:
J=Jy+0(™’), vJ=0(""

in suitable asymptotic coordinates adapted to g.
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Added hypersurface CIP,,,_1 has normal bundle O(1).

Complete analytic family encodes info about .J.
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To understand ./ at infinity:
AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map

which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.

This has some interesting consequences. . .
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Kahler manafold with non-negative scalar curva-
ture has non-negative mass:

AFE & Kdhler & s >0 = m(M,qg) > 0.
Moreover, m = 0 <= (M, g) is Euclidean space.

Proof actually shows something stronger!
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Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.
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This follows from existence of a holomorphic map
o: M —-C"

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section
o=z A A d2™

of the canonical line bundle which vanishes exactly
at the critical points of P.

The zero set of ¢, counted with multiplicities, gives
us a canonical divisor

D = ZHJD]

and

om—1
—(d(c1), (m — 1>'> = anVOl (D])

so the mass formula implies the claim.
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