From Laplacian growth to competitive erosion

Yuval Peres

September 8, 2016

Joint work with Lionel Levine
Diaconis-Fulton Addition

- Finite sets $A, B \subset \mathbb{Z}^d$.

- To form $A + B$, let $C_0 = A \cup B$ and $C_j = C_{j-1} \cup \{y_j\}$ where y_j is the endpoint of a random walk started at x_j and stopped on exiting C_{j-1}.
Diaconis-Fulton Addition

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $A \cap B = \{x_1, \ldots, x_k\}$.

Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Diaconis-Fulton Addition

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $A \cap B = \{x_1, \ldots, x_k\}$.
- To form $A + B$, let $C_0 = A \cup B$ and

 \[C_j = C_{j-1} \cup \{y_j\} \]

 where y_j is the endpoint of a random walk started at x_j and stopped on exiting C_{j-1}.
Diaconis-Fulton Addition

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $A \cap B = \{x_1, \ldots, x_k\}$.
- To form $A + B$, let $C_0 = A \cup B$ and
 \[C_j = C_{j-1} \cup \{y_j\} \]
 where y_j is the endpoint of a random walk started at x_j and stopped on exiting C_{j-1}.
- Define $A + B = C_k$.
Diaconis-Fulton Addition

- Finite sets $A, B \subset \mathbb{Z}^d$.
- $A \cap B = \{x_1, \ldots, x_k\}$.
- To form $A + B$, let $C_0 = A \cup B$ and

 $$C_j = C_{j-1} \cup \{y_j\}$$

 where y_j is the endpoint of a random walk started at x_j and stopped on exiting C_{j-1}.
- Define $A + B = C_k$.
- Abelian property: the law of $A + B$ does not depend on the ordering of x_1, \ldots, x_k.
Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
Internal DLA

$A_1 = \{o\}$, $A_n = A_{n-1} + \{o\}$.

Lawler, Bramson and Griffeath (1992) proved that the limiting shape is a ball. More precisely, for any $\varepsilon > 0$, with probability one we have $B_{r(1-\varepsilon)} \subset A_{\lfloor \omega d r \rfloor} \subset B_{r(1+\varepsilon)}$ for all sufficiently large r. Here $B_r = \{x \in \mathbb{Z}^d : |x| < r\}$, and ωd is the volume of the unit ball in \mathbb{R}^d. Logarithmic error bounds recently proved by Assaleh-Gaudilierre and by Jerison-Levine-Sheffield. Yuval Peres (joint work with Lionel Levine)
Internal DLA

- $A_1 = \{o\}$, $A_n = A_{n-1} + \{o\}$.
- Lawler, Bramson and Griffeath (1992) proved that the limiting shape is a ball.
Internal DLA

- $A_1 = \{o\}$, $A_n = A_{n-1} + \{o\}$.
- Lawler, Bramson and Griffeath (1992) proved that the limiting shape is a ball.
- More precisely, for any $\varepsilon > 0$, with probability one we have

$$B_{r(1-\varepsilon)} \subset A_{[\omega_dr^d]} \subset B_{r(1+\varepsilon)}$$

for all sufficiently large r.

Here $B_r = \{x \in \mathbb{Z}^d : |x| < r\}$, and ω_d is the volume of the unit ball in \mathbb{R}^d.

Logarithmic error bounds recently proved by Assaleh-Gaudillier and Jerison-Levine-Sheffield.
Internal DLA

- $A_1 = \{o\}$, $A_n = A_{n-1} + \{o\}$.
- Lawler, Bramson and Griffeath (1992) proved that the limiting shape is a ball.
- More precisely, for any $\varepsilon > 0$, with probability one we have
 $$B_r(1-\varepsilon) \subset A_{[\omega_d r^d]} \subset B_r(1+\varepsilon)$$
 for all sufficiently large r.
- Here $B_r = \{x \in \mathbb{Z}^d : |x| < r\}$, and ω_d is the volume of the unit ball in \mathbb{R}^d.
- Logarithmic error bounds recently proved by Assaleh-Gaudilierre and by Jerison-Levine-Sheffield.
The Rotor-Router Model

- Deterministic analogue of random walk.
The Rotor-Router Model

- Deterministic analogue of random walk.
- Each site $x \in \mathbb{Z}^2$ has a **rotor** pointing North, South, East or West.
 (Start all rotors pointing North, say.)
The Rotor-Router Model

- Deterministic analogue of random walk.
- Each site $x \in \mathbb{Z}^2$ has a **rotor** pointing North, South, East or West.
 (Start all rotors pointing North, say.)
- A particle starts at the origin. At each site it comes to, it
 1. Turns the rotor clockwise by 90 degrees;
 2. Takes a step in direction of the rotor.
Rotor-Router Aggregation (Proposed by Jim Propp)

- Sequence of lattice regions

\[A_1 = \{ o \} \]

\[A_n = A_{n-1} \cup \{ x_n \}, \]

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
Rotor-Router Aggregation (Proposed by Jim Propp)

- Sequence of lattice regions

\[A_1 = \{o\} \]

\[A_n = A_{n-1} \cup \{x_n\}, \]

where

- \(x_n \in \mathbb{Z}^2 \) is the site at which rotor walk first leaves the region \(A_{n-1} \).

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
Rotor-Router Aggregation (Proposed by Jim Propp)

- Sequence of lattice regions

\[A_1 = \{o\} \]

\[A_n = A_{n-1} \cup \{x_n\}, \]

where \(x_n \in \mathbb{Z}^2 \) is the site at which rotor walk first leaves the region \(A_{n-1} \).

- Makes sense in \(\mathbb{Z}^d \) for any \(d \).

- Choices of which particles to route in what order don't affect the final shape generated or the final rotor directions.
Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Spherical Asymptotics

- **Theorem** (Levine-P.) Let A_n be the region of n particles formed by rotor-router aggregation in \mathbb{Z}^d.

 - B_ρ is the ball of radius ρ centered at the origin.
 - $n = \omega_d r^d$, where ω_d is the volume of the unit ball in \mathbb{R}^d.
 - c, c' depend only on d.

- **Corollary**: Inradius/Outradius $\to 1$ as $n \to \infty$.

Yuval Peres (joint work with Lionel Levine) From Laplacian growth to competitive erosion
Spherical Asymptotics

▶ **Theorem** (Levine-P.) Let A_n be the region of n particles formed by rotor-router aggregation in \mathbb{Z}^d. Then

$$B_{r-c\log r} \subset A_n \subset B_r(1+c'r^{-1/d}\log r),$$

where

▶ B_ρ is the ball of radius ρ centered at the origin.

Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
Spherical Asymptotics

- **Theorem** (Levine-P.) Let A_n be the region of n particles formed by rotor-router aggregation in \mathbb{Z}^d. Then

$$B_{r-c \log r} \subset A_n \subset B_r(1+c'r^{-1/d} \log r),$$

where

- B_ρ is the ball of radius ρ centered at the origin.
- $n = \omega_d r^d$, where ω_d is the volume of the unit ball in \mathbb{R}^d.

Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Theorem (Levine-P.) Let A_n be the region of n particles formed by rotor-router aggregation in \mathbb{Z}^d. Then

$$B_{r - c \log r} \subset A_n \subset B_r(1 + c' r^{-1/d} \log r),$$

where

- B_ρ is the ball of radius ρ centered at the origin.
- $n = \omega_d r^d$, where ω_d is the volume of the unit ball in \mathbb{R}^d.
- c, c' depend only on d.

Corollary: Inradius/Outradius $\rightarrow 1$ as $n \rightarrow \infty$.

Yuval Peres (joint work with Lionel Levine) From Laplacian growth to competitive erosion
Spherical Asymptotics

Theorem (Levine-P.) Let A_n be the region of n particles formed by rotor-router aggregation in \mathbb{Z}^d. Then

$$B_{r-c\log r} \subset A_n \subset B_r(1+c'r^{-1/d}\log r),$$

where

- B_ρ is the ball of radius ρ centered at the origin.
- $n = \omega_d r^d$, where ω_d is the volume of the unit ball in \mathbb{R}^d.
- c, c' depend only on d.

Corollary: Inradius/Outradius $\to 1$ as $n \to \infty$.
Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
Divisible Sandpile

- Start with mass m at the origin.
Divisible Sandpile

- Start with mass m at the origin.
- Each site keeps mass 1, divides excess mass equally among its neighbors.

Theorem (Levine-P.): There are constants c and c' depending only on d, such that

$$B_r - c \subset A_m \subset B_r + c'$$

where $m = \omega d r^d$.

Yuval Peres (joint work with Lionel Levine)
Divisible Sandpile

- Start with mass m at the origin.
- Each site keeps mass 1, divides excess mass equally among its neighbors.
- As $t \to \infty$, get a limiting region A_m of mass 1, fractional mass on ∂A_m, and zero outside.
Divisible Sandpile

- Start with mass m at the origin.
- Each site keeps mass 1, divides excess mass equally among its neighbors.
- As $t \to \infty$, get a limiting region A_m of mass 1, fractional mass on ∂A_m, and zero outside.
- **Theorem** (Levine-P.): There are constants c and c' depending only on d, such that

$$B_{r-c} \subset A_m \subset B_{r+c'}$$

where $m = \omega_d r^d$.

Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
Questions

- As the lattice spacing goes to zero, is there a scaling limit?
Questions

- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?
Questions

- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?
- Is it the same for all three models?
Questions

- As the lattice spacing goes to zero, is there a scaling limit?
- If so, can we describe the limiting shape?
- Is it the same for all three models?
- Not clear how to define dynamics in \mathbb{R}^d.
Odometer Function

- $u(x) = \text{total mass emitted from } x$.

Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
Odometer Function

- $u(x) =$ total mass emitted from x.
- Discrete Laplacian:

$$\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)$$
Odometer Function

- $u(x) =$ total mass emitted from x.
- Discrete Laplacian:

\[
\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)
\]

= mass received – mass emitted
Odometer Function

- \(u(x) \) = total mass emitted from \(x \).
- Discrete Laplacian:

\[
\Delta u(x) = \frac{1}{2d} \sum_{y \sim x} u(y) - u(x)
\]

= mass received − mass emitted

\[
\begin{cases}
-1 & x \in A \cap B \\
0 & x \in A \cup B - A \cap B \\
1 & x \in A \oplus B - A \cup B.
\end{cases}
\]
Least Superharmonic Majorant

Let

\[\gamma(x) = -|x|^2 - \sum_{y \in A} g(x, y) - \sum_{y \in B} g(x, y), \]

where \(g \) is the Green's function for SRW in \(\mathbb{Z}^d \), \(d \geq 3 \).
Let
\[\gamma(x) = -|x|^2 - \sum_{y \in A} g(x, y) - \sum_{y \in B} g(x, y), \]
where \(g \) is the Green’s function for SRW in \(\mathbb{Z}^d, d \geq 3 \).

In dimension two, we use the negative of the potential kernel in place of \(g \).
Least Superharmonic Majorant

Let

$$\gamma(x) = -|x|^2 - \sum_{y \in A} g(x, y) - \sum_{y \in B} g(x, y),$$

where g is the Green’s function for SRW in \mathbb{Z}^d, $d \geq 3$.

- In dimension two, we use the negative of the potential kernel in place of g.
- Let $s(x) = \inf\{\phi(x) \mid \phi \text{ superharmonic, } \phi \geq \gamma\}$.
Least Superharmonic Majorant

Let

\[\gamma(x) = -|x|^2 - \sum_{y \in A} g(x, y) - \sum_{y \in B} g(x, y), \]

where \(g \) is the Green’s function for SRW in \(\mathbb{Z}^d, d \geq 3 \).

- In dimension two, we use the negative of the potential kernel in place of \(g \).
- Let \(s(x) = \inf \{ \phi(x) \mid \phi \text{ superharmonic, } \phi \geq \gamma \} \).
- **Claim:** odometer = \(s - \gamma \).
Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Proof of the claim

Let $m(x) =$ amount of mass present at x in the final state.
Proof of the claim

Let \(m(x) \) = amount of mass present at \(x \) in the final state.
Then

\[\Delta u = m - 1_A - 1_B \]
Proof of the claim

Let $m(x) =$ amount of mass present at x in the final state. Then

$$
\Delta u = m - 1_A - 1_B \\
\leq 1 - 1_A - 1_B.
$$
Proof of the claim

- Let $m(x) =$ amount of mass present at x in the final state. Then

\[
\Delta u = m - 1_A - 1_B \leq 1 - 1_A - 1_B.
\]

- Since

\[
\Delta \gamma = 1_A + 1_B - 1
\]

the sum $u + \gamma$ is superharmonic, so $u + \gamma \geq s$.
Proof of the claim

Let \(m(x) = \) amount of mass present at \(x \) in the final state. Then

\[
\Delta u = m - 1_A - 1_B \\
\leq 1 - 1_A - 1_B.
\]

Since

\[
\Delta \gamma = 1_A + 1_B - 1
\]

the sum \(u + \gamma \) is superharmonic, so \(u + \gamma \geq s \).

Reverse inequality: \(s - \gamma - u \) is superharmonic on \(A \oplus B \) and nonnegative outside \(A \oplus B \), hence nonnegative inside as well.
Defining the Scaling Limit

- $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero
Defining the Scaling Limit

- $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero
- Let

$$D = A \cup B \cup \{s > \gamma\}$$
Defining the Scaling Limit

- $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero
- Let

$$D = A \cup B \cup \{s > \gamma\}$$

where

$$\gamma(x) = -|x|^2 - \int_A g(x, y) dy - \int_B g(x, y) dy$$

Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
Defining the Scaling Limit

1. Let $A, B \subset \mathbb{R}^d$ be bounded open sets such that $\partial A, \partial B$ have measure zero.
2. Let

$$D = A \cup B \cup \{s > \gamma\}$$

where

$$\gamma(x) = -|x|^2 - \int_A g(x, y) dy - \int_B g(x, y) dy$$

and

$$s(x) = \inf\{\phi(x) | \phi \text{ is continuous, superharmonic, and } \phi \geq \gamma\}$$

is the least superharmonic majorant of γ.

Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Defining the Scaling Limit

- $A, B \subset \mathbb{R}^d$ bounded open sets such that $\partial A, \partial B$ have measure zero
- Let
 \[D = A \cup B \cup \{ s > \gamma \} \]
 where
 \[\gamma(x) = -|x|^2 - \int_A g(x, y)dy - \int_B g(x, y)dy \]
 and
 \[s(x) = \inf\{ \phi(x) | \phi \text{ is continuous, superharmonic, and } \phi \geq \gamma \} \]
 is the least superharmonic majorant of γ.
- Odometer: $u = s - \gamma$.

Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
The domain $D = \{s > \gamma\}$ for two overlapping disks in \mathbb{R}^2.
The domain $D = \{s > \gamma\}$ for two overlapping disks in \mathbb{R}^2.

The boundary ∂D is given by the algebraic curve

$$(x^2 + y^2)^2 - 2r^2 (x^2 + y^2) - 2(x^2 - y^2) = 0.$$
Main Result

Let $A, B \subset \mathbb{R}^d$ be bounded open sets with $\partial A, \partial B$ having measure zero.
Main Result

Let \(A, B \subset \mathbb{R}^d \) be bounded open sets with \(\partial A, \partial B \) having measure zero.

- Lattice spacing \(\delta_n \downarrow 0 \).
- Write \(A:: = A \cap \delta_n \mathbb{Z}^d \).
Main Result

- Let $A, B \subset \mathbb{R}^d$ be bounded open sets with $\partial A, \partial B$ having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A^{\cdot} = A \cap \delta_n \mathbb{Z}^d$.
- **Theorem** (Levine-P.) For any $\varepsilon > 0$, with probability one

 $$D^{\cdot} \subset D_n, R_n, I_n \subset D^{\varepsilon^{\cdot}}$$

 for all sufficiently large n,

Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Let $A, B \subset \mathbb{R}^d$ be bounded open sets with $\partial A, \partial B$ having measure zero.

Lattice spacing $\delta_n \downarrow 0$.

Write $A^{\vdash} = A \cap \delta_n \mathbb{Z}^d$.

Theorem (Levine-P.) For any $\varepsilon > 0$, with probability one

$$D^{\vdash}_\varepsilon \subset D_n, R_n, I_n \subset D^{\vdash}_\varepsilon$$

for all sufficiently large n, where

- D_n, R_n, I_n are the Diaconis-Fulton sums of A^{\vdash} and B^{\vdash} in the lattice $\delta_n \mathbb{Z}^d$, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
Main Result

- Let $A, B \subset \mathbb{R}^d$ be bounded open sets with ∂A, ∂B having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A^{\vdash} = A \cap \delta_n \mathbb{Z}^d$.
- **Theorem** (Levine-P.) For any $\varepsilon > 0$, with probability one

$$D^{\vdash}_\varepsilon \subset D_n, R_n, I_n \subset D^{\varepsilon:}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the Diaconis-Fulton sums of A^{\vdash} and B^{\vdash} in the lattice $\delta_n \mathbb{Z}^d$, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
- $D = A \cup B \cup \{s > \gamma\}$.
Main Result

- Let $A, B \subset \mathbb{R}^d$ be bounded open sets with $\partial A, \partial B$ having measure zero.
- Lattice spacing $\delta_n \downarrow 0$.
- Write $A_{\ddagger} = A \cap \delta_n \mathbb{Z}^d$.
- **Theorem** (Levine-P.) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon_{\ddagger}} \subset D_n, R_n, I_n \subset D_{\varepsilon_{\ddagger}}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the Diaconis-Fulton sums of A_{\ddagger} and B_{\ddagger} in the lattice $\delta_n \mathbb{Z}^d$, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
- $D = A \cup B \cup \{s > \gamma\}$.
- $D_{\varepsilon}, D_{\varepsilon}$ are the inner and outer ε-neighborhoods of D.
Multiple Point Sources

Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.

Theorem (Levine-P.) For any $\varepsilon > 0$, with probability one $D_\varepsilon \subset D_n, R_n, I_n \subset D_{\varepsilon}$ for all sufficiently large n, where D_n, R_n, I_n are the domains of occupied sites $\delta_n \mathbb{Z}^d$, if $\lfloor \lambda_i \delta_n \rfloor$ particles start at each site x_i, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.

D is the continuum Diaconis-Fulton sum of the balls $B(x_i, r_i)$, where $\lambda_i = \omega d r_i$.

Follows from the main result and the case of a single point source.
Multiple Point Sources

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- **Theorem** (Levine-P.) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon} \subset D_n, R_n, l_n \subset D_{\varepsilon}$$

for all sufficiently large n,
Multiple Point Sources

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- **Theorem** (Levine-P.) For any $\varepsilon > 0$, with probability one

\[D_{\varepsilon} \subset D_n, R_n, I_n \subset D^\varepsilon \]

for all sufficiently large n, where

- D_n, R_n, I_n are the domains of occupied sites $\delta_n \mathbb{Z}^d$, if $\lfloor \lambda_i \delta_n^{-d} \rfloor$ particles start at each site x_i, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.
Multiple Point Sources

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- **Theorem** (Levine-P.) For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon} \subset D_n, R_n, I_n \subset D^\varepsilon,$$

for all sufficiently large n, where

- D_n, R_n, I_n are the domains of occupied sites $\delta_n \mathbb{Z}^d$, if $[\lambda_i \delta_n^{-d}]$ particles start at each site x_i^\bullet, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.

- D is the continuum Diaconis-Fulton sum of the balls $B(x_i, r_i)$, where $\lambda_i = \omega_d r_i^d$.

Yuval Peres (joint work with Lionel Levine)
Multiple Point Sources

- Fix centers $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.

- **Theorem (Levine-P.)** For any $\varepsilon > 0$, with probability one

$$D_{\varepsilon} \subset D_n, R_n, I_n \subset D_{\varepsilon}$$

for all sufficiently large n, where

- D_n, R_n, I_n are the domains of occupied sites $\delta_n \mathbb{Z}^d$, if $[\lambda_i \delta_n^{-d}]$ particles start at each site x_i, computed using divisible sandpile, rotor-router, and internal DLA dynamics, respectively.

- D is the continuum Diaconis-Fulton sum of the balls $B(x_i, r_i)$, where $\lambda_i = \omega_d r_i^d$.

- Follows from the main result and the case of a single point source.
Steps of the Proof

convergence of densities

⇓

convergence of obstacles
Steps of the Proof

convergence of densities
\[\downarrow\]
convergence of obstacles
\[\downarrow\]
convergence of odometer functions
Steps of the Proof

convergence of densities

⇓

convergence of obstacles

⇓

convergence of odometer functions

⇓

convergence of domains.
Adapting the Proof for Rotors

- Rotor-router odometer:
 \[u(x) = \text{total number of particles emitted from } x. \]

- Instead of \(\Delta u = 1 \), we only know \(-2 \leq \Delta u \leq 4 \).

- Repeating the argument only gives \(B_{cr} \subset A_n \subset B_{c'} \).
Smoothing

To do better, let

\[v(x) = \frac{1}{4k^2} \sum_{y \in S_k(x)} u(y) \]

where \(S_k(x) \) is a box of side length 2\(k \) centered at \(x \).

Using \(\Delta = \text{div grad} \), we get

\[\Delta v(x) = \frac{1}{4k^2} \sum_{(y,z) \in \partial S_k(x)} \frac{u(z) - u(y)}{4} \]

\[= 1 + O \left(\frac{1}{k} \right) \]

if \(o \notin S_k(x) \) and all sites in \(S_k(x) \) are occupied.
A Quadrature Identity

If h is harmonic on $\delta_n \mathbb{Z}^d$, then

$$M_t = \sum_j h(X_t^j)$$

is a martingale for internal DLA, where $(X_t^j)_{t\geq 0}$ is the random walk performed by the j-th particle.

Therefore if $I_n \to D$, we expect the limiting domain $D \subset \mathbb{R}^d$ to satisfy

$$\int_D h(x) \, dx = k \sum_{i=1}^\lambda x_i h(x_i)$$

for all harmonic functions h on D.

Yuval Peres (joint work with Lionel Levine)
A Quadrature Identity

- If h is harmonic on $\delta_n\mathbb{Z}^d$, then
 \[M_t = \sum_j h(X_t^j) \]
 is a martingale for internal DLA, where $(X_t^j)_{t \geq 0}$ is the random walk performed by the j-th particle.
- Optional stopping:
 \[\mathbb{E} \sum_{x \in I_n} h(x) = \mathbb{E} M_T = M_0 = \sum_{i=1}^k \left\lfloor \lambda_i \delta_n^{-d} \right\rfloor h(x_i). \]
A Quadrature Identity

- If \(h \) is harmonic on \(\delta_n \mathbb{Z}^d \), then
 \[
 M_t = \sum_j h(X_t^j)
 \]
 is a martingale for internal DLA, where \((X_t^j)_{t \geq 0} \) is the random walk performed by the \(j \)-th particle.

- Optional stopping:
 \[
 \mathbb{E} \sum_{x \in I_n} h(x) = \mathbb{E} M_T = M_0 = \sum_{i=1}^k \lfloor \lambda_i \delta_n^{-d} \rfloor h(x_i).
 \]

- Therefore if \(I_n \to D \), we expect the limiting domain \(D \subset \mathbb{R}^d \) to satisfy
 \[
 \int_D h(x)dx = \sum_{i=1}^k \lambda_i h(x_i).
 \]
 for all harmonic functions \(h \) on \(D \).
Quadrature Domains

- Given $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.
- $D \subset \mathbb{R}^d$ is called a quadrature domain for the data (x_i, λ_i) if

$$\int_D h(x) \, dx \leq \sum_{i=1}^k \lambda_i h(x_i).$$

for all superharmonic functions h on D.

(Aharonov-Shapiro ’76, Gustafsson, Sakai, ...)

Yuval Peres (joint work with Lionel Levine) From Laplacian growth to competitive erosion
Quadrature Domains

- Given \(x_1, \ldots, x_k \in \mathbb{R}^d \) and \(\lambda_1, \ldots, \lambda_k > 0 \).
- \(D \subset \mathbb{R}^d \) is called a quadrature domain for the data \((x_i, \lambda_i)\) if
 \[
 \int_D h(x) \, dx \leq \sum_{i=1}^{k} \lambda_i h(x_i).
 \]
 for all superharmonic functions \(h \) on \(D \).
 (Aharonov-Shapiro '76, Gustafsson, Sakai, ...)
- The smash sum \(B_1 \oplus \ldots \oplus B_k \) is such a domain, where \(B_i \) is the ball of volume \(\lambda_i \) centered at \(x_i \).
Quadrature Domains

Given $x_1, \ldots, x_k \in \mathbb{R}^d$ and $\lambda_1, \ldots, \lambda_k > 0$.

$D \subset \mathbb{R}^d$ is called a quadrature domain for the data (x_i, λ_i) if

$$\int_D h(x) \, dx \leq \sum_{i=1}^k \lambda_i h(x_i).$$

for all superharmonic functions h on D.

(Aharonov-Shapiro ’76, Gustafsson, Sakai, ...)

The smash sum $B_1 \oplus \ldots \oplus B_k$ is such a domain, where B_i is the ball of volume λ_i centered at x_i.

The boundary of $B_1 \oplus \ldots \oplus B_k$ lies on an algebraic curve of degree $2k$.
\[\int \int_D h(x, y) \, dx \, dy = h(-1, 0) + h(1, 0) \]
Further Directions and Open Problems: Rotor-Router

- How fast does $R(n) = \max_{k \leq n} (\text{outrad}(A_k) - \text{inrad}(A_k))$ really grow?

- Is the occupied region simply connected?

- Understand the patterns in the picture of rotor directions.

- Identify the limiting shape of the “broken rotor” models.

Yuval Peres (joint work with Lionel Levine) From Laplacian growth to competitive erosion
Further Directions and Open Problems: Rotor-Router

- How fast does

\[R(n) = \max_{k \leq n} (\text{outrad}(A_k) - \text{inrad}(A_k)) \]

really grow?

Yuval Peres (joint work with Lionel Levine) From Laplacian growth to competitive erosion
Further Directions and Open Problems: Rotor-Router

- How fast does
 \[R(n) = \max_{k \leq n} (\text{outrad}(A_k) - \text{inrad}(A_k)) \]
 really grow?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.822</td>
</tr>
<tr>
<td>(10^2)</td>
<td>1.588</td>
</tr>
<tr>
<td>(10^3)</td>
<td>1.637</td>
</tr>
<tr>
<td>(10^4)</td>
<td>1.683</td>
</tr>
<tr>
<td>(10^5)</td>
<td>1.724</td>
</tr>
<tr>
<td>(10^6)</td>
<td>1.741</td>
</tr>
</tbody>
</table>

Yuval Peres (joint work with Lionel Levine)

From Laplacian growth to competitive erosion
Further Directions and Open Problems: Rotor-Router

- How fast does

 \[R(n) = \max_{k \leq n} (\text{outrad}(A_k) - \text{inrad}(A_k)) \]

really grow?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.822</td>
</tr>
<tr>
<td>(10^2)</td>
<td>1.588</td>
</tr>
<tr>
<td>(10^3)</td>
<td>1.637</td>
</tr>
<tr>
<td>(10^4)</td>
<td>1.683</td>
</tr>
<tr>
<td>(10^5)</td>
<td>1.724</td>
</tr>
<tr>
<td>(10^6)</td>
<td>1.741</td>
</tr>
</tbody>
</table>

- Is the occupied region simply connected?

Yuval Peres (joint work with Lionel Levine)
Further Directions and Open Problems: Rotor-Router

- How fast does

\[R(n) = \max_{k \leq n} (\text{outrad}(A_k) - \text{inrad}(A_k)) \]

really grow?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.822</td>
</tr>
<tr>
<td>(10^2)</td>
<td>1.588</td>
</tr>
<tr>
<td>(10^3)</td>
<td>1.637</td>
</tr>
<tr>
<td>(10^4)</td>
<td>1.683</td>
</tr>
<tr>
<td>(10^5)</td>
<td>1.724</td>
</tr>
<tr>
<td>(10^6)</td>
<td>1.741</td>
</tr>
</tbody>
</table>

- Is the occupied region simply connected?
- Understand the patterns in the picture of rotor directions.
Further Directions and Open Problems: Rotor-Router

- How fast does
 \[R(n) = \max_{k \leq n} (\text{outrad}(A_k) - \text{inrad}(A_k)) \]
 really grow?

<table>
<thead>
<tr>
<th>n</th>
<th>R(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.822</td>
</tr>
<tr>
<td>10^2</td>
<td>1.588</td>
</tr>
<tr>
<td>10^3</td>
<td>1.637</td>
</tr>
<tr>
<td>10^4</td>
<td>1.683</td>
</tr>
<tr>
<td>10^5</td>
<td>1.724</td>
</tr>
<tr>
<td>10^6</td>
<td>1.741</td>
</tr>
</tbody>
</table>

- Is the occupied region simply connected?
- Understand the patterns in the picture of rotor directions.
- Identify the limiting shape of the “broken rotor” models.
Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
$z \mapsto \frac{1}{z^2}$
Abelian sandpile, or chip-firing model:
Abelian sandpile, or chip-firing model:

- When 4 or more grains of sand accumulate at a site in \(\mathbb{Z}^2 \), it topples, sending one grain to each neighbor.
Abelian sandpile, or chip-firing model:

- When 4 or more grains of sand accumulate at a site in \mathbb{Z}^2, it topples, sending one grain to each neighbor.
- Choices of which sites to topple in what order don’t affect the final sandpile shape.
Abelian sandpile, or chip-firing model:

- When 4 or more grains of sand accumulate at a site in \mathbb{Z}^2, it topples, sending one grain to each neighbor.
- Choices of which sites to topple in what order don’t affect the final sandpile shape.
- Comparing models:
 - Start with n particles at the origin.
Abelian sandpile, or chip-firing model:

- When 4 or more grains of sand accumulate at a site in \mathbb{Z}^2, it topples, sending one grain to each neighbor.
- Choices of which sites to topple in what order don’t affect the final sandpile shape.
- **Comparing models:**
 - Start with n particles at the origin.
 - If there are m particles at a site, send $\lfloor m/4 \rfloor$ to each neighbor.
Abelian sandpile, or chip-firing model:

- When 4 or more grains of sand accumulate at a site in \mathbb{Z}^2, it topples, sending one grain to each neighbor.
- Choices of which sites to topple in what order don’t affect the final sandpile shape.

Comparing models:
- Start with n particles at the origin.
- If there are m particles at a site, send $\lfloor m/4 \rfloor$ to each neighbor.
- Sandpile: Leave the extra particles where they are.
Abelian sandpile, or chip-firing model:

- When 4 or more grains of sand accumulate at a site in \mathbb{Z}^2, it topples, sending one grain to each neighbor.
- Choices of which sites to topple in what order don’t affect the final sandpile shape.

Comparing models:

- Start with n particles at the origin.
- If there are m particles at a site, send $\lfloor m/4 \rfloor$ to each neighbor.
- **Sandpile**: Leave the extra particles where they are.
- **Rotor**: Send extra particles according to the usual rotor rule.
From Laplacian growth to competitive erosion

Yuval Peres (joint work with Lionel Levine)
Bounds for the Abelian Sandpile

▶ **Theorem** (Levine-P.) Let S_n be the set of sites visited by the abelian sandpile in \mathbb{Z}^d, starting from n particles at the origin (and a hole of depth H everywhere else.)

Improves the bounds of Le Borgne and Rossin, Fey and Redig.
Theorem (Levine-P.) Let S_n be the set of sites visited by the abelian sandpile in \mathbb{Z}^d, starting from n particles at the origin (and a hole of depth H everywhere else.) Then

$$
\left(\text{Ball of volume } \frac{n-o(n)}{2d-1+H} \right) \subset S_n \subset \left(\text{Ball of volume } \frac{n+o(n)}{d+H} \right).
$$
Bounds for the Abelian Sandpile

- **Theorem** (Levine-P.) Let S_n be the set of sites visited by the abelian sandpile in \mathbb{Z}^d, starting from n particles at the origin (and a hole of depth H everywhere else.) Then

$\left(\text{Ball of volume } \frac{n-o(n)}{2d-1+H}\right) \subset S_n \subset \left(\text{Ball of volume } \frac{n+o(n)}{d+H}\right)$.

- Improves the bounds of Le Borgne and Rossin, Fey and Redig.
$\text{(Disk of area } n/3) \subset S_n \subset \text{(Disk of area } n/2)$
Further Directions and Open Problems: Sandpile

- Fix an integer \(h \in (-\infty, 2] \).
- Start every site in \(\mathbb{Z}^2 \) at height \(h \).
Further Directions and Open Problems: Sandpile

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height h.
- Let $S_{n,h}$ be the set of visited sites for the abelian sandpile started with n particles at the origin.

Conjecture: As $n \to \infty$, the limiting shape $S_{n,h}$ is well approximated by a $(12 - 4h)$-gon.

Fey and Redig (2007) Case $h = 2$: The shape of $S_{n,2}$ is a square.

In all other cases, even the existence of a limiting shape is open.

Even for $h = 2$, the rate of growth of the square was not known; it was determined recently by Fey-Levine-P. (2009) to have edge length of order \sqrt{n}.
Further Directions and Open Problems: Sandpile

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height h.
- Let $S_{n,h}$ be the set of visited sites for the abelian sandpile started with n particles at the origin.
- **Conjecture**: As $n \to \infty$, the limiting shape $S_{n,h}$ is well approximated by a $(12 - 4h)$-gon.

Yuval Peres (joint work with Lionel Levine)
From Laplacian growth to competitive erosion
Further Directions and Open Problems: Sandpile

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height h.
- Let $S_{n,h}$ be the set of visited sites for the abelian sandpile started with n particles at the origin.
- **Conjecture**: As $n \to \infty$, the limiting shape $S_{n,h}$ is well approximated by a $(12 - 4h)$-gon.
- Fey and Redig (2007) Case $h = 2$: The shape of $S_{n,2}$ is a square.
Further Directions and Open Problems: Sandpile

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height h.
- Let $S_{n,h}$ be the set of visited sites for the abelian sandpile started with n particles at the origin.
- **Conjecture**: As $n \to \infty$, the limiting shape $S_{n,h}$ is well approximated by a $(12 - 4h)$-gon.
- Fey and Redig (2007) Case $h = 2$: The shape of $S_{n,2}$ is a square.
- In all other cases, even the existence of a limiting shape is open.
Further Directions and Open Problems: Sandpile

- Fix an integer $h \in (-\infty, 2]$.
- Start every site in \mathbb{Z}^2 at height h.
- Let $S_{n,h}$ be the set of visited sites for the abelian sandpile started with n particles at the origin.

Conjecture: As $n \to \infty$, the limiting shape $S_{n,h}$ is well approximated by a $(12 - 4h)$-gon.

- Fey and Redig (2007) Case $h = 2$: The shape of $S_{n,2}$ is a square.
- In all other cases, even the existence of a limiting shape is open.
- Even for $h = 2$, the rate of growth of the square was not known; it was determined recently by Fey-Levine-P.(2009) to have edge length of order \sqrt{n}.
From Laplacian growth to competitive erosion

$h = 2$

$h = 1$

$h = 0$