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Medical Applications: IGT and IGS

• Mathematics to develop general-purpose algorithms and 

software that can be integrated into complete therapy/surgical  

delivery systems.

• Four main components of image-guided therapy (IGT): 

localization, targeting, monitoring and control.

• Develop robust algorithms for:
– Segmentation - automated methods that create patient-specific models of 

relevant anatomy from multi-modal data.

– Registration – automated methods that align multiple data sets with each other 

and with the patient.



Advanced Multimodality Image-Guided 

Operating (AMIGO) Suite
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• Image Processing, Dynamics, and Control

• Evolving Shapes Statically and Dynamically

• Statistics, Shape, and Estimation

• Interactive Methods
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Shapes

Closed curve Closed surface
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Classical System Processing

System:

plane, brain,  

heart, ...

Measurement:

imaging + post-

processing, camera, 

fMRI, MRI, ...

What happens if measurements change over time?

How to influence the system by measured output?
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“How to combine image processing, control, 

and machine learning for medical image 

computation?” 
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Examples of Shape Variation

[Dataset from C. Tempany MD, A. Szot MD, J. Zhang MD, S. Haker Ph.D.]

Multiple patients Temporal
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Observer-based Feedback

Observer = Filter + System knowledge

Main tools: Active Contours + Particle Filtering



Geometric Active Contours

• Active Contour Method Using Geodesics, Minimal Surfaces, 

and Statistics

• Automatic Merging and Breaking (Topological Changes)

• Works for 2D, 3D, 4D

• Used to Segment Various Features: Texture, Intensity, Color, 

Shape



Active Contours Find Cortical Surface
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Geometric Curve Evolution

The closed curve     evolves according to

moves “particles” along 

the curve

influences the curve’s 

shape

How is the speed         determined?
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Curve Evolution through Energy 

Minimization

Find curve that minimizes a given energy

Static curve evolution

Dynamic curve evolution
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Geometric Dynamic Approach

Minimizing

results in the Euler-Lagrange equation

image independent
image

dependent

by arclength

Next Step: Add Statistics, Shape and Estimation
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Bhattacharyya Distance: Statistics
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Bhattacharyya Flow



Multiple Structure Segmentation
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Segmentation of heart, two lungs, liver, two kidneys, spleen, abdominal aorta, pelvis, bladder, skin/muscle/fat. 

The subplot (b) removes skin/muscle/fat but overlays the original image.
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Finsler Metrics: Shape



19

Minimization:

Gradient flow

• Computing the first variation of the functional C,

the L2-optimal C-minimizing deformation is:

• The steady state ∞ is 
locally C-minimal

projection (removes 

tangential component)
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Minimization:

Dynamic programming

Consider a seed region S in Rn, define 

for all target points t in Rn the value function:

It satisfies the Hamilton-Jacobi-Bellman equation:

curves between S and t



March 
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Active Contours and Bayesian Statistics

The active contour paradigm can be easily combined with Bayesian estimation. The 

underlying problem is to find an object x with prior p(x) using data z. 

The posterior p(x|z) can be computed using Bayes’ rule.  The idea now is that

the active contour serves as a prior model of the possible shapes and motions of 

the features of interest which we want to track. Filtering comes in by adding 

a dynamic system model to the prior and sensor models in the Bayesian 

approach. For example, in the linear case with Gaussian distributions 

and one uses the Kalman filter. For nonlinear models, one can use sigma-point or particle 

filtering.

Conformal  factor is derived locally, based on edge computations. 

A more flexible conformal metric is obtained when the metric is learned 

from the data and if the model incorporates non-local information. For this 

purpose, we have incorporated statistical methods into geodesic snakes.



March 
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Particle Filters



March 
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Bayesian Tracking



March 
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Application:

Diffusion MRI tractography
• Diffusion MRI measures the diffusion of water 

molecules in the brain

• Neural fibers influence water diffusion

• Tractography: “recovering probable neural fibers from 

diffusion information”

neuron’s

membrane

water

molecules



Application:

Diffusion MRI tractography (2)
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Finsler Tract Growing: I
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Finsler Tract Growing: II



fMRI and DTI for IGS



Expert Knowledge for Segmentation

A motivating problem: measuring volume of Epiphysis, Cartilage-Cap, 
and Physis (growth-plate) during adolescence.

Left: automatic segmentation of Epiphysis.
Right: augmentation by user-in-the-loop curve evolution.



Video Demos



Why Interactive Segmentation?

1. Ever more complex segmentation models will be slower 
and still not work in many cases.

2. Atlas-Based methods may not be applicable (trauma, 
unique growth stage, atlas is "To-Do")

3. Doctors & Med Students can use it easily, sole 
parameter is "editor brush size".

Above: Timeline of Interactive Segmentation System



Formulation: Augmented Cost-Function (I) 

• Nominal cost function
o minimizing this is "automatic 

algorithm"
• User-Input: changes to segmentation 

function at discrete intervals
• Augmented Curve Evolution
o nominal plus user-driven term

• Signal Definitions
o User Input Error
o Observer Error



Formulation: Augmented Cost-Function (II)

• Minimize F and H by gradient flow.
• F filters the user input
o enable sloppy clicking

o accumulate U where user 
strongly disagrees with 

automatic algorithm
• H balances automatic algorithm 

with observer error

• Observer Evolution
• Segmentation Evolution

o real-time display update
o enable human to generate U



System Diagram with Feedback Loops



3D Volume: Head-Neck Image

Region-based active contour: Example of segmenting the left eye (red), right eye (green),
brain stem (blue), and mandible (pink), superimposed over manual segmentations
(yellow).



3D Volume: Cardiac Image

Distance-based clustering: Example of segmenting the left ventricle (red), right ventricle
(green), and left atrium (blue), superimposed over manual segmentations (yellow).
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Subdomains with smooth boundaries and positive densities

Consider diffeomorphisms mapping one density to another

Satisfying the mass preservation property

-- we start from a particular such map u



Consider a smooth one parameter family of MP-maps:

From the MP property and the construction of the path it follows



MK optimality requires that we minimize the functional

for which we take the first variation:  



First choice:

This leads to the system of equations:



Specializing to quadratic cost:

leads to the following “non-local” gradient descent equation:

Motivation for the approach:

The key idea is to push the fixed initial map u (thought of 
as a vector field) using the one-parameter family of MP 
maps in order to remove the divergence-free part!
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Brain Sag



Beating Heart



Solar flare



Example of OMT Mapping on Spherical Shape



Wasserstein Distance
Motivation:

We begin by recording the basic definition of the -Wasserstein

distance from optimal transport theory that we will need below.

Roughly speaking, on a metric measure space, one gets a natural

distance on “small” balls around points or the ”fuzzified” points.

Let X be a metric measure space, equipped with distance d. Let be two measures with the same total

mass and finite p-th moment. A coupling between and is a measure on such that

Measuring Distance of “small balls”

In other words, the marginals of  are and . . Let     be the set of couplings between and . . We then 

define the Wasserstein distance as

We are interested for cases of p = 1,2.  In particular, for the case of p=1, we can solve this distance very 

efficiently though a simple linear program.

Defintion:

Lp

mi, i =1,2
X ´Xm1 m2 m

m m1 m2 m1 m2
Õ(m1,m2 )

dm(x, y) = dm1(x)
y

ò dm(x, y) = dm2(x)
x

ò

Lp

Wp(m1,m2 ) :=
mÎÕ(m1,m2 )
inf d(x, y)p dm(x, y)òò

æ

è
ç

ö

ø
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1/p



Wasserstein Distance
Wasserstein 1-Metric:

Let μ1 and μ2 now be two discrete distributions with same total mass over n points, respectively, and let d(x,y)

represent the distance between such samples (for the case of graphs, this is simply taken to be the hop

distance). Then, W1(μ1, μ2) may be described as follows:

where is a coupling (or flow) subject to the following constraints: 

The cost above finds the optimal coupling of moving a set of mass from distributions μ1 to μ2 with minimal “work” [4]. 

[4] Rubner, Y et. al.  The earth mover’s distance as a metric for image retrieval.  International Journal of Computer Vision. 42 (2000)
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Explaining Curvature to Boltzmann: Lazy Gas Experiment

t = 0 t = 1/2 t = 1

t = 0 t = 1

If Ricci curvature is non-negative, then we have:



Ricci Curvature and Entropy
Lott & Villani:

Let (X,d,m) denote a geodesic space, and set:

We define

Which is the negative of the Boltzmann entropy Se(μ) := -H(μ); note concavity of Se is equivalent to the

convexity of H. Then we say that X has Ricci curvature bounded from below by k if for every

This indicates the positive correlation of entropy and curvature that we will express as

We now need to connect Ricci curvature and entropy to the notion of robustness (next slide) as well as

define appropriate notions of curvature/entropy for discrete spaces (graphs).

m0,m1 Î P(X)
there exists a constant speed geodesic μt with respect to the Wasserstein 2-metric connecting μ0 and μ1

such that

Se(mt ) ³ tSe(m0 )+ (1- t)Se(m1)+
kt(1- t)

2
W (m0,m1)

2, 0 £ t £1

DSe ´DRic ³ 0

Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Curvature:  Proxy for Robustness
Recall Definition of Robustness:

If we let denote the probability that the mean deviates by more than at time t (with as ),

then

•

measures the decay rate.

Fluctuation Theorem:  

The Fluctuation Theorem is a realization of this fact for networks and can be expressed as:

In thermodynamics, it is well-known that entropy and rate functions from large deviations are closely related.•

This can now be further extended to be

• The Fluctuation Theorem has consequences for just about any type of network: biological, communication,

social, or neural. In rough terms, it means that the ability of a network to maintain its functionality in the face of

perturbations (internal or external), can be quantified by the correlation of activities of various elements that

comprise the network.

Network Entropy & Curvature:

Given a Markov chain ,

Network Entropy can be defined as

•

We now need an appropriate definition of Ricci curvature for a network.•

R := lim
t®¥

-
1

t
log pe (t)

æ
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ç
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ø
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pe (t) e pe (t)® 0 t®¥

DSe ´DR ³ 0

DRic´DR ³ 0.

Se = p xSe(x)
x

å
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Pictorial Motivation for Ollivier Ricci Curvature

Ollivier-Ricci Curvature
Motivation:

Definition:

• We employ the notion of Ollivier-Ricci curvature motivated by adopting coarse geometric properties:

• Two very close points x and y with tangent vectors w and

w′, in which w′ is obtained by a parallel transport of w, the

two geodesics will get closer if the curvature is positive.

• Distance between two small (geodesic balls) is less than

the distance of their centers. Ricci curvature along

direction x-y reflects this, averaged on all directions w at

x.

Formally, we define for (X,d) a metric space equipped with a family of probability measures {μx : x ∈ X}, the 

Ollivier-Ricci curvature along the geodesic connecting x and y via 

and the sum is taken over all neighbors of x where wxy denotes the weight of an edge connecting x and y (it

is taken as zero if there is no connecting edge between x and y). The measure μx may be regarded as the

distribution of a one-step random walk starting from x.

where W1 denotes the Wasserstein 1-metric defined previously and d(x,y) is the geodesic (hop) distance on 

a graph.  For the case of weighted graphs, we set

W1(mx,my ) = (1-k(x, y))d(x, y)

dx = wxy
y

å

mx (y) :=
wxy

dx

k(x, y)

Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)



Application Bottom Line (Precision 

Medicine)
Targeted Therapies in the Fight Against Cancer

- Ludwig Group (Sarcoma Oncology)

Ewing Sarcoma needs 3-5 the

targets for a particular patient to

overcome drug resistance”

“

- Baselga Group (Chief in Physician)

“Yes, its safe to say to that drug

selection is still very much a game of

whack a mole”

Promising Yet Relatively Ineffective:  Why, How To Improve?

Targeted Therapy: Drugs that block the growth and spread of cancer by

interfering with specific molecules involved in the growth,

progression, and spread of cancer

Collaborator #1 (M.D. Anderson) Collaborator #2 (Sloan Kettering)



Curvature: Cancer Hallmark?

Is Curvature a Cancer Hallmark?



Drug Resistance



Ewing Sarcoma: Test-Bed for Understanding Resistance

Team, Collaborators, and Generalizable Results

Motivation:

• Partnered w/ MD Anderson & Memorial Sloan Kettering Cancer Center - leaders in adaptive and immunotherapy

• Advantages: access to valuable data, drug companies, and safety protocols as requested in RFI

Aggressive cancers offer testbed platform of understanding resistance in an adaptive setting

as one can trace it back to a single aberrant molecular genetic aberration.

IGF-1R/mTOR: Recent discoveries shown that if one inhibits both IGF-1R/mTOR in Ewing Sarcoma (ES), the

response/duration rate is tripled compared to single inhibition of IGF-1R.

Feedback & 

Robustness:

Fig 1: IGF-R1/mTOR Cascade Pathway

On the one hand, increase in response rate is correlated to an increase in fragility while, on

the other hand, the formation of IGF-1R/mTOR drug resistance ES samples points to

increase in robustness (i.e., employing alternative feedback loops for continued metastasis)

Validation: Given the complexity & cost of selecting drug/vaccine candidates, can we quantify (and therefore 

predict) pathway fragility in order to uncover a set of of n-tuple targets that can disrupt modes of resistance?

Sarcomas have long been suspected to be connected to the immune system

• ES is our testbed for validation, but results will provide understanding key modes of resistance

Table 1: Global Statistics w.r.t to Curvature/Robustness for Ewing Sarcoma

Drug Resistant, Drug Sensitive, Untreated (Ewing Sarcoma) - w/ MD Anderson

• Obtained protein expression data from RPPA Panel for Ewing Sarcoma treated with IGF-1R Inhibitor (OSI-906/NVP-ADW 742)

• Increase in average curvature exhibited by resistance when compared to 72-hour and untreated samples

Initial treatment (72-Hours) gave positive response, then system adaptively built resistance to drug – How and why?
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Concluding Remarks

• Interactive Control Methods
– Dynamic Active Contours for Segmentation

– Finsler Geometry

– Bayesian Statistics (Particle Filtering)

• Optimal Mass Transport
– Registration

– Wasserstein Distance
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