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Medical Applications: IGT and IGS

 Mathematics to develop general-purpose algorithms and
software that can be integrated into complete therapy/surgical
delivery systems.

* Four main components of image-guided therapy (IGT):
localization, targeting, monitoring and control.

* Develop robust algorithms for:

— Segmentation - automated methods that create patient-specific models of
relevant anatomy from multi-modal data.

— Registration — automated methods that align multiple data sets with each other
and with the patient.



Advanced Multimodality Image-Guided
Operating (AMIGQO) Suite

The AMIGO Suite is the nation’s first integrated operating suite to offer immediate intra-procedural access
to an extensive range of advanced imaging modalities. AMIGO's 5,700 square-foot space is divided into
three interconnected procedure rooms housing real-time anatomic, functional, and molecular imaging,
including 3T MRI, PET/CT, fluoroscopy, and ultrasound.



* Image Processing, Dynamics, and Control
* Evolving Shapes Statically and Dynamically
e Statistics, Shape, and Estimation

e Interactive Methods



Shapes

Closed curve Closed surface



Classical System Processing

s}ﬁ%tigén mea%%ligénent SySte m.:
it plane, brain,
z heart, ...

Y

Measurement

Measurement:

Post-processing | imagin9_+ pOSt-

e.¢., segmentation processing, camera,
fMRI, MR, ...

Imaging
Device

What happens if measurements change over time?
How to influence the system by measured output?



“How to combine image processing, control,
and machine learning for medical image
computation?”



Examples of Shape Variation

Multiple patients Temporal

-

[Dataset from C. Tempany MD, A. Szot MD, J. Zhang MD, S. Haker Ph.D.]



Observer-based Feedback

system measurement
nhoise noise
reference input output
4
Measurement

system measurement
nose noise

Measurement

reference input

U
Controller

output
z

|| Observer ||=

Observer = Filter + System knowledge
Main tools: Active Contours + Particle Filtering



Geometric Active Contours

Active Contour Method Using Geodesics, Minimal Surfaces,
and Statistics

Automatic Merging and Breaking (Topological Changes)
Works for 2D, 3D, 4D

Used to Segment Various Features: Texture, Intensity, Color,
Shape



Active Contours Find Cortical Surface




Geometric Curve Evolution

The closed curve C evolves according to

Ct:(mt-N)./\/—I—(azt"/)’/

N

N influences the curve’s

~ shape
]~ moves “particles” along

the curve

How Is the speed JXL¢ determined?
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Curve Evolution through Energy
Minimization

Find curve that minimizes a given energy

C* = argmin E(C,I)
ceC
Static curve evolution

1
E(C, 1) :/O L(C,Cp, Cpp, - .., 1) dp

Dynamic curve evolution

1
E(C, 1) :ftfo L(C,Cp, Cpp, - - ., Cs, I) dp dt
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Geometric Dynamic Approach

Minimizing

B= [ [ (Gulci? - o) Icsl dp a

by arclength s — HCPH dp

results in the Euler- Lagrange equation

pCrt = — (7 - Cis)Ct — p(Cy - Cts)T——HCtH MJN N - VgIN — grN,

-

static part
dynamzc part

Image
dependent
Next Step: Add Statistics, Shape and Estimation

Image independent
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Bhattacharyya Distance: Statistics

Py (=) : normalized “interior” density
P,.:(2) : normalized “exterior” density

B = fg '\/JPin'i 2 ) P z)dz

> photometric variable (intensity, color vector, texture vector)
0 < B < 1 represents level of matching

I(z) : R? — Z : image plane to photometric variable

Fu(z) = f‘*" Kz —1(z) )dx
| L, dx

K : kernel function (e.g., Dirac, Gaussian, etc.)

similarly for P, (2)
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Bhattacharyya Flow

For curve evolution:
P.(z) : normalized density inside curve C

K(z — I(2))H(—¢(x))d

Jo
]Din(z —
| o H(—0(2))dx
w : enclosed region
() : whole image domain
¢(x) : level set function
H : Heaviside function

leads to the PDE:

0¢(z,t) _B&E(¢)(1 1 )

out

8t 111 out
/ K Z 1n
111 out

out

lIl
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Multiple Structure Segmentation

(a)

Segmentation of heart, two lungs, liver, two kidneys, spleen, abdominal aorta, pelvis, bladder, skin/muscle/fat.

The subplot (b) removes skin/muscle/fat but overlays the original image.
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Finsler Metrics: Shape

Given¢ : R* x S"1 5 R,

L 1 1‘*
C(I'y=L(I') = / (DT )ds = / P(I', =)« [I'|dx
0

L :length of T’
length function > defined on unit vectors

Flp,v) = [ol(e, &)

anisotropic length of I":

1
£[F(~.f}j:/ F(T.T,)dx
0

Homogeneity of F":
Fip,tv) =tF(p,v)

If F'(p, v)* convex, then F defines a Finsler metric on R”
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Minimization:
Gradient flow

« Computing the first variation of the functional C,
the L,-optimal C-minimizing deformation is:

ol 0
ot P (Ve s @ ) + Vs
projection (removes
tangential component)
 The steady state I',, IS C (M) :/ W(r.T) dr
-

locally C-minimal
y W RPx S S RT

(p,d) — W(p,d)




Minimization:
Dynamic programming

Consider a seed region S in R", define
for all target points the value function:

C&(t) = min C(IN)
reg(St) — | curves between S and t
It satisfies the Hamilton-Jacobi-Bellman equation:

(Ct=0o0n 5

max { VC&(t).d—-w(t,d) } =0
\deSn—l

N\
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Active Contours and Bayesian Statistics

The active contour paradigm can be easily combined with Bayesian estimation. The
underlying problem is to find an object x with prior p(x) using data z.

The posterior p(x|z) can be computed using Bayes’ rule. The idea now is that

the active contour serves as a prior model of the possible shapes and motions of

the features of interest which we want to track. Filtering comes in by adding

a dynamic system model to the prior and sensor models in the Bayesian

approach. For example, in the linear case with Gaussian distributions

and one uses the Kalman filter. For nonlinear models, one can use sigma-point or particle
filtering.

Conformal factor is derived locally, based on edge computations.

A more flexible conformal metric is obtained when the metric is learned
from the data and if the model incorporates non-local information. For this
purpose, we have incorporated statistical methods into geodesic snakes.

Marzh
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Particle Filters

(System Model)

{Observation Model)

(camera noise)
State 1; (system noise) e
(obhject contour, velocities) rL
_1\.-; — .“... . - -—.'1.‘: . ot
L f I.' I i
Observation

System (Object motion + deformation)

Sensor (Camera)

‘ Observation
/L {Image)
Y]

I 3

Vite———  Filter

Mar2zh@
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Filtering and Tracking

e Filtering: Estimating expected value of state X; (and of any function of

the state). given all observations until 7, ¥7.;.

e Tracking: Predicting the state at f, using observations until ¢

e Complete Solution: evaluate the tracking (prediction) and filtering

(posterior) distributions at each  defined as:

Te—1(dx) PriX; cdrY;; {): Prediction

= Ty () PriX: c drlYi.:): Posterior

MareB
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Bayesian Tracking

Posterior over model parameters given
an Image sequence.

p(x, | Z,)= Temporal model (prior)
j( AP (x| Z, ) dx,

Posterior from
previous time instant

Monte Carlo integration

Marzi
16



Notation I

d

e State transition model: (XX;: contour, velocities)
-.lk.- . .Ill'r |: -'l~h"r I | - ¥l £ . Irlll-.r | _'|~h" . _‘!;r I :I -I!-.I,” I: -.lk.. )

¢ Observation model: (};: image)

Y, = he(Xe) 4wy,

¢ Hidden Markov Model (HMM)

Margh
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Application:

Diffusion MRI tractography

Diffusion MRI measures the diffusion of water
molecules In the brain

Neural fibers influence water diffusion

“recovering probable neural fibers from
diffusion information”

neuron’s
membrane

26



Application:
Diffusion MRI tractography (2)

. Diffusion MRI dataset:

. Diffusion-free image: S(-,0) : R3 L RT
. Gradient directions: Ez e Szjf;{ —1... N
. Diffusion-weighted images: S(-, k;) : R3 - RT

. We choose:
ratio = 1 if no diffusion

< 1 otherwise

ol P AN
o(p,a)

S(p,0)

W (p,d) = f( )
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Finsler Tract Growing: Il




fMRI and DTI for IGS

Figure 8.4.6-1. Retrospective Example of fMRI for Neurosurgical Application
62-year-old female patient with left frontal hypenntense non-enhancing mass lesion
Skin, Brain, Ventricles (blue) and Tumor (green) models from conventional MRI; fMRI
activations (yellow) from pre-operative finger-taping experiment. Fiber tract indications
(red) from Diffusion Tensor MRI.

Imaging suggests that the tumor is in front of motor strip with involvement of
supplementary motor area, with fibers from SMA piercing tumor in its posterior aspect.




Expert Knowledge for Segmentation

A motivating problem: measuring volume of Epiphysis, Cartilage-Cap,
and Physis (growth-plate) during adolescence.
Left: automatic segmentation of Epiphysis.
Right: augmentation by user-in-the-loop curve evolution.



Video Demos




Why Interactive Segmentation?

1. Ever more complex segmentation models will be slower
and still not work in many cases.
2. Atlas-Based methods may not be applicable (trauma,
unique growth stage, atlas is "To-Do")
3. Doctors & Med Students can use it easily, sole
parameter IS "editor brush size".

User Input Added,
Initialize U(Z#,t) changes.
¢(¥,0) =0 Segmentation

-
qf}*(:i’.,'[]:] — (0 Observer L I t\l‘t :}cimstant
U(%,0) =0 User Input f

I(%) Image Data
r é

ty <t<t] t; <t<ty t, <t<th

Above: Timeline of Interactive Segmentation System



Formulation: Augmented Cost-Function (1)

« Nominal cost function

E(P) = / g(6, )|V |2 dO o Mminimizing this is "automatic
Q algorithm"
« User-Input: changes to segmentation
U _ | o(x, ) —d(x, 1)  forty, <t <] function at discrete intervals
ot 0 otherwise . « Augmented Curve Evolution
o nominal plus user-driven term
= G(o, 1)+ H(¢, 0") « Signal Definitions
— ~ o User Input Error
nominal control o Observer Error
ev =¢" —U

*

p=¢ —¢



Formulation: Augmented Cost-Function (I1)

« Minimize F and H by gradient flow.

Kr o Ky 2 * Ffilters the user input

Flp* ] = | ==¢* + ——ef(h7U)*+ o enable sloppy clicking
@ ﬁ , 2 o accumulate U where user
(6 +|VeT|3) d . strongly disagrees with
2

automatic algorithm

Ky, - - . : .
—/¢(¢52+|V¢||§)+9(¢, D)||Vl|2 d©2 H balanc_:es automatic algorithm
Q2 with observer error

. R . 9 e s * Observer Evolution
Pt = PiF@JFﬁ veu(YU)™ + pl(o” —Ad )] « Segmentation Evolution
X X o real-time display update
= G(o, 1)+ Kg(p — Ad) o enable human to generate U



System Diagram with Feedback Loops

Expert Knowledge:
ideal ¢(x, c0)
~
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3D Volume: Head-Neck Image

Error (mm)

oo O

o~

]

om.w.m

Region-based active contour: Example of segmenting the left eye (red), right eye (green),
brain stem (blue), and mandible (pink), superimposed over manual segmentations
(yellow).



3D Volume: Cardiac Image

Error (mm)

~

—
o

~
(e

N
o

DMW11MS

Distance-based clustering: Example of segmenting the left ventricle (red), right ventricle
(green), and left atrium (blue), superimposed over manual segmentations (yellow).



Optimal Mass Transport
Monge Transportation Cost (1781)

JConsiders the engineer's problem of
transporting a pile of soil or rubble to an
excavation with the least amount of work.




Optimal Mass Transport Applications

J Econometrics, fluid dynamics, automatic
control, statistical physics, shape optimization,
expert systems, meteorology, spectral analysis,
time-series analysis, and many more fields.

JOur interest here - Registration, shape
analysis, visual tracking.

Left hippc-ca:mpuﬁ data Left caudate nucleus data

BFP ———




Optimal Mass Transport (MKW)

Given two oriented Riemannian manifolds
Q, and ()
with corresponding densﬁ'y functions

M, and L,

and the same
amount of total mass:

.L:G 1, (x)dx = Jﬂl 1 (x)dx

41



Transportation Cost
Modern Formulation - Monge Kantorovich (MK)

Construct a smooth mapping:
12 ( Q. 1y ) — (€, 14,

With mass preserving (MP) constraint:
iy =det(Vu) 1 (1) (Jacobian equation)

so as to minimize the cost function:

M (u)= j iI}(x_ﬁH(x))yﬂ (x)dx

Y

®(x.u(x))is a positive twice differentiable convex function.

42



Kantorovich-Wasserstein Metric

Smooth mass preserving mapping:
(9 1ty ) = (14,

-- many solutions

Optimal (when it exists) provides a preferred

geometry (like Riemann mapping on the plane).

Katnorovich-Wasserstein metric:

dy(po, p1)? = inf, [|u(z) — z|Ppo(z)dz



Algorithm for Optimal Transport-I

Subdomains with smooth boundaries and positive densities

0y, Q2 C R

fQOMU — le H1

Consider diffeomorphisms mapping one density to another

/,LO — det(Vﬂ)ul O {(,
Satisfying the mass preservation property

-- we start from a particular such map u



Algorithm for Optimal Transport-II

Consider a smooth one parameter family of MP-maps:

—1

U:=uos ,s=s(,t), pgo=det(Vs)ugo s

From the MP property and the construction of the path it follows

~

1~ _
ut:_ﬁvu'ga (=posios

div{(=0



Algorithm for Optimal Transport-III

MK optimality requires that we minimize the functional

M) = f,, D(a(z, ) ~2)pu(z) da

= [ D(uly) —sut)o) dy, ©=s(u,t), s (o(@)dr) =ry)dy

for which we take the first variation:

M (t) = — [(®'(u—s), sppody
= — [(®'(a(x,t) —x), pos;os™ ) du

= —fQ()((I)’(f&,(x,t) —1x), () dx



Algorithm for Optimal Transport-IV

First choice:

(=®'(u—z)+ Vp
div ( =0
(lon, tangential to 0

This leads to the system of equations:
Ap +div (®'(uw —x)) =0, on
%—I—ﬁ' ¢’ (. —x) =0, on 08



Solution of L2 M-K and Polar Factorization

Specializing to quadratic cost:

®(z) = LL

leads to the following "non-local” gradient descent equation:
= —1/pVa(a — VAL div(@))
Motivation for the approach:
t=uos'=Vw+y, div(y) =0 Helmholtz decomp.

The key idea is to push the fixed initial map u (thought of
as a vector field) using the one-parameter family of MP
maps in order to remove the divergence-free part!

v = Vw o s Polar factorization



Registration and Mass Transport

Image registration is the process of establishing a common geomeftric frame of
reference flrom two or more data sets from the same or different imaging
modalities taken at different times.

Multimodal registration proceeds in several steps. First, each image or data set to
be matched should be individually calibrated, corrected from imaging distortions.
cleaned from noise and imaging artifacts. Next, a measure of dissimilarity between
the data sets must be established, so we can quantify how close an image is from
another after transformations are applied to them. Similarity measures

include the proximity of redefined landmarks, the distance between contours, the
difference between pixel intensity values. One can extract individual features

that to be matched in each data set. Once features have been extracted from each
image, they must be paired to each other. Then, a the similarity measure between
the paired features is formulated can be formulated as an optimization problem.

We can use Monge-Kantorovich for the similarity measure in this procedure.
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Brain Sag




Beating Heart




Solar flare




Example of OMT Mapping on Spherical Shape




Wasserstein Distance

Motivation;

We begin by recording the basic definition of the L-Wasserstein =

distance from optimal transport theory that we will need below.
Roughly speaking, on a metric measure space, one gets a natural )
distance on “small” balls around points or the "fuzzified” points.

Measuring Distance of “small balls”

Defintion:

Let X be a metric measure space, equipped with distance d. Let /77,i =1, 2 be two measures with the same total
mass and finite p-th moment. A coupling between /mand /mjis a measure /ron X~ Xsuch that

Odntx, y)=dm(x) Odntx,y)=dm(x)

In other words, the marginals of /7are mand m. Let O(m, m) be the set of couplings between /77and /3. We then
define the L"Wasserstein distance as

O'l/p

w,(m,m):= 9 inf @d(xy) dntx, y)—

€m O(m,m)

We are interested for cases of p = 1,2. In particular, for the case of p=1, we can solve this distance very
efficiently though a simple linear program.



Wasserstein Distance

Wasserstein 1-Metric:

Let y, and y, now be two discrete distributions with same total mass over n points, respectively, and let d(x,y)
represent the distance between such samples (for the case of graphs, this is simply taken to be the hop
distance). Then, W4(j1, M2) may be described as follows:

W, 1) = min 3" d (3, %)) (%, X,)

i,j=1

where 1(X, Y)is a coupling (or flow) subject to the following constraints:

o, y) > 0,
>l yy) = plx), Vo,

X prny) = pa(y). Vy.

The cost above finds the optimal coupling of moving a set of mass from distributions p; to y, with minimal “work” [4].

[4] Rubner,Y et. al. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision. 42 (2000)



Explaining Curvature to Boltzmann: Lazy Gas Experiment

If Ricci curvature is non-negative, then we have:

Se(pte) 2 (1 —t)Se(p0) + tSe(p1)



Ricci Curvature and Entropy

Lott & Villani:
Let (X,d,m) denote a geodesic space, and set:
P(X,d,m) = {u>0: / wdm=1Y,
X
P*(X.d,m) = {uePX,d,m):lim plogpdm < oo}
eNO0Ju>e
We define

_11m/ nlogudm, for u € P*(X,d,m),
e\0

Which is the negative of the Boltzmann entropy Se(p) := -H(u); note concavity of Seis equivalent to the
convexity of H. Then we say that X has Ricci curvature bounded from below by k if for every /73, /7]?| P(X)
there exists a constant speed geodesic p:with respect to the Wasserstein 2-metric connecting po and

such that
S.(m)? 1S,(m)+ (- S, (mg)+ L)

This indicates the positive correlation of entropy and curvature that we will express as

DS, x DRic >0

w(m,m), O0£t£1

We now need to connect Ricci curvature and entropy to the notion of robustness (next slide) as well as
define appropriate notions of curvature/entropy for discrete spaces (graphs).

Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903-991 (2009).



Curvature: Proxy for Robustness

Recall Definition of Robustness:

If we Ietpe(t)denote the probability that the mean deviates by more than €at time t (with p,(t) >0as { —> 00),
then

R:=lim| - L1og p.(¢)
—a0 t‘

measures the decay rate.

Fluctuation Theorem:

In thermodynamics, it is well-known that entropy and rate functions from large deviations are closely related.

The Fluctuation Theorem is a realization of this fact for networks and can be expressed as:

DS, xDR>0

This can now be further extended to be

DRic x DR > 0.

- The Fluctuation Theorem has consequences for just about any type of network: biological, communication,
social, or neural. In rough terms, it means that the ability of a network to maintain its functionality in the face of

perturbations (internal or external), can be quantified by the correlation of activities of various elements that
comprise the network.

Network Entropy & Curvature:
Given a Markov chain , u=(u,), Zﬂx(y): 1,
y

Network Entropy can be defined as

S, =a p.S.(x) S.(0=-3" 11, (y)10g 12,(y)

. . L. y
We now need an appropriate definition of Ricci curvature for a network.



Olhvier-Ricci Curvature

Motivation:

We employ the notion of Ollivier-Ricci curvature motivated by adopting coarse geometric properties:

Two very close points x and y with tangent vectors w and i
W', in which w'is obtained by a parallel transport of w, the GRgiNe-SRREN oo
two geodesics will get closer if the curvature is positive.

Distance between two small (geodesic balls) is less than
the distance of their centers. Ricci curvature along

direction x-y reflects this, averaged on all directions w at
X Pictorial Motivation for Ollivier Ricci Curvature

Definition:

Formally, we define for (X,d) a metric space equipped with a family of probability measures {u, : x € X}, the
Ollivier-Ricci curvature k(x, y)along the geodesic connecting x and y via

Wi (m,m)=Q1- k(x,y))d(x,y)

where W, denotes the Wasserstein 1-metric defined previously and d(x,y) is the geodesic (hop) distance on
a graph. For the case of weighted graphs, we set

o

dx = a- ny
5‘)
— Xy
m(y) =

dx
and the sum is taken over all neighbors of x where w,, denotes the weight of an edge connecting x and y (it
is taken as zero if there is no connecting edge between x and y). The measure u, may be regarded as the
distribution of a one-step random walk starting from x.

Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643-646 (2007)



Application Bottom Line (Precision

Medicine)

Targeted Therapies in the Fight Against Cancer

THE UNIVERSITY OF TEXAS

MD Anderson
Gancer Center

\"‘_[_:/ Cancer Center..

/& Memorial Sloan Kettering

Targeted Therapy: Drugs that block the growth and spread of cancer by
interfering with specific molecules involved in the growth,
progression, and spread of cancer

Collaborator #1 (M.D. Anderson)

Ewing Sarcoma needs 3-5 the
targets for a particular patient to
overcome drug resistance”

- Ludwig Group (Sarcoma Oncology)

Collaborator #2 (Sloan Kettering)

Yes, its safe to say to that drug
selection is still very much a game of
whack a mole”

- Baselga Group (Chief in Physician)

Promising Yet Relatively Ineffective: Why, How To Improve?




Curvature: Cancer Hallmark?

6 Hallmarks

Is Curvature a Cancer Hallmark?



Drug Resistance

Drug-Sensitive Parental Drug-Resistant

- » -

RDS < RUntreated S RDR



Ewing Sarcoma: Test-Bed for Understanding Resistance

Sarcomas have long been suspected to be connected to the immune system

IGE1R a/a

{
18—

wsy (sos)

RAS
shc

@.. L= a2 l as one can trace it back to a single aberrant molecular genetic aberration.

Motivation: Aggressive cancers offer testbed platform of understanding resistance in an adaptive setting

PI3K

l IGF-1R/mTOR: Recent discoveries shown that if one inhibits both IGF-1R/mTOR in Ewing Sarcoma (ES), the

/W o 1 response/duration rate is tripled compared to single inhibition of IGF-1R.
se e %} -

l paaminnN ( ) Proliteration 1 Feedback & On the one hand, increase in response rate is correlated to an increase in fragility while, on
—— Apoptosis Robustness:  the other hand, the formation of IGF-1R/mTOR drug resistance ES samples points to
increase in robustness (i.e., employing alternative feedback loops for continued metastasis)
Protein Synthesis Proliferation Validation: Given the complexity & cost of selecting drug/vaccine candidates, can we quantify (and therefore
Fig 1: IGF-R1/mTOR Cascade Pathway predict) pathway fragility in order to uncover a set of of n-tuple targets that can disrupt modes of resistance?

Drug Resistant, Drug Sensitive, Untreated (Ewing Sarcoma) - w/ MD Anderson
Obtained protein expression data from RPPA Panel for Ewing Sarcoma treated with IGF-1R Inhibitor (OSI-906/NVP-ADW 742)
Increase in average curvature exhibited by resistance when compared to 72-hour and untreated samples

Initial treatment (72-Hours) gave positive response, then system adaptively built resistance to drug — How and why?

Untreated Resistant
Average Curvature

5 % Left Tail (Avg.)

1% Left Tail (Avg.)

Min Curvature

Table 1: Global Statistics w.r.t to Curvature/Robustness for Ewing Sarcoma

% Team, Collaborators, and Generalizable Results

- Partnered w/ MD Anderson & Memorial Sloan Kettering Cancer Center - leaders in adaptive and immunotherapy
- ES is our testbed for validation, but results will provide understanding key modes of resistance
- Advantages: access to valuable data, drug companies, and safety protocols as requested in RFI



Initial Preliminary Results

Global Network Fragility via Riccl Curvature:

T2-Hour Unireated Resistant

Average Curvaturel™

5 % Left Tail {Avg.)
1% Left Tail (Avg.)
Min Curvature

Motes:

- We gquantify that resistant tumors are more robust 72-hourfuntreated via curvature.
- The most fragile case is the 72-Hour
- This coincides with our initial hypothesis and with our previous cancer studies

Local Protein Interaction Fragility via Scalar Curvature:

Untreated Resistant

Motes:

- We noticed all (directfindirect) pathways to mTor become “fragile” during resistant and 72-hour case
. MEK pathways becomes maore robust in resistant case
- We caution these local results are too preliminary to draw convulsive evidence

o4



Concluding Remarks

* |nteractive Control Methods

— Dynamic Active Contours for Segmentation
— Finsler Geometry
— Bayesian Statistics (Particle Filtering)

* Optimal Mass Transport
— Registration
— Wasserstein Distance
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