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Population genetics

• In population genetics, we want to understand the changes that
occur in the genome of a population.

• Consider that at a fixed locus on a chromosome, two alternatives of
a gene (alleles) can occur, which we denote by A or a:
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Models for gene frequencies
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X (t) the frequency of gene A at time t

• One of the simplest models to describe the evolution of the gene
frequency X (t) was studied by Fisher (1922, 1930) and Wright
(1931).

• The original Wright-Fisher process is a discrete Markov chain.

• In practice, we often work with continuous limits of the discrete
Wright-Fisher process (Fisher, Wright, Kolmogorov, Kimura, Feller,
Karlin, Ethier, Shimakura, Athreya, Bass, Barlow, Perkins, ...).



Models for gene frequencies

A

a

X (t) the frequency of gene A at time t

• One of the simplest models to describe the evolution of the gene
frequency X (t) was studied by Fisher (1922, 1930) and Wright
(1931).

• The original Wright-Fisher process is a discrete Markov chain.

• In practice, we often work with continuous limits of the discrete
Wright-Fisher process (Fisher, Wright, Kolmogorov, Kimura, Feller,
Karlin, Ethier, Shimakura, Athreya, Bass, Barlow, Perkins, ...).



Models for gene frequencies

A

a

X (t) the frequency of gene A at time t

• One of the simplest models to describe the evolution of the gene
frequency X (t) was studied by Fisher (1922, 1930) and Wright
(1931).

• The original Wright-Fisher process is a discrete Markov chain.

• In practice, we often work with continuous limits of the discrete
Wright-Fisher process (Fisher, Wright, Kolmogorov, Kimura, Feller,
Karlin, Ethier, Shimakura, Athreya, Bass, Barlow, Perkins, ...).



Questions of interest

Let p(t, x , dy) denote the transition
probability distribution of the frequency of
gene A, which is x at t = 0, and is in the
interval [y , y + dy) at time t.

t
t
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y y+dy
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)

1. Find closed-form expressions for the transition probabilities
distributions, whenever possible.

2. Describe the regularity properties and the singularities of the
transition probabilities.

3. Understand the stationary distributions, when they exist.

4. Find the probability of fixation or loss of a gene in the genome.

5. Find the rate of fixation or loss of a gene in the genome.
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The Wright-Fisher process

• A version of the Wright-Fisher model:

dX (t) =
√
X (t)(1− X (t)) dW (t) + [β0(1− X (t))− β1X (t)] dt,

where {W (t)}t≥0 is a one-dimensional Brownian motion, and β0

and β1 are nonnegative constants.

β0 = β1 = 0

0 1

β0, β1 > 0

0 1

β0 -β1

• Following Kolmogorov (1931) and Feller (1936, 1952), the transition
probability distributions are solutions to the backward and forward
Kolmogorov equations.
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The backward Kolmogorov equation

• The Wright-Fisher process: for all t > 0,

dX (t) =
√
X (t)(1− X (t)) dW (t) + [β0(1− X (t))− β1X (t)] dt.

• The backward Kolmogorov equation: for all (t, x) ∈ (0,∞)× (0, 1),

pt(t, x , y) =
1

2
x(1− x)pxx(t, x , y) + [β0(1− x)− β1x ]px(t, x , y),

p(0, x , y) = δ(x − y).

• The infinitesimal generator: for all x ∈ (0, 1),

Lu(x) =
1

2
x(1− x)uxx(x) + [β0(1− x)− β1x ]ux(x),
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The Wright-Fisher process with β0 = β1 = 0

The Wright-Fisher process with random drift:

dX (t) =
√
X (t)(1− X (t)) dW (t).

t

0 x x1

• The transition probabilities:

p(t, x , dy) = ψ0(t, x)δ0(y) + ψ1(t, x)δ1(y) + pD(t, x , y) dy .

ψ0(t, x) – probability of absorption at 0;

ψ1(t, x) – probability of absorption at 1;

pD(t, x , y) – Dirichlet heat kernel (distribution of the paths that are
not absorbed up to time t).

• The stationary distributions are δ0 and δ1.
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The Wright-Fisher process with β0, β1 > 0

The Wright-Fisher process:

dX (t) =
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The transition probability distribution p(t, x , dy) is available in closed
form:

• It has a density with respect to the Lebesgue measure;

• It is smooth on (0, 1);

• As y → 0, it has a singularity of the form y2β0−1 (similarly, as
y → 1, the singularity is of the form (1− y)2β1−1);

The stationary distribution is the Beta distribution with parameters
(2β0, 2β1).
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A parabolic problem for the Wright-Fisher operator

• Consider now the parabolic problem defined by the Wright-Fisher
infinitesimal generator L:

ut = Lu on (0,∞)× (0, 1)

u(0) = f on (0, 1),

0 1 xu = f

ut = Lu

t

• The function

u(t, x) =

∫ 1

0

f (y) p(t, x , dy)= EPx [f (X (t))]

is the unique smooth solution.
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Extensions

• The goal is to extend this work to multidimensional versions of the
Wright-Fisher process.

• We will not be able to obtain closed-form expressions in this
generality because we will loose certain technical properties which
hold for the classical Wright-Fisher process.

• The Wright-Fisher operator is self-adjoint on a suitable domain of
the weighted Sobolev space

L2((0, 1); y2β0−1(1− y)2β1−1 dy).

• We will study the regularity of solutions to the parabolic equation
defined by the generator of multidimensional generalizations of the
Wright-Fisher process.
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Kimura processes



Multi-dimensional models for gene frequencies

• The model that we will consider was proposed by Epstein-Mazzeo
(2013), and we call them generalized Kimura diffusions.

• Similar processes are studied with other applications (Athreya, Bass,
Barlow, Perkins, ...).

• The infinitesimal generator of Kimura diffusion preserves the key
properties of the infinitesimal generator of the Wright-Fisher process.

• Kimura diffusions live on compact manifolds with corners, which is a
generalization of a simplex.

p1

p2

1

1[0,1)2⊂R+
2

[0,1)×(-1,1)⊂R+×R
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The standard Kimura operator

• Let Sn,m := Rn
+ × Rm.

• The infinitesimal generator of generalized Kimura diffusions takes
the following form, in a local system of coordinates in Sn,m,

Lu =
n∑

i=1

(xiaii (z)uxixi + bi (z)uxi ) +
n∑

i,j=1

xixj ãij(z)uxixj

+
n∑

i=1

m∑
l=1

xicil(z)uxiyl +
m∑

l,k=1

dlk(z)uylyk +
m∑
l=1

el(z)uyl ,

where we denote z = (x , y) ∈ Sn,m, and we let u ∈ C 2(Sn,m).



The standard Kimura operator

• Let Sn,m := Rn
+ × Rm.

• The infinitesimal generator of generalized Kimura diffusions takes
the following form, in a local system of coordinates in Sn,m,

Lu =
n∑

i=1

(xiaii (z)uxixi + bi (z)uxi ) +
n∑

i,j=1
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Features of the standard Kimura operator

The main features of the Kimura differential operator,

Lu =
n∑

i=1

(xiaii (z)uxixi + bi (z)uxi ) +
n∑

i,j=1

xixj ãij(z)uxixj

+
n∑

i=1

m∑
l=1

xicil(z)uxiyl +
m∑

l,k=1

dlk(z)uylyk +
m∑
l=1

el(z)uyl ,

defined for all z ∈ Sn,m = Rn
+ × Rm, are:

1. The second order matrix-coefficient is not strictly elliptic;

2. The coefficients (xiaii (z))1≤i≤n are linearly proportional to the
distance to the boundary;

3. The drift coefficient bi (z) is nonnegative in a neighborhood of the
boundary {xi = 0}, for all i = 1, . . . , n;

4. The domain Sn,m is non-smooth (it has corners and edges).
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Parabolic equations defined by the Kimura operator

Theorem (Epstein-Mazzeo (2010, 2013))
Let P be a compact manifold with corners.

Given g ∈ C k,α
WF ([0,T ]× P) and f ∈ C k,2+α

WF (P), there is a unique

solution, u ∈ C k,2+α
WF ([0,T ]× P), to the initial-value problem

ut − Lu = g on (0,T )× P,

u(0, ·) = f on P.

Moreover, there is a universal constant, C , such that

‖u‖C k,2+α
WF ([0,T ]×P) ≤ C

(
‖g‖C k,α

WF ([0,T ]×P) + ‖f ‖C k,2+α
WF (P)

)
.
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Anisotropic Hölder spaces

Epstein-Mazzeo (2010, 2013) introduce anisotropic Hölder spaces to
study the regularity of solutions to parabolic Kimura equations.

• One of the main differences between the classical Hölder spaces and
the anisotropic Hölder spaces is the change in the distance function
on Sn,m.

• The “fundamental form”

ds2
WF =

n∑
i=1

dx2
i

xi
+

m∑
l=1

dy2
l

induces a Riemannian distance on S̄n,m that is equivalent to

dWF ((x , y), (x ′, y ′)) =
n∑

i=1

∣∣∣∣√xi −√x ′i

∣∣∣∣+
m∑
l=1

|yl − y ′l |.
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Our research

In our work, we prove the following:

1. For f ∈ C (S̄n,m), there is a unique smooth solution on (0,∞)× S̄n,m:

ut − Lu = 0 on (0,∞)× Sn,m,

u(0, ·) = f on Sn,m.

2. A priori Schauder estimates: for all 0 < T0 < T and r ∈ (0, 1),
there is a universal constant, C , such that

‖u‖C k,2+α
WF ([T0,T ]×B̄r )

≤ C‖u‖C([T0/2,T ]×B̄2r )

Sn,m

t

T
T0

T0/2

0
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Our research – cont’d

3. Harnack inequality for nonnegative solutions: there is a positive
constant, K , such that for all (t, z) ∈ (0,∞)× S̄n,m and
r ∈ (0,

√
t/4), we have that

sup
Q−

r (t,z)

u ≤ K inf
Q+

r (t,z)
u,

where we denote

Br (z) := {w ∈ S̄n,m : dWF (z ,w) < r},
Q+

r (t, z) := (t − r2, t)× Br (z),

Q−r (t, z) := (t − 3r2, t − 2r2)× Br (z).
Sn,m

Q
–

r(t,z)

Q
+

r(t,z)

t

4. A stochastic representation formula for weak solutions to degenerate
parabolic equations with unbounded coefficients.
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Harnack inequality



Potential applications of the Harnack inequality

• Prove Hölder continuity of solutions, and improve regularity to
smoothness.

• Obtain upper and lower bounds for the transition probability
distributions (heat kernel estimates).

• Obtain optimal regularity of solutions to nonlinear problems (such as
obstacle problems).
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Ways to prove the Harnack inequality

• Using the heat kernel estimates when they are available
(Fabes-Stroock (1986), Nash (1958), Koch (1999), ...).

• Moser’s iterations (1964): for operators in divergence form; also
generalizations to non-divergence form operators (Sallof-Coste,
Grigor’yan, Sturm, ...).

• Krylov-Safonov (1979, 1980): does not need divergence structure for
the operator; needs certain Lp estimates.

• Sturm (1994): probabilistic proof based on viewing L as a lower

order perturbation of an operator L̂ for which we already know that
Harnack inequality holds; need to know stochastic representation of
solutions.
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How to choose the perturbation operator L̂?

• The divergence form operator L̂ (Epstein-Mazzeo (2014)):

L̂u = Lu +
n∑

i,j=1

fij(z)xi ln xjuxi +
n∑

i=1

m∑
l=1

fn+l,j(z)ln xjuyl .

• There is a symmetric bilinear form Q(u, v) such that

(L̂u, v)L2(Sn,m;dµ) = Q(u, v),

• A simplified form of the bilinear form Q(u, v) is:

Q(u, v) :=

∫
Sn,m

(
n∑

i=1

xiuxi vxi +
m∑
l=1

uyl vyl

)
dµ(z),

dµ(z) =
m∏
l=1

n∏
i=1

x
bi (z)−1
i dxidyl .
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What do we mean by a weak solution?

• Let Ω ⊆ Sn,m be a (possibly unbounded) domain, and denote

∂1Ω := ∂Ω ∩ Sn,m non-degenerate boundary

∂0Ω := int (∂Ω ∩ ∂Sn,m) degenerate boundary

Ω := Ω ∪ ∂0Ω.

• Roughly speaking, a weak solution to the parabolic equation:

ut − L̂u = 0 on (0,∞)× Ω,

u = 0 on (0,∞)× ∂1Ω,

u = f on {0} × Ω,

Sn,m

∂1Ω

∂0Ω

Ω

is a measurable function such that at each time t, u(t) has only first
order derivatives in the spatial variables, (x , y), and the derivatives
are belong to suitable weighted Sobolev spaces.



Stochastic representation of weak solutions

Theorem (Stochastic representation – Epstein-P. (2014))
Let u be the unique weak solution to the homogeneous initial-value
problem,

ut − L̂u = 0 on (0,∞)× Ω,

u = 0 on (0,∞)× ∂1Ω,

u = f on {0} × Ω,

where f and is a Borel measurable and bounded function. Then u
satisfies the stochastic representation,

u(t, z) = EP̂z

[
f (Ẑ (t))1{t<τΩ}

]
, ∀ (t, z) ∈ [0,∞)× S̄n,m,

where
τΩ := inf{s ≥ 0 : Ẑ (s) /∈ Ω},

and {Ẑ (t)}t≥0 is the unique weak solution to the singular Kimura

equation with initial condition Ẑ (0) = z.



Kimura stochastic differential equation with singular drift

Theorem (Kimura equation with singular drift – P. (2014))
Let z ∈ S̄n,m. The singular Kimura stochastic differential equation,

dX̂i (t) =

bi (Ẑ (t)) +
n∑

j=1

fij(Ẑ (t))

√
X̂i (t) ln X̂j(t)

 dt

+

√
X̂i (t)

n+m∑
k=1

σik(Ẑ (t)) dŴk(t), ∀ i = 1, . . . , n,

dŶl(t) =

el(Ẑ (t)) +
n∑

j=1

fn+l,j(Ẑ (t))ln X̂j(t)

 dt,

+
n+m∑
k=1

σn+l,k(Ẑ (t)) dŴk(t), ∀ l = 1, . . . ,m,

has a unique weak solution, {Ẑ (t)}t≥0, that satisfies the Markov

property with initial condition Ẑ (0) = z. Moreover the solution satisfies
the strong Markov property.



Review of previous results on stochastic representations

Stochastic representations of weak solutions are proved in
Bensoussan-Lions, Friedman, Petrenko, Sturm, among many others,
under the assumptions:

• The diffusion matrix is strictly elliptic.

• The drift coefficient is a bounded measurable function.

• The weak solutions belong to a W 2,p-Sobolev space, with p = 2 or
p > (n + m)/2 + 1.

Note that in our framework:

• The diffusion matrix is degenerate.

• The drift coefficients are unbounded functions.

• We only know that the weak solutions belong to the weighted
Sobolev space (H1

0 (Ω; dµ)), and we have no information about the
regularity of the second order derivatives.

• Lp-theory is not developed for the degenerate differential operators
that we consider, and our goal is to use the stochastic representation
of weak solutions to obtain information about the regularity of
solutions, as for example, the Harnack inequality.
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