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• Minimal submanifolds are solutions of the most basic variational
problem of submanifold geometry, that of extremizing the area.

• Lagrange (1762): question of existence of surfaces of least area
having a given closed curve in three-space as boundary.

• The graph of a function u : Ω ⊂ R2 → R extremizes area if

div

(
∇u√

1 + |∇u|2

)
= 0.

• This is equivalent to the vanishing of the mean curvature (Meusnier).
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Let Σ be a two-dimensional oriented surface in R3, and let N denote a
unit normal field.

• The local geometry at a point can be understood in terms of the
principal curvatures k1, k2: the eigenvalues of the second
fundamental form A.

• The classical notions of curvature of a surface in three-space are:

- the mean curvature H = (k1 + k2)/2,
- the Gauss curvature K = k1 · k2.
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Let F : (−ε, ε)× Σ→ R3 be a smooth variation of Σ, with F (0, ·) = id
and initial velocity X = ∂F

∂t (0, ·).

• The First Variation Formula gives

d

dt |t=0
area(Σt) = −

∫
Σ

〈~H,X 〉 dΣ +

∫
∂Σ

〈ν,X 〉 ds,

where Σt = Ft(Σ), ~H = H · N is the mean curvature vector of Σ in
R3 and ν is the outward unit conormal vector of ∂Σ.

• The formula applies to the more general setting of a k-dimensional
submanifold Σ immersed in an n-dimensional Riemannian manifold
M.

• We say that Σk ⊂ Mn is a minimal submanifold if its mean
curvature vector vanishes (~H = 0) or, equivalently, if the first
derivative of area is zero with respect to any variation that keeps the
boundary fixed (X = 0 on ∂Σ).
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• Some examples in R3:

Catenoid Helicoid Singly-periodic Scherk

Riemann’s example Costa surface Genus one helicoid

• There are closed minimal surfaces of every genus in S3 (Lawson).
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• Minimal surfaces can be physically represented as soap films.
(Joseph Plateau, 19th century)

• The Plateau’s Problem became a central question in the field, until
it was independently solved in 1930 by Douglas and Radó.

(two-dimensional surfaces as mappings of the unit disk)

• Later Morrey extended this existence theory to two-dimensional
surfaces in n-dimensional Riemannian manifolds.
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• The search for solving the Plateau’s problem in greater generality
lead to the development of Geometric Measure Theory.

Federer and Fleming (1960): introduced integral currents to model
k-dimensional domains of integration (good compactness
properties).

• There is an area-minimizing integral k-current in every nontrivial
homology class α ∈ Hk(Mn,Z), M compact.

• Regularity (Almgren, De Giorgi, Federer, Fleming, Simons,
Bombieri-De Giorgi-Giusti, De Lellis-Spadaro).

In the case of codimension one, the area minimizing current is
smooth outside a singular set of codimension 7.

• The Simons cone C = {(x , y) ∈ R4 × R4 : |x | = |y |} in R8 is
area-minimizing.
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• An important source of area minimizing submanifolds comes from
calibration theory (Harvey and Lawson).

• A calibration of Σk ⊂ Mn is a closed k-form ω (dω = 0) such that

- |ω(e1, . . . , ek)| ≤ 1 for any orthonormal frame {e1, . . . , ek} in M,
- ωΣ = volΣ.

If S is homologous to Σ, we have

vol(S) ≥
∫
S

ω =

∫
Σ

ω+

∫
Ω

dω = vol(Σ).

• Examples include:

- minimal graphs
- complex submanifolds in Kähler manifolds
- special Lagrangian submanifolds in Calabi-Yau manifolds.
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Closed minimal surfaces can be constructed by a variety of methods
(besides minimizing in a homology class).

• Incompressible minimal surfaces in Riemannian manifolds.
(Schoen and Yau, Sacks and Uhlenbeck)

- minimize energy E(f ) =
∫

Σg
|df |2 dµ in a homotopy class. This

produces a branched minimal immersion h : Σg → M.

• Embedded minimal surfaces in three-dimensional manifolds.
(Meeks, Simon and Yau)

- minimize area in an isotopy class (three-manifold topology).

• Minimal two-spheres in compact Riemannian manifolds.
(Sacks and Uhlenbeck)

- the energy E is conformally invariant and the group of conformal
transformations of S2 is noncompact

- renormalization (or blow-up) technique.
- Siu-Yau (Frankel conjecture), Micallef-Moore (positive isotropic

curvature)
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• A celebrated application of minimal hypersurfaces of minimizing
type to mathematical physics is the proof of the Positive Mass
Conjecture by Schoen and Yau (1979).

• Witten (1981) gave a different proof using harmonic spinors.

• Theorem: The total mass of an isolated gravitational system,
modeled by an asymptotically flat spacetime obeying the dominant
energy condition, must be positive unless the spacetime is the
Minkowski space (of zero mass).
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• The proof of Schoen and Yau is by contradiction. If the mass is
negative, they construct a complete orientable area-minimizing
minimal surface Σ in M.

• Curvature estimates for stable minimal submanifolds are needed in
this process (Schoen, Schoen-Simon-Yau).

• By the Second Variation Formula, the stability condition gives that∫
Σ

KΣf 2 dΣ ≥
∫

Σ

1

2
(RM + |A|2)f 2 dΣ−

∫
Σ

|∇f |2 dΣ

for any smooth function f with compact support in Σ.

The idea is to exploit the stability inequality and arrive at a
contradiction with the Gauss-Bonnet Theorem.
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• Similarly, this argument shows that the three-dimensional torus T 3

does not admit a metric of positive scalar curvature.

(Gromov-Lawson, spinorial techniques for T n)

• The Positive Mass Conjecture for nonspin manifolds in high
dimensions remains an open problem.

- Schoen and Yau: any dimension 3 ≤ n ≤ 7
- Witten: any dimension n ≥ 3 if manifold is spin (topological

condition).

• Minimal surfaces also play a very important role in general relativity
by modeling apparent horizons of black holes.

Penrose inequality:
Huisken-Ilmanen, Bray
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• A foundational question of Poincaré (1905) asks about the existence
of closed geodesics in Riemannian two-spheres.

• If the surface has nontrivial genus, a closed geodesic can be found
by minimization methods.

• In 1917, Birkhoff introduced the min-max method to this problem.
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• Birkhoff defined the notion of a sweepout.

• These one-parameter families of curves are topologically nontrivial if
we make the requirement that deg(f ) = 1.

• Define
L = min

{ct}
max
t∈[0,1]

L(ct) (L=length).

Theorem (Birkhoff): Let (S2, g) be any Riemannian sphere. Then
L > 0, and L = L(γ) for some smooth closed geodesic γ.
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• The work of Birkhoff inspired the development of Morse theory and
Lusternik-Schnirelman theory.

• In 1929, Lusternik and Schnirelmann proved:

Three Closed Geodesics Theorem: Let (S2, g) be any
Riemannian sphere. Then there exist at least three distinct simple
closed geodesics.

• The space of unoriented round circles in S2 can be parametrized by
RP3:

Φ([a0 : a1 : a2 : a3]) = {x ∈ S2 : a0 + a1x1 + a2x2 + a3x3 = 0}.
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• Finally, in the 1990s, by combining the works of Franks and Bangert
(Hingston), the following theorem was proved:

Theorem: Let (S2, g) be any Riemannian sphere. Then there exist
infinitely many geometrically distinct closed geodesics.

• What about the area functional? How many minimal surfaces does a
three-manifold have? This suggests looking for a Morse theory for
minimal varieties.

• Almgren computed the homotopy groups of the space Zk(M,Z) of
k-dimensional integral cycles (integral currents with boundary zero)
of M:

πl(Zk(M,Z), {0}) = Hk+l(M,Z).
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• A similar result holds for the space Zk(M,Z2) of modulo 2 flat
cycles:

πl(Zk(M,Z2), {0}) = Hk+l(M,Z2).

In particular, π1(Zn−1(Mn,Z2), {0}) = Hn(Mn,Z2) = Z2.

• Let f : M → R be a Morse function, with f (M) = [0, 1].

The sweepout

t ∈ [0, 1] 7→ Φ(t) = ∂ ({x ∈ M : f (x) < t})

generates the fundamental group of Zn−1(Mn,Z2).
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• In the 1960s, Almgren devised a very general min-max theory in the
context of Geometric Measure Theory. It applied to families of cycles
of any dimension and codimension, and any number of parameters.

- existence of a possibly singular minimal variety (stationary integral
varifold)

• In 1980, Pitts improved the theory by showing that the minimal
variety can be chosen to satisfy an additional variational property,
the almost minimizing condition.

- in codimension one, Pitts used curvature estimates for stable minimal
hypersurfaces (Schoen-Simon-Yau) to prove smoothness (n ≤ 6)

• Schoen and Simon (1981) extended regularity to higher dimensions,
allowing singular sets of codimension 7.

• The main application of the Almgren-Pitts Min-Max Theory until
very recently was:

Theorem: Let (Mn, g) be a compact Riemannian manifold, with
3 ≤ n ≤ 7. Then there exists a smooth closed embedded minimal
hypersurface Σn−1 ⊂ Mn.
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• In general the min-max minimal hypersurface comes as a disjoint
collection of connected, embedded closed minimal hypersurfaces
with positive integer multiplicities:

Σ = n1Σ1 + · · ·+ nkΣk .

• The minimal surface produced by Almgren and Pitts in the unit
sphere S3 is the equator.

The area is 4π and the Morse index is one.
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• Min-max methods can also be used to produce branched minimal
two-spheres, following the Sacks-Uhlenbeck approach.

• Colding and Minicozzi found an application to three-manifold
topology and the theory of Ricci flow.

• In 1982, R. Hamilton introduced the equation

∂g

∂t
= −2Ricg ,

known as the Ricci flow, and proved the existence of short time
solutions with arbitrary compact Riemannian manifolds as initial
conditions.

Singularities should be expected in finite time.

• In three dimensions, the existence of a Ricci flow with surgeries and
the study of its properties were accomplished by G. Perelman.

Perelman proved that any Ricci flow on a homotopy three-sphere
must become extinct in finite time (Poincaré conjecture).
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• Min-max methods can also be used to produce branched minimal
two-spheres, following the Sacks-Uhlenbeck approach.

• Colding and Minicozzi found an application to three-manifold
topology and the theory of Ricci flow.

• In 1982, R. Hamilton introduced the equation

∂g

∂t
= −2Ricg ,

known as the Ricci flow, and proved the existence of short time
solutions with arbitrary compact Riemannian manifolds as initial
conditions.

Singularities should be expected in finite time.

• In three dimensions, the existence of a Ricci flow with surgeries and
the study of its properties were accomplished by G. Perelman.

Perelman proved that any Ricci flow on a homotopy three-sphere
must become extinct in finite time (Poincaré conjecture).
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• A homotopy three-sphere can be swept out by mappings from S2,
hence minimal spheres can be produced by min-max for the energy
functional.

• Colding and Minicozzi provided an alternative argument for the
finite-time extinction by looking at the evolution equation of the
area of these minimal spheres under Ricci flow:

d

dt
W (g(t)) ≤ −4π +

3

4(t + C )
W (g(t)).
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• Recently, the lecturer and A. Neves have been able to find a
connection between the min-max theory of minimal surfaces and the
Willmore conjecture (1965).

• Let Σ be an abstract closed surface of genus g .

What is the best realization (immersion) of Σ into Euclidean
three-space?

• The Willmore energy of a closed surface Σ ⊂ R3 is defined to be

W(Σ) =

∫
Σ

H2 dΣ,

where H = 1
2 (k1 + k2) denotes the mean curvature (Germain, 1800s).

Remarkably, this functional is invariant under any conformal
transformation of three-space (Blaschke, Thomsen, 1920s).
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• The Willmore energy of any surface is at least 4π, and equality
happens precisely when the surface is a round sphere.

• Willmore Conjecture (1965): The energy of any torus immersed
in three-dimensional space must be at least 2π2.

• The conjectured minimizing torus (perfect doughnut) Σ√2

is the stereographic projection of the Clifford torus (minimal surface)

Σ̂ = S1(
1√
2

)× S1(
1√
2

) ⊂ S3 ⊂ R4.

• By conformal invariance the problem can be phrased in terms of
surfaces in the three-sphere S3, where W (Σ) ≥ area(Σ) with
equality if and only if Σ is a minimal surface.
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• There were many partial results towards the conjecture.

In particular, P. Li and S. T. Yau (1982) proved that the energy of
any closed surface with a self-intersection must be at least 8π.

• Theorem (—, Neves) Let Σ ⊂ S3 be a closed embedded surface,
with genus g ≥ 1. Then

W(Σ) ≥ 2π2,

and equality holds if and only if the surface Σ is a conformal image
of the Clifford torus.

This implies the Willmore conjecture is true.

It also implies that the area of any nonspherical minimal surface in
S3 is at least 2π2.

• We considered a new kind of sweepout, a five-parameter family of
surfaces in S3 that allowed us to produce the Clifford torus as a
min-max minimal surface.
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• For each closed embedded surface Σ ⊂ S3, we construct a canonical
family of surfaces Σ(v ,t) ⊂ S3, where (v , t) ∈ B4 × (−π, π),

with the
properties that:

- Σ(0,0) = Σ,
- area(Σ(v,t)) ≤ W(Σ) for every (v , t) ∈ B4 × (−π, π).

• The estimate follows from an inequality of Ros, Heintze-Karcher.
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family of surfaces Σ(v ,t) ⊂ S3, where (v , t) ∈ B4 × (−π, π), with the
properties that:

- Σ(0,0) = Σ,
- area(Σ(v,t)) ≤ W(Σ) for every (v , t) ∈ B4 × (−π, π).

• The estimate follows from an inequality of Ros, Heintze-Karcher.

• For each v ∈ S3 = ∂B4, {Σ(v , t)} is the standard family of round
spheres centered along the axis passing through some Q(v) ∈ S3.



• We use the following theorem of Urbano (1990):

Theorem. Let Σ ⊂ S3 be an immersed, closed minimal surface
(H = 0), with index(Σ) ≤ 5 and genus g ≥ 0. Then Σ is either the
Clifford torus (index 5) or the great sphere (index 1).

• In order to rule out the possibility of producing great spheres, a new
topological ingredient is needed.

The center map Q : S3 → S3 has

deg(Q) = genus(Σ) !

If genus(Σ) ≥ 1, the boundary of the cylinder is mapped onto the
space of round spheres in a homotopically nontrivial way.
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Let γ1 and γ2 be two linked curves in R3 with linking number lk(γ1, γ2).

lk = 1 lk = 3 lk = 4

• The Möbius cross energy of the link (γ1, γ2) is defined to be

E (γ1, γ2) =

∫
S1×S1

|γ′1(s)||γ′2(t)|
|γ1(s)− γ2(t)|2

ds dt.

The energy E (γ1, γ2) is conformally invariant.

• We have that E (γ1, γ2) ≥ 4π|lk (γ1, γ2)|, by the Gauss formula:

lk(γ1, γ2) =
1

4π

∫
S1×S1

det(γ′1(s), γ′2(t), γ1(s)− γ2(t))

|γ1(s)− γ2(t)|3
ds dt.

It is natural to search for the optimal configuration in the case of
nontrivial links.
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• Freedman-He-Wang Conjecture (1994): The energy of any
2-component link in R3 with linking number equal to ±1 is at least
2π2.

If true, every non-trivial link has E (γ1, γ2) ≥ 2π2 (He).

• Theorem (Agol, — , Neves): The conjecture is true.

If equality holds, then (γ1, γ2) is conformal to the standard Hopf link
in S3:

β1(t) = (cos t, sin t, 0, 0) and β2(s) = (0, 0, cos s, sin s).

• The Gauss map g : S1 × S1 → S3 of a link (γ1, γ2) ⊂ S3, given by

g(s, t) =
γ1(s)− γ2(t)

|γ1(s)− γ2(t)|
,

satisfies area(g(S1 × S1)) ≤ E (γ1, γ2).

• We construct a 5-parameter family of surfaces in S3 with area
bounded above by E (γ1, γ2), and such that the associated center
map Q : S3 → S3 satisfies |deg(Q)| = 1 if |lk(γ1, γ2)| = 1.
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• We construct a 5-parameter family of surfaces in S3 with area
bounded above by E (γ1, γ2), and such that the associated center
map Q : S3 → S3 satisfies |deg(Q)| = 1 if |lk(γ1, γ2)| = 1.
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• Yau’s Conjecture (1982): Every compact Riemannian
three-manifold admits an infinite number of smooth, closed,
immersed minimal surfaces.

• Theorem (—, Neves) Let Mn+1 be a compact Riemannian manifold
with positive Ricci curvature, 3 ≤ (n + 1) ≤ 7. Then there exist
infinitely many distinct closed embedded minimal hypersurfaces in
M.

Kahn and Markovic (hyperbolic three-manifolds)
Kapouleas (desingularizing approach)

• By Almgren,

πk(Zn(M,Z2), {0}) = Hk+n(Mn+1,Z2).

All higher homotopy groups vanish but the first one:

π1(Zn(M,Z2)) = Z2.

• There are nontrivial families parametrized by projective spaces.
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• Let f : Mn+1 → R be a Morse function. Define

ψ : RPk → Zn(M,Z2)

by
ψ([a0 : · · · : ak ]) = {x ∈ M : pa(f (x)) = 0} .

where pa(t) = a0 + a1t + · · ·+ aktk .

• Note that ψ([a0 : a1 : 0 : · · · : 0]) = {x ∈ M : f (x) = −a0/a1}
reproduces a one-parameter sweepout of M.

• (Gromov) Let λ̄ ∈ H1(Zn(M,Z2),Z2) = Z2 be the generator. Then

λ = ψ∗(λ̄)

is the generator of H1(RPk ,Z2) = Z2. Hence

λk 6= 0 ∈ Hk(RPk ,Z2) = Z2,

where λk = λ ^ · · ·^ λ (k-th cup power). Such maps are called
k-sweepouts.
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• We denote by Pk the space of all k-sweepouts, and define the
min-max invariant:

ωk(M) := inf
Φ∈Pk

sup
x∈dmn(Φ)

area(Φ(x)),

where dmn(Φ) stands for the domain of Φ.

• The numbers ωk(M) satisfy (Gromov, Guth):

C1k
1

n+1 ≤ ωk(M) ≤ C2k
1

n+1 ,

for constants C1,C2 > 0 that depend only on M.

• The condition of positive Ricci curvature implies a “Frankel
property”: any two embedded minimal hypersurfaces must intersect.

Hence ωk(M) = nk · area(Σk), where nk ∈ N and Σk is a minimal
hypersurface.

• We combine Lusternik-Schnirelmann ideas with counting arguments
to derive a contradiction with the sublinear growth of ωk(M) if there
are only finitely many closed minimal hypersurfaces.
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• An important open problem in this min-max theory consists in
relating the Morse index of the min-max minimal surface to the
number of parameters. This is a subtle question because of the
phenomenon of multiplicity. (X. Zhou: when k = 1, Ric > 0,
3 ≤ n ≤ 7).

• The problem of controlling the topology of the min-max minimal
surface has been studied in the three-dimensional case
(Simon-Smith, Colding and De Lellis, De Lellis and Pellandini,
Ketover).

• Gromov has proposed to consider the sequence {ωk(M)}k∈N as a
nonlinear analogue of the Laplace spectrum of M. The asymptotic
behavior of the area of nodal sets of eigenfunctions has been
conjectured by Yau.

• We conjecture that under generic conditions the minimal
hypersurfaces Σk we have produced should have index k, multiplicity
one and should become equidistributed in space.
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