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Watchman Route Problem 
 Efficiently see all points of P 

Watchman Route Problem  (WRP) 

Subject to: stay 
inside polygonal 
domain P 



General Problem 

Find an “optimal” set X that 
“sees” all of a set Y  

 

 

Geometric Covering Tours 



What are “geometric covering 
tours”? 

 Ask Google! 



Covering Tours 

 Cover a point set S 

Just geometric TSP 



Covering Tours 
 Cover a set of disks 

TSP with (circular) neighborhoods 

•Gather data from sensors 
•Cover imprecise points 
•School bus route 



Covering Tours 
 Cover a set of polygons 

TSP with neighborhoods  (TSPN) 



Covering Tours 
 Cover set of all visibility polygons 

Watchman Route Problem  (WRP) 

Subject to: stay 
inside polygonal 
domain P 



Watchman Route Problem 
WRP 

 

Geometric Covering Tour on the set of all 
visibility regions, VP(p), for all p in domain 



Motivations from Robotics, etc 

 



Some History 

 SoCG 1986: Chin and Ntafos 
• NP-hardness in 2D,3D;  

• O(n) in rectilinear, simple polygons 

 DCG 1988: Chin and Ntafos:  
• O(n4) for anchored WRP in simple polygon 

 ISA 1991, IJCGA 1993: Tan, Hirata, Inagaki: 
• O(n3) for anchored WRP in simple polygon 

 ISAAC 1993: Tan, Hirata: 
• O(n2) for anchored WRP in simple polygon (D&C) 

 ISAAC 1993: Carlsson, Jonsson, Nilsson: 
• O(n3) for floating (unrestricted) WRP in simple polygon 

 

Revisited:[Dumitrescu, Toth 2012] 



Some History (cont) 

 FCT 1997: Hammar, Nilsson: all prior algorithms 
require exponential # of adjustments! First 
attempt to fix… 

 IJCGA 1999: Tan, Hirata, Inagaki: DP to remove 
exponential behavior: O(n4) for anchored WRP 

 DCG 1999: Carlsson, Jonsson, Nilsson: O(n6) for 
floating WRP 

 IPL 2001: Tan: O(n5) for floating WRP 

 STOC 2003: Dror, Efrat, Lubiw, M: Touring 
Polygons Problem: O(n3log n) for anchored,    
O(n4log n) for floating 

 
 

 

OPEN: Improve these bounds? 



Bottom Line 

 Watchman Route in simple n-gon: Exact 
algorithm, time O(n3log n) for anchored,    
O(n4log n) for floating 

 
 

 NP-hard in polygons with holes and in 3D 

 

OPEN: Improve these bounds? 



WRP Approximation 

 Simple polygons: 
• Sqrt(2)-approx, O(n), for anchored [Tan, DAM 2004] 

• 14(p+4)=99.98-approx, O(n log n), for floating [Carlsson, 
Jonsson, Nilsson, TR 1997] 

• 2-approx, O(n), for floating [Tan, TCS 2007] 

• 4-approx, O(n2), for min-link [Alsuwaiyel, Lee, IPL 1995] 

 Polygons with holes? 
• O(log n)-approx, rectilinear, rectangle-visibility 

 WRP in 3D: No constant-factor, unless P=NP 
 

 

[Safra, Schwartz 2003] 

This Talk: O(log2 n), (log n) 

(log n), even for terrains 



WRP Taxonomy 
 Type of domain 

• Without/with holes in 2D;  arrangements/networks 

• Terrains (2.5D), 3D, higher 

 Anchored vs floating 

 Variations on visibility 
• Bounded view distance 

• Robust visibility, a-visibility, rectangle-visibility 

 # of watchmen,  min-max vs min-sum 

 Metric/objective function 
• Euclidean length, link length, scan cost, etc 

 Offline vs online 

 



Two Key Aspects of WRP 

Coverage 
 

 

Connectivity 
 

Hence, “Geometric Covering Tours/Trees” 



Related Problems in Graphs 

 Connected vertex cover 
aka “min-cost tree cover” (edge-dominating) 

 

 Connected dominating set (vertex-dominating) 

 

 Group Steiner tree/TSP 
• O(log2 n log k)-approx for k groups 

 

• (3/2)s-approx if each set of size ≤ s 

[Arkin, Halldórsson, Hassin, 1993] 3.55-approx 

[Guha, Khuller] 

[Fakcharoenphol et al 2003] 

[Slavik 1997 “errand scheduling”] 

[Fujito, 2012]  2-approx, trimming an MST 

aka “one-of-a-set” TSP/MST 



Related Geometric Problems 

 Guard cover: min # guards (stationary) 

 



The Art Gallery Problem 
Determine a small set of “guards” to see all of a given 

n-vertex polygon P 

Art Gallery Thm:             guards  

suffice and are sometimes necessary 

NP-hard, even in simple polygon 

Motivation: Sensor coverage, security 

g(P) = min # guards 



Related Geometric Problems 

 TSP with Neighborhoods (TSPN) 

 

 

 

 

 

 

   

(AND obstacles)  



Related Geometric Problems 
 Lawnmower/Milling Best method of 

mowing the lawn? 

NC-machining: 
milling a pocket. 

TSPN: Visit the disk 
centered at each blade 
of grass 

[Ntafos, CGTA 1992]: 
d-sweeper: must be 
within distance d to see 
a point 



Understanding Structure 

 



How Much Needs to be 
Covered? 

 Must visit VP(p) for all p in P 

 Q: Is it enough for the tree/tour to see 
all vertices of P? 
• YES, in simple polgyon P 

 

 

• NO, in polygons with holes 

Not even enough to see all of 
the boundary of P 



WRP Structure in Simple Polygons 

 Cuts, essential cuts, corner 

 

 

 

 

 

 One can compute all essential cuts: O(n)  

 

 

[Tan, 2007] 

Tour visits essential cuts, in order 



WRP Example: Effect of Holes 

Complicating Issue: 

Tour reflects off 
of segments that 
are not readily 
known (e.g., edges 
of P, VG edges) 

Reminiscent of art gallery problem 

VG edge 



Bounds on WRP Tour Length 

 Upper bound on length of tour, in terms 
of h (# holes), per(P) and diam(P) 

 

 

 

 

 

 Given P, can compute in O(n log n) time 

[Dumitrescu, Toth, CCCG 2010, CGTA 2012] Also bounds in 3D 

[Czyzowicz,Ilcinkas,Labourel,Pelc, SWAT 2010]  
Exploring an unknown domain. Also bounds in 
terms of area(P) in limited visibility model 



WRP in Polygons with Holes 

 Rectilinear polygon with holes: NP-hard 
• From geometric TSP in L1 metric 

[Dumitrescu, Toth] 



WRP in Simple Polygons 

 Best time bounds based on modelling as 
“Touring Polygons Problem” (TPP) 

[Dror,Efrat,Lubiw,M, STOC 2003] 



Ordered Covering Tours/Paths 

 Order given   [DELM, 2003] 

   Convex: poly-time 

 Non-convex, overlapping: NP-hard 

 Related to 3D shortest 
paths 

Q: Shortest simple 
tour, even for points? 

1 
2 

3 

4 

5 

6 

Q: Disjoint non-convex? 



Safari Problem 

 



Zookeeper Problem 

 



Watchman Route Problem 
 Find a shortest tour for a guard to be 

able to see all of the domain 



Special Cases of WRP 

 (1) Simple, rectilinear polygons: 

       O(n) time 



 

[Chin, Ntafos, SoCG 1986] 

Essential Cuts 



 



Special Cases of WRP 

 (2) Watchman on an arrangement of lines 
• Exact polytime algorithm (DP to search for CH) 

 [Dumitrescu, M, Zylinski, SWAT 2012] 



Special Cases of WRP 

 (3) Thin polygons (PSLG’s), segment arrangements 

 

 

 
• polylog-approx using one-of-a-set TSP on sets of 

collinear vertices along straight paths 

 

 

• 2-approx if no straight corridors (collinear adjacent 
edges) 

• O(1)-approx if axis-parallel segments 

 

 

“Frank’s Problem” 

Connected vertex cover, [AHH], [Fujito] 

NP-hard 

O(log3 n)-approx    [Dumitrescu,M,Zylinski, SWAT, 2012] 
1.5c-approx if straight corridors have < c vertices 

New 

This Talk: 
O(log2 n) 



Hardness of Approximation: 
WRP in Polygons with Holes 

 (log n): From Set-Cover:   
• Sets S1 , S2 , …, Sm , and                 

elements U={x1, x2,…, xn } 

Same holds for WRP on terrains (2.5D) 



Hardness of Approximation 

Spread out elements xi 

Zoom in to element xi 
From SetCover 



General Case: Polygonal 
Domain (2D) 

 Theorem: The WRP has an O(log2 n)-
approximation algorithm. 



Main Ideas 

 Localization: Consider a polynomial # of 
“minimal outer-illuminating squares” (MOIS), 
B, that OPT passes near/through 

 Discretization: Show that the continuous 
problem can be discretized, using an 
appropriate grid 

 



Main Ideas 

 Solve 2 separate problems: 
• OWRP: Outer WRP:  Find a short tour 

within P that sees all of P that is outside 
the tour.   
 Discrete-OWRP:  exact DP algorithm 

 OWRP: PTAS 

• IWRP: Inner WRP: For a given simple 
closed curve, g, within P, augment g (if 
needed) into a short network that sees all 
of P that is inside g.   
 O(log2 n)-approx 

 Combine 



Structure of OPT 

 Lemma:  OPT for WRP/OWRP/IWRP is 
polygonal, complexity O(n2) 

Conjecture:  O(n) 



Minimal Outer-Illuminating 
Squares (MOIS) 

 

 

 

 

 

 

 

 Lemma: There are a polynomial # of 
MOIS’s, B 

B 

Pf:   Square has 3 degrees of freedom 

p 



Localization 

 Lemma: If B is a MOIS within BB(OPT), 
then OPT lies within an enlarged box, B’, 
centered on B, of size O(n|B|). 

 Pf: Vertical decomposition of P within B 

Each of the O(n) faces has 

diam = O(|B|); 

Traversing the edges of 

all faces sees all of P, 

inside and out of B  

 

B 

B’ 
OPT 



Discretization 

 Lemma: OPT can be rounded to have 
vertices on a grid partitioning of the 
enlarged square, B’, of resolution 
e|B|/n2 .  The rounding increases its 
length by factor (1+e) 

B 

B’ 

Grid refinement of the 
vertical decomposition of P 
within B’ 



Outer WRP 

g 

P 

p 



Outer WRP 

 Lemma: OPT is geodesically convex (wrt P) 

 

 Goal: Search for min-perimeter 
geodesically convex, outer-illuminating 
cycle 

 Discretize first:  Constrain vertices to be 
among a given set, S, given by the grid 
discretization (for given choice of B, B’) 

 “Discrete-OWRP”:  Exact DP algorithm 

 



SubProblem(i’,j’,i,j) 



Outer WRP 

 Theorem: The Discrete-OWRP can be 
solved exactly in poly-time 

 

 Corollary: The OWRP has a PTAS 

 

 Corollary: The WRP on rays is poly-time 
Since it is discrete already 



Inner WRP 

g 

P 



Inner WRP 

 Theorem: The IWRP, for given P and g, 
has an O(log2 n)-approx 



Geodesic Triangles 

 Geodesic with respect to P, g 

 

 

 

 

 

 

 A triangle D is inner-illuminating if it 
sees all of P within D 

g 



Hierarchical Geodesic 
Triangulation 

 Lemma: For a simple closed polygonal 
curve g in P, there exists a geodesic 
triangulation of g of length O(|g| log n) 

 In particular, the hierarchical geodesic 
triangulation of g works 

 Note 1: If g is inner-illuminating, then so 
are all geodesic triangles in any geodesic 
triangulation of it. 

 Note 2: It suffices to work with 
discrete choices, on the B,B’-grid 



g 

Inner WRP 

OPT 

Hierarchical geodesic triangulation 



Set Cover Formulation: IWRP 

 Consider the set of all O(n3) inner-
illuminating geodesic triangles within g. 

 Consider the arr of all-pairs geodesic 
paths in g, between grid points/vertices 

 Cover all cells within g with a min-weight 
set of inner-illuminating geodesic 
triangles. 

 Lemma: The boundaries of any such 
cover is a connected network. 

 



Inner WRP 

 Our (greedy) covering:   O(OPTcover log n) 

 We know one way to cover with length    
O( OPTIWRP log n) – just use hierarchical 
geodesic triangulation of OPTIWRP   

 Thus, OPTcover  < O( OPTIWRP log n)  

 Thus, our solution < O( OPTIWRP log2 n)  

 Theorem: IWRP has an O(log2 n)-approx 

 
Conjecture: O(log n)-approx 
Use variant of guillotine method 



Overall Algorithm 

 Enumerate each MOIS, B 

 For each B:   
• Construct grid, cells of size e|B|/n2 within 

the enlarged B (size O(n|B|) ) 

• DP: Solve Discrete-OWRP, giving cycle g 

• Solve IWRP within g 

 Theorem: The WRP has an O(log2 n)-
approximation algorithm 

 Conjecture: O(log n)-approx 
Use variant of guillotine method 


