How to See Things in the Most Efficient Way

Joe Mitchell Stony Brook University

Math Colloquium, Feb 20, 2014

Watchman Route Problem (WRP)

General Problem

Find an "optimal" set X that "sees" all of a set Y

Geometric Covering Tours

What are "geometric covering tours"?

Done

Covering Tours

Cover a point set S

Gather data from sensors
Cover imprecise points
School bus route

TSP with (circular) neighborhoods

Covering Tours Cover a set of polygons

Watchman Route Problem (WRP)

Watchman Route Problem WRP

Geometric Covering Tour on the set of all visibility regions, VP(p), for all p in domain

Motivations from Robotics, etc

Exploration Strategies for a Robot with a Continously Rotating 3D Scanner

Elena Digor, Andreas Birk, and Andreas Nüchter

Some History

Socg 1986: Chin and Ntafos • NP-hardness in 2D,3D; Revisited: [Dumitrescu, Toth 2012] O(n) in rectilinear, simple polygons DCG 1988: Chin and Ntafos: • O(n⁴) for anchored WRP in simple polygon ISA 1991, IJCGA 1993: Tan, Hirata, Inagaki: O(n³) for anchored WRP in simple polygon ISAAC 1993: Tan, Hirata: O(n²) for anchored WRP in simple polygon (D&C) ISAAC 1993: Carlsson, Jonsson, Nilsson: • O(n³) for *floating* (unrestricted) WRP in simple polygon

Some History (cont)

- FCT 1997: Hammar, Nilsson: all prior algorithms require *exponential* # of adjustments! First attempt to fix...
- IJCGA 1999: Tan, Hirata, Inagaki: DP to remove exponential behavior: O(n⁴) for *anchored* WRP
- DCG 1999: Carlsson, Jonsson, Nilsson: O(n⁶) for *floating* WRP

 IPL 2001: Tan: O(n⁵) for *floating* WRP
 STOC 2003: Dror, Efrat, Lubiw, M: Touring Polygons Problem: O(n³log n) for *anchored*, O(n⁴log n) for *floating* OPEN: Improve these bounds?

Bottom Line

 Watchman Route in simple n-gon: Exact algorithm, time O(n³log n) for anchored, O(n⁴log n) for *floating*

OPEN: Improve these bounds?

NP-hard in polygons with holes and in 3D

WRP Approximation

Simple polygons:

- Sqrt(2)-approx, O(n), for anchored [Tan, DAM 2004]
- 14(π+4)=99.98-approx, O(n log n), for floating [Carlsson, Jonsson, Nilsson, TR 1997]
- 2-approx, O(n), for floating [Tan, TCS 2007]
- 4-approx, O(n²), for min-link [Alsuwaiyel, Lee, IPL 1995]

Polygons with holes? This Talk: O(log² n), Ω(log n)

O(log n)-approx, rectilinear, rectangle-visibility

WRP in 3D: No constant-factor, unless P=NP [Safra, Schwartz 2003]

 $\Omega(\log n)$, even for terrains

WRP Taxonomy

- Type of domain
 - Without/with holes in 2D; arrangements/networks
 - Terrains (2.5D), 3D, higher
- Anchored vs floating
- Variations on visibility
 - Bounded view distance
 - Robust visibility, α -visibility, rectangle-visibility
- # of watchmen, min-max vs min-sum
- Metric/objective function
- Euclidean length, link length, scan cost, etc
 Offline vs online

Two Key Aspects of WRP

Coverage

Connectivity

Hence, "Geometric Covering Tours/Trees"

Related Problems in Graphs

Connected vertex cover aka "min-cost tree cover" (edge-dominating) [Arkin, Halldórsson, Hassin, 1993] 3.55-approx [Fujito, 2012] 2-approx, trimming an MST Connected dominating set (vertex-dominating) [Guha, Khuller] Group Steiner tree/TSP aka "one-of-a-set" TSP/MST O(log² n log k)-approx for k groups

[Fakcharoenphol et al 2003]

(3/2)s-approx if each set of size < s
 [Slavik 1997 "errand scheduling"]

Related Geometric Problems Guard cover: min # guards (stationary)

Related Geometric Problems TSP with Neighborhoods (TSPN)

Understanding Structure

How Much Needs to be Covered?

Must visit VP(p) for <u>all</u> p in P

Q: Is it enough for the tree/tour to see all vertices of P?

• YES, in simple polgyon P

NO, in polygons with holes

Not even enough to see all of the boundary of P

WRP Structure in Simple Polygons

Cuts, essential cuts, corner

Tour visits essential cuts, in order

One can compute all essential cuts: O(n) [Tan, 2007]

WRP Example: Effect of Holes

Complicating Issue: Tour reflects off of segments that are not readily known (e.g., edges of P, VG edges)

Reminiscent of art gallery problem

Bounds on WRP Tour Length

Upper bound on length of tour, in terms of h (# holes), per(P) and diam(P)

 $O(per(P) + \sqrt{h} \cdot diam(P))$

tight for polygons P with $per(P) > c \cdot diam(P)$, for any fixed c > 2

[Dumitrescu, Toth, CCCG 2010, CGTA 2012] Also bounds in 3D

[Czyzowicz,Ilcinkas,Labourel,Pelc, SWAT 2010] Exploring an *unknown* domain. Also bounds in terms of area(P) in limited visibility model

Given P, can compute in O(n log n) time

WRP in Polygons with Holes

Rectilinear polygon with holes: NP-hard
 From geometric TSP in L₁ metric

[Dumitrescu, Toth]

WRP in Simple Polygons

Best time bounds based on modelling as "Touring Polygons Problem" (TPP)

[Dror,Efrat,Lubiw,M, STOC 2003]

Ordered Covering Tours/Paths

 Order given [DELM, 2003]
 Convex: poly-time Non-convex, overlapping: NP-hard
 Related to 3D shortest paths

Q: Disjoint non-convex?

6

Safari Problem

Zookeeper Problem

Watchman Route Problem
 Find a shortest tour for a guard to be able to see all of the domain

Fact: The optimal path visits the essential cuts in the order they appear along ∂P .

Special Cases of WRP

(1) Simple, rectilinear polygons: O(n) time

Special Cases of WRP

 (2) Watchman on an arrangement of lines
 Exact polytime algorithm (DP to search for CH) [Dumitrescu, M, Zylinski, SWAT 2012]

Special Cases of WRP

(3) Thin polygons (PSLG's), segment arrangements

NP-hard

New

"Frank's Problem"

polylog-approx using one-of-a-set TSP on sets of collinear vertices along straight paths
 O(log³ n)-approx [Dumitrescu,M,Zylinski, SWAT, 2012]
 1.5c-approx if straight corridors have < c vertices

This Talk: O(log² n)

- 2-approx if no straight corridors (collinear adjacent edges)
 Connected vertex cover, [AHH], [Fujito]
- O(1)-approx if axis-parallel segments

Hardness of Approximation: WRP in Polygons with Holes
Ω(log n): From Set-Cover:
Sets S₁, S₂, ..., S_m, and elements U={x₁, x₂,..., x_n}

THEOREM 7.1. The watchman route problem in a planar polygonal domain cannot be approximated in polynomial time within a factor $c \log n$, for some constant c > 0, assuming $P \neq NP$.

Same holds for WRP on terrains (2.5D)

General Case: Polygonal Domain (2D) Theorem: The WRP has an O(log² n)approximation algorithm.

Main Ideas

 Localization: Consider a polynomial # of "minimal outer-illuminating squares" (MOIS), B, that OPT passes near/through

 Discretization: Show that the continuous problem can be discretized, using an appropriate grid

Main Ideas

Solve 2 separate problems:

- OWRP: Outer WRP: Find a short tour within P that sees all of P that is outside the tour.
 - Discrete-OWRP: exact DP algorithm
 - OWRP: PTAS

IWRP: Inner WRP: For a given simple closed curve, γ, within P, augment γ (if needed) into a short network that sees all of P that is inside γ.
 O(log² n)-approx

Structure of OPT

Lemma: OPT for WRP/OWRP/IWRP is polygonal, complexity O(n²)

Conjecture: O(n)

Minimal Outer-Illuminating Squares (MOIS)

R

Lemma: There are a polynomial # of MOIS'S, B Pf: Square has 3 degrees of freedom

Localization

Lemma: If B is a MOIS within BB(OPT), then OPT lies within an enlarged box, B', centered on B, of size O(n|B|). Pf: Vertical decomposition of P within B Each of the O(n) faces has B' diam = O(|B|); OPT Traversing the edges of R all faces sees all of P, inside and out of B

Discretization

Lemma: OPT can be rounded to have vertices on a grid partitioning of the enlarged square, B', of resolution ε|B|/n². The rounding increases its length by factor (1+ε)

Grid refinement of the vertical decomposition of P within B'

Outer WRP

Lemma: OPT is geodesically convex (wrt P)

- Goal: Search for min-perimeter geodesically convex, outer-illuminating cycle
- Discretize first: Constrain vertices to be among a given set, S, given by the grid discretization (for given choice of B, B')
 "Discrete-OWRP": Exact DP algorithm

Outer WRP

Theorem: The Discrete-OWRP can be solved exactly in poly-time

Corollary: The OWRP has a PTAS

Corollary: The WRP on rays is poly-time

Since it is discrete already

Inner WRP

Theorem: The IWRP, for given P and γ, has an O(log² n)-approx

Geodesic Triangles

Geodesic with respect to P, γ
 V

• A triangle Δ is *inner-illuminating* if it sees all of P within Δ

Hierarchical Geodesic Triangulation Lemma: For a simple closed polygonal curve γ in P, there exists a geodesic triangulation of γ of length $O(|\gamma| \log n)$ In particular, the *hierarchical geodesic* triangulation of γ works • Note 1: If γ is inner-illuminating, then so are all geodesic triangles in any geodesic triangulation of it. Note 2: It suffices to work with discrete choices, on the B,B'-grid

Hierarchical geodesic triangulation

Set Cover Formulation: IWRP

• Consider the set of all $O(n^3)$ innerilluminating geodesic triangles within γ . Consider the arr of all-pairs geodesic paths in γ , between grid points/vertices • Cover all cells within γ with a min-weight set of inner-illuminating geodesic triangles. Lemma: The boundaries of any such cover is a connected network.

Inner WRP

Our (greedy) covering: O(OPT_{cover} log n) We know one way to cover with length O(OPT_{IWRP} log n) - just use hierarchical geodesic triangulation of OPT_{IWRP} Thus, OPT_{cover} < O(OPT_{IWRP} log n) Thus, our solution < O(OPT_{IWRP} log² n) Theorem: IWRP has an O(log² n)-approx

> Conjecture: O(log n)-approx Use variant of guillotine method

Overall Algorithm

- Enumerate each MOIS, B
 For each B:
 - Construct grid, cells of size $\epsilon |B|/n^2$ within the enlarged B (size O(n|B|))
 - DP: Solve Discrete-OWRP, giving cycle γ

• Solve IWRP within γ

Theorem: The WRP has an O(log² n)approximation algorithm

> Conjecture: O(log n)-approx Use variant of guillotine method