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Watchman Route Problem 
 Efficiently see all points of P 

Watchman Route Problem  (WRP) 

Subject to: stay 
inside polygonal 
domain P 



General Problem 

Find an “optimal” set X that 
“sees” all of a set Y  

 

 

Geometric Covering Tours 



What are “geometric covering 
tours”? 

 Ask Google! 



Covering Tours 

 Cover a point set S 

Just geometric TSP 



Covering Tours 
 Cover a set of disks 

TSP with (circular) neighborhoods 

•Gather data from sensors 
•Cover imprecise points 
•School bus route 



Covering Tours 
 Cover a set of polygons 

TSP with neighborhoods  (TSPN) 



Covering Tours 
 Cover set of all visibility polygons 

Watchman Route Problem  (WRP) 

Subject to: stay 
inside polygonal 
domain P 



Watchman Route Problem 
WRP 

 

Geometric Covering Tour on the set of all 
visibility regions, VP(p), for all p in domain 



Motivations from Robotics, etc 

 



Some History 

 SoCG 1986: Chin and Ntafos 
• NP-hardness in 2D,3D;  

• O(n) in rectilinear, simple polygons 

 DCG 1988: Chin and Ntafos:  
• O(n4) for anchored WRP in simple polygon 

 ISA 1991, IJCGA 1993: Tan, Hirata, Inagaki: 
• O(n3) for anchored WRP in simple polygon 

 ISAAC 1993: Tan, Hirata: 
• O(n2) for anchored WRP in simple polygon (D&C) 

 ISAAC 1993: Carlsson, Jonsson, Nilsson: 
• O(n3) for floating (unrestricted) WRP in simple polygon 

 

Revisited:[Dumitrescu, Toth 2012] 



Some History (cont) 

 FCT 1997: Hammar, Nilsson: all prior algorithms 
require exponential # of adjustments! First 
attempt to fix… 

 IJCGA 1999: Tan, Hirata, Inagaki: DP to remove 
exponential behavior: O(n4) for anchored WRP 

 DCG 1999: Carlsson, Jonsson, Nilsson: O(n6) for 
floating WRP 

 IPL 2001: Tan: O(n5) for floating WRP 

 STOC 2003: Dror, Efrat, Lubiw, M: Touring 
Polygons Problem: O(n3log n) for anchored,    
O(n4log n) for floating 

 
 

 

OPEN: Improve these bounds? 



Bottom Line 

 Watchman Route in simple n-gon: Exact 
algorithm, time O(n3log n) for anchored,    
O(n4log n) for floating 

 
 

 NP-hard in polygons with holes and in 3D 

 

OPEN: Improve these bounds? 



WRP Approximation 

 Simple polygons: 
• Sqrt(2)-approx, O(n), for anchored [Tan, DAM 2004] 

• 14(p+4)=99.98-approx, O(n log n), for floating [Carlsson, 
Jonsson, Nilsson, TR 1997] 

• 2-approx, O(n), for floating [Tan, TCS 2007] 

• 4-approx, O(n2), for min-link [Alsuwaiyel, Lee, IPL 1995] 

 Polygons with holes? 
• O(log n)-approx, rectilinear, rectangle-visibility 

 WRP in 3D: No constant-factor, unless P=NP 
 

 

[Safra, Schwartz 2003] 

This Talk: O(log2 n), (log n) 

(log n), even for terrains 



WRP Taxonomy 
 Type of domain 

• Without/with holes in 2D;  arrangements/networks 

• Terrains (2.5D), 3D, higher 

 Anchored vs floating 

 Variations on visibility 
• Bounded view distance 

• Robust visibility, a-visibility, rectangle-visibility 

 # of watchmen,  min-max vs min-sum 

 Metric/objective function 
• Euclidean length, link length, scan cost, etc 

 Offline vs online 

 



Two Key Aspects of WRP 

Coverage 
 

 

Connectivity 
 

Hence, “Geometric Covering Tours/Trees” 



Related Problems in Graphs 

 Connected vertex cover 
aka “min-cost tree cover” (edge-dominating) 

 

 Connected dominating set (vertex-dominating) 

 

 Group Steiner tree/TSP 
• O(log2 n log k)-approx for k groups 

 

• (3/2)s-approx if each set of size ≤ s 

[Arkin, Halldórsson, Hassin, 1993] 3.55-approx 

[Guha, Khuller] 

[Fakcharoenphol et al 2003] 

[Slavik 1997 “errand scheduling”] 

[Fujito, 2012]  2-approx, trimming an MST 

aka “one-of-a-set” TSP/MST 



Related Geometric Problems 

 Guard cover: min # guards (stationary) 

 



The Art Gallery Problem 
Determine a small set of “guards” to see all of a given 

n-vertex polygon P 

Art Gallery Thm:             guards  

suffice and are sometimes necessary 

NP-hard, even in simple polygon 

Motivation: Sensor coverage, security 

g(P) = min # guards 



Related Geometric Problems 

 TSP with Neighborhoods (TSPN) 

 

 

 

 

 

 

   

(AND obstacles)  



Related Geometric Problems 
 Lawnmower/Milling Best method of 

mowing the lawn? 

NC-machining: 
milling a pocket. 

TSPN: Visit the disk 
centered at each blade 
of grass 

[Ntafos, CGTA 1992]: 
d-sweeper: must be 
within distance d to see 
a point 



Understanding Structure 

 



How Much Needs to be 
Covered? 

 Must visit VP(p) for all p in P 

 Q: Is it enough for the tree/tour to see 
all vertices of P? 
• YES, in simple polgyon P 

 

 

• NO, in polygons with holes 

Not even enough to see all of 
the boundary of P 



WRP Structure in Simple Polygons 

 Cuts, essential cuts, corner 

 

 

 

 

 

 One can compute all essential cuts: O(n)  

 

 

[Tan, 2007] 

Tour visits essential cuts, in order 



WRP Example: Effect of Holes 

Complicating Issue: 

Tour reflects off 
of segments that 
are not readily 
known (e.g., edges 
of P, VG edges) 

Reminiscent of art gallery problem 

VG edge 



Bounds on WRP Tour Length 

 Upper bound on length of tour, in terms 
of h (# holes), per(P) and diam(P) 

 

 

 

 

 

 Given P, can compute in O(n log n) time 

[Dumitrescu, Toth, CCCG 2010, CGTA 2012] Also bounds in 3D 

[Czyzowicz,Ilcinkas,Labourel,Pelc, SWAT 2010]  
Exploring an unknown domain. Also bounds in 
terms of area(P) in limited visibility model 



WRP in Polygons with Holes 

 Rectilinear polygon with holes: NP-hard 
• From geometric TSP in L1 metric 

[Dumitrescu, Toth] 



WRP in Simple Polygons 

 Best time bounds based on modelling as 
“Touring Polygons Problem” (TPP) 

[Dror,Efrat,Lubiw,M, STOC 2003] 



Ordered Covering Tours/Paths 

 Order given   [DELM, 2003] 

   Convex: poly-time 

 Non-convex, overlapping: NP-hard 

 Related to 3D shortest 
paths 

Q: Shortest simple 
tour, even for points? 

1 
2 

3 

4 

5 

6 

Q: Disjoint non-convex? 



Safari Problem 

 



Zookeeper Problem 

 



Watchman Route Problem 
 Find a shortest tour for a guard to be 

able to see all of the domain 



Special Cases of WRP 

 (1) Simple, rectilinear polygons: 

       O(n) time 



 

[Chin, Ntafos, SoCG 1986] 

Essential Cuts 



 



Special Cases of WRP 

 (2) Watchman on an arrangement of lines 
• Exact polytime algorithm (DP to search for CH) 

 [Dumitrescu, M, Zylinski, SWAT 2012] 



Special Cases of WRP 

 (3) Thin polygons (PSLG’s), segment arrangements 

 

 

 
• polylog-approx using one-of-a-set TSP on sets of 

collinear vertices along straight paths 

 

 

• 2-approx if no straight corridors (collinear adjacent 
edges) 

• O(1)-approx if axis-parallel segments 

 

 

“Frank’s Problem” 

Connected vertex cover, [AHH], [Fujito] 

NP-hard 

O(log3 n)-approx    [Dumitrescu,M,Zylinski, SWAT, 2012] 
1.5c-approx if straight corridors have < c vertices 

New 

This Talk: 
O(log2 n) 



Hardness of Approximation: 
WRP in Polygons with Holes 

 (log n): From Set-Cover:   
• Sets S1 , S2 , …, Sm , and                 

elements U={x1, x2,…, xn } 

Same holds for WRP on terrains (2.5D) 



Hardness of Approximation 

Spread out elements xi 

Zoom in to element xi 
From SetCover 



General Case: Polygonal 
Domain (2D) 

 Theorem: The WRP has an O(log2 n)-
approximation algorithm. 



Main Ideas 

 Localization: Consider a polynomial # of 
“minimal outer-illuminating squares” (MOIS), 
B, that OPT passes near/through 

 Discretization: Show that the continuous 
problem can be discretized, using an 
appropriate grid 

 



Main Ideas 

 Solve 2 separate problems: 
• OWRP: Outer WRP:  Find a short tour 

within P that sees all of P that is outside 
the tour.   
 Discrete-OWRP:  exact DP algorithm 

 OWRP: PTAS 

• IWRP: Inner WRP: For a given simple 
closed curve, g, within P, augment g (if 
needed) into a short network that sees all 
of P that is inside g.   
 O(log2 n)-approx 

 Combine 



Structure of OPT 

 Lemma:  OPT for WRP/OWRP/IWRP is 
polygonal, complexity O(n2) 

Conjecture:  O(n) 



Minimal Outer-Illuminating 
Squares (MOIS) 

 

 

 

 

 

 

 

 Lemma: There are a polynomial # of 
MOIS’s, B 

B 

Pf:   Square has 3 degrees of freedom 

p 



Localization 

 Lemma: If B is a MOIS within BB(OPT), 
then OPT lies within an enlarged box, B’, 
centered on B, of size O(n|B|). 

 Pf: Vertical decomposition of P within B 

Each of the O(n) faces has 

diam = O(|B|); 

Traversing the edges of 

all faces sees all of P, 

inside and out of B  

 

B 

B’ 
OPT 



Discretization 

 Lemma: OPT can be rounded to have 
vertices on a grid partitioning of the 
enlarged square, B’, of resolution 
e|B|/n2 .  The rounding increases its 
length by factor (1+e) 

B 

B’ 

Grid refinement of the 
vertical decomposition of P 
within B’ 



Outer WRP 

g 

P 

p 



Outer WRP 

 Lemma: OPT is geodesically convex (wrt P) 

 

 Goal: Search for min-perimeter 
geodesically convex, outer-illuminating 
cycle 

 Discretize first:  Constrain vertices to be 
among a given set, S, given by the grid 
discretization (for given choice of B, B’) 

 “Discrete-OWRP”:  Exact DP algorithm 

 



SubProblem(i’,j’,i,j) 



Outer WRP 

 Theorem: The Discrete-OWRP can be 
solved exactly in poly-time 

 

 Corollary: The OWRP has a PTAS 

 

 Corollary: The WRP on rays is poly-time 
Since it is discrete already 



Inner WRP 

g 

P 



Inner WRP 

 Theorem: The IWRP, for given P and g, 
has an O(log2 n)-approx 



Geodesic Triangles 

 Geodesic with respect to P, g 

 

 

 

 

 

 

 A triangle D is inner-illuminating if it 
sees all of P within D 

g 



Hierarchical Geodesic 
Triangulation 

 Lemma: For a simple closed polygonal 
curve g in P, there exists a geodesic 
triangulation of g of length O(|g| log n) 

 In particular, the hierarchical geodesic 
triangulation of g works 

 Note 1: If g is inner-illuminating, then so 
are all geodesic triangles in any geodesic 
triangulation of it. 

 Note 2: It suffices to work with 
discrete choices, on the B,B’-grid 



g 

Inner WRP 

OPT 

Hierarchical geodesic triangulation 



Set Cover Formulation: IWRP 

 Consider the set of all O(n3) inner-
illuminating geodesic triangles within g. 

 Consider the arr of all-pairs geodesic 
paths in g, between grid points/vertices 

 Cover all cells within g with a min-weight 
set of inner-illuminating geodesic 
triangles. 

 Lemma: The boundaries of any such 
cover is a connected network. 

 



Inner WRP 

 Our (greedy) covering:   O(OPTcover log n) 

 We know one way to cover with length    
O( OPTIWRP log n) – just use hierarchical 
geodesic triangulation of OPTIWRP   

 Thus, OPTcover  < O( OPTIWRP log n)  

 Thus, our solution < O( OPTIWRP log2 n)  

 Theorem: IWRP has an O(log2 n)-approx 

 
Conjecture: O(log n)-approx 
Use variant of guillotine method 



Overall Algorithm 

 Enumerate each MOIS, B 

 For each B:   
• Construct grid, cells of size e|B|/n2 within 

the enlarged B (size O(n|B|) ) 

• DP: Solve Discrete-OWRP, giving cycle g 

• Solve IWRP within g 

 Theorem: The WRP has an O(log2 n)-
approximation algorithm 

 Conjecture: O(log n)-approx 
Use variant of guillotine method 


