Igusa integrals and volume asymptotics in analytic and adelic geometry

joint work with A. Chambert-Loir

Basic observation

of lattice points \sim volume + error term

Basic observation

of lattice points \sim volume + error term

Basic problems

compute the volume

Basic observation

of lattice points \sim volume + error term

Basic problems

- compute the volume
- prove that the error term is smaller than the main term

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathbf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \mid \gcd(x_0, x_1) = 1 \}$$

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathbf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \mid \gcd(x_0, x_1) = 1 \}$$

Height function

$$H: \mathbb{P}^1(\mathbb{Q}) \to \mathbb{R}_{>0}$$

 $\mathbf{x} \mapsto \sqrt{x_0^2 + x_1^2}$

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathbf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \mid \gcd(x_0, x_1) = 1 \}$$

Height function

$$H: \mathbb{P}^1(\mathbb{Q}) \to \mathbb{R}_{>0}$$

 $\mathbf{x} \mapsto \sqrt{x_0^2 + x_1^2}$

Counting function

$$N(B) := \#\{x \mid H(x) \leq B\} \sim$$

$$\mathbb{P}^{1}(\mathbb{Q}) = \{ \mathbf{x} = (x_{0}, x_{1}) \in (\mathbb{Z}^{2} \setminus 0) / \pm \mid \gcd(x_{0}, x_{1}) = 1 \}$$

Height function

$$H: \mathbb{P}^1(\mathbb{Q}) \to \mathbb{R}_{>0}$$

 $\mathbf{x} \mapsto \sqrt{x_0^2 + x_1^2}$

Counting function

$$N(B) := \#\{\mathbf{x} \mid H(\mathbf{x}) \leq B\} \sim \qquad \pi \cdot B^2, \quad B \to \infty$$

$$\mathbb{P}^{1}(\mathbb{Q}) = \{ \mathbf{x} = (x_{0}, x_{1}) \in (\mathbb{Z}^{2} \setminus 0) / \pm \mid \gcd(x_{0}, x_{1}) = 1 \}$$

Height function

$$H: \mathbb{P}^1(\mathbb{Q}) \to \mathbb{R}_{>0}$$

 $\mathbf{x} \mapsto \sqrt{x_0^2 + x_1^2}$

Counting function

$$N(B) := \#\{\mathbf{x} \mid H(\mathbf{x}) \leq B\} \sim \frac{1}{2} \cdot \frac{1}{\zeta(2)} \cdot \pi \cdot B^2, \quad B \to \infty$$

$$\frac{1}{\zeta(2)} = \prod_{p} (1 + \frac{1}{p}) \cdot (1 - \frac{1}{p})$$

$$\frac{1}{\zeta(2)} = \prod_{p} (1 + \frac{1}{p}) \cdot (1 - \frac{1}{p}) = \prod_{p} \frac{\#\mathbb{P}^1(\mathbb{F}_p)}{p} \cdot (1 - \frac{1}{p})$$

$$\frac{1}{\zeta(2)} = \prod_{p} (1 + \frac{1}{p}) \cdot (1 - \frac{1}{p}) = \prod_{p} \frac{\#\mathbb{P}^{1}(\mathbb{F}_{p})}{p} \cdot (1 - \frac{1}{p})$$

We will interpret this as a volume with respect to a natural regularized measure on the adelic space $\mathbb{P}^1(\mathbb{A}^{fin}_{\mathbb{Q}})$.

Cubic forms

Points of height ≤ 1000 on the \mathbf{E}_6 singular cubic surface $X\subset \mathbb{P}^3$

$$x_1x_2^2 + x_2x_0^2 + x_3^3 = 0,$$

with $x_0, x_2 > 0$.

Counting points

Let $X^{\circ} := X \setminus \mathfrak{l}$, the unique line on X given by $x_2 = x_3 = 0$.

Derenthal (2005)

$$N(X^{\circ}(\mathbb{Q}), B) \sim c \cdot B \log(B)^{6}, \quad B \to \infty.$$

$$c = \alpha \cdot \beta \cdot \tau$$

where

•
$$\alpha = \frac{1}{6220800}$$

•
$$\beta = 1$$

•
$$\tau = \prod_{p} \tau_{p} \cdot \tau_{\infty}$$
 with

$$\tau_{p} = \frac{(p^{2} + 7p + 1)}{p^{2}} \cdot (1 - \frac{1}{p})^{7} = \frac{\#X(\mathbb{F}_{p})}{p^{2}} \cdot (1 - \frac{1}{p})^{7}$$
$$\tau_{\infty} = 6 \int_{|tv^{3}| \le 1, |t^{2} + u^{3}| \le 1, 0 \le v \le 1, |uv^{4}| \le 1} dt du dv$$

Cubic forms

Points of height \leq 50 on the Cayley cubic surface (4 ${f A}_1$) $X\subset {\Bbb P}^3$

$$x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3 = 0$$

Cubic forms

Points of height ≤ 50 on the Cayley cubic surface $(4{f A}_1)$ $X\subset {\Bbb P}^3$

$$x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3 = 0$$

Many recent results on asymptotics of points of bounded height on cubic surfaces and other Del Pezzo surfaces (Batyrev-Tschinkel, Browning, Derenthal, de la Breteche, Fouvry, Heath-Brown, Moroz, Salberger, Swinnerton-Dyer, ...)

The framework: Manin's conjecture

Manin (1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding.

The framework: Manin's conjecture

Manin (1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^{\circ} \subset X$ such that

$$N(X^{\circ}(F), B) \sim c \cdot B \log(B)^{b-1}, \quad B \to \infty,$$

where $b = \operatorname{rk} \operatorname{Pic}(X)$.

The framework: Manin's conjecture

Manin (1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^{\circ} \subset X$ such that

$$N(X^{\circ}(F), B) \sim c \cdot B \log(B)^{b-1}, \quad B \to \infty,$$

where $b = \operatorname{rk}\operatorname{Pic}(X)$.

We do not know, in general, whether or not X(F) is Zariski dense, even after a finite extension of F. Potential density of rational points has been proved for some families of Fano varieties, but is still open, e.g., for the quintic hypersurface $X_5 \subset \mathbb{P}^5$.

Algebraic groups

 (G, ρ, V) :

- G a (connected) linear algebraic group over F
- V a finite-dimensional F-vector space
- ullet ho : G
 ightarrow V an F-rational representation

Algebraic groups

 (G, ρ, V) :

- G a (connected) linear algebraic group over F
- V a finite-dimensional F-vector space
- ρ : $G \rightarrow V$ an F-rational representation

Example

There exists a Zariski open G-orbit in V, with complement $D \subset V$. Such triples (G, ρ, V) are called prehomogeneous vector spaces.

Algebraic flows

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- ullet $ho: \mathsf{G}
 ightarrow \mathrm{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(G) \cdot x$
- ullet $H:\ V(F)
 ightarrow \mathbb{R}_{>0}$ height
- $\{\gamma \in \mathsf{G}(\mathfrak{o}_F) \mid H(\rho(\gamma) \cdot x) \leq B\}$

Algebraic flows

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- $m{\circ}\
 ho: \mathsf{G}
 ightarrow \mathrm{End}(m{V})$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(G) \cdot x$
- ullet $H:V(F)
 ightarrow\mathbb{R}_{>0}$ height

One can consider a similar setup for projective representations and rational points.

Algebraic flows

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- ullet $ho:\mathsf{G} o\mathrm{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(G) \cdot x$
- ullet $H:V(F)
 ightarrow\mathbb{R}_{>0}$ height
- $\bullet \ \{ \gamma \in \mathsf{G}(\mathfrak{o}_F) \mid H(\rho(\gamma) \cdot \mathsf{x}) \leq B \}$

One can consider a similar setup for projective representations and rational points.

Arithmetic problem:

Count \mathfrak{o}_F -integral (or F-rational points) on G/H, where H is the stabilizer of x.

Some results

Rational points: (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset T$; (Strauch-T.) $X \supset G/U$; (Chambert-Loir-T.) $X \supset \mathbb{G}_a^n$; (Shalika-T.) $X \supset U$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset G$, De Concini-Procesi varieties

Some results

Rational points: (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset T$; (Strauch-T.) $X \supset G/U$; (Chambert-Loir-T.) $X \supset \mathbb{G}_a^n$; (Shalika-T.) $X \supset U$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset G$, De Concini-Procesi varieties

In all cases, Manin's conjecture, and its refinements by Batyrev-Manin, Peyre, Batyrev-T. hold.

Integral points on G/H**:** Duke-Rudnick-Sarnak; Eskin-McMullen; Eskin-Mozes-Shah; Borovoi-Rudnick; Gorodnik, Maucourant, Oh, Shah, Nevo, Weiss

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following

Problem

Compute these volumes.

Example

Consider the set $V_P(\mathbb{Z})$ of integral 2×2 -matrices M with characteristic polynomial

$$P(X) := X^2 + 1.$$

Put

$$||M|| = ||\begin{pmatrix} a & b \\ c & d \end{pmatrix}|| = \sqrt{a^2 + b^2 + c^2 + d^2}.$$

The volume of the "height ball" is given by $c \cdot B$, where

$$c = \zeta_{\mathbb{Q}(\sqrt{-1})}^*(1) \cdot \frac{\pi^{1/2}}{\Gamma(3/2)} \cdot \frac{\pi}{\Gamma(2/2)\zeta(2)}.$$

Example

Consider the set $V_P(\mathbb{Z})$ of integral 2×2 -matrices M with characteristic polynomial

$$P(X) := X^2 + 1.$$

Put

$$||M|| = ||\begin{pmatrix} a & b \\ c & d \end{pmatrix}|| = \sqrt{a^2 + b^2 + c^2 + d^2}.$$

The volume of the "height ball" is given by $c \cdot B$, where

$$c = \zeta_{\mathbb{Q}(\sqrt{-1})}^*(1) \cdot \frac{\pi^{1/2}}{\Gamma(3/2)} \cdot \frac{\pi}{\Gamma(2/2)\zeta(2)}.$$

The number of integral matrices in the ball of radius B converges to the volume.

Matrices with fixed characteristic polynomial

Eskin-Moses-Shah (1996), Shah (2000)

For general

$$V_P := \{M \in \operatorname{Mat}_n \mid \det(X \cdot Id - M) = P(X)\},$$

where P has n distinct roots, one has

$$\#\{M \in V_P(\mathbb{Z}) \mid \|M\| \leq B\} \sim c_P \cdot B^m, \quad m = n(n-1)/2,$$

where

$$c_{P} = \frac{2^{r_{1}}(2\pi)^{r_{2}}hR}{w\sqrt{D}} \cdot \frac{\pi^{m/2}/\Gamma(1+(m/2))}{\prod_{j=2}^{n}\pi^{-j/2}\Gamma(j/2)\zeta(j)}$$

Volume asymptotics

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over $\mathbb R$, and $\rho\colon G\to V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$\operatorname{vol}(B) = \mu(\{g \in G \mid \|\rho(g)\| \le B\}) \sim c \cdot B^{a} \log(B)^{b-1}, \quad B \to \infty,$$

where a,b are defined in terms of the relative root system of G and the weights of ρ , and $1 \le b \le \operatorname{rank}_{\mathbb{R}}(G)$.

Volume asymptotics

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over $\mathbb R$, and $\rho\colon G\to V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$\operatorname{vol}(B) = \mu(\{g \in G \mid \|\rho(g)\| \le B\}) \sim c \cdot B^{a} \log(B)^{b-1}, \quad B \to \infty,$$

where a,b are defined in terms of the relative root system of G and the weights of ρ , and $1 \le b \le \operatorname{rank}_{\mathbb{R}}(G)$. Moreover,

$$\operatorname{vol}(B)^{-1} \cdot \int_{\|\rho(g)\| \leq B} f(\rho(g)) \mathrm{d}\mu(g) \to \int_{\mathbb{P}\mathrm{End}(V)} f(\rho(g)) \mathrm{d}\mu_{\infty}(g),$$

where the limit measure μ_{∞} is supported on a G bi-invariant submanifold of $\mathbb{P}\mathrm{End}(V)$.

Volume asymptotics

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over $\mathbb R$, and $\rho\colon G\to V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$\operatorname{vol}(B) = \mu(\{g \in G \mid \|\rho(g)\| \le B\}) \sim c \cdot B^{a} \log(B)^{b-1}, \quad B \to \infty,$$

where a,b are defined in terms of the relative root system of G and the weights of ρ , and $1 \le b \le \operatorname{rank}_{\mathbb{R}}(G)$. Moreover,

$$\operatorname{vol}(B)^{-1} \cdot \int_{\|\rho(g)\| \leq B} f(\rho(g)) \mathrm{d}\mu(g) \to \int_{\mathbb{P}\mathrm{End}(V)} f(\rho(g)) \mathrm{d}\mu_{\infty}(g),$$

where the limit measure μ_{∞} is supported on a G bi-invariant submanifold of $\mathbb{P}\mathrm{End}(V)$.

The proof uses the Ka^+K -decomposition and integration formula.

Difficulties

The computation of asymptotics of volumes of adelic "height balls" was an open problem, in many cases.

Goal

Develop a geometric framework which is

• applicable in the analytic and adelic setup,

Goal

Develop a geometric framework which is

- applicable in the analytic and adelic setup,
- applicable to cubic surfaces and algebraic groups,

Goal

Develop a geometric framework which is

- applicable in the analytic and adelic setup,
- applicable to cubic surfaces and algebraic groups,
- applicable in the study of rational and integral points.

Heights

- F/\mathbb{Q} number field
- $X = X_F$ projective algebraic variety over F
- X(F) its F-rational points
- $\mathcal{L} = (L, (\|\cdot\|_{\nu}))$ adelically metrized very ample line bundle
- $H_{\mathcal{L}}: X(F) \to \mathbb{R}_{>0}$ associated height, depends on the metrization (choice of norms)
- $H_{\mathcal{L}}$ is not invariant with respect to field extensions
- $H_{\mathcal{L}+\mathcal{L}'} = H_{\mathcal{L}} \cdot H_{\mathcal{L}'}$ (height formalism)

Tamagawa numbers / Peyre (1995)

Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d , in a neighborhood U_x . In U_x , a section of the canonical line bundle has the form $s := \mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_d$. Put

$$\omega_{\mathcal{K}_X,v}:=\|\mathbf{s}\|_v\mathrm{d}x_1\cdots\mathrm{d}x_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d . This local measure globalizes to $X(F_v)$.

Tamagawa numbers / Peyre (1995)

Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d , in a neighborhood U_x . In U_x , a section of the canonical line bundle has the form $s := \mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_d$. Put

$$\omega_{\mathcal{K}_X,v}:=\|\mathbf{s}\|_v\mathrm{d}x_1\cdots\mathrm{d}x_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d . This local measure globalizes to $X(F_v)$. For almost all v,

$$\int_{X(F_{\nu})}\omega_{\mathcal{K}_{X},\nu}=\frac{X(\mathbb{F}_{q})}{q^{d}}.$$

Tamagawa numbers / Peyre

Choose a finite set of places S, and put

$$\omega_{\mathcal{K}_X} := L_{\mathcal{S}}^*(1, \operatorname{Pic}(\bar{X})) \cdot |\operatorname{disc}(F)|^{-1} \cdot \prod_{v} \lambda_v \omega_{\mathcal{K}_X, v},$$

with $\lambda_{\nu} = L_{\nu}(1, \operatorname{Pic}(\bar{X}))^{-1}$ for $\nu \notin S$ and $\lambda_{\nu} = 1$, otherwise. Put

$$\tau(\mathcal{K}_X) := \int_{\overline{X(F)} \subset X(\mathbb{A}_F)} \omega_{\mathcal{K}_X}.$$

Tamagawa numbers / Peyre

Choose a finite set of places S, and put

$$\omega_{\mathcal{K}_X} := L_S^*(1, \operatorname{Pic}(\bar{X})) \cdot |\operatorname{disc}(F)|^{-1} \cdot \prod_{v} \lambda_v \omega_{\mathcal{K}_X, v},$$

with $\lambda_{\nu} = L_{\nu}(1, \operatorname{Pic}(\bar{X}))^{-1}$ for $\nu \notin S$ and $\lambda_{\nu} = 1$, otherwise. Put

$$\tau(\mathcal{K}_X) := \int_{\overline{X(F)} \subset X(\mathbb{A}_F)} \omega_{\mathcal{K}_X}.$$

This constant appears in the contant $c = c(-\mathcal{K}_X)$ in Manin's conjecture above.

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$.

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$.

A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$.

A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

A metrization of the canonical line bundle K_X gives a global measure on X(F)

$$\tau_X = |\omega|/||\omega||.$$

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$.

A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

A metrization of the canonical line bundle K_X gives a global measure on X(F)

$$\tau_X = |\omega|/||\omega||.$$

A metrization of $K_X(D)$ defines a measure on U(F)

$$\tau_{(X,D)} = |\omega|/||\omega f_D||$$

Example

When X is an equivariant compactification of an algebraic group G and ω a left-invariant differential form on G, we have $\operatorname{div}(\omega) = -D$, so that $K_X(D)$ is a trivial line bundle, equipped with a canonical metrization. We may assume that its section ωf_D has norm 1. Then

$$\tau_{(X,D)} = |\omega| / ||\omega f_D|| = |\omega|$$

is a Haar measure on G(F).

Height balls

Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{u \in U(F) \mid ||f_L(u)|| \ge 1/B\}$$

is a height ball, i.e., it is compact of finite measure vol(B).

Height balls

Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{u \in U(F) \mid ||f_L(u)|| \ge 1/B\}$$

is a height ball, i.e., it is compact of finite measure vol(B).

To compute the volume, for $B \to \infty$, we use the Mellin transform

$$Z(s) := \int_0^\infty t^{-s} \operatorname{dvol}(t)$$

Height balls

Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{u \in U(F) \mid ||f_L(u)|| \ge 1/B\}$$

is a height ball, i.e., it is compact of finite measure vol(B).

To compute the volume, for $B \to \infty$, we use the Mellin transform

$$Z(s) := \int_0^\infty t^{-s} \operatorname{dvol}(t) = \int_{U(F)} \|f_L\|^s \tau_{(X,D)},$$

combined with a Tauberian theorem.

Assume that over *F*

$$|D|=\cup_{\alpha\in\mathcal{A}}D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally.

Assume that over *F*

$$|D|=\cup_{\alpha\in\mathcal{A}}D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A\subset \mathcal{A}$ let

$$D_A := \cap_{\alpha \in A} D_{\alpha}, \quad D_A^{\circ} = D_A \setminus \cup_{A' \supset A} D_{A'}.$$

Assume that over *F*

$$|D|=\cup_{\alpha\in\mathcal{A}}D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A\subset \mathcal{A}$ let

$$D_A := \cap_{\alpha \in A} D_{\alpha}, \quad D_A^{\circ} = D_A \setminus \cup_{A' \supset A} D_{A'}.$$

By the transversality assumption, $D_A \subset X$ is smooth, of codimension #A (or empty).

Assume that over F

$$|D|=\cup_{\alpha\in\mathcal{A}}D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A\subset \mathcal{A}$ let

$$D_A := \cap_{\alpha \in A} D_{\alpha}, \quad D_A^{\circ} = D_A \setminus \cup_{A' \supset A} D_{A'}.$$

By the transversality assumption, $D_A \subset X$ is smooth, of codimension #A (or empty). Write

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Local computations

The Mellin transform Z(s) can be computed in charts, via partition of unity. In a neighborhood of $x \in D_A^{\circ}(F)$ it takes the form

$$\int \prod_{\alpha} \|f_{D_{\alpha}}\|(x)^{\lambda_{\alpha}s-\rho_{\alpha}} d\tau_{X}(x) = \int \prod_{\alpha \in A} |x_{\alpha}|^{\lambda_{\alpha}s-\rho_{\alpha}} \phi(x; y; s) \prod_{\alpha} dx_{\alpha} dy.$$

Local computations

The Mellin transform Z(s) can be computed in charts, via partition of unity. In a neighborhood of $x \in D_A^{\circ}(F)$ it takes the form

$$\int \prod_{\alpha} \| f_{D_{\alpha}} \| (x)^{\lambda_{\alpha} s - \rho_{\alpha}} \, \mathrm{d} \tau_{X} (x) = \int \prod_{\alpha \in A} |x_{\alpha}|^{\lambda_{\alpha} s - \rho_{\alpha}} \phi (x; y; s) \prod_{\alpha} \mathrm{d} x_{\alpha} \, \mathrm{d} y.$$

Essentially, this is a product of integrals of the form

$$\int_{|x| \le 1} |x|^{s-1} \mathrm{d}x.$$

Analytic properties of Z(s) are encoded in the combinatorics of the stratification (D_A) .

Analytic properties of Z(s) are encoded in the combinatorics of the stratification (D_A) .

Abscissa of convergence
$$=\max_{\substack{D_{\alpha}(F)\neq\emptyset\\\lambda_{\alpha}>0}}\frac{\rho_{\alpha}-1}{\lambda_{\alpha}};$$

Analytic properties of Z(s) are encoded in the combinatorics of the stratification (D_A) .

Abscissa of convergence
$$=\max_{\substack{D_{\alpha}(F)\neq\emptyset\\\lambda_{\alpha}>0}}\frac{\rho_{\alpha}-1}{\lambda_{\alpha}};$$

Order of pole = number of α that achieve equality;

Analytic properties of Z(s) are encoded in the combinatorics of the stratification (D_A) .

Abscissa of convergence
$$=\max_{\substack{D_{\alpha}(F)\neq\emptyset\\\lambda_{\alpha}>0}}\frac{\rho_{\alpha}-1}{\lambda_{\alpha}};$$

Order of pole = number of α that achieve equality;

Leading coefficient = sum of integrals over all D_A of minimal dimension where A consists only of such α s.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),v}$ on $U(F_v)$ for all v.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),v}$ on $U(F_v)$ for all v. Assume that

$$\mathrm{H}^1(X,\mathscr{O}_X)=H^2(X,\mathscr{O}_X)=0.$$

Let

$$\mathrm{EP}(\mathit{U}) = \Gamma(\mathit{U}_{\overline{\mathbb{F}}}, \mathscr{O}_X^*)/\overline{\mathbb{F}}^* - \mathrm{Pic}(\mathit{U}_{\overline{\mathbb{F}}})/\text{torsion}$$

be the virtual Galois module.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),\nu}$ on $U(F_{\nu})$ for all ν . Assume that

$$\mathrm{H}^1(X,\mathscr{O}_X)=H^2(X,\mathscr{O}_X)=0.$$

Let

$$\mathrm{EP}(\mathit{U}) = \Gamma(\mathit{U}_{\overline{\mathbb{F}}}, \mathscr{O}_X^*)/\overline{\mathbb{F}}^* - \mathrm{Pic}(\mathit{U}_{\overline{\mathbb{F}}})/\mathsf{torsion}$$

be the virtual Galois module. Put

$$\lambda_{\nu} = L_{\nu}(1, \mathrm{EP}(U)), \quad \nu \nmid \infty, \quad \lambda_{\nu} = 1, \quad \nu \mid \infty.$$

We have a global measure on $U(\mathbb{A}_F)$ given by

$$\tau_{(X,D)} = L^*(1, \mathrm{EP}(U))^{-1} \cdot \prod_v \lambda_v \tau_{(X,D),v}$$

Height on the adelic space $U(\mathbb{A}_F)$

Let $\mathcal{L} = (L, (\|\cdot\|_{\nu}))$ be an adelically metrized effective divisor supported on |D|. This defines a height function on $U(\mathbb{A}_F)$

$$H_{\mathcal{L}}((x_{\nu})) = \prod_{\nu} \|f_{L}(x_{\nu})\|_{\nu}^{-1}.$$

Height on the adelic space $U(\mathbb{A}_F)$

Let $\mathcal{L} = (L, (\|\cdot\|_{\nu}))$ be an adelically metrized effective divisor supported on |D|. This defines a height function on $U(\mathbb{A}_F)$

$$H_{\mathcal{L}}((x_{\nu})) = \prod_{\nu} \|f_{L}(x_{\nu})\|_{\nu}^{-1}.$$

To compute the volume of the height ball

$$\operatorname{vol}(B) := \{ x \in U(\mathbb{A}_F) \mid H_{\mathcal{L}}(x) \leq B \},$$

for \mathcal{L} and $\tau_{(X,D)}$, we use the adelic Mellin transform:

$$Z(s) = \int_0^\infty t^{-s} \operatorname{dvol}(t) = \int_{U(\mathbb{A}_F)} H_{\mathcal{L}}(x)^{-s} \operatorname{d}\tau_{(X,D)}(x) = \prod_{v} \int_{U(F_v)} \dots$$

Denef's formula

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathscr{O}_X(D_\alpha)$ one has:

Denef's formula

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathcal{O}_X(D_\alpha)$ one has:

$$Z_{\nu}(s) = \int_{X(F_{\nu})} \prod_{\alpha} \|\mathsf{f}_{D_{\alpha}}\|_{\nu}^{s\lambda_{\alpha} - \rho_{\alpha}} d\tau_{X,\nu}(x).$$

Denef's formula

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathscr{O}_X(D_\alpha)$ one has:

$$Z_{\nu}(s) = \int_{X(F_{\nu})} \prod_{\alpha} \|\mathsf{f}_{D_{\alpha}}\|_{\nu}^{s\lambda_{\alpha} - \rho_{\alpha}} d\tau_{X,\nu}(x).$$

By the local analysis, this converges absolutely for

$$\Re(s) > \max((\rho_{\alpha} - 1)/\lambda_{\alpha}).$$

Denef's formula

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathscr{O}_X(D_\alpha)$ one has:

$$Z_{\nu}(s) = \int_{X(F_{\nu})} \prod_{\alpha} \|\mathsf{f}_{D_{\alpha}}\|_{\nu}^{s\lambda_{\alpha} - \rho_{\alpha}} d\tau_{X,\nu}(x).$$

By the local analysis, this converges absolutely for

$$\Re(s) > \max((\rho_{\alpha}-1)/\lambda_{\alpha}).$$

For almost all v and $\Re(s)>(
ho_{lpha}-1)/\lambda_{lpha}$, one has

$$Z_{\nu}(s) = \sum_{A} rac{\# D_A^{\circ}(\mathbb{F}_q)}{q^{\dim X}} \prod_{lpha \in A} rac{q-1}{q^{s\lambda_{lpha}-
ho_{lpha}+1}-1}.$$

Let $a := \max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L, D) be the set of α where equality is achieved; put b = #A(L, D).

Let $a:=\max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L,D) be the set of α where equality is achieved; put b=#A(L,D). Let E be the divisor aL-D; it is effective with $|E|\subseteq |D|$. Then

Let $a:=\max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L,D) be the set of α where equality is achieved; put b=#A(L,D). Let E be the divisor aL-D; it is effective with $|E|\subseteq |D|$. Then

$$\lim_{s\to a} Z(s)(s-a)^b \prod_{\alpha\in A(L,D)} \lambda_\alpha = \int_{X(\mathbb{A}_F)} H_E(x)^{-1} d\tau_X(x).$$

Let $a:=\max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L,D) be the set of α where equality is achieved; put b=#A(L,D). Let E be the divisor aL-D; it is effective with $|E|\subseteq |D|$. Then

$$\lim_{s\to a} Z(s)(s-a)^b \prod_{\alpha\in A(L,D)} \lambda_\alpha = \int_{X(\mathbb{A}_F)} H_E(x)^{-1} \,\mathrm{d}\tau_X(x).$$

A Tauberian theorem implies the volume asymptotics with respect to $\mathcal L$ and $\tau_{(X,D)}$, for $B\to\infty$, of the form

$$B^{a}\log(B)^{b-1}\left(a(b-1)!\prod_{\alpha\in A(L,D)}\lambda_{\alpha}\right)^{-1}\int_{X(\mathbb{A}_{F})}H_{E}(x)^{-1}\,\mathrm{d}\tau_{X}(x).$$

Integral points

- F number field, \mathfrak{O}_F ring of integers
- S finite set of places of F, $S \supset S_{\infty}$
- X smooth projective variety over F, $D \subset X$ subvariety
- $\mathcal{D} \subset \mathcal{X}$ models over $\operatorname{Spec}(\mathfrak{O}_F)$

A rational point $x \in X(F)$ gives rise to a section

$$\sigma_{\mathsf{X}} : \operatorname{Spec}(\mathfrak{O}_{\mathsf{F}}) \to \mathcal{X}.$$

A (\mathcal{D}, S) -integral point on X is a rational point $x \in X(F)$ such that $\sigma_{x,v} \notin \mathcal{D}_v$ for all $v \notin S$.

A sample problem

Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\cup_{\alpha\in\mathcal{A}}D_{\alpha}=X\setminus\mathcal{G}$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_D \subseteq \mathcal{A}$ and put $U = X \setminus \bigcup_{\alpha \in \mathcal{A}_D} D_{\alpha}$.

A sample problem

Let X be a projective equivariant compatification of $G=\mathbb{G}_{a}^{n}$, and

$$\cup_{\alpha\in\mathcal{A}}D_{\alpha}=X\setminus G$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_D \subseteq \mathcal{A}$ and put $U = X \setminus \bigcup_{\alpha \in \mathcal{A}_D} D_{\alpha}$. Then U is a (quasi-projective) equivariant compactification of G, and

$$X \setminus U = D = \sum_{\alpha \in \mathcal{A}_D} D_{\alpha}.$$

A sample problem

Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\cup_{\alpha\in\mathcal{A}}D_{\alpha}=X\setminus G$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_D \subseteq \mathcal{A}$ and put $U = X \setminus \bigcup_{\alpha \in \mathcal{A}_D} D_{\alpha}$. Then U is a (quasi-projective) equivariant compactification of G, and

$$X \setminus U = D = \sum_{\alpha \in \mathcal{A}_D} D_{\alpha}.$$

Let \mathcal{L} be an adelically metrized line bundle on X.

Problem

Establish an asymptotic formula for

$$N(B) := \#\{\gamma \in G(F) \cap U(\mathfrak{O}_{F,S}) \mid H_{\mathcal{L}}(\gamma) \leq B\}.$$

Height pairing

$$G(\mathbb{A}_F)$$
 × $\oplus_{\alpha} \mathbb{C} D_{\alpha} \to \mathbb{C}$

Height pairing

$$G(\mathbb{A}_F)$$
 × $\oplus_{\alpha}\mathbb{C}D_{\alpha} \to \mathbb{C}$

Height zeta function

$$Z(g,\mathbf{s}) = \sum_{\gamma \in G(F) \cap U(\mathfrak{O}_{F,S})} H(\gamma g,\mathbf{s})^{-1},$$

is holomorphic for $\Re(\mathbf{s}) \gg 0$ and all g.

"Fourier" expansion - "Poisson formula"

$$Z(g, \mathbf{s}) = \sum_{\psi} \hat{H}(\mathbf{s}, \psi),$$

a sum over all (automorphic) characters of $G(\mathbb{A}_F)/G(F)$.

"Fourier" expansion - "Poisson formula"

$$Z(g, \mathbf{s}) = \sum_{\psi} \hat{H}(\mathbf{s}, \psi),$$

a sum over all (automorphic) characters of $G(\mathbb{A}_F)/G(F)$.

Main term = trivial character

$$\int_{G(\mathbb{A}_F)\cap U(\mathfrak{O}_{F,S})} H(g,\mathbf{s})^{-1},$$

"Fourier" expansion - "Poisson formula"

$$Z(g,\mathbf{s}) = \sum_{\psi} \hat{H}(\mathbf{s},\psi),$$

a sum over all (automorphic) characters of $G(\mathbb{A}_F)/G(F)$.

Main term = trivial character

$$\int_{G(\mathbb{A}_F)\cap U(\mathfrak{O}_{F,S})} H(g,\mathbf{s})^{-1},$$

a volume integral computed above.

Asymptotics

For
$$L = -(K_X + D)$$
 we obtain

Chambert-Loir-T. (2009)

$$N(B) \sim c \cdot B \log(B)^{b-1},$$
 $b := \operatorname{rk}(\operatorname{Pic}(U)) + \sum_{v \in S} (1 + \dim \mathcal{C}_{F_v}^{\operatorname{an}}(D)),$

the analytic Clemens complex of the stratification of D, and

Asymptotics

For
$$L = -(K_X + D)$$
 we obtain

Chambert-Loir-T. (2009)

$$N(B) \sim c \cdot B \log(B)^{b-1},$$
 $b := \operatorname{rk}(\operatorname{Pic}(U)) + \sum_{v \in S} (1 + \dim \mathcal{C}_{F_v}^{\operatorname{an}}(D)),$

the analytic Clemens complex of the stratification of D, and

$$c = \alpha \beta \tau$$

- $\alpha \in \mathbb{Q}$, $\beta \in \mathbb{N}$;
- $\tau = \tau_{(X,D)}^{S}(U(\mathcal{O}_{S})) \cdot \prod_{v \in S} \left(\sum_{\sigma \in \mathcal{C}_{\max,F_{v}}^{an}(D_{v})} \tau_{v}(\sigma) \right)$
- $\tau_{\nu}(\sigma)$ Tamagawa volume of σ , (adjunction!).

$$\hat{H}(\mathbf{s},\psi) = \int_{G(\mathbb{A}_F)} H(g,\mathbf{s})^{-1} \psi(g) \mathrm{d}g.$$

$$\hat{H}(\mathbf{s},\psi) = \int_{G(\mathbb{A}_F)} H(g,\mathbf{s})^{-1} \psi(g) dg.$$

For $D = \emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

$$\hat{H}(\mathbf{s},\psi) = \int_{G(\mathbb{A}_F)} H(g,\mathbf{s})^{-1} \psi(g) \mathrm{d}g.$$

For $D = \emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified ψ appear.

$$\hat{H}(\mathbf{s},\psi) = \int_{G(\mathbb{A}_F)} H(g,\mathbf{s})^{-1} \psi(g) dg.$$

For $D = \emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified ψ appear. Uniform bounds needed for summation over the lattice of these ψ are (relatively) easy to obtain.

Fourier transforms at $v \in S$ have poles interacting with the main term.

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term.

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_{\alpha}|^{s_{\alpha}} \psi(u(\mathbf{x})\mathbf{x}^{\lambda}) \phi(\mathbf{x}, \mathbf{s}, \psi) dx,$$

where $\lambda = (\lambda_{\alpha})$ and σ is a certain cone in F_{ν}^{d} .

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_{\alpha}|^{s_{\alpha}} \psi(u(\mathbf{x})\mathbf{x}^{\lambda}) \phi(\mathbf{x}, \mathbf{s}, \psi) dx,$$

where $\lambda = (\lambda_{\alpha})$ and σ is a certain cone in F_{ν}^{d} .

We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009).

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_{\alpha}|^{s_{\alpha}} \psi(u(\mathbf{x})\mathbf{x}^{\lambda}) \phi(\mathbf{x}, \mathbf{s}, \psi) dx,$$

where $\lambda = (\lambda_{\alpha})$ and σ is a certain cone in F_{ν}^{d} .

We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009).

Similar integrals appeared in the work of Cluckers (2010) on *Analytic van der Corput Lemma...*

Summary

 Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.

Summary

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.
- The spectral method to establish asymptotics for the number of integral points of bounded height leads to interesting v-adic oscillatory integrals. This should allow to establish asymptotics for \$\Omega_{F,S}\$-integral points on general quasi-projective embeddings of algebraic groups.

Summary

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.
- The spectral method to establish asymptotics for the number of integral points of bounded height leads to interesting v-adic oscillatory integrals. This should allow to establish asymptotics for \$\mathcal{O}_{F,S}\$-integral points on general quasi-projective embeddings of algebraic groups.
- A framework to generalize Manin's conjectures to integral points.