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dρt = ρtdx, dµt(z) = e−|z|
2/t

(πt)n
dz

Fs = ⊕∞m=0H
⊗sm is a bosonic Fock space, where H is a state space

of a single particle (Cn).

HL2(Cn, µt) ={square integrable holomorphic functions}



B :Hk1
(xj1) · ... ·Hkn(xjn) 7→ x

k1
j1
⊗s ...⊗s xknjn

St :Hk1
(xj1) · ... ·Hkn(xjn) 7→ z

k1
j1
· ... · zknjn

Hk(x) is an Hermite polynomial.

T :z
k1
j1
· ... · zknjn 7→ x

k1
j1
⊗s ...⊗s xknjn



INFINITE-DIMENSIONAL LINEAR CASE

A complex Wiener space is (W,HCM, µ), where

W is a complex separable Banach space,

HCM is the Cameron-Martin subspace (a complex separable Hilbert space
which is densely and continuously embedded in W ), and

µ is a Gaussian measure defined by∫
W

eiϕ(z)dµ(z)=e
−1

4‖ϕ‖
2
H∗CM , ϕ∈W ∗⊂H∗

CM
.

µ(HCM)=0.



Irving Segal's Work on Infinite Dimensional
 

Integration Theory
 

Leonard Gross 
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Irving Segars work on infinite dimensional integration theory was driven 
by the mathematical needs of quantum field theory. 

Irving's point of view on integration over an infinite dimensional real 
Hilbert space is easy to understand. Define Gauss measure on [~n by 
y/z = (2n)-n/2 e-lxI2/2 dx. Suppose that F is an 11 dimensional subspace of a 
real infinite dimensional Hilbert space H and that P: H ----+ F is the ortho­
gonal projection. If B is a Borel set in F then the set C = P-l(B):= {x E H; 
Px E B} is a cylinder in H with base B. Define y(C) = Yn(B). The collec­
tion, ~, of all such cylinder sets, allowing F to run over all finite dimen­
sional subspaces of H, is a field (but not a o-field.) The set function Y is 
well defined on ~ because )'" is a product measure in any orthogonal 
decomposition of [Rn. Unfortunately, although y is finitely additive on !Jt, it 
is not countably additive (wherever possible) and consequently it has no 
countably additive extension to the Borel field of H. In fact the outer y 
measure of H is zero. For this reason the theory of integration over an 
infinite dimensional Hilbert space H deviates significantly from that over 
[Rn. And yet the theory is also more structured than that for general finitely 
additive measures. Think of the set S of rational numbers in the interval 
[0, I] and the set function 111 which assigns measure b - a to the subset 
S n (a, b]. 1'1'1 extends to a finitely additive measure on the field generated 
by these intervals. But the 111 outer measure of S is zero and 111 has no 
countably additive extension. Of course we know what to do about this: 
complete S in such a way as to obtain the real unit interval. The same 
formula used to define 111 now has a countably additive extension-s­
Lebesgue measure on [0, 1]. Similarly there is a "completion" Q of Hand 
a countably additive probability measure Pr on Q which extends the finitely 
additive measure Y in a useful way. The space Q is not unique, however, 
and must be chosen in a technically convenient way for each application. 
Sometimes the choice is a natural one, as for example when H consists of 
the absolutely continuous functions on [0, 1] which are zero at zero and 
have square integrable derivative. In this case the completion Q of H-in 
the sup norm--eonsists of the continuous functions on [0, 1] which vanish 
at zero. Pr is exactly Wiener measure on Wiener space. The important 
point that Irving emphasized in all of his work on infinite dimensional 
integration theory is that it is the Hilbert space H that controls both the 
heuristics and much of the analysis. The measure space Q, PI' is just a con­
venient place "to hang your hat on," as he once told me. The orthogonal 
invariance of y, along with its quasi-invariance under translations, should 
be kept front and center for the formulation and proofs of theorems of 
analysis over Wiener space and similar Gaussian measure spaces. This 
point of view makes much of the work of Cameron and Martin on analysis 
over Wiener space quite transparent. 

~
 



FINITE-DIMENSIONAL CURVED SPACES

Cn =⇒ a Lie group G or a Riemannian manifold M

The bosonic Fock space Fs =⇒ a completion of the universal enveloping
algebra

The bosonic Fock space Fs has all the information about the Lie group G
(third Lie theorem)

Geometry and Brownian motion: stochastic completeness versus geodesic
completeness.

Geodesic completeness + Ricci bounded from below =⇒ stochastic com-
pleteness =⇒....



INFINITE-DIMENSIONAL CURVED SPACES

• Lie algebra and Laplacian

Different choices of a norm on a Lie algebra give different Lie algebras
m

the Lie algebra determines directions of differentiation
m

the Lie algebra and a norm on it determines a Laplacian

• Riemannian geometry of these spaces: exponential map, curvature.

• What is a heat kernel measure?
No Haar measure, no heat kernel, only a heat kernel measure.

• Make sense of the “Gaussian measure”

dµ (x) “ = ”
1

Zt
e−

∫ t
0 |ẋ(s)|2dsDx Feynman-Kac formula



I. HILBERT-SCHMIDT GROUPS:
GEOMETRY AND THE HEAT KERNEL MEASURES

A. HILBERT-SCHMIDT GROUPS.

B(H) bounded linear operators on a complex Hilbert space H .

G=GL(H) invertible elements of B(H).

Q a bounded linear symmetric nonnegative operator on HS.

HS Hilbert-Schmidt operators on H with the inner product
(A,B)HS = TrB∗A.

g = gCM ⊆HS an infinite-dimensional Lie algebra with a Hermitian inner
product (·, ·), |A|g = |Q−1/2A|HS.



GCM ⊆GL(H) Cameron-Martin group {x∈GL(H), d(x, I)<∞}

d(x, y) the Riemannian distance induced by | · |

d(x, y) = inf
g(0)=x
g(1)=y

1∫
0
|g(s)−1g′(s)|gds



HS as infinite matrices

HS= matrices {aij} such that
∑
i,j
|aij|2 <∞.

eij=

j

i


. . . . . . . .
. . . 1 . . .
. . . . . . . .
. . . . . . . .

 , Qeij=λijeij, λij > 0.

ξij=
√
λijeij.

Q is a trace class operator⇐⇒
∑
i,j
λij <∞.

For example, λij = ri+j, 0<r<1.



(i) The Hilbert-Schmidt general group

GLHS=GL(H)
⋂

(I +HS),

Lie algebra glHS=HS, gCM = Q1/2HS.

(ii) The Hilbert-Schmidt orthogonal group SOHS is the connected
component of

{B : B − I ∈ HS, BTB=BBT=I}.

Lie algebra soHS={A : A ∈ HS, AT=−A},

gCM = Q1/2soHS.



(iii) The Hilbert-Schmidt symplectic group

SpHS={X : X − I ∈ HS, XTJX=J}, where

J=

(
0 −I
I 0

)
.

Lie algebra spHS= {X :X ∈HS, XTJ+JX=0},

gCM = Q1/2spHS.



B. GEOMETRY OF THE HILBERT-SCHMIDT GROUPS
(G., JFA 05)

Levi-Civita connection ∇x for any x, y, z ∈ g

〈∇xy, z〉 =
1

2
(〈[x, y], z〉 − 〈[y, z], x〉+ 〈[z, x], y〉)

Riemannian curvature tensor R

Rxy = ∇[x,y] −∇x∇y +∇y∇x, x, y ∈ g.

sectional curvature K(x, y)=〈Rxy(x), y〉 for orthogonal x, y in g.

Ricci curvature

R(x) =
∞∑
i=1

K(x, ξi) =
∞∑
i=1

〈Rxξi(x), ξi〉

for {ξi}∞i=1, an orthonormal basis of g.



truncated Ricci curvature

RN(x) =
N∑
i=1

K(x, ξi) =
N∑
i=1

〈Rxξi(x), ξi〉

for {ξi}∞i=1 an orthonormal basis of g

Theorem(G.) [Ricci curvature]. For Hilbert-Schmidt general and orthog-
onal groups

R = −∞.



Qeij = λiλjeij, ξij =
√
λiλjeij

The Hilbert-Schmidt general group

GLHS=GL(H)
⋂

(I +HS), gCM=Q1/2HS

RN(ξij) = −AijN −BN ,

0 < Aij, 0 < BN −−−−→
N→∞

B <∞.

If (·, ·) = (·, ·)HS, then RN(ξij) = −AijN.



The Hilbert-Schmidt orthogonal group

SOHS= {B : B − I ∈ HS, BTB=BBT=I}.

soHS = {A : A ∈ HS,AT = −A}, gCM=Q1/2soHS.

RN(ξij) = −AijN +B
ij
N .

If (·, ·) = (·, ·)HS, then RN(ξij) = +N
2 .

The Hilbert-Schmidt upper triangular group

RN(ξij) = −AijN +BN .

If (·, ·) = (·, ·)HS, then RN(ξij) = −N2 .



CAMERON-MARTIN GROUP AND
EXPONENTIAL MAP.

Definition. The Cameron-Martin group is

GCM={x ∈ GL(H), d(x, I) < ∞}, where d is the Riemannian dis-
tance induced by | · |:

d(x, y)= inf
g(0)=x
g(1)=y

1∫
0

|g(s)−1g′(s)|gds

Finite dimensional approximations:

gn ascending finite dimensional Lie subalgerbas of g,

Gn Lie groups with Lie algebras

Assumption: all gn are invariant subspaces of Q.



Theorem(G.) If |[X,Y ]| 6 c|X||Y | then

1. g =
⋃

gn, and the exponential map is a local diffeomorphism from g to
GCM .

2.
⋃
Gn is dense in GCM in the Riemannian distance induced by | · |.



D. STOCHASTIC DIFFERENTIAL EQUATIONS ON HS,
HEAT KERNEL MEASURES (G., JFA 2000)

Wt a Brownian motion in HS with the covariance operator Q, that is,

Wt=
∞∑
i=1

W i
t ξi,

W i
t one-dimensional independent real Brownian motions

{ξj}∞j=1an orthonormal basis of g as a real space

T = 1
2

∞∑
j=1

ξ2
j



Theorem(G.) Suppose that Q is a trace-class operator. Then
•[SDEs] the stochastic differential equations

dGt = TGtdt+ dWtGt, G0 = X,

dZt = ZtTdt− ZtdWt, Z0 = Y

have unique solutions in HS.

•[Inverse]. The solutions of these SDEs with G0 = Z0 = I satisfy

ZtGt = I with probability 1 for any t > 0.

• [Kolmogorov’s backward equation] The function v(t,X) = Ptϕ(X) is a
unique solution to the parabolic type equation

∂

∂t
v(t,X)=1

2

∞∑
j=1

D2v(t,X)(ξjX ⊗ ξjX) + (TX,Dv(t,X))HS.



Kolmogorov’s backward equation=the group heat equation.

Definition. The heat kernel measure µt on HS is the transition prob-
ability of the stochastic process Gt, that is, µt(A) = P (Gt ∈ A).

Open question: quasi-invariance of the heat kernel measures.



II. INFINITE-DIMENSIONAL HEISENBERG GROUP

(joint with B.Driver, JFA’08, JDG’09, PTRF’10)

(W,H,µ) an abstract Wiener space

ω : W ×W → C a bi-linear quadratic form on W.

G = G (ω) = W × C with group multiplication

(w, c) ·
(
w′, c′

)
=

(
w + w′, c+ c′ +

1

2
ω
(
w,w′

))
.

GCM = H × C the Cameron-Martin subgroup of G.



B (t) a W –valued Brownian motion with variance determined by H,

B0 (t) an independent C-valued Brownian motion

g (t) =

(
B (t) , B0 (t) +

1

2

∫ t

0
ω (B (s) , ◦dB (s))

)
.

• Quasi-invariance: the path space measure and the heat kernel measure;

• Ricci curvature: bounded from below;

• log Sobolev inequality;

• Taylor isomorphism.



III. THE VIRASORO CASE: DIFF(S1)/S1

(M. Gordina, P.Lescot JFA 2006)

A.RIEMANNIAN GEOMETRY OF DIFF(S1)/S1

M. Bowick, S.Rajeev (’87), B. Zumino (’87), A. A. Kirillov, D. V. Yur’ev (’87):
Diff(S1)/S1 as a Kähler manifold.

Diff(S1) smooth orientation-preserving diffeomorphisms of S1

diff(S1) ϕ(t) ddt, where ϕ is a smooth periodic function

{fk, gk} fk = sin(kt) ddt, gk = cos(kt) ddt, an orthonormal basis of

the Lie algebra diff(S1)

diff0(S1) = {ϕ(t) ddt ∈ diff(S1),
2π∫
0
ϕ(t)dt = 0}



J Jfk = fk, Jgk = −gk, an almost complex structure on
Diff(S1)/S1

ωc,h(f, g) =
2π∫
0

(
(2h− c

12)f
′
(t)− c

12f
(3)(t)

)
g(t)dt

2π , a cocycle on diff(S1),

B(f, g) = ωc,h(f, Jg) = ωc,h(g, fg), an inner product on diff(S1),

∇ the covariant derivative determined by the inner productB(f, g).

The curvature tensor for x, y ∈ diff(S1)C

R̃xy = ∇̃x∇̃y − ∇̃y∇̃x − ∇̃[x,y]mC
− ad([x, y]Cf0

);

The Ricci tensor Ric(x, y) is the trace of the map z 7→ R̃zxy.



An orthonormal basis of mC

Ln = fn + ign, n > 0,

Ln = f−n − ig−n, n < 0.

Theorem. The only non-zero components of the Ricci tensor are

Ric(Ln,L−n) = −
13n3 − n

6
, n ∈ Z, n 6= 0.

• The parameters c and h do not appear in the Ricci curvature;

• the Ricci tensor for the original covariant derivative ∇ diverges;

• ∇̃ is the Levi-Civita covariant derivative, that is, it is metric compatible and
torsion-free, and it is not a Hilbert-Schmidt operator.



B.HEAT KERNEL MEASURES ON Diff(S1)/S1

(H.AIRAULT, P. MALLIAVIN, S. FANG, M. WU)

• Represent Diff(S1) as a certain space of univalent functions, and then as
the infinite-dimensional group SpHS;

• construct the Brownian motion on SpHS as the solution to the stochastic
differential equation

dGt=
1
2

∞∑
j=1

ξ2
jGtdt+ dWtGt

with Qeij = ri+jeij, 0 < r < 1.

• This choice of renormalization forces the Brownian motion Gt to live in the
group SpHS, but it also changes the geometry of the group.( H.Airault, P.
Malliavin )



• H3/2 metric forces the Brownian motion to live in Hölderian homeomor-
phisms of S1. ( P. Malliavin, S. Fang )

• a stronger metric forces the Brownian motion to live in Diff(S1)/S1. (
M. Wu ’11)



KÄHLERIAN STRUCTURE ON
LOOP GROUPS.

(I.SHIGEKAWA, S. TANIGUCHI ’96)

(1)LG = {g : [0, 1]→ G, g(0) = g(1) = e},
H0 = {h : [0, 1]→ g, h(0) = h(1) = 0}
with ‖h′‖L2 <∞;

(2) the Riemannian structure on LG can be described in terms of a ”good”
basis (D. Freed, B.Driver);

(3) an almost complex structure on LG (A. Pressley), then the Riemannian
tensor can be computed using a Kählerian metric on LG (I.Shigekawa, S.
Taniguchi);

(4) the Ricci is defined as Ric = dd∗ + d∗d−∇∗∇.



IV. CAMERON-MARTIN GROUP AND
ISOMETRIES.

HL2(µt) the closure in L2(µt) of holomorphic polynomials HP on HS.

Theorem(G.) [Holomorphic skeletons].

For any f ∈ HL2(µt) there is a holomorphic function f̃ on GCM such that
for any x ∈ GCM and pm ∈ HP

if pm
L2(µt)−−−−→ f, then pm(x) −→ f̃(x).



This skeleton f̃ is given by the formula

f̃(x)=
∞∑
k=0

∫
06s16...6sk61

(DkIf)(c(s1)⊗ ...⊗ c(sk))d~s,

where Dkf is the kth derivative of function f , and c(s) = g(s)−1g′(s)
for any smooth path g(s) from I to x.

A larger space of holomorphic functions:

Ht(GCM)holomorphic functions on GCM such that
‖f‖t,∞= lim

n→∞
‖f‖t,n=

lim
n→∞

∫
Gn

|f(z)|2dµnt (z) <∞.



Theorem(G.) [Pointwise estimates].

For any f ∈ Ht(GCM), g ∈ GCM , 0 < s < t

|(Dkf)(g)|2
(g∗)⊗k

6 k!
sk
‖f‖2t,∞ exp

(
d2(g,I)
t−s

)
.

Theorem(G.). Q : HS → HS (or soHS or spHS).

• If Q is trace class, then the heat kernel measure lives in GLHS (or SOHS

or SpHS ), and Ht(GCM) is an infinite dimensional Hilbert space.

• If the covariance operator Q is the identity operator, then Ht(GCM) con-
tains only constant functions.



Theorem(G.) [ISOMETRIES].

• The skeleton map is an isometry from HL2(µt) to Ht(GCM) (the restric-
tion map on holomorphic polynomials HP extends to an isometry between
the spaces HL2(µt) and Ht(GCM)).

• If Q is a trace class operator, then HL2(µt) is an infinite-dimensional
Hilbert space.

• The Taylor map f 7→
∞∑
k=0

Dkf(I) is an isometry from Ht(GCM) to

the Fock space Ft(g), a subspace of the dual of the tensor algebra of g with
the norm

|α|2t=
∞∑
k=0

tk

k!
|αk|2.



HP

inclusion
map
−−−→ HL2(µt)

skeleton
“restriction”

map
−−−→ Ht(GCM)

Taylor
map
−−−→ Ft(g)



Ft(g) a Hilbert space in the dual of the universal enveloping algebra of
the Lie algebra g

T (g) the tensor algebra over g

J the two-sided ideal in T (g) generated by
{ξ ⊗ η − η ⊗ ξ − [ξ, η]; ξ, η ∈ g}.

T ′(g) =
∞∑
k=0

(g⊗k)∗, the algebraic dual of the tensor algebra T (g) .

J0 the annihilator of J in the dual space T ′(g).

‖α‖2t=
∞∑
k=0

tk

k!|αk|
2
(g⊗k)∗

, α=
∞∑
k=0

αk, αk ∈ (g⊗k)∗, k=0, 1, 2, ...

The generalized bosonic Fock space is Ft(g)={α ∈ J0 : ‖α‖2t <∞}

This is the space of Taylor coefficients of functions from Ht(GCM).


