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MOTIVATION

ground state transformation

L?*(R", dx) - L?(R™, dpy i
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dpr = ptdil?, d[,l,t(Z) — e(ﬂ-t)n dz

Ss = @%:OI-I@S"L is a bosonic Fock space, where H is a state space
of a single particle (C™).

HL?(C™, uy) ={square integrable holomorphic functions}
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INFINITE-DIMENSIONAL LINEAR CASE

A complex Wiener space is (W, Heyyy i), where
W is a complex separable Banach space,

H ¢, is the Cameron-Martin subspace (a complex separable Hilbert space
which is densely and continuously embedded in W), and

4 is a Gaussian measure defined by

elP(2) g4 (2)= _%”‘P“%{* wW* — H*
p(z)=e v, pEWTCHE,.
W

p(Henr)=0.



Irving Segal’s Work on Infinite Dimensional
Integration Theory

Leonard Gross

Department of Mathematics, Cornell University, [thaca, New York 14853  —

Irving Segal’s work on infinite dimensional integration theory was driven
by the mathematical needs of quantum field theory.

Irving’s point of view on integration over an infinite dimensional real
Hilbert space is_easy to understand. Define Gauss measure on R" by
. = (2m)™"? e7M/2 dx. Suppose that F is an n dimensional subspace of a
real infinite dimensional Hilbert space H and that P: H — F is the ortho-
gonal projection. If B is a Borel set in F then the set C =P /(B) :={xe H;
Px e B} is a cylinder in A with base B. Define y(C)=1y,(B). The collec-
tion, £, of all such cylinder sets, allowing F to run over all finite dimen-
sional subspaces of H, is a field (but not a g-field.) The set function v is
well defined on # because 7, is a product measure in any orthogonal
decomposition of R”. Unfortunately, although y is finitely additive on 4, it
is not countably additive (wherever possible) and consequently it has no
countably additive extension to the Borel field of H. In fact the outer y
measure of H is zero. For this reason the theory of integration over an
infinite dimensional Hilbert space H deviates significantly from that over
R". And yet the theory is also more structured than that for general finitely
additive measures. Think of the set .S of rational numbers in the interval
[0,1] and the set function m which assigns measure h—a to the subset
S~ (a, b]. m extends to a finitely additive measure on the field generated
by these intervals. But the m outer measure of S is zero and m has no
countably additive extension. Of course we know what to do about this:
complete S in such a way as to obtain the real unit interval. The same
formula used to define m now has a countably additive extension—
Lebesgue measure on [0, 1]. Similarly there is a “completion” £ of H and
a countably additive probability measure Pr on 2 which extends the finitely
additive measure y in a useful way. The space {2 is not unique, however,



FINITE-DIMENSIONAL CURVED SPACES
C"™ — a Lie group GG or a Riemannian manifold M

The bosonic Fock space §s —= a completion of the universal enveloping
algebra

The bosonic Fock space & has all the information about the Lie group G
(third Lie theorem)

Geometry and Brownian motion: stochastic completeness versus geodesic
completeness.

Geodesic completeness + Ricci bounded from below —= stochastic com-
pleteness —>....



INFINITE-DIMENSIONAL CURVED SPACES

e Lie algebra and Laplacian
Different choices of a norm on a Lie algebra give different Lie algebras

i

the Lie algebra determines directions of differentiation

i

the Lie algebra and a norm on it determines a Laplacian
e Riemannian geometry of these spaces: exponential map, curvature.

e What is a heat kernel measure?
No Haar measure, no heat kernel, only a heat kernel measure.

e Make sense of the “Gaussian measure”

1 t .
du (x) “ = ”?e_ Jo |2(s)I*ds g Feynman-Kac formula
t



I. HILBERT-SCHMIDT GROUPS:
GEOMETRY AND THE HEAT KERNEL MEASURES

A. HILBERT-SCHMIDT GROUPS.
B(H) bounded linear operators on a complex Hilbert space H .
G=GL(H) invertible elements of B(H).
Q a bounded linear symmetric nonnegative operator on H S.

HS Hilbert-Schmidt operators on H with the inner product
(A,B)ys=TrB*A.

g = gcn © HS an infinite-dimensional Lie algebra with a Hermitian inner

product (+,+), |Alg = |Q /2 A|ys.



Gcyv € GL(H) Cameron-Martin group {x€GL(H),d(x, 1)< oo}

d(z,y) the Riemannian distance induced by | - |

1
d(w,y) = inf [1g(s)”"9'(s)lgds
g(1)=y 0



H S as infinite matrices

H S= matrices {a;;} such that |a,z-j|2 < 0.
]

€jj=1t |...1...0], Qeij:Aijeija )‘ij = 0.

Q is a trace class operator <= » )‘ij < Q.
2%

For example, Aij — Ti_l_j, 0<r<1.



(i) The Hilbert-Schmidt general group
GLys=GL(H)(\(I + HS),

Lie algebra gl,s=HS, gev = QY/2HS.

(ii) The Hilbert-Schmidt orthogonal group SOy is the connected
component of

{B:B—-I1€ HS, B'B=BB'=I}.
Lie algebra soys={A: A c HS, AT=— A},

gCcM — Ql/zﬁoﬂs



(iii) The Hilbert-Schmidt symplectic group
Spus={X : X — T € HS, XTJX=J}, where

J= (2 —OI>.

Lie algebra spus= {X: X € HS, XTJ+JX=0},

Jcm = Ql/zﬁpﬂs-



B. GEOMETRY OF THE HILBERT-SCHMIDT GROUPS
(G., JFA 05)

Levi-Civita connection V  for any x,y,z € g

(Voys2) = - ([, 9, 2) — [y 21, 2) + {[=, 2] 9)

Riemannian curvature tensor R

sectional curvature K (x,y)=(Rxyy(x),y) for orthogonal x,y in g.

Ricci curvature
R(z) = » K(x,&) = ) (Rge,(x),&)
=1 1=1

for {&; 7?21' an orthonormal basis of g.



truncated Ricci curvature

N N
RN (z) = Z K(z,&) =Y (Rye,(2),&)
=1

for {&€;};24 an orthonormal baS|s of g

Theorem(G.) [Ricci curvature]. For Hilbert-Schmidt general and orthog-
onal groups

R = —o0.



Qe;j = Aidjeii, &ij = \/Aidjei;
The Hilbert-Schmidt general group

GLys=GL(H)N(I + HS), gen=QY2HS

RN (¢;;) = —A;jN — Bp,

0< A;;, 0< B » B < oo.
e NN—)oo

If (-,+) = (-, ) s then RN (&;5) = —A;;N.



The Hilbert-Schmidt orthogonal group
SOus={B:B—1¢c HS, B'B=BBT=I}
sogs = {A: A€ HS, AT = —A}, gCM:Q1/250HS-

If (-y+) = () s, then RNV (&;5) = +5-

The Hilbert-Schmidt upper triangular group

RN(&j) = —A;;N + Bj.

If (+,+) = (-, ) Ers, then RN (&;5) = -5



CAMERON-MARTIN GROUP AND
EXPONENTIAL MAP.

Definition. The Cameron-Martin group is

Gey={x € GL(H), d(x,I) < oo}, where d is the Riemannian dis-
tance induced by | - |:

1
d(@,y)= it [ lg(s) 71y (s)lgds
g(1)=y 0

Finite dimensional approximations:
gn ascending finite dimensional Lie subalgerbas of g,

G, Lie groups with Lie algebras

Assumption: all g4, are invariant subspaces of ().



Theorem(G.) If |[X,Y]| < ¢|X||Y| then

1. g = |J gn, and the exponential map is a local diffeomorphism from g to

Gen

2. | JGp, is dense in Gy, in the Riemannian distance induced by | - |.



D. STOCHASTIC DIFFERENTIAL EQUATIONS ON HS,
HEAT KERNEL MEASURES (G., JFA 2000)

Wy a Brownian motion in H S with the covariance operator Q, that is,
oo
)
Wi=Y Wi,
1=1
Wti one-dimensional independent real Brownian motions

- 12° _an orthonormal basis of g as a real space
jfj=1 g P

1 = 2
T :E.Zgj
7=1



Theorem(G.) Suppose that Q) is a trace-class operator. Then
®[SDEs]| the stochastic differential equations

dGy = TGidt + dWiGe, Gg = X,
dZy = Z;T'dt — Z3;dWy, Zg =Y

have unique solutions in H.S.

o[Inverse|. The solutions of these SDEs with Gg = Zy = I satisfy
Z1Gy = I with probability 1 for any t > 0.

e [Kolmogorov's backward equation] The function v(t, X) = Prp(X) is a
unique solution to the parabolic type equation

8 o0
o0t X)=5 ) D*o(t, X)(§X ® §X) + (TX, Dv(t, X)) us-
j=1



Kolmogorov's backward equation=the group heat equation.

Definition. The heat kernel measure py on HSS is the transition prob-
ability of the stochastic process G, that is, ut(A) = P(G¢ € A).

Open question: quasi-invariance of the heat kernel measures.



I1. INFINITE-DIMENSIONAL HEISENBERG GROUP
(joint with B.Driver, JFA'08, JDG'09, PTRF'10)

(W, H, i) an abstract Wiener space
w: W X W — C a bi-linear quadratic form on W.
G = G (w) = W Xx C with group multiplication

1
(w,c) - (w',c') — (w—l—w',c—l—c’—l—;u (w,w’)) :

Gopnr = H X C the Cameron-Martin subgroup of G.



B (t) a W—valued Brownian motion with variance determined by H,

By (t) an independent C-valued Brownian motion
1 t
9 ()= (B(®),Bo(t) +5 [ (B (5),0dB ().

e Quasi-invariance: the path space measure and the heat kernel measure;
® Ricci curvature: bounded from below:
e log Sobolev inequality;

e Taylor isomorphism.



ITI. THE VIRASORO CASE: DIFF(S')/s1
(M. Gordina, P.Lescot JFA 2006)

A.RIEMANNIAN GEOMETRY OF DIFF(S1)/s!

M. Bowick, S.Rajeev ('87), B. Zumino ('87), A. A. Kirillov, D. V. Yur'ev ('87):
Diff (S1) /St as a Kihler manifold.

Diff(S')  smooth orientation-preserving diffeomorphisms of S1
diff (S1) go(t)%, where ¢ is a smooth periodic function

{fr, 91} fi. = sin(kt)%, gr = cos(kt)%, an orthonormal basis of
the Lie algebra diff (S1)

27T
diffo(S1) = {(t)g; € diff(81), [ e(t)dt =0}



J

wen(Fr9) =/ ((2h—H)f &) — HFO @) L

B(f,g) =

A%

Jfi. = fr. Jgr = —gg, an almost complex structure on
Diff(S1) /st

27

- a cocycle on diff (S1),
0

we,h(fs Jg) = we n(g, £g), an inner product on diff (S1),

the covariant derivative determined by the inner product B(f, g).

The curvature tensor for &,y € diff(Sl)@

R:I:y — 6:1:6y — 6yeiiﬁ — 6[w,y]m@ B ad([m, y]@fo);

The Ricci tensor Ric(x, y) is the trace of the map z — R..y.



An orthonormal basis of m¢

Ly = fn +1gn,n > 0,

Lyp=f_n—19_n.n<O.

Theorem. The only non-zero components of the Ricci tensor are

] 13n3 — n
Ric(Lp,L_4) = — . , n € Z,n#D0.

® [ he parameters ¢ and h do not appear in the Ricci curvature;
® the Ricci tensor for the original covariant derivative V diverges;

e V is the Levi-Civita covariant derivative, that is, it is metric compatible and
torsion-free, and it is not a Hilbert-Schmidt operator.



B.HEAT KERNEL MEASURES ON Diff(S')/s!
(H.AIRAULT, P. MALLIAVIN, S. FANG, M. WU)

® Represent Diff (S1) as a certain space of univalent functions, and then as
the infinite-dimensional group Spgs;

® construct the Brownian motion on Spys as the solution to the stochastic
differential equation

@)
dGi=% ) £?tht + AW Gy
j=1

with Qe;; = rttie,. 0 <r <1
1) 1]

® This choice of renormalization forces the Brownian motion G to live in the

group Spgs, but it also changes the geometry of the group.( H.Airault, P.
Malliavin )



O H?’/2 metric forces the Brownian motion to live in Holderian homeomor-

phisms of S1. ( P. Malliavin, S. Fang )

® a stronger metric forces the Brownian motion to live in Diff(S1) /ST, (

M. Wu '11)



KAHLERIAN STRUCTURE ON
LOOP GROUPS.
(LSHIGEKAWA, S. TANIGUCHI ’96)

(1) LG ={g:[0,1] = G,g(0) = g(1) = e},
Ho = {h:[0,1] — g,h(0) = h(1) = 0}
with ||/]| 72 < oco;

(2) the Riemannian structure on LG can be described in terms of a " good”

basis (D. Freed, B.Driver);

(3) an almost complex structure on LG (A. Pressley), then the Riemannian
tensor can be computed using a Kahlerian metric on LG (l.Shigekawa, S.
Taniguchi);

(4) the Ricci is defined as Ric = dd* + d*d — V*V.



IV. CAMERON-MARTIN GROUP AND
ISOMETRIES.

HL?(ui) the closure in L2( ) of holomorphic polynomials HP on H'S.

Theorem(G.) [Holomorphic skeletons].

For any f € FHL?(u) there is a holomorphic function f on Gy such that
for any @ € Gy and pyy, € HDP

L?(pt)

if Pm f, then pm(x) — f(:z:)



This skeleton f is given by the formula

fa)=> [ (DEP(es) @ .. ® c(s))ds

k=0 0<s1<...<s<1

where D¥ f is the kth derivative of function f, and ¢(s) = g(s) " 1g’(s)
for any smooth path g(s) from I to .

A larger space of holomorphic functions:

H! (G car) holomorphic functions on Geyy such that

| £llt.00=_lim || f]le.n=

i [ 1)/ (2) < oo.
Gn

n—oo



Theorem(G.) [Pointwise estimates].

For any f € HY(Geowm), g € Gen, 0 < s < t

2
|(Dkf)(g)|(g*)®k AN k‘”f”t OOEXp (dt('_g;I)>.

Theorem(G.). Q: HS — HS (or s0gg Or $Pps).

e If QQ is trace class, then the heat kernel measure lives in GLyg (or SOy
or Sprs ), and HE(Geay) is an infinite dimensional Hilbert space.

e If the covariance operator @Q is the identity operator, then U-Ct(GCM) con-
tains only constant functions.



Theorem(G.) [ISOMETRIES].

® The skeleton map is an isometry from HL? () to HY(Gear) (the restric-

tion map on holomorphic polynomials HP extends to an isometry between
the spaces HL? () and HYH(Genr)).

e If Q is a trace class operator, then H{L?(pu) is an infinite-dimensional
Hilbert space.

o

® The Taylor map f — S DF¥f(I) is an isometry from H*(Gear) to
k=0

the Fock space §¢(g), a subspace of the dual of the tensor algebra of g with

the norm



| _ skel_etc_)n
inclusion “restriction” TraT}/Ior
map map ap



5t(9)

a Hilbert space in the dual of the universal enveloping algebra of
the Lie algebra g

T(g) the tensor algebra over g
J the  two-sided ideal in  T(g) generated by
{€®77_77®€_ [5977]5 5977 Eg}-

© @)

T'(g) = ) (g®k)*, the algebraic dual of the tensor algebra T'(g) .
k=0

JO the annihilator of J in the dual space T'(g).

2_ =tk 9 o k
lallf= > grlakl! iy« 0= 2. ok, ag € (697)*, k=0,1,2, ...
k=0 (g=%) k=0

The generalized bosonic Fock space is F¢(g)={a € J? : ||a||? < oo}

This is the space of Taylor coefficients of functions from H(Gear).



