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Defining Equations of Projective Varieties

Chow's Theorem. Consider
X C P"=P(C)

a complex submanifold. Then X is an algebraic
variety, i.e. 4 homogeneous polynomials

Fa — F(I(X(), “ . ,Xfr')

such that
X ={m=..=Fy=0}

Question: What can one say about the defin-
ing equations {Fy}, e.g. their degrees?

Answer: In this generality, nothing.

(Choose any {Fu}, use to define X C P".)

Better Question: Study “nice” embeddings of
given X.

Today: “nice” = *"very positive”




e Embedding X C P" defined by choosing holo-
morphic line bundle L, and basis

sg, ..., 8 € NX,L).
e Define

X < P" via x> [sg(z),...sr(2)].

e We will be interested in L where ¢1(L) is very
positive.

Example. Take C =P1, L = 0p1(3), giving

Pl P3| [s,t] — [s3, s%¢, st2, t3].

Image is set
_ Ig 171 1> 3
C = {rank[Tl e T3] < 1} C P-.

So C cut out by three quadratic polynomials
Doy = ToTs — T7
App =1TpT3 — 17717
Ao =TT —T5.



Example. Say E = C/A an elliptic curve.

o If deg L = 3, get
E C P2, E = {G=0}
with deg(G) = 3.
o If deg L = 4, get
E C P, E = {Q1=Qx=0},
with deg(Qq1) = deg(Q») = 2.

Theorem [Castelnuovo, Mumford, Kempf, ... ]
If X is smooth variety, and

X C P’
is defined by L with

c1(L) > 0,
then X cut out by polynomials of degree 2.

Example. (Castelnuovo) When X is curve of
genus g, then conclusion holds when

deg(L) > 2g+2.




Sidman—Smith: When ¢1(L) > 0, X is cut out
in P by the 2 x 2 minors of matrix of linear
forms.

Two Issues.

Q. The theorem guarantees that X C P" is
cut out by quadrics if ¢y (L) is sufficiently pos-
itive. What happens if we let L become even
more positive?

Example. If g(X) = g, what can we say when

deg(L) > 2g+37

(II). Can't easily read off invariants of X from
number or form of quadrics defining it.

Green: Should study higher syzygies among
defining equations.



Syzygies

Consider polynomial ring:
S = Cl1Ip,...,Tr],
ideal
I = (Q--,Qn) C 5
and to fix ideas say deg(Qq) = 2.

Hilbert: Consider syzygies among the @, i.e.
relations of the form

Z Ra : QOé = O (*)
where the R, are polynomials with deg R = gq.

Say that (*) is a second syzygy of weight q.

Example: Return to

C = Pl P3| [s,t]— [s3, 5%, st2, t3].

Recall that

_ To 17 17 3
C = {rank[Tl o T3] < 1} C P~,

6



so C defined by

No1 = ToTo — TF
Apgo =TTz —T117
Ao =T1T5 — T3,

Repeat row of matrix and expand resulting de-
terminant:

To T1 T>]
det |17 1> 13| = O,
To 11 T2
SO
T5-Apg1 —Tr-Agz +Tp- A1 = 0.
Similarly,

T3-Ag1 — T - Apgp + 11 - A1 = 0.

No other syzygies.

So here all syzygies have minimal weight ¢ = 1.
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Example: Consider degree four elliptic curve

E=C/A C P3
Recall
E=1{Q=Q =0}
Here only syzygy is
Qx-Q1 — Q1-Q2 = 0,
which has weight g = 2.

Returning to ideal

I =(Q1,...,QnN) CS,
one considers next

{Third syzygies} = {

and so on.

Relations among coeffi-}
cients of second syzygies)’

(Constructing minimal free resolution of 1.)

Hibert's Theorem on Syzygies: Process stops
after at most r steps.




Definition. Given L defining

X C P’

one says that L satisfies Property (INp) if:

e X cut out by quadrics (p = 1);

e First p modules of syzygies of X generated by
relations with minimal possible weight ¢ = 1.

“Green’s Principle’”: On any smooth X, Prop-
erty (NNp) holds linearly in positivity of embed-
ding line bundle.

Fix reference Kahler form wg, and suppose that
L, is line bundle such that

c1(Lg) = d-wo—+n,
n = fixed (1, 1)-form.
Theorem. (Many people...) There exist con-

stants A, B > 0 (depending on X, wg, m) such
that L, satisfies (/Np) when

d > A-p+ B.




Example (Green). Consider X a curve with
g(X) = g, and suppose deg(L,;) = d. Then
(Np) holds when

d > 29+ 1+p.

Philosophy: As positivity of embedding grows,
the algebraic properties of

X C P’

become simpler.
Note: Assume as above ¢1(Ly) = d-wo+1n, and
say
dimX = n.
e Number of syzygy modules that occur is ap-
proximately
r(Lgy) = C-d*+ LOT

e Number of syzygy modules governed by re-
sults just stated grows linearly in d.

So: When n = dimX > 2, Green’s principle
ignores most of syzygies that occur!
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Ottaviani-Paoletti: For

X = P" | L; = Opn(d),
(Np) fails when p = 3d — 2.
Question: When n > 2, what can one say

about the asymptotic shape of syzygies of em-
bedding

X C P

defined by L; as d — oco?

Will initially focus on which weights of syzygies
appear.
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Asymptotic Non-Vanishing Thms (with L. Ein)

As before, consider X with dimX =n, and Ly
on X with

c1(Lg) = d-wg + 7.
L, defines

X C P’ with ry= O(d™).

Are interested in pt" syzygies of X for

1<p<7°d

when d > 0.

General Facts. For d > 0:

(I). All syzygies of X have weights

1 < g < n+41.
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(I1). [Green et al] L ; has syzygies of maximal
weight g =n + 1 if and only if

(X, %) # 0,

in which case such syzygies appear only for a
few large values of p.

Rmk. Follows from (I) and (II), that for curves,
essentially only syzygies that appear are those
of weight ¢ = 1 (== Green’s theorem.)

Problem: Fix q € [1,n]. For which

p € [1,7r4]

does L, give rise to a pt" syzygy of weight g
when d > 07

13



Theorem A Fix ¢ € [1,n]. There exist con-
stants C'1,C5 > 0 with the property that if

d > 0,

then L, determines pt" syzygy of weight ¢ for
every p with

Ci-di=t < p < ’r'd_CQ'dn_l.

Rmk. For fixed ¢ € [1,n], consider the ratio

# {p c [1,74] | 3 pth syz. of weight q}
#{pellrgd}

Since ry; = O(d"™), Theorem implies:
Ratio — 1 as d — oo.
(I.e. asymptotically in d, “essentially all” the

syzygy modules that could have generator in
weight ¢ actually do have such generators.)
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Conjecture. Fix 1 <qg<n. Then

Kpq(Lg) = O
for p < O(d?1).

Veronese Varieties

Take X = P"™ and L; = Opn(d). Use all mono-
mials of degree d to define embedding

Image is dth Veronese embedding of P™.

P" «— P"d , Td:(

Syzygies of Veronese varieties studied eg by
Ottaviani-Paoletti, Rubei, Bruns-Conca-Romer.
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Theorem B. Fix g € [1,n]. If d > O then the
Veronese variety carries pth syzygies of weight
q for

Ex. Take ¢ = 2,n = 2. Then d syzygies of
weight ¢ = 2 for

3d—2 < p < rg—2.
(Thm of Ottaviani-Paoletti.)

Conjecture. Bound is optimal for all g € [1,n],
d>q—+1.

Vector space of pth syzygies of weight ¢ are a
representation of SL(n+ 1).
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Ask: How many different irreducible represen-
tations appear?

Fulger-Zhou: For fixed p, as d — oo:

_ . th -
## of irreps in space of p-"' syzy = O(dP).
gies of weight ¢ =1

Intuition for Proof of Thm A.

Fix a hypersurface X C X, and consider com-
position

X C X C Prd,

Then X embeds in a linear space of very large
codimension, and by induction on dim, one can
see that syzygies of X in P"d have many differ-
ent weights. EXxpect that these contribute to
syzygies of X in P’d.
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Betti Numbers. (with Ein, Erman)

Consider X, L, as before. Define

kpq(Lg) = dim {pth syzygies of weight q}.

Question. Fix 1 < g <n. Can one say anything
about the asymptotics of these betti numbers
as d — oo?

Curves: Take
g(C) = g , deg(Ly) = d
rq — d—g.

For large d, want to consider the behavior of
the dimension

kp1 =def kp1(Lg)

as a function of p.
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Ex. Plot of kp71 for g =0, d = 60.

35x 108

3.0x10'8

2.5%x10'8 |
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1.5%10'8 |
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Ex. Plot of kp71 for g = 10, d = 60.
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Prop. Fix C, L; as above, and let {p;} be a
sequence of integers such that

Td_l_a.\/@

H_
Pd > >

. . . 2p —r
for some fixed number a (ie. lim Z£d—d —= g).
( Ul = q)
Then as d — oo,

1 27T _22
Qrd. Td'kpd71—>ea/.

What about general X, L,;?

One can hope that similar picture holds for
kp,q(Lg) for every q € [1,n].

Conjecture: For each g € [1,n] there is a func-
tion F(d) (depending on X and geometric data)
such that

F(d) - kp,q(Lg) — e /2

as d — oo and pg — 4 + a-\/g_d.
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Example. Betti numbers k, 1 of 4-fold Veronese

embedding of P2.
00 .

2000 °

(Biggest example we could work out exactly
on computer.)

Confession: Don’'t know how to verify Conjec-
ture for any X of dimension n > 2 |

(Ex. What are asymptotics of betti numbers
for Veronese embeddings of P2 77?)
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Evidence for Conjecture comes from

Probabilistic Picture: For “random resolutions”
having syzygies with fixed weights, betti num-
bers become normally distributed as length of
resolution grows.

Ask: What does one mean by “random reso-
lution?"”

As model for syzygies of very positive embed-
dings of varieties of fixed dimension n, consider
resolutions of modules M over polynomial rings
in » 4+ 1 variables that have syzygies only in
weights 1 < q < n.

Eisenbud—Schreyer: Proved conjecture of Boij-
Soderberg describing (up to scaling) all possi-
ble configurations of betti numbers kp (M) for
M as above.
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e Betti tables are (essentially) parametrized up
to scaling by numerical parameters

= {21} € [0,1] (1)

e SO get functions

bpa : 2 =qer 10,1]G71) — R

describing Betti numbers of formal resolution
described by Boij-Soderberg coefficient vector
x € Q2.

Plan: For fixed 1 < q <n, choose

x € €2, uniformly at random,

and study distribution in p of the formal betti
numbers kp ().
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Example. Plot of k, 1 for random x with n = 2
and r = 14.
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Theorem C. (Informal Statement). Fix 1 <
g <n. Then as r — oo, for “most” choices of

x € Q2
the formal betti numbers

kpq(z) € R

display the sort of normal distribution (in p)
that is predicted by the conjecture.

So at least the Conjecture predicts that “real-
life” Betti numbers have typical, rather than
exceptional, behavior.
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