
The Geometry of Ricci Curvature

Aaron Naber



Talk Outline

✤ Background

✤ Lower Ricci Curvature

✤ Bounded Ricci Curvature

✤ Examples and Degeneracies

✤ Extension of Ideas to Other Areas



     BACKGROUND



Background:  Manifolds and Curvature



Background:  Manifolds and Curvature

✤ Throughout the talk we let (Mn, g, p) with p ∈ M be a pointed smooth 
Riemannian manifold of dimension n.



Background:  Manifolds and Curvature

✤ Throughout the talk we let (Mn, g, p) with p ∈ M be a pointed smooth 
Riemannian manifold of dimension n.

✤ We denote by Rm(X,Y,Z,W)= 〈∇²X,YZ-∇²Y,X Z,W〉  the full curvature 
tensor. 



Background:  Manifolds and Curvature

✤ Throughout the talk we let (Mn, g, p) with p ∈ M be a pointed smooth 
Riemannian manifold of dimension n.

✤ We denote by Rm(X,Y,Z,W)= 〈∇²X,YZ-∇²Y,X Z,W〉  the full curvature 
tensor. 

✤ By Rc(X,Y)=∑Rm(Eᵢ,X,Y,Eᵢ) the Ricci curvature . 



Background:  Manifolds and Curvature

✤ Throughout the talk we let (Mn, g, p) with p ∈ M be a pointed smooth 
Riemannian manifold of dimension n.

✤ We denote by Rm(X,Y,Z,W)= 〈∇²X,YZ-∇²Y,X Z,W〉  the full curvature 
tensor. 

✤ By Rc(X,Y)=∑Rm(Eᵢ,X,Y,Eᵢ) the Ricci curvature . 

✤ For a point x ∈ M and r > 0, we denote by Br(x) the ball of radius r 
centered at x.  We denote the volume of this ball by Vol(Br(x)).
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✤ In order to study the structure of the spaces (Mn, g, p) it is often more 
convenient to study limit spaces

✤                                       (Mi, gi, pi) → (X, dX, p) 

✤ where the convergence is at least in the Gromov Hausdorff sense.  We 
call such a sequence noncollapsed if

✤                                         Vol(B1(pi)) > v > 0

✤ and otherwise we call the sequence collapsed.     
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✤ Given a limit space (Mi, gi, pi) → (X, dX, p), or really any length space 
X, one considers the following definitions:

✤ Definition:  Given x ∈ X and r>0 define the blow up metric space by X
(x,r) ≣ (X, r-1 dX, p)

✤ Definition:  We say a metric space Xx is a tangent cone of X at x if there 
exists a sequence ri →0 such that X(x,rᵢ) → Xₓ .



Background:  Stratification

✤ Given a limit space X one decomposes X into pieces based on the conical behavior of 
the tangent cones.  Rigorously Speaking:

✤ Definition:  We say a metric space X is 0-conical if X=C(Y) is the cone of a metric space 
Y.  We say X is k-conical if X=Rk×C(Y).

✤ - For a limit space X every tangent cone Xₓ is 0-conical.

✤ Definition:  For a limit space X we define the strata                                                             Sk

(X)≡ {x\in X: no tangent cone at x is k+1-conical}.

✤ Its known that dim Sk ≤ k, where the dimension is the Hausdorff dimension.
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manifold.  The Isometry Group is a Lie Group. (Fukaya)

✤ 2b. If |seci|< K and Vol(B1(pi))→0, then away from a set S ⊆ X of dimension ≤ min
{n-5,dimX-3}, X is a smooth Riemannian orbifold (Naber-Tian).

✤ 3. If seci > -K and Vol(B1(pi))>v> 0, then X is homeomorphic to an n-dimensional 
Riemannian manifold (Grove-Petersen).

✤ 4. If seci > -K and Vol(B1(pi)) →0, then X is homeomorphic to a stratified Riemannian 
manifold (Perelman).  The Isometry Group is a Lie Group (Fukaya-Yamaguchi).
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✤ What about the case (Mi, gi, pi) → (X, dX, p)  where Rci ≥ - K?  First Structural Theorems 
go back to Cheeger-Colding (mid 90’s):

✤ If noncollapsed, Vol(B1(pi))>v> 0, then away from a set of codim 2, the limit space X is 
homeomorphic to a Riemannian manifold.  The Isometry Group is a Lie Group. 

✤ If collapsed, Vol(B1(pi)) →0, then there exists a set of full measure R ⊆ X such that every 
tangent cone at x ∈ R is some Euclidean space Rk(x) , where 0<k(x)<n .

✤ Conjecture (ChCo): If collapsed then k(x)=k is independent of x.

✤ Conjecture (ChCo,FY): If collapsed then the isometry group is a lie group.
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✤ Finally we consider the case (Mi, gi, pi) → (X, dX, p)  where |Rci|≤ K.

✤ In the case dim Mi = 4, χ(Mᵢ) < K and Vol(Mᵢ)>ν>0, results due to Anderson, Bando, 
Kasue, Nakajima, and Tian  give a complete picture of X.

✤ In this case X is a Riemannian orbifold with at most a finite number of isolated singular 
points, all of which are of the form R⁴/Γ with Γ ⊆ O(4).

✤ Similar results hold in higher dimensions if χ(Mᵢ) < K is replaced with  ∫|Rm|n/2 < K 
(Anderson).

✤ Under only |Rci|≤ K and Vol(Mᵢ)>ν>0, it can be said X is a Riemannian manifold away 
from a set of Hausdorff codim 2.  If in addition one assumes ∫|Rm|p/2 < K, then one 
can say X is a Riemannian manifold away from a set of Hausdorff codim p.
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✤ Theorem (Petrunin):  Let X be an Alexandroff space (e.g. secᵢ > -K) and γ:[0,1]→ X a 
minimizing geodesic on X, then if X₀ and X₁ are tangent cones at γ(t₀) and γ(t₁) with 
t₀,t₁∈ (0,1), then X₀≡ X₁ are isometric.

✤ Corollary:  The regular set R ⊆ X is totally geodesic.

✤ Question:  Does the same theorem hold for limit spaces with Lower Ricci Curvature?

✤ Answer: No!
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✤ Issue:  There exists limit spaces X with minimizing geodesics γ: [0,1]→ X such that at 
each γ(t) there is a unique tangent cone Xt , however for s and t distinct we have that Xs 
and Xt are not isometric .

✤ Question:  Can one at least control the rate of change of tangent cones at the same scale 
along a minimizing geodesic?

✤ Answer:  Yes!



Lower Ricci Curvature:  Geodesics III



Lower Ricci Curvature:  Geodesics III

✤ Theorem (Colding-Naber):  Let (Mⁿi, gi, pi) → (X, dX, p) with Rcᵢ ≥ -(n-1) and let              
γ:[0,1]→ X be a minimizing geodesic.  Let s,t ∈ (δ,1-δ) with Xs and Xt tangent cones at 
the same scale at γ(s) and γ(t), respectively.  Then there exists C(n,δ), α(n)>0 such that 
dGH(Xs, Xt) < C|t-s|α .



Lower Ricci Curvature:  Geodesics III

✤ Theorem (Colding-Naber):  Let (Mⁿi, gi, pi) → (X, dX, p) with Rcᵢ ≥ -(n-1) and let              
γ:[0,1]→ X be a minimizing geodesic.  Let s,t ∈ (δ,1-δ) with Xs and Xt tangent cones at 
the same scale at γ(s) and γ(t), respectively.  Then there exists C(n,δ), α(n)>0 such that 
dGH(Xs, Xt) < C|t-s|α .

✤ -  Tangent cones change at most at a Holder rate.  In particular they change in a 
continuous fashion.                                                                                                                        
- For all intensive purposes α is 1/2 .                                                                                         - 
Holder rate is sharp.  Tangent cones do not need to change at a Lipschitz rate, or even a 
Cα rate for α > 1/2 .                                                                                                                    -  
Effective version which says ∀ r > 0 that r⁻¹ dGH(Bᵣ(γ(s)), Bᵣ(γ(t))) < C|t-s|α
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✤ Usual two points:  new estimates + how to use estimates:

✤ How to use estimates:  Gradient flow for ∇ dγ(0) .                                                                          
- Measure theoretic gradient flow.                                                                                                 
- No estimates on d (in principle hessian estimates are required).                                            
-”Theorem”:  If there exists an L2 approximation h of d with L2 hessian control on h, 
then one can construct and estimate the measure theoretic gradient flow.

✤ New Estimates:  Flow d by the heat equation to get smooth approximation ht .                 
- Previously known:  For harmonic approximation h one has                             Vol(Bᵣ)⁻¹∫Bᵣ
(γ(t)) |∇² h|² < C r2-ε .  At best => r⁻¹ dGH(Bᵣ(γ(s)), Bᵣ(γ(t))) < C|t-s|αr -1+ε/2 .    - Need ε = 
2.  Can (essentially) be proved for parabolic approximation hr² , but wrong for harmonic 
approximation h.
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✤ Let us remark on some corollaries:

✤ Corollary(CoNa):  There exists a subset Rk ⊆ X of full measure, with 0≤ k ≤ n, such that 
if x ∈ R then the tangent cone at x is unique and isometric to Euclidean space Rk 

✤ - Uniquely defined dimension of limit space.  R is the regular set.

✤ Corollary(CoNa):  The subset R ⊆ X is weakly convex.

✤ - Given x,y ∈ R and any ε >0 there exists a curve γ ⊆	 R  connecting x and y whose 
length satisfies |γ|<d(x,y)+ε

✤ Corollary(CoNa):  The Isometry Group of X is a Lie Group.
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✤ Let us now consider limit spaces (Mⁿi, gi, pi) → (X, dX, p) with |Rcᵢ|≤ n-1 and Vol(Bᵣ(pᵢ))
>ν>0.

✤ First let us see what our knowledge about tangent cones along geodesics yields us:

✤ Corollary(CoNa):  The regular set Rn ⊆ X is a dense open smooth submanifold which is 
totally geodesic.

✤ Corollary(CoNa):  Given a minimizing unit speed geodesic γ:[0,1]→ X with γ(1) ∈ Rn a 
regular point and γ(0) possibly singular, then γ(t) ∈ Rn for t >0 and there exists C>0 and 
α(n)>0 such that |Rm|(γ(t)) ≤ C t-2α .

✤ - Curvature blows up at most polynomially along a minimizing geodesic.
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✤ We have seen previously that we can get Hausdorff dimension control over singular 
sets of limit spaces (Mⁿi, gi, pi) → (X, dX, p) with |Rcᵢ|≤ n-1 and Vol(Bᵣ(pᵢ))>ν>0.  
Improved control if the the curvature operator satisfies |Rm|∈ Lp.

✤ Hausdorff dimension control, although a great leap in understanding, is fairly weak.  
By itself it does not stop a set from even being dense, or arbitrarily dense.

✤ Question 1.  Can the Hausdorff dimension control be improved?

✤ Question 2.  Is an assumption on Lp control on the curvature necessary?
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✤ To study more refined structure of limits (Mⁿi, gi, pi) → (X, dX, p) with |Rcᵢ|≤ n-1 and 
Vol(Bᵣ(pᵢ))>ν>0 we introduce the regularity scale:

✤ Definition:  Given x ∈ X we define the regularity scale at x by                                           r
(x)≡ max{0<r≤ 1: |Rm|≤ r⁻² on Bᵣ(x)}.

✤ - r(x)=0 if x is not a regular point.

✤ - Scale invariant definition.

✤ - |Rm|(x) ≤ r⁻²(x), though r(x) a much more effective measurement of regularity.

✤ - Previously theorems do not prove any effective lower bounds for r(x).
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✤ Given a limit space X one decomposes X into pieces based on the almost conical 
behavior of the tangent cones.  Roughly Speaking:

✤ Definition:  We say x∈ X is (k,ε,r)-conical if Br(x) is ε-almost k-conical.  That is, Br(x) 
looks ε-close to a ball in Rk×C(Y) for some Y (that is, r⁻¹ dGH(Bᵣ(x), Bᵣ(x₀))<ε).

✤ Definition:  For a limit space X we define the strata                                                                
Sk
ε,r(X)≡ {x\in X: Bs(x) is not (k+1,ε,r)-conical for r ≤ s≤ 1}.

✤ -  Nontrivial for a smooth manifold.

✤ -  Effective:  Controls behavior of X on balls of definite size.

✤ -  We will prove stronger Minkowski estimates on this effective set, as opposed to the 
weaker Hausdorff estimates proved for the ineffective standard singular set.
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✤ Theorem (Cheeger-Naber).  Let (Mⁿi, gi, pi) → (X, dX, p) be a limit space with                
Rcᵢ ≥ -(n-1) and Vol(B₁(pᵢ))>ν>0.  Then for every ε > 0 there exists C(n,ε)>0 such that 

✤                                                   Vol(Bᵣ(Sk
ε,r ∩ B₁)) < C rn-k-ε

✤ - If one visualizes the k-strata as a k-dimensional manifold, then one should have Vol(Bᵣ
(Sk

ε,r ∩ B₁)) < C rn-k, so the theorem gives everything less than this.

✤ - Controls tubes around the singular set.  

✤ - Proof requires new ideas besides those of the standard dimension reduction for the 
estimate dim S k ≤ k.  In fact, the above gives a new and distinct proof of this estimate.
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✤ - Effective version of every tangent cone is a metric cone:  Given a point in a limit space 
x∈ X and considering the scales rᵢ = 2⁻ⁱ.  There are at most N(n,ε) number of scales rᵢ 
which are not (ε, rᵢ, 0)-conical (almost cones).

✤ - Entropy decomposition:  Thus for each point there is a tuple Tᵢ(x), where T_i(x)=1 is x 
is not (ε, rᵢ, 0)-conical and 0 otherwise.  For each α-tuple {Tᵢ} we can form the entropy 
decomposition                                                                                                                                        
-                            M=∪ ET_α  , where  ET_α ≡ {x ∈ X: Tᵢ(x)=Tᵢ for 0≤ i ≤ α}  .

✤ - Can prove the theorem for each ET_α .  Apriori there may seem to be 2α such sets, but 
previous bound says there are only αN such sets.  Hence can add error up for all such 
sets to prove the theorem.
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✤ - Apriori Lq bounds for the curvature and (more importantly) the regularity scale.           
- 4) for Kahler Einstein with bounded chern classes Vol(Bᵣ(Sing)∩B₁) ≤ C r4                        
- Improves Hausdorff dimension estimates to effective Minkowski dimension estimates 
- Proof is an immediate consequence of Quantitative Stratification and ε-regularity.

✤ Conjecture(Na): There exists K(n,ν)>0 such that ∫B₁(p) |Rm|2 ≤ K, and hence             Vol
({r(x)≤ r} ∩B₁) ≤ C r4.
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✤ Much less is known about the case (Mⁿi, gi, pi) → (X, dX, p) with |Rcᵢ| ≤ n-1 and Vol(B₁
(pᵢ)) → 0.

✤ - If n=4 and ∫B₂(x) |Rm|^2<\epsilon, then |Rm|< 1 on B₁(x) (Cheeger-Tian).

✤ - If n=4 and χ(Mᵢ) ≤ K then X is a smooth Riemannian orbifold away from a finite 
number of isolated points (Naber-Tian).

✤ - If |Rcᵢ|→ 0 and diam(Mᵢ) , |secᵢ|≤ K then X is a Ricci flat Riemannian orbifold 
(Naber-Tian).

✤ - If B₂(x) is topologically simple then |Rm|< 1 on B₁(x) (Naber).
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build limit spaces X which are particularly degenerate.

✤ Limit spaces X differ from smooth spaces in that they admit nontrivial infinitesmal 
behavior.  That is, tangent cones.  The study of degeneracies of X comes down to the 
study of tangent cones of X.

✤ Recall:

✤ Definition:  Given x ∈ X and r>0 define the blow up metric space by                             X
(x,r) ≣ (X, r-1 dX, p)

✤ Definition:  We say a metric space Xx is a tangent cone of X at x if there exists a sequence 
ri →0 such that X(x,rᵢ) → Xₓ .
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✤ Given a limit space (Mⁿi, gi, pi) → (X, dX, p) with Rci ≥ - (n-1) and Vol(Bᵣ(x))>ν>0 , what 
is previously understood about tangent cones at p:

✤ 1.  Always Exist:  Given any sequence rⱼ→ 0 there exists a subsequence s.t. X(p,rⱼ) → Xp

✤ 2.  Not Unique.  Can exist rⱼ→ 0 and r’k→ 0 such that X(p,rⱼ) → Xp and X(p,r’_k) → X’p

✤ 3.  A tangent cone Xp = C(Y) is a metric cone over a compact metric space Y.
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✤ Based on this we define the subset ΩX,p ⊆ MGH as the subset of all compact metric 
spaces such that Y∈ ΩX,p iff C(Y) is a tangent cone for X at p.

✤ We call ΩX,p the space of cross sections at p.  We say a tangent cone is smooth if Y is.

✤ When (Mⁿi, gi, pi) → (X, dX, p) with Rci ≥ - (n-1) and Vol(Bᵣ(x))>ν>0 , then the following 
are easy to deduce:

✤ P1) If Y₀,Y₁∈ ΩX,p then Vol(Y₀)=Vol(Y₁).

✤ P2) If Y∈ ΩX,p then Rc[Y]≥ n-2 .

✤ P3) If Y∈ ΩX,p then Y is “geometrically cobordant” or “Ricci-closable”.

✤ Question:  If these are necessary conditions, are they sufficient?
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✤ Answer: Yes!

✤ Theorem(Colding-Naber):  Let Ω ⊆ MGH be a smoothly connected subset such that every 
Y ∈ Ω satisfies P1) and P2) , and some Y₀ ∈ Ω satisfies P3).  Then there exists a sequence 
(Mⁿi, gi, pi) → (X, dX, p) with Rci ≥ 0 and Vol(Bᵣ(x))>ν>0 such that ΩX,p ≡ Ω .
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✤ Answer: Yes!

✤ Theorem(Colding-Naber):  Let Ω ⊆ MGH be a smoothly connected subset such that every 
Y ∈ Ω satisfies P1) and P2) , and some Y₀ ∈ Ω satisfies P3).  Then there exists a sequence 
(Mⁿi, gi, pi) → (X, dX, p) with Rci ≥ 0 and Vol(Bᵣ(x))>ν>0 such that ΩX,p ≡ Ω .

✤ Primary application of the above is to construct new examples of limit spaces with 
various degenerate behaviors.
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✤ Let Ω be a smooth family of metrics on S² which vary from a small sphere to the 
football metric.  Note that the required conditions on Ω are satisfied.

✤ Construct a limit space (X³, dX, p) as in the previous theorem.  It has the following 
properties:

✤ 1)  It is the first example of a three dimensional limit space with nonunique tangent 
cones at some point pc∈ X.

✤ 2) It is the first example of a limit space where at a point p∈ X,  some tangent cones are 
smooth, and others are not.
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of a n-k-1 sphere).
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✤ Example 2 (CoNa): 

✤ Similarly let Ω be a smooth family on Sⁿ⁻¹ which vary from a small sphere to the spaces         
Susk(S n-k-1) ,where Sus is the suspension of a space (so Susk(S n-k-1) is the k-th suspension 
of a n-k-1 sphere).

✤ Construct the limit space X using the previous Theorem.  It has the following properties

✤ 1)  At p ∈ X there are tangent cones of the form R k× C(Y) for all 0≤ k≤ n-2 , where Y is a 
smooth space.  

✤ - In particular the dimension of the singular set of a tangent cone is not an invariant of 
the point in question.                                                                                                                      
- Hence, one cannot stratify (in the sense of a stratified space) limit spaces which are 
limits with only lower Ricci bounds.
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✤ Example 3 (CoNa):  

✤ This example is more complicated.  We state it precisely below:

✤ Theorem(CoNa).  There exists a limit space (Mⁿi, gi, pi) → (X, dX, p) with Rci ≥ 0 and Vol
(Bᵣ(x))>ν>0, such that at p there are distinct tangent cones X₀=C(Y₀) and X₁=C(Y₁) 
which are not homeomorphic.  Specifically, Y₀ is homeomorphic to CP²#-CP² and Y₁ is 
homeomorphic to S⁴.

✤ To prove we build a family Ω of smooth metrics (CP²#-CP² ,gs) where s ∈ [0,1) such that  
- Each (CP²#-CP² ,gs)  satisfies P1) and P2).                                                                                 
- The metric space (CP²#-CP² ,g0) is Ricci closable.                                                                   
- The Gromov-Hausdorff limit converges (CP²#-CP² ,gs) → (S⁴, g₁) to a metric on S⁴ . 

✤ Conjecture:  Given a noncollapsed limit space Xⁿ, the set of points NH where the 
tangent cones are not homeomorphic satisfies dim NH ≤ n-5.
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✤ In recent work with Hans-Joachim Hein we construct examples of Kahler Ricci flat 
spaces (Xᵢ2n,gᵢ,pᵢ) , n ≥ 3,with the following properties:

✤ 1.  Each Xᵢ2n is the limit of smooth noncollapsed Ricci flat manifolds (Calabi-Yau’s).  
Each has an isolated singular point at pᵢ while is otherwise a smooth manifold.

✤ 3.  The tangent cones at pᵢ are isometric to C×(C/Z₂), in particular the singular set of 
the tangent cone has complex dimension 1. 

✤ -  Can’t stratify Einstein limits based on dimension of the tangent cone.                              
-  First example of noncollapsed limit which is not a Riemannian Stratified Space                           
-  There does not exist a local homeomorphism stability theorem for Einstein manifolds.

✤ 4. diam Xᵢ2n = 1 and Vol(B1(pᵢ)) >ν>0.

✤ 5. Hⁿ(Xᵢ2n) → ∞ .
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