How much of the Hilbert function do we really need to know?

János Kollár
Princeton University

April, 2015

Main question

- $\left(X, \mathcal{O}_{X}(1)\right)$ projective scheme,
- F coherent sheaf on X.
- Basic numertical invariant: $\chi(X, F(t)) \in \mathbb{Q}[t]$.

Main question

- $\left(X, \mathcal{O}_{X}(1)\right)$ projective scheme,
- F coherent sheaf on X.
- Basic numertical invariant: $\chi(X, F(t)) \in \mathbb{Q}[t]$.

Problem: We usually understand only a few of the coefficients of $\chi(X, F(t))$.
(Top one or two and the constant.)

Main question

- $\left(X, \mathcal{O}_{X}(1)\right)$ projective scheme,
- F coherent sheaf on X.
- Basic numertical invariant: $\chi(X, F(t)) \in \mathbb{Q}[t]$.

Problem: We usually understand only a few of the coefficients of $\chi(X, F(t))$.
(Top one or two and the constant.)
Do we need the others?

Theme 1: Hilbert functions and volumes

- X normal variety, D a divisor or \mathbb{R}-divisor,
$-\operatorname{Hilb}(X, D)(t):=h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor) \quad\right.$ for $t \geq 0$,
$-\operatorname{vol}(X, D)=\lim _{t \rightarrow \infty} h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor) /\left(t^{n} / n!\right)\right.$.

Theme 1: Hilbert functions and volumes

- X normal variety, D a divisor or \mathbb{R}-divisor,
$-\operatorname{Hilb}(X, D)(t):=h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor) \quad\right.$ for $t \geq 0$,
$-\operatorname{vol}(X, D)=\lim _{t \rightarrow \infty} h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor) /\left(t^{n} / n!\right)\right.$.
Clear: E effective \mathbb{R}-divisor then

$$
\operatorname{Hilb}(X, D-E)(t) \leq \operatorname{Hilb}(X, D)(t) \leq \operatorname{Hilb}(X, D+E)(t)
$$

Theme 1: Hilbert functions and volumes

- X normal variety, D a divisor or \mathbb{R}-divisor,
$-\operatorname{Hilb}(X, D)(t):=h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor) \quad\right.$ for $t \geq 0$,
$-\operatorname{vol}(X, D)=\lim _{t \rightarrow \infty} h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor) /\left(t^{n} / n!\right)\right.$.
Clear: E effective \mathbb{R}-divisor then

$$
\operatorname{Hilb}(X, D-E)(t) \leq \operatorname{Hilb}(X, D)(t) \leq \operatorname{Hilb}(X, D+E)(t)
$$

This implies that

$$
\operatorname{vol}(X, D-E) \leq \operatorname{vol}(X, D) \leq \operatorname{vol}(X, D+E)
$$

Theme 1: Hilbert functions and volumes

- X normal variety, D a divisor or \mathbb{R}-divisor,
- $\operatorname{Hilb}(X, D)(t):=h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor)\right.$ for $t \geq 0$,
$-\operatorname{vol}(X, D)=\lim _{t \rightarrow \infty} h^{0}\left(X, \mathcal{O}_{X}(\lfloor t D\rfloor) /\left(t^{n} / n!\right)\right.$.
Clear: E effective \mathbb{R}-divisor then

$$
\operatorname{Hilb}(X, D-E)(t) \leq \operatorname{Hilb}(X, D)(t) \leq \operatorname{Hilb}(X, D+E)(t)
$$

This implies that

$$
\operatorname{vol}(X, D-E) \leq \operatorname{vol}(X, D) \leq \operatorname{vol}(X, D+E)
$$

Question: What if equality holds?

Theorem (Fulger-K.-Lehmann)

Assume D is big and E is effective. Then

$$
\begin{aligned}
& \operatorname{vol}(X, D-E)=\operatorname{vol}(X, D) \Leftrightarrow \\
& \operatorname{Hilb}(X, D-E)(t) \equiv \operatorname{Hilb}(X, D)(t) .
\end{aligned}
$$

and hence also

$$
\begin{aligned}
\operatorname{vol}(X, D+E)=\operatorname{vol}(X, D) & \Leftrightarrow \\
& H i l b(X, D+E)(t) \equiv \operatorname{Hilb}(X, D)(t)
\end{aligned}
$$

Theorem (Fulger-K.-Lehmann)

Assume D is big and E is effective. Then $\operatorname{vol}(X, D-E)=\operatorname{vol}(X, D) \Leftrightarrow$

$$
\operatorname{Hilb}(X, D-E)(t) \equiv \operatorname{Hilb}(X, D)(t)
$$

and hence also
$\operatorname{vol}(X, D+E)=\operatorname{vol}(X, D) \quad \Leftrightarrow$ $\operatorname{Hilb}(X, D+E)(t) \equiv \operatorname{Hilb}(X, D)(t)$.

Non-Example: $\left.D\right|_{E} \equiv 0$ and $\left.E\right|_{E} \equiv 0$ can not happen.

Theme 2: Simultaneous canonical models

$f: X \rightarrow S$ with irreducible fibers of general type.
Simultaneous canonical model:
$f^{\text {simcr }}: X^{\text {simcr }} \rightarrow S$, flat, projective such that $\left(X^{\text {simcr }}\right)_{s}=\left(X_{s}\right)^{c r}\left(:=\right.$ can. model of resolution of $\left.X_{s}\right)$

Theme 2: Simultaneous canonical models

$f: X \rightarrow S$ with irreducible fibers of general type.
Simultaneous canonical model:
$f^{\text {simcr }}: X^{\text {simcr }} \rightarrow S$, flat, projective such that
$\left(X^{\text {simcr }}\right)_{s}=\left(X_{s}\right)^{c r}\left(:=\right.$ can. model of resolution of $\left.X_{s}\right)$
Old (?) Theorem.

- $s \mapsto H^{0}\left(X_{s}^{c r}, \mathcal{O}(m K)\right)$ is lower semi-continuous,
- if $f^{\text {simcr }}: X^{\text {simcr }} \rightarrow S$ exists then $s \mapsto H^{0}\left(X_{s}^{c r}, \mathcal{O}(m K)\right)$
is constant for every $m \geq 1$,
- converse also holds if S is reduced.

Simultaneous canonical model: strong form

Theorem

Assume that S is reduced. Equivalent:

- $f^{\text {simcr }}: X^{\text {simcr }} \rightarrow S$ exists,
- $s \mapsto H^{0}\left(X_{s}^{c r}, \mathcal{O}\left(m K_{X_{s}^{c r}}\right)\right)$ is constant $\forall m \geq 1$,
- $s \mapsto \operatorname{vol}\left(X_{s}^{c r}, K_{X_{s}^{c r}}\right)$ is constant.
- $s \mapsto \operatorname{vol}\left(X_{s}^{\text {res }}, K_{X_{s} \text { res }}\right)$ is constant.

Theme 3: Cartier divisors

Example: lines on families of quadric surfaces.

$$
Q:=\left(x^{2}-y^{2}+z^{2}-t^{2} w^{2}=0\right) \subset \mathbb{P}_{x y z w}^{3} \times \mathbb{A}_{t}^{1},
$$

$$
L_{t}=(x-y=z-t w=0) \text { and } L_{t}^{\prime}=(x+y=z-t w=0) .
$$

Theme 3: Cartier divisors

Example: lines on families of quadric surfaces.
$Q:=\left(x^{2}-y^{2}+z^{2}-t^{2} w^{2}=0\right) \subset \mathbb{P}_{x y z w}^{3} \times \mathbb{A}_{t}^{1}$,
$L_{t}=(x-y=z-t w=0)$ and $L_{t}^{\prime}=(x+y=z-t w=0)$.
Compute self-intersections:
$\left(a L_{0}+b L_{0}^{\prime}\right)^{2}=\frac{1}{2}(a+b)^{2}$ and $\left(a L_{g}+b L_{g}^{\prime}\right)^{2}=2 a b$.

Theme 3: Cartier divisors

Example: lines on families of quadric surfaces.
$Q:=\left(x^{2}-y^{2}+z^{2}-t^{2} w^{2}=0\right) \subset \mathbb{P}_{x y z w}^{3} \times \mathbb{A}_{t}^{1}$,
$L_{t}=(x-y=z-t w=0)$ and $L_{t}^{\prime}=(x+y=z-t w=0)$.
Compute self-intersections:
$\left(a L_{0}+b L_{0}^{\prime}\right)^{2}=\frac{1}{2}(a+b)^{2}$ and $\left(a L_{g}+b L_{g}^{\prime}\right)^{2}=2 a b$. So

- $\left(a L_{0}+b L_{0}^{\prime}\right)^{2} \geq\left(a L_{g}+b L_{g}^{\prime}\right)^{2}$,
- $a L_{t}+b L_{t}^{\prime}$ Cartier on every fiber iff $a+b$ is even,
- $a L+b L^{\prime}$ is globally Cartier iff equality holds.

Theorem (Numerical Cartier condition; weak form)
$-f: X \rightarrow C$ is flat, projective, relative dimension n,

- normal fibers (for simplicity)
- D divisor such that each D_{c} is Cartier and ample.

Theorem (Numerical Cartier condition; weak form)
$-f: X \rightarrow C$ is flat, projective, relative dimension n,

- normal fibers (for simplicity)
- D divisor such that each D_{c} is Cartier and ample. Then
(1) $c \mapsto\left(D_{c}^{n}\right)$ is upper semi-continuous and
(2) D is Cartier iff the above function is constant.

Corollary (Numerical criterion of stability)

$-f: X \rightarrow C$ flat, projective, relative dimension n,

- fibers are (semi) log canonical with
- ample canonical class $K_{X_{c}}$.

Corollary (Numerical criterion of stability)

- $f: X \rightarrow C$ flat, projective, relative dimension n,
- fibers are (semi) log canonical with
- ample canonical class $K_{X_{c}}$. Then
(1) $c \mapsto\left(K_{X_{c}}^{n}\right)$ is upper semi-continuous and
(2) f is stable iff $\left(K_{X_{c}}^{n}\right)$ is constant.

Stable := $K_{X / C}$ is \mathbb{Q}-Cartier.
$\left(K_{X_{c}}^{n}\right)=$ volume of X_{c} with Kähler-Einstein metric.

Numerical Cartier condition (strong form)

- S reduced scheme over a field k,
- $f: X \rightarrow S$ flat, proper, pure relative dimension n,
- S_{2} fibers,
$-Z \subset X$ such that $Z \cap X_{s}$ has codim ≥ 2,
- L^{0} line bundle on $X \backslash Z$ such that
- $\left.L^{0}\right|_{X_{s} \backslash Z}$ extends to an ample line bundle L_{s} on X_{s}.

Numerical Cartier condition (strong form)

- S reduced scheme over a field k,
- $f: X \rightarrow S$ flat, proper, pure relative dimension n,
$-S_{2}$ fibers,
$-Z \subset X$ such that $Z \cap X_{s}$ has codim ≥ 2,
- L^{0} line bundle on $X \backslash Z$ such that
- $\left.L^{0}\right|_{x_{s} \backslash Z}$ extends to an ample line bundle L_{s} on X_{s}. Then
(1) $s \mapsto\left(L_{s}^{n}\right)$ is upper semi-continuous and
(2) L^{0} extends to a line bundle L on X iff $\left(L_{s}^{n}\right)$ is constant.

Numerical Cartier condition (strong local form)

- S reduced scheme over a field k,
$-f: X \rightarrow S$ flat, projective, pure relative dimension n,
$-S_{2}$ fibers.
$-Z \subset X$ such that $Z \cap X_{s}$ has codim ≥ 2,
- L^{0} line bundle on $X \backslash Z$ such that
- $\left.L^{0}\right|_{X_{s} \backslash Z}$ extends to an arbitrary line bundle L_{s} on X_{s}.
- H relatively ample on X / S.

Numerical Cartier condition (strong local form)

- S reduced scheme over a field k,
$-f: X \rightarrow S$ flat, projective, pure relative dimension n,
$-S_{2}$ fibers.
$-Z \subset X$ such that $Z \cap X_{s}$ has codim ≥ 2,
$-L^{0}$ line bundle on $X \backslash Z$ such that
- $\left.L^{0}\right|_{X_{s} \backslash Z}$ extends to an arbitrary line bundle L_{s} on X_{s}.
- H relatively ample on X / S. Then
(1) $s \mapsto\left(H_{s}^{n-2} \cdot L_{s}^{2}\right)$ is upper semi-continuous and
(2) L^{0} extends to a line bundle L on X iff $\left(H_{s}^{n-2} \cdot L_{s}^{2}\right)$ is
constant.

Reminder: what general theory says

Old (?) Theorem. Equivalent:
(1) L^{0} extends to a line bundle L on X.
(2) Hilbert pol. $\chi\left(X_{s}, L_{s}(m)\right)$ is constant.
(3) all the $\left(L_{s}^{i} \cdot H_{s}^{j} \cdot T d_{n-i-j}\left(X_{s}\right)\right)$ are constant.

Reminder: what general theory says

Old (?) Theorem. Equivalent:
(1) L^{0} extends to a line bundle L on X.
(2) Hilbert pol. $\chi\left(X_{s}, L_{s}(m)\right)$ is constant.
(0) all the $\left(L_{s}^{i} \cdot H_{s}^{j} \cdot T d_{n-i-j}\left(X_{s}\right)\right)$ are constant.

New Theorem.
$\left(L_{s}^{2} \cdot H_{s}^{n-2}\right)$ constant \Rightarrow

$$
\text { all the }\left(L_{s}^{i} \cdot H_{s}^{j} \cdot T d_{n-i-j}\left(X_{s}\right)\right) \text { are constant. }
$$

Upper semi-continuity over a smooth curve
L^{0} extends to a reflexive sheaf L^{*} and we have $r_{0}:\left.L^{*}\right|_{X_{0}} \hookrightarrow L_{0}, \quad$ called restriction map.

Upper semi-continuity over a smooth curve

L^{0} extends to a reflexive sheaf L^{*} and we have $r_{0}:\left.L^{*}\right|_{x_{0}} \hookrightarrow L_{0}, \quad$ called restriction map.
By semicontinuity

$$
h^{0}\left(X_{0}, L_{0}\right) \geq h^{0}\left(X_{0},\left.L^{*}\right|_{X_{0}}\right) \geq h^{0}\left(X_{g},\left.L^{*}\right|_{X_{g}}\right)=h^{0}\left(X_{g}, L_{g}\right)
$$

Upper semi-continuity over a smooth curve

L^{0} extends to a reflexive sheaf L^{*} and we have $r_{0}:\left.L^{*}\right|_{x_{0}} \hookrightarrow L_{0}, \quad$ called restriction map.
By semicontinuity

$$
h^{0}\left(X_{0}, L_{0}\right) \geq h^{0}\left(X_{0},\left.L^{*}\right|_{X_{0}}\right) \geq h^{0}\left(X_{g},\left.L^{*}\right|_{X_{g}}\right)=h^{0}\left(X_{g}, L_{g}\right)
$$

If L_{0} and L_{g} are ample, then applying it to $\left(L^{0}\right)^{\otimes m}$ and using Riemann-Roch:

$$
\left(L_{0}\right)^{n}=\lim \frac{h^{0}\left(X_{0}, L_{0}^{\otimes m}\right)}{m^{n} / n!} \geq \lim \frac{h^{0}\left(X_{g}, L_{g}^{\otimes m}\right)}{m^{n} / n!}=\left(L_{g}^{n}\right)
$$

Proof in dimension 2 (L_{t} need not be ample)
Set $\chi\left(X_{t}, L_{t}^{\otimes m}\right)=a_{t} m^{2}+b_{t} m+c_{t}$.
Cokernel of r_{0}^{m} is Artinian, so
$a_{0} m^{2}+b_{0} m+c_{0} \geq a_{g} m^{2}+b_{g} m+c_{g}$ for every m.

Proof in dimension 2 (L_{t} need not be ample)

Set $\chi\left(X_{t}, L_{t}^{\otimes m}\right)=a_{t} m^{2}+b_{t} m+c_{t}$.
Cokernel of r_{0}^{m} is Artinian, so
$a_{0} m^{2}+b_{0} m+c_{0} \geq a_{g} m^{2}+b_{g} m+c_{g}$ for every m.
RR: $a_{t}=\frac{1}{2}\left(L_{t} \cdot L_{t}\right)$ and $c_{t}=\chi\left(X_{t}, \mathcal{O}_{X_{t}}\right)$.
If $\left(L_{0} \cdot L_{0}\right)=\left(L_{g} \cdot L_{g}\right)$. Then $a_{0}=a_{g}$ thus $b_{0} m+c_{0} \geq b_{g} m+c_{g}$ for every m.

Proof in dimension 2 (L_{t} need not be ample)

Set $\chi\left(X_{t}, L_{t}^{\otimes m}\right)=a_{t} m^{2}+b_{t} m+c_{t}$.
Cokernel of r_{0}^{m} is Artinian, so
$a_{0} m^{2}+b_{0} m+c_{0} \geq a_{g} m^{2}+b_{g} m+c_{g}$ for every m.
$\mathrm{RR}: a_{t}=\frac{1}{2}\left(L_{t} \cdot L_{t}\right)$ and $c_{t}=\chi\left(X_{t}, \mathcal{O}_{X_{t}}\right)$.
If $\left(L_{0} \cdot L_{0}\right)=\left(L_{g} \cdot L_{g}\right)$. Then $a_{0}=a_{g}$ thus
$b_{0} m+c_{0} \geq b_{g} m+c_{g}$ for every m.
$m \gg 1$ gives $b_{0} \geq b_{g}$ and $m \ll-1$ gives $-b_{0} \geq-b_{g}$.
So $b_{0}=b_{g}$ and $c_{0}=c_{g}$ since f is flat.

Strong local form; second look

$-f: X \rightarrow S$ flat, projective, pure $\operatorname{dim} n$ with S_{2} fibers

- L^{0} line bundle on $X \backslash Z$
- every L_{s} line bundle
(1) $s \mapsto\left(H_{s}^{n-2} \cdot L_{s}^{2}\right)$ is upper semi-continuous and
(2) L^{0} extends to line bundle L iff constant.

Strong local form; second look

$-f: X \rightarrow S$ flat, projective, pure $\operatorname{dim} n$ with S_{2} fibers

- L^{0} line bundle on $X \backslash Z$
- every L_{s} line bundle
(1) $s \mapsto\left(H_{s}^{n-2} \cdot L_{s}^{2}\right)$ is upper semi-continuous and
(2) L^{0} extends to line bundle L iff constant.

Note: $\left(H_{s}^{n-2}\right.$. takes general surface section so
(1) upper semi-continuity follows from 2-dim case,

Strong local form; second look

$-f: X \rightarrow S$ flat, projective, pure $\operatorname{dim} n$ with S_{2} fibers

- L^{0} line bundle on $X \backslash Z$
- every L_{s} line bundle
(1) $s \mapsto\left(H_{s}^{n-2} \cdot L_{s}^{2}\right)$ is upper semi-continuous and
(2) L^{0} extends to line bundle L iff constant.

Note: $\left(H_{s}^{n-2}\right.$. takes general surface section so
(1) upper semi-continuity follows from 2-dim case,
(2) codim ≥ 3 singularities do not matter!

Grothendieck-Lefschetz in SGA2

$-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,
$-U:=X \backslash\{x\}$ and $U_{D}:=D \backslash\{x\}$,
$-L$ line bundle on U such that
$-L_{D}:=\left.L\right|_{U_{D}} \cong \mathcal{O}_{U_{D}}$.

- Assume that depth $\mathcal{O}_{D} \geq 3$.
$\Rightarrow L \cong \mathcal{O}_{U}$.

Reminder on local cohomology

- X affine, $x \in X, U:=X \backslash\{x\}$
$-F$ coherent sheaf that is S_{2}.
Then:

1. $H_{x}^{2}(X, F)=H^{1}\left(U,\left.F\right|_{U}\right)$,
2. finite if X has pure dimension ≥ 3,
3. vanishes iff depth $F \geq 3$.

Proof. $0 \rightarrow L \xrightarrow{t} L \xrightarrow{r} L_{D} \cong \mathcal{O}_{U_{D}} \rightarrow 0$ gives

$$
\begin{aligned}
& H^{0}(U, L) \xrightarrow{t} H^{0}(U, L) \xrightarrow{r} H^{0}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) \rightarrow \\
& H^{1}(U, L) \xrightarrow{\rightarrow} H^{1}(U, L) \rightarrow H^{1}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) .
\end{aligned}
$$

Proof. $0 \rightarrow L \xrightarrow{t} L \xrightarrow{r} L_{D} \cong \mathcal{O}_{U_{D}} \rightarrow 0$ gives

$$
\begin{aligned}
& H^{0}(U, L) \xrightarrow{t} H^{0}(U, L) \xrightarrow{r} H^{0}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) \quad \rightarrow \\
& H^{1}(U, L) \xrightarrow{t} H^{1}(U, L) \quad \rightarrow \quad H^{1}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) .
\end{aligned}
$$

$\operatorname{depth}_{x} \mathcal{O}_{D} \geq 3 \Rightarrow H^{1}\left(U_{D}, \mathcal{O}_{U_{D}}\right)=0$ and so $t: H^{1}(U, L) \rightarrow H^{1}(U, L)$ is surjective.

Proof. $0 \rightarrow L \xrightarrow{t} L \xrightarrow{r} L_{D} \cong \mathcal{O}_{U_{D}} \rightarrow 0$ gives

$$
\begin{aligned}
& H^{0}(U, L) \xrightarrow{t} H^{0}(U, L) \xrightarrow{r} H^{0}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) \quad \rightarrow \\
& H^{1}(U, L) \xrightarrow{t} H^{1}(U, L) \quad \rightarrow \quad H^{1}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) .
\end{aligned}
$$

$\operatorname{depth}_{x} \mathcal{O}_{D} \geq 3 \Rightarrow H^{1}\left(U_{D}, \mathcal{O}_{U_{D}}\right)=0$ and so $t: H^{1}(U, L) \rightarrow H^{1}(U, L)$ is surjective.
$\operatorname{dim} U \geq 4$ implies $H^{1}(U, L)$ has finite length, so $t: H^{1}(U, L) \rightarrow H^{1}(U, L)$ isomorphism.

Proof. $0 \rightarrow L \xrightarrow{t} L \xrightarrow{r} L_{D} \cong \mathcal{O}_{U_{D}} \rightarrow 0$ gives

$$
\begin{aligned}
& H^{0}(U, L) \xrightarrow{t} H^{0}(U, L) \xrightarrow{r} H^{0}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) \rightarrow \\
& H^{1}(U, L) \xrightarrow{t} H^{1}(U, L) \rightarrow H^{1}\left(U_{D}, L_{D} \cong \mathcal{O}_{U_{D}}\right) .
\end{aligned}
$$

$\operatorname{depth}_{x} \mathcal{O}_{D} \geq 3 \Rightarrow H^{1}\left(U_{D}, \mathcal{O}_{U_{D}}\right)=0$ and so $t: H^{1}(U, L) \rightarrow H^{1}(U, L)$ is surjective.
$\operatorname{dim} U \geq 4$ implies $H^{1}(U, L)$ has finite length, so $t: H^{1}(U, L) \rightarrow H^{1}(U, L)$ isomorphism.
Thus $r: H^{0}(U, L) \rightarrow H^{0}\left(U_{D}, L_{D}\right)$ is surjective.
Lift back the constant 1 section to L.

Stronger Grothendieck-Lefschetz

$-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,
$-U:=X \backslash\{x\}$ and $U_{D}:=D \backslash\{x\}$,

- L line bundle on U such that
$-L_{D}:=\left.L\right|_{U_{D}} \cong \mathcal{O}_{U_{D}}$.
- Remove assumption: $\operatorname{depth}_{x} \mathcal{O}_{D} \geq 3$.
- New assumption: $\operatorname{depth}_{x} \mathcal{O}_{D} \geq 2$ and $\operatorname{dim} D \geq 3$.

Stronger Grothendieck-Lefschetz

$-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,
$-U:=X \backslash\{x\}$ and $U_{D}:=D \backslash\{x\}$,

- L line bundle on U such that
$-L_{D}:=\left.L\right|_{U_{D}} \cong \mathcal{O}_{U_{D}}$.
- Remove assumption: $\operatorname{depth}_{x} \mathcal{O}_{D} \geq 3$.
- New assumption: $\operatorname{depth}_{x} \mathcal{O}_{D} \geq 2$ and $\operatorname{dim} D \geq 3$.
$\Rightarrow L \cong \mathcal{O}_{U}$.

Stronger Grothendieck-Lefschetz

- $(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,
- $U:=X \backslash\{x\}$ and $U_{D}:=D \backslash\{x\}$,
- L line bundle on U such that
$-L_{D}:=L_{U_{D}} \cong \mathcal{O}_{U_{D}}$.
- Remove assumption: $\operatorname{depth}_{x} \mathcal{O}_{D} \geq 3$.
- New assumption: depth $\mathcal{O}_{D} \geq 2$ and $\operatorname{dim} D \geq 3$.
$\Rightarrow L \cong \mathcal{O}_{U}$.
- Conjectured around 2010
- Proved for semi-log-canonical (arXiv:1211.0317)
- Bhatt - de Jong: X normal over field (arXiv:1302.3189)
- General case (over a field) (arXiv:1407.5108)

Normal case in characteristic p
$\pi: X^{+} \rightarrow X$ normalization in algebraic closure of $k(X)$.

Normal case in characteristic p

$\pi: X^{+} \rightarrow X$ normalization in algebraic closure of $k(X)$.

- Hochster-Huneke: X^{+}is CM.
- previous proof runs on X^{+}(almost).

Normal case in characteristic p

$\pi: X^{+} \rightarrow X$ normalization in algebraic closure of $k(X)$.

- Hochster-Huneke: X^{+}is CM.
- previous proof runs on X^{+}(almost).
- L becomes trivial on X^{+}, so
- L becomes trivial on some finite degree cover.

Normal case in characteristic p

$\pi: X^{+} \rightarrow X$ normalization in algebraic closure of $k(X)$.

- Hochster-Huneke: X^{+}is CM.
- previous proof runs on X^{+}(almost).
- L becomes trivial on X^{+}, so
- L becomes trivial on some finite degree cover.
- use norm map to show that $L^{m} \cong \mathcal{O}_{U}$ for some $m>0$,

Normal case in characteristic p

$\pi: X^{+} \rightarrow X$ normalization in algebraic closure of $k(X)$.

- Hochster-Huneke: X^{+}is CM.
- previous proof runs on X^{+}(almost).
- L becomes trivial on X^{+}, so
- L becomes trivial on some finite degree cover.
- use norm map to show that $L^{m} \cong \mathcal{O}_{U}$ for some $m>0$,
- work a little more ...

