How much of the Hilbert function do we really need to know?

János Kollár

Princeton University

April, 2015

Main question

- $-(X, \mathcal{O}_X(1))$ projective scheme,
- -F coherent sheaf on X.
- Basic numertical invariant: $\chi(X, F(t)) \in \mathbb{Q}[t]$.

Main question

- $-(X, \mathcal{O}_X(1))$ projective scheme,
- -F coherent sheaf on X.
- Basic numertical invariant: $\chi(X, F(t)) \in \mathbb{Q}[t]$.
- Problem: We usually understand only a few of the coefficients of $\chi(X, F(t))$. (Top one or two and the constant.)

Main question

- $-(X, \mathcal{O}_X(1))$ projective scheme,
- -F coherent sheaf on X.
- Basic numertical invariant: $\chi(X, F(t)) \in \mathbb{Q}[t]$.
- Problem: We usually understand only a few of the coefficients of $\chi(X, F(t))$. (Top one or two and the constant.)

▲ロト ▲理ト ▲ヨト ▲ヨト ヨー のへの

Do we need the others?

- -X normal variety, D a divisor or \mathbb{R} -divisor,
- Hilb $(X, D)(t) := h^0(X, \mathcal{O}_X(\lfloor tD \rfloor)$ for $t \ge 0$,
- $\operatorname{vol}(X, D) = \lim_{t \to \infty} h^0(X, \mathcal{O}_X(\lfloor tD \rfloor)/(t^n/n!).$

- -X normal variety, D a divisor or \mathbb{R} -divisor,
- $Hilb(X,D)(t) := h^0(X,\mathcal{O}_X(\lfloor tD \rfloor)$ for $t \ge 0$,
- $-\operatorname{vol}(X,D) = \lim_{t\to\infty} h^0(X,\mathcal{O}_X(\lfloor tD \rfloor)/(t^n/n!).$

Clear: E effective \mathbb{R} -divisor then

 $Hilb(X, D - E)(t) \le Hilb(X, D)(t) \le Hilb(X, D + E)(t).$

- -X normal variety, D a divisor or \mathbb{R} -divisor,
- $Hilb(X,D)(t):=h^0(X,\mathcal{O}_X(\lfloor tD
 floor))$ for $t\geq 0$,
- $-\operatorname{vol}(X,D) = \lim_{t\to\infty} h^0(X,\mathcal{O}_X(\lfloor tD \rfloor)/(t^n/n!).$

Clear: E effective \mathbb{R} -divisor then

 $Hilb(X, D - E)(t) \le Hilb(X, D)(t) \le Hilb(X, D + E)(t).$

This implies that

 $vol(X, D - E) \le vol(X, D) \le vol(X, D + E).$

- -X normal variety, D a divisor or \mathbb{R} -divisor,
- $Hilb(X,D)(t):=h^0(X,\mathcal{O}_X(\lfloor tD
 floor))$ for $t\geq 0$,
- $\operatorname{vol}(X, D) = \lim_{t \to \infty} h^0(X, \mathcal{O}_X(\lfloor tD \rfloor)/(t^n/n!).$

Clear: E effective \mathbb{R} -divisor then

 $Hilb(X, D - E)(t) \le Hilb(X, D)(t) \le Hilb(X, D + E)(t).$

This implies that

 $vol(X, D - E) \le vol(X, D) \le vol(X, D + E).$

Question: What if equality holds?

Theorem (Fulger-K.-Lehmann)

Assume D is big and E is effective. Then $vol(X, D - E) = vol(X, D) \Leftrightarrow$ $Hilb(X, D - E)(t) \equiv Hilb(X, D)(t).$

and hence also

 $vol(X, D + E) = vol(X, D) \Leftrightarrow$ $Hilb(X, D + E)(t) \equiv Hilb(X, D)(t).$

Theorem (Fulger-K.-Lehmann)

Assume D is big and E is effective. Then $vol(X, D - E) = vol(X, D) \Leftrightarrow$ $Hilb(X, D - E)(t) \equiv Hilb(X, D)(t).$

and hence also

 $vol(X, D + E) = vol(X, D) \Leftrightarrow$ $Hilb(X, D + E)(t) \equiv Hilb(X, D)(t).$

Non-Example: $D|_E \equiv 0$ and $E|_E \equiv 0$ can not happen.

Theme 2: Simultaneous canonical models

 $f: X \rightarrow S$ with irreducible fibers of general type.

Simultaneous canonical model: $f^{simcr}: X^{simcr} \to S$, flat, projective such that $(X^{simcr})_s = (X_s)^{cr}$ (:= can. model of resolution of X_s)

Theme 2: Simultaneous canonical models

 $f: X \rightarrow S$ with irreducible fibers of general type.

Simultaneous canonical model:

 $f^{simcr}: X^{simcr} \to S$, flat, projective such that $(X^{simcr})_s = (X_s)^{cr}$ (:= can. model of resolution of X_s)

Old (?) Theorem.

- $s \mapsto H^0(X_s^{cr}, \mathcal{O}(mK))$ is **lower** semi-continuous,
- if $f^{simcr}: X^{simcr} \to S$ exists then $s \mapsto H^0(X_s^{cr}, \mathcal{O}(mK))$

is constant for every $m \geq 1$,

• converse also holds if *S* is reduced.

Simultaneous canonical model: strong form

Theorem

Assume that S is reduced. Equivalent:

- $f^{simcr}: X^{simcr} \rightarrow S$ exists,
- $s \mapsto H^0(X_s^{cr}, \mathcal{O}(mK_{X_s^{cr}}))$ is constant $\forall m \ge 1$,

- $s \mapsto vol(X_s^{cr}, K_{X_s^{cr}})$ is constant.
- $s \mapsto vol(X_s^{res}, K_{X_s^{res}})$ is constant.

Theme 3: Cartier divisors

Example: lines on families of quadric surfaces. $Q := (x^2 - y^2 + z^2 - t^2 w^2 = 0) \subset \mathbb{P}^3_{xyzw} \times \mathbb{A}^1_t,$ $L_t = (x - y = z - tw = 0) \text{ and } L'_t = (x + y = z - tw = 0).$

▲ロト ▲理ト ▲ヨト ▲ヨト ヨー のへの

Theme 3: Cartier divisors

Example: lines on families of quadric surfaces. $Q := (x^2 - y^2 + z^2 - t^2 w^2 = 0) \subset \mathbb{P}^3_{xyzw} \times \mathbb{A}^1_t,$ $L_t = (x - y = z - tw = 0) \text{ and } L'_t = (x + y = z - tw = 0).$ Compute self-intersections: $(aL_0 + bL'_0)^2 = \frac{1}{2}(a + b)^2 \text{ and } (aL_g + bL'_g)^2 = 2ab.$

Theme 3: Cartier divisors

Example: lines on families of quadric surfaces. $Q := (x^2 - y^2 + z^2 - t^2 w^2 = 0) \subset \mathbb{P}^3_{xyzw} \times \mathbb{A}^1_t,$ $L_t = (x - y = z - tw = 0) \text{ and } L'_t = (x + y = z - tw = 0).$ Compute self-intersections: $(aL_0 + bL'_0)^2 = \frac{1}{2}(a + b)^2 \text{ and } (aL_g + bL'_g)^2 = 2ab.$ So $\bullet (aL_0 + bL'_0)^2 \ge (aL_g + bL'_g)^2,$ $\bullet aL_t + bL'_t \text{ Cartier on every fiber iff } a + b \text{ is even,}$

• aL + bL' is globally Cartier iff equality holds.

Theorem (Numerical Cartier condition; weak form)

- $-f: X \rightarrow C$ is flat, projective, relative dimension n,
- normal fibers (for simplicity)
- -D divisor such that each D_c is Cartier and ample.

Theorem (Numerical Cartier condition; weak form)

- $-f: X \rightarrow C$ is flat, projective, relative dimension n,
- normal fibers (for simplicity)
- -D divisor such that each D_c is Cartier and ample. Then

- $c \mapsto (D_c^n)$ is upper semi-continuous and
- D is Cartier iff the above function is constant.

Corollary (Numerical criterion of stability)

 $-f: X \rightarrow C$ flat, projective, relative dimension n,

- fibers are (semi) log canonical with
- ample canonical class K_{X_c} .

Corollary (Numerical criterion of stability)

- $-f: X \rightarrow C$ flat, projective, relative dimension n,
- fibers are (semi) log canonical with
- ample canonical class K_{X_c} . Then
 - $c \mapsto (K_{X_c}^n)$ is upper semi-continuous and
 - **2** f is stable iff $(K_{X_c}^n)$ is constant.

Stable := $K_{X/C}$ is Q-Cartier.

 $(K_{X_c}^n)$ = volume of X_c with Kähler–Einstein metric.

Numerical Cartier condition (strong form)

- -S reduced scheme over a field k,
- $-f: X \rightarrow S$ flat, proper, pure relative dimension n,
- $-S_2$ fibers,
- $Z \subset X$ such that $Z \cap X_s$ has codim ≥ 2 ,
- $-L^0$ line bundle on $X \setminus Z$ such that
- $-L^0|_{X_s \setminus Z}$ extends to an ample line bundle L_s on X_s .

Numerical Cartier condition (strong form)

- -S reduced scheme over a field k,
- $-f: X \rightarrow S$ flat, proper, pure relative dimension n,
- $-S_2$ fibers,
- $Z \subset X$ such that $Z \cap X_s$ has codim ≥ 2 ,
- $-L^0$ line bundle on $X \setminus Z$ such that
- $-L^0|_{X_s \setminus Z}$ extends to an ample line bundle L_s on X_s . Then
 - $s \mapsto (L_s^n)$ is upper semi-continuous and
 - 2 L^0 extends to a line bundle L on X iff (L_s^n) is constant.

Numerical Cartier condition (strong local form)

- -S reduced scheme over a field k,
- $-f: X \rightarrow S$ flat, projective, pure relative dimension n,
- S_2 fibers.
- $Z \subset X$ such that $Z \cap X_s$ has codim ≥ 2 ,
- $-L^0$ line bundle on $X \setminus Z$ such that
- $-L^0|_{X_s \setminus Z}$ extends to an arbitrary line bundle L_s on X_s .

-H relatively ample on X/S.

Numerical Cartier condition (strong local form)

- -S reduced scheme over a field k,
- $-f: X \rightarrow S$ flat, projective, pure relative dimension n,
- $-S_2$ fibers.
- $Z \subset X$ such that $Z \cap X_s$ has codim ≥ 2 ,
- $-L^0$ line bundle on $X \setminus Z$ such that
- $-L^0|_{X_s \setminus Z}$ extends to an arbitrary line bundle L_s on X_s .
- -H relatively ample on X/S. Then
 - $s \mapsto (H_s^{n-2} \cdot L_s^2)$ is upper semi-continuous and
 - 2 L^0 extends to a line bundle L on X iff $(H_s^{n-2} \cdot L_s^2)$ is

constant.

Reminder: what general theory says

- Old (?) Theorem. Equivalent:
 - L^0 extends to a line bundle L on X.
 - **2** Hilbert pol. $\chi(X_s, L_s(m))$ is constant.
 - all the $(L_s^i \cdot H_s^j \cdot Td_{n-i-j}(X_s))$ are constant.

Reminder: what general theory says

- Old (?) Theorem. Equivalent:
 - L^0 extends to a line bundle L on X.
 - **2** Hilbert pol. $\chi(X_s, L_s(m))$ is constant.
 - all the $(L_s^i \cdot H_s^j \cdot Td_{n-i-j}(X_s))$ are constant.

New Theorem. $(L_s^2 \cdot H_s^{n-2}) \text{ constant} \Rightarrow$ all the $(L_s^i \cdot H_s^j \cdot Td_{n-i-i}(X_s))$ are constant.

Upper semi-continuity over a smooth curve

 L^0 extends to a reflexive sheaf L^* and we have $r_0: L^*|_{X_0} \hookrightarrow L_0$, called restriction map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Upper semi-continuity over a smooth curve

 L^0 extends to a reflexive sheaf L^* and we have $r_0: L^*|_{X_0} \hookrightarrow L_0$, called restriction map. By semicontinuity

 $h^{0}(X_{0}, L_{0}) \geq h^{0}(X_{0}, L^{*}|_{X_{0}}) \geq h^{0}(X_{g}, L^{*}|_{X_{g}}) = h^{0}(X_{g}, L_{g}).$

Upper semi-continuity over a smooth curve

 L^0 extends to a reflexive sheaf L^* and we have $r_0: L^*|_{X_0} \hookrightarrow L_0$, called restriction map. By semicontinuity

 $h^{0}(X_{0}, L_{0}) \geq h^{0}(X_{0}, L^{*}|_{X_{0}}) \geq h^{0}(X_{g}, L^{*}|_{X_{g}}) = h^{0}(X_{g}, L_{g}).$

If L_0 and L_g are ample, then applying it to $(L^0)^{\otimes m}$ and using Riemann–Roch:

$$\left(L_0\right)^n = \lim \frac{h^0\left(X_0, L_0^{\otimes m}\right)}{m^n/n!} \ge \lim \frac{h^0\left(X_g, L_g^{\otimes m}\right)}{m^n/n!} = \left(L_g^n\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Proof in dimension 2 (L_t need not be ample)

Set $\chi(X_t, L_t^{\otimes m}) = a_t m^2 + b_t m + c_t$. Cokernel of r_0^m is Artinian, so $a_0 m^2 + b_0 m + c_0 \ge a_g m^2 + b_g m + c_g$ for every m.

・ロト ・ 四ト ・ ヨト ・ ヨー

Proof in dimension 2 (L_t need not be ample)

Set
$$\chi(X_t, L_t^{\otimes m}) = a_t m^2 + b_t m + c_t$$
.
Cokernel of r_0^m is Artinian, so
 $a_0 m^2 + b_0 m + c_0 \ge a_g m^2 + b_g m + c_g$ for every m .
RR: $a_t = \frac{1}{2}(L_t \cdot L_t)$ and $c_t = \chi(X_t, \mathcal{O}_{X_t})$.
If $(L_0 \cdot L_0) = (L_g \cdot L_g)$. Then $a_0 = a_g$ thus
 $b_0 m + c_0 \ge b_g m + c_g$ for every m .

- ロ ト - 4 回 ト - 4 □

Proof in dimension 2 (L_t need not be ample)

Set $\chi(X_t, L_t^{\otimes m}) = a_t m^2 + b_t m + c_t$. Cokernel of r_0^m is Artinian, so $a_0 m^2 + b_0 m + c_0 \ge a_g m^2 + b_g m + c_g$ for every m. RR: $a_t = \frac{1}{2}(L_t \cdot L_t)$ and $c_t = \chi(X_t, \mathcal{O}_{X_t})$. If $(L_0 \cdot L_0) = (L_g \cdot L_g)$. Then $a_0 = a_g$ thus $b_0 m + c_0 \ge b_g m + c_g$ for every m. $m \gg 1$ gives $b_0 \ge b_g$ and $m \ll -1$ gives $-b_0 \ge -b_g$. So $b_0 = b_g$ and $c_0 = c_g$ since f is flat.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Strong local form; second look

- $-f: X \rightarrow S$ flat, projective, pure dim n with S_2 fibers
- $-L^0$ line bundle on $X \setminus Z$
- every L_s line bundle
 - $s \mapsto (H_s^{n-2} \cdot L_s^2)$ is upper semi-continuous and

2 L^0 extends to line bundle L iff constant.

Strong local form; second look

- $-f: X \to S$ flat, projective, pure dim *n* with S_2 fibers
- $-L^0$ line bundle on $X \setminus Z$
- every L_s line bundle

• $s \mapsto (H_s^{n-2} \cdot L_s^2)$ is upper semi-continuous and

2 L^0 extends to line bundle L iff constant.

Note: (H_s^{n-2}) takes general surface section so

upper semi-continuity follows from 2-dim case,

Strong local form; second look

- $-f: X \to S$ flat, projective, pure dim *n* with S_2 fibers
- $-L^0$ line bundle on $X \setminus Z$
- every L_s line bundle
 - $s \mapsto (H_s^{n-2} \cdot L_s^2)$ is upper semi-continuous and
 - 2 L^0 extends to line bundle L iff constant.

Note: (H_s^{n-2}) takes general surface section so

upper semi-continuity follows from 2-dim case,

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

2 codim \geq 3 singularities do not matter!

Grothendieck–Lefschetz in SGA2

– $(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,

- $U := X \setminus \{x\}$ and $U_D := D \setminus \{x\}$,
- -L line bundle on U such that
- $-L_D:=L|_{U_D}\cong \mathcal{O}_{U_D}.$
- Assume that depth_x $\mathcal{O}_D \geq 3$.

 $\Rightarrow L \cong \mathcal{O}_U.$

Reminder on local cohomology

- X affine, $x \in X$, $U := X \setminus \{x\}$
- -F coherent sheaf that is S_2 .

Then:

- 1. $H_x^2(X, F) = H^1(U, F|_U)$,
- 2. finite if X has pure dimension \geq 3,

▲ロト ▲理ト ▲ヨト ▲ヨト ヨー のへの

3. vanishes iff depth_x $F \ge 3$.

Proof. $0 \to L \xrightarrow{t} L \xrightarrow{r} L_D \cong \mathcal{O}_{U_D} \to 0$ gives

 $\begin{array}{ccccc} H^0(U,L) & \stackrel{t}{\to} & H^0(U,L) & \stackrel{r}{\to} & H^0(U_D,L_D \cong \mathcal{O}_{U_D}) & \to \\ H^1(U,L) & \stackrel{t}{\to} & H^1(U,L) & \to & H^1(U_D,L_D \cong \mathcal{O}_{U_D}). \end{array}$

▲ロト ▲園ト ▲ヨト ▲ヨト - ヨー つくで

Proof. $0 \to L \xrightarrow{t} L \xrightarrow{r} L_D \cong \mathcal{O}_{U_D} \to 0$ gives

$$\begin{array}{ccccc} H^0(U,L) & \stackrel{t}{\to} & H^0(U,L) & \stackrel{r}{\to} & H^0(U_D,L_D \cong \mathcal{O}_{U_D}) & \to \\ H^1(U,L) & \stackrel{t}{\to} & H^1(U,L) & \to & H^1(U_D,L_D \cong \mathcal{O}_{U_D}). \end{array}$$

 $\begin{aligned} \mathsf{depth}_{x}\,\mathcal{O}_{D} \geq 3 \Rightarrow H^{1}\big(U_{D},\mathcal{O}_{U_{D}}\big) = 0 \text{ and so} \\ t: H^{1}\big(U,L\big) \rightarrow H^{1}\big(U,L\big) \text{ is surjective.} \end{aligned}$

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ - つ へ ()・

Proof. $0 \to L \xrightarrow{t} L \xrightarrow{r} L_D \cong \mathcal{O}_{U_D} \to 0$ gives

$$\begin{array}{ccccc} H^0(U,L) & \stackrel{t}{\to} & H^0(U,L) & \stackrel{r}{\to} & H^0(U_D,L_D \cong \mathcal{O}_{U_D}) & \to \\ H^1(U,L) & \stackrel{t}{\to} & H^1(U,L) & \to & H^1(U_D,L_D \cong \mathcal{O}_{U_D}). \end{array}$$

イロト 不得 トイヨ トイヨ ト・ヨー うぐう

 $\begin{aligned} \mathsf{depth}_{x}\,\mathcal{O}_{D} \geq 3 \Rightarrow H^{1}\big(U_{D},\mathcal{O}_{U_{D}}\big) = 0 \text{ and so} \\ t: H^{1}\big(U,L\big) \rightarrow H^{1}\big(U,L\big) \text{ is surjective.} \end{aligned}$

dim $U \ge 4$ implies $H^1(U, L)$ has finite length, so $t: H^1(U, L) \rightarrow H^1(U, L)$ isomorphism.

Proof. $0 \to L \xrightarrow{\tau} L \xrightarrow{r} L_D \cong \mathcal{O}_{U_D} \to 0$ gives

$$\begin{array}{ccccc} H^0(U,L) & \stackrel{t}{\to} & H^0(U,L) & \stackrel{r}{\to} & H^0(U_D,L_D \cong \mathcal{O}_{U_D}) & \to \\ H^1(U,L) & \stackrel{t}{\to} & H^1(U,L) & \to & H^1(U_D,L_D \cong \mathcal{O}_{U_D}). \end{array}$$

 $\begin{aligned} \mathsf{depth}_{x}\,\mathcal{O}_{D} \geq 3 \Rightarrow H^{1}\big(U_{D},\mathcal{O}_{U_{D}}\big) = 0 \text{ and so} \\ t: H^{1}\big(U,L\big) \rightarrow H^{1}\big(U,L\big) \text{ is surjective.} \end{aligned}$

dim $U \ge 4$ implies $H^1(U, L)$ has finite length, so $t: H^1(U, L) \rightarrow H^1(U, L)$ isomorphism.

Thus $r: H^0(U, L) \rightarrow H^0(U_D, L_D)$ is surjective.

Lift back the constant 1 section to L.

Stronger Grothendieck–Lefschetz

- $-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,
- $U := X \setminus \{x\}$ and $U_D := D \setminus \{x\}$,
- -L line bundle on U such that
- $-L_D:=L|_{U_D}\cong \mathcal{O}_{U_D}.$
- Remove assumption: depth_x $\mathcal{O}_D \geq 3$.
- New assumption: depth_x $\mathcal{O}_D \ge 2$ and dim $D \ge 3$.

Stronger Grothendieck–Lefschetz

- $-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,
- $-U := X \setminus \{x\}$ and $U_D := D \setminus \{x\}$,
- -L line bundle on U such that
- $-L_D:=L|_{U_D}\cong \mathcal{O}_{U_D}.$
- Remove assumption: depth_x $\mathcal{O}_D \geq 3$.
- New assumption: depth_x $\mathcal{O}_D \geq 2$ and dim $D \geq 3$.

 $\Rightarrow L \cong \mathcal{O}_U.$

Stronger Grothendieck–Lefschetz

- $-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor,
- $-U := X \setminus \{x\}$ and $U_D := D \setminus \{x\}$,
- -L line bundle on U such that
- $-L_D:=L|_{U_D}\cong \mathcal{O}_{U_D}.$
- Remove assumption: depth_x $\mathcal{O}_D \geq 3$.
- New assumption: depth_x $\mathcal{O}_D \ge 2$ and dim $D \ge 3$.

 $\Rightarrow L \cong \mathcal{O}_U.$

- Conjectured around 2010
- Proved for semi-log-canonical (arXiv:1211.0317)
- Bhatt de Jong: X normal over field (arXiv:1302.3189)
- General case (over a field) (arXiv:1407.5108)

 $\pi: X^+ \to X$ normalization in algebraic closure of k(X).

 $\pi: X^+ \to X$ normalization in algebraic closure of k(X).

- Hochster–Huneke: X^+ is CM.
- previous proof runs on X^+ (almost).

 $\pi: X^+ \to X$ normalization in algebraic closure of k(X).

- Hochster–Huneke: X^+ is CM.
- previous proof runs on X^+ (almost).
- L becomes trivial on X^+ , so
- L becomes trivial on some finite degree cover.

 $\pi: X^+ \to X$ normalization in algebraic closure of k(X).

- Hochster–Huneke: X^+ is CM.
- previous proof runs on X^+ (almost).
- -L becomes trivial on X^+ , so
- *L* becomes trivial on some finite degree cover.
- use norm map to show that $L^m \cong \mathcal{O}_U$ for some m > 0,

 $\pi: X^+ \to X$ normalization in algebraic closure of k(X).

- Hochster–Huneke: X^+ is CM.
- previous proof runs on X^+ (almost).
- -L becomes trivial on X^+ , so
- *L* becomes trivial on some finite degree cover.
- use norm map to show that $L^m \cong \mathcal{O}_U$ for some m > 0,

- work a little more ...