
How much of the Hilbert function
do we really need to know?

János Kollár

Princeton University

April, 2015



Main question

–
(
X ,OX (1)

)
projective scheme,

– F coherent sheaf on X .
– Basic numertical invariant: χ(X ,F (t)) ∈ Q[t].

Problem: We usually understand only a few of the
coefficients of χ(X ,F (t)).
(Top one or two and the constant.)

Do we need the others?
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Theme 1: Hilbert functions and volumes

– X normal variety, D a divisor or R-divisor,
– Hilb(X ,D)(t) := h0(X ,OX (btDc) for t ≥ 0,
– vol(X ,D) = limt→∞ h0(X ,OX (btDc)/(tn/n!).

Clear: E effective R-divisor then

Hilb(X ,D − E )(t) ≤ Hilb(X ,D)(t) ≤ Hilb(X ,D + E )(t).

This implies that

vol(X ,D − E ) ≤ vol(X ,D) ≤ vol(X ,D + E ).

Question: What if equality holds?
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Theorem (Fulger-K.-Lehmann)

Assume D is big and E is effective. Then
vol(X ,D − E ) = vol(X ,D) ⇔

Hilb(X ,D − E )(t) ≡ Hilb(X ,D)(t).

and hence also

vol(X ,D + E ) = vol(X ,D) ⇔
Hilb(X ,D + E )(t) ≡ Hilb(X ,D)(t).

Non-Example: D|E ≡ 0 and E |E ≡ 0 can not happen.
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Theme 2: Simultaneous canonical models

f : X → S with irreducible fibers of general type.

Simultaneous canonical model:
f simcr : X simcr → S , flat, projective such that(
X simcr

)
s

= (Xs)
cr (:= can. model of resolution of Xs)

Old (?) Theorem.
• s 7→ H0

(
X cr
s ,O(mK )

)
is lower semi-continuous,

• if f simcr : X simcr → S exists then s 7→ H0
(
X cr
s ,O(mK )

)
is constant for every m ≥ 1,

• converse also holds if S is reduced.
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Simultaneous canonical model: strong form

Theorem
Assume that S is reduced. Equivalent:

• f simcr : X simcr → S exists,

• s 7→ H0
(
X cr
s ,O(mKX cr

s
)
)

is constant ∀m ≥ 1,

• s 7→ vol
(
X cr
s ,KX cr

s

)
is constant.

• s 7→ vol
(
X res
s ,KX res

s

)
is constant.



Theme 3: Cartier divisors

Example: lines on families of quadric surfaces.
Q := (x2 − y 2 + z2 − t2w 2 = 0) ⊂ P3

xyzw × A1
t ,

Lt = (x − y = z − tw = 0) and L′t = (x + y = z − tw = 0).

Compute self-intersections:
(aL0 + bL′0)2 = 1

2
(a + b)2 and (aLg + bL′g )2 = 2ab. So

• (aL0 + bL′0)2 ≥ (aLg + bL′g )2,
• aLt + bL′t Cartier on every fiber iff a + b is even,
• aL + bL′ is globally Cartier iff equality holds.
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Theorem (Numerical Cartier condition; weak form)

– f : X → C is flat, projective, relative dimension n,
– normal fibers (for simplicity)
– D divisor such that each Dc is Cartier and ample.

Then

1 c 7→ (Dn
c ) is upper semi-continuous and

2 D is Cartier iff the above function is constant.
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Corollary (Numerical criterion of stability)

– f : X → C flat, projective, relative dimension n,
– fibers are (semi) log canonical with
– ample canonical class KXc .

Then

1 c 7→
(
K n

Xc

)
is upper semi-continuous and

2 f is stable iff
(
K n

Xc

)
is constant.

Stable := KX/C is Q-Cartier.(
K n

Xc

)
= volume of Xc with Kähler–Einstein metric.
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Numerical Cartier condition (strong form)

– S reduced scheme over a field k ,
– f : X → S flat, proper, pure relative dimension n,
– S2 fibers,
– Z ⊂ X such that Z ∩ Xs has codim ≥ 2,
– L0 line bundle on X \ Z such that
– L0|Xs\Z extends to an ample line bundle Ls on Xs .

Then

1 s 7→ (Lns ) is upper semi-continuous and

2 L0 extends to a line bundle L on X iff (Lns ) is constant.
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Numerical Cartier condition (strong local form)

– S reduced scheme over a field k ,
– f : X → S flat, projective, pure relative dimension n,
– S2 fibers.
– Z ⊂ X such that Z ∩ Xs has codim ≥ 2,
– L0 line bundle on X \ Z such that
– L0|Xs\Z extends to an arbitrary line bundle Ls on Xs .
– H relatively ample on X/S .

Then

1 s 7→ (Hn−2
s · L2s ) is upper semi-continuous and

2 L0 extends to a line bundle L on X iff (Hn−2
s · L2s ) is

constant.
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Reminder: what general theory says

Old (?) Theorem. Equivalent:

1 L0 extends to a line bundle L on X .

2 Hilbert pol. χ
(
Xs , Ls(m)

)
is constant.

3 all the
(
Lis · H j

s · Tdn−i−j(Xs)
)

are constant.

New Theorem.(
L2s · Hn−2

s

)
constant ⇒

all the
(
Lis · H j

s · Tdn−i−j(Xs)
)

are constant.
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Upper semi-continuity over a smooth curve

L0 extends to a reflexive sheaf L∗ and we have
r0 : L∗|X0 ↪→ L0, called restriction map.

By semicontinuity

h0
(
X0, L0

)
≥ h0

(
X0, L

∗|X0

)
≥ h0

(
Xg , L

∗|Xg

)
= h0

(
Xg , Lg

)
.

If L0 and Lg are ample, then
applying it to (L0)⊗m and using Riemann–Roch:

(
L0
)n

= lim
h0
(
X0, L

⊗m
0

)
mn/n!

≥ lim
h0
(
Xg , L

⊗m
g

)
mn/n!

=
(
Lng
)
.



Upper semi-continuity over a smooth curve

L0 extends to a reflexive sheaf L∗ and we have
r0 : L∗|X0 ↪→ L0, called restriction map.
By semicontinuity

h0
(
X0, L0

)
≥ h0

(
X0, L

∗|X0

)
≥ h0

(
Xg , L

∗|Xg

)
= h0

(
Xg , Lg

)
.

If L0 and Lg are ample, then
applying it to (L0)⊗m and using Riemann–Roch:

(
L0
)n

= lim
h0
(
X0, L

⊗m
0

)
mn/n!

≥ lim
h0
(
Xg , L

⊗m
g

)
mn/n!

=
(
Lng
)
.



Upper semi-continuity over a smooth curve

L0 extends to a reflexive sheaf L∗ and we have
r0 : L∗|X0 ↪→ L0, called restriction map.
By semicontinuity

h0
(
X0, L0

)
≥ h0

(
X0, L

∗|X0

)
≥ h0

(
Xg , L

∗|Xg

)
= h0

(
Xg , Lg

)
.

If L0 and Lg are ample, then
applying it to (L0)⊗m and using Riemann–Roch:

(
L0
)n

= lim
h0
(
X0, L

⊗m
0

)
mn/n!

≥ lim
h0
(
Xg , L

⊗m
g

)
mn/n!

=
(
Lng
)
.



Proof in dimension 2 (Lt need not be ample)

Set χ
(
Xt , L

⊗m
t

)
= atm

2 + btm + ct .
Cokernel of rm0 is Artinian, so
a0m

2 + b0m + c0 ≥ agm
2 + bgm + cg for every m.

RR: at = 1
2

(
Lt · Lt

)
and ct = χ

(
Xt ,OXt

)
.

If (L0 · L0) = (Lg · Lg ). Then a0 = ag thus
b0m + c0 ≥ bgm + cg for every m.

m� 1 gives b0 ≥ bg and m� −1 gives −b0 ≥ −bg .
So b0 = bg and c0 = cg since f is flat.
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Strong local form; second look

– f : X → S flat, projective, pure dim n with S2 fibers
– L0 line bundle on X \ Z
– every Ls line bundle

1 s 7→ (Hn−2
s · L2s ) is upper semi-continuous and

2 L0 extends to line bundle L iff constant.

Note: (Hn−2
s · takes general surface section so

1 upper semi-continuity follows from 2-dim case,

2 codim ≥ 3 singularities do not matter!
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Grothendieck–Lefschetz in SGA2

– (x ∈ X ) local scheme, x ∈ D ⊂ X Cartier divisor,
– U := X \ {x} and UD := D \ {x},
– L line bundle on U such that
– LD := L|UD

∼= OUD
.

– Assume that depthx OD ≥ 3.

⇒ L ∼= OU .



Reminder on local cohomology

– X affine, x ∈ X , U := X \ {x}
– F coherent sheaf that is S2.

Then:
1. H2

x (X ,F ) = H1(U ,F |U),
2. finite if X has pure dimension ≥ 3,
3. vanishes iff depthx F ≥ 3.



Proof. 0→ L
t→ L

r→ LD ∼= OUD
→ 0 gives

H0
(
U , L

) t→ H0
(
U , L

) r→ H0
(
UD , LD ∼= OUD

)
→

H1
(
U , L

) t→ H1
(
U , L

)
→ H1

(
UD , LD ∼= OUD

)
.

depthx OD ≥ 3 ⇒ H1
(
UD ,OUD

)
= 0 and so

t : H1
(
U , L

)
→H1

(
U , L

)
is surjective.

dimU ≥ 4 implies H1
(
U , L

)
has finite length, so

t : H1
(
U , L

)
→H1

(
U , L

)
isomorphism.

Thus r : H0
(
U , L

)
→H0

(
UD , LD

)
is surjective.

Lift back the constant 1 section to L.
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Stronger Grothendieck–Lefschetz

– (x ∈ X ) local scheme, x ∈ D ⊂ X Cartier divisor,
– U := X \ {x} and UD := D \ {x},
– L line bundle on U such that
– LD := L|UD

∼= OUD
.

– Remove assumption: depthx OD ≥ 3.
– New assumption: depthx OD ≥ 2 and dimD ≥ 3.

⇒ L ∼= OU .

– Conjectured around 2010
– Proved for semi-log-canonical (arXiv:1211.0317)
– Bhatt – de Jong: X normal over field (arXiv:1302.3189)
– General case (over a field) (arXiv:1407.5108)
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Normal case in characteristic p

π : X+ → X normalization in algebraic closure of k(X ).

– Hochster–Huneke: X+ is CM.

– previous proof runs on X+ (almost).

– L becomes trivial on X+, so

– L becomes trivial on some finite degree cover.

– use norm map to show that Lm ∼= OU for some m > 0,

– work a little more ...
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