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Main question

— (X, 0x(1)) projective scheme,
— F coherent sheaf on X.
— Basic numertical invariant: x(X, F(t)) € Q[t].

Problem: We usually understand only a few of the
coefficients of x (X, F(t)).
(Top one or two and the constant.)

Do we need the others?
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Theme 1: Hilbert functions and volumes J

— X normal variety, D a divisor or R-divisor,
— Hilb(X, D)(t) := h°(X,Ox([tD]) for t >0,
— vol(X, D) = lim;_o, i°(X, Ox([tD])/(t"/n").

Clear: E effective R-divisor then
Hilb(X, D — E)(t) < Hilb(X, D)(t) < Hilb(X, D + E)(t).
This implies that

vol(X,D — E) < vol(X,D) < vol(X,D + E).

Question: What if equality holds?
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Theorem (Fulger-K.-Lehmann)
Assume D is big and E is effective. Then
vol(X,D — E) = vol(X,D) <
Hilb(X, D — E)(t) = Hilb(X, D)(t).

and hence also

vol(X,D + E) =vol(X,D) <
Hilb(X, D + E)(t) = Hilb(X, D)(t).



Theorem (Fulger-K.-Lehmann)
Assume D is big and E is effective. Then
vol(X,D — E) = vol(X,D) <

Hilb(X, D — E)(t) = Hilb(X, D)(t).

and hence also

vol(X,D + E) =vol(X,D) <
Hilb(X, D + E)(t) = Hilb(X, D)(t).

Non-Example: D|g = 0 and E|z = 0 can not happen.
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Theme 2: Simultaneous canonical models

f : X — S with irreducible fibers of general type.

Simultaneous canonical model:
fsimer. xsimer— S flat, projective such that
(X5mer) = (Xs)" (:= can. model of resolution of X;)

Old (?) Theorem.

o s HY (X, O(mK)) is lower semi-continuous,

o if fimer . Xsimer —y S exists then s — HO(XS", O(mK))
is constant for every m > 1,

e converse also holds if S is reduced.



Simultaneous canonical model: strong form |

Theorem
Assume that S is reduced. Equivalent:

O FIET o SIS s (& oy

o s — HY (XS, O(mKxe)) is constant Vm > 1,

® s vol(Xscr, K Xscr) Is constant.

® s vo/(Xs’es, K Xsres) is constant.
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Theme 3: Cartier divisors

Example: lines on families of quadric surfaces.
Qi=(xX*-y*+22-t*w?=0)C P, x A

Li=(x—y=z—tw=0)and L, =(x+y=2z—tw=0).
Compute self-intersections:

(alo + bLy)? = 3(a+ b)? and (alg + bL))* = 2ab. So

e (alo + bLy)? > (al, + bL’g)2,

e al, + bl Cartier on every fiber iff a 4 b is even,

e al + bl is globally Cartier iff equality holds.
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Theorem (Numerical Cartier condition; weak form)

—f: X — C is flat, projective, relative dimension n,
— normal fibers (for simplicity)
— D divisor such that each D, is Cartier and ample.




Theorem (Numerical Cartier condition; weak form)

—f: X — C is flat, projective, relative dimension n,
— normal fibers (for simplicity)

— D divisor such that each D. is Cartier and ample. Then
Q c — (D!) is upper semi-continuous and

©

@ D is Cartier iff the above function is constant.
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Corollary (Numerical criterion of stability)

—f: X — C flat, projective, relative dimension n,
— fibers are (semi) log canonical with
— ample canonical class Kx_. Then

Q@ ¢ (KL ) is upper semi-continuous and
Q 1 is stable iff (K} ) is constant.

Stable := Kx /¢ is Q-Cartier.

(K% )= volume of X_ with Kahler-Einstein metric.



Numerical Cartier condition (strong form) )

— S reduced scheme over a field k,

—f: X — S flat, proper, pure relative dimension n,
- S, fibers,

— Z C X such that Z N X, has codim > 2,

— L% line bundle on X\ Z such that

— L%,z extends to an ample line bundle L, on Xi.

Q>
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Numerical Cartier condition (strong local form)

— S reduced scheme over a field k,

—f: X — S flat, projective, pure relative dimension n,
- S, fibers.

— Z C X such that Z N X, has codim > 2,

— L% line bundle on X\ Z such that

- LOIXS\Z extends to an arbitrary line bundle Ls on X..
— H relatively ample on X/S. Then

@ s+ (HI 2. L2) is upper semi-continuous and

Q@ [ extends to a line bundle L on X iff (H'=2 - [2) is
constant.
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Reminder: what general theory says

Old (?) Theorem. Equivalent:

@ [ extends to a line bundle L on X.

@ Hilbert pol. x (X, Ls(m)) is constant.

Q all the (LI - HI - Td,_;_;(X,)) are constant.
New Theorem.

(L2 - HI=2) constant

=

all the (L’s -H - Td,,,,-,j(XS)) are constant
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Upper semi-continuity over a smooth curve |

L% extends to a reflexive sheaf L* and we have
ro: L*|x, = Lo, called restriction map.
By semicontinuity

h°(Xo, Lo) > h®(Xo, L*|x,) = h°(Xg, L|x,) = h°(Xe, Lg)-

If Lo and L, are ample, then

applying it to (L°)®™ and using Riemann—Roch:

WO (Xy, LE™ WX, LEm

P00 L57) o i B L) ):(Lg).

(L0>n = lim m"/nl m"/n!



Proof in dimension 2 (L; need not be ample)

Set X(Xt7 L;@m) — at-m2 + btm + Ct.
Cokernel of r{" is Artinian, so

aom? + bgm + cg > agm?* + bym + ¢, for every m.
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Proof in dimension 2 (L; need not be ample)

Set x (X, L¥™) = agm?® + bem + c;.

Cokernel of r{" is Artinian, so

aom? + bgm + cg > agm?* + bym + ¢, for every m.
RR: dy = %(Lt : I—t) and C = X(Xt7 OXt)

If (Lo-Lo) = (Lg-Lg). Then ag = a, thus

bom + cg > bym + ¢, for every m.

m > 1 gives by > b, and m < —1 gives —by > —b,.
So by = b and ¢y = ¢, since f is flat.
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— L% line bundle on X \ Z
— every L, line bundle
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Strong local form; second look

—f: X — S flat, projective, pure dim n with S, fibers
— L% line bundle on X \ Z
— every L, line bundle

@ s+ (H'2-L2) is upper semi-continuous and
@ [° extends to line bundle L iff constant.

Note: (H/~2-  takes general surface section so

© upper semi-continuity follows from 2-dim case,
© codim > 3 singularities do not matter!



Grothendieck—Lefschetz in SGA2

— (x € X) local scheme, x € D C X Cartier divisor
- U:=X\{x}and Up := D\ {x},
— L line bundle on U such that

- LD = LlUD = OUD-

— Assume that depth, Op > 3

= L= 0y.
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Reminder on local cohomology

- X affine, x € X, U = X\ {x}
Then:

— F coherent sheaf that is S,.

1. H2(X,F) = HY(U, F|y),

2. finite if X has pure dimension > 3,
3. vanishes iff depth, F > 3.



Proof. 0 — L 5 L 5 Lp = Oy, — 0 gives

Ho(U,L) & H°(U,L) 5
HY (U, L) =

H®(Up, Lp = Oy,,)
Hl(U,L) — Hl(UD,LDgOUD).

—



Proof. 0 — L 5 L 5 Lp = Oy, — 0 gives

_>

HO(U,L) 5 HO(U,L) 5 H°(Up,Lp=0y,) —
HY(U,L) & HYU,L) — HY(Up,Lp=0y,).
depth, Op > 3 = H*(Up,Oy,) = 0 and so

t:H'(U,L)—H*(U, L) is surjective.
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_>

HO(U,L) 5 H°(U,L) 5 H°(Up,Lp =0y,
HY(U,L) -

%
Hl(U7 L) — Hl(UD,LDgOUD
depth, Op > 3 = H*(Up,Oy,) = 0 and so

)
).
t:H'(U,L)—H*(U, L) is surjective.

dim U > 4 implies Hl(U, L) has finite length, so
t:H'(U,L)—H*(U, L) isomorphism.



Proof. 0 — L 5 L 5 Lp = Oy, — 0 gives

HO(U,L) = HO(U.L) 5 H°(Up,Lp =0y,
t

) —
HY(U, L) 5 HY(U,L) — H(Up,Lp=0y,)

depth, Op > 3 = H*(Up,Oy,) = 0 and so
t:H'(U,L)—H*(U, L) is surjective.

dim U > 4 implies Hl(U, L) has finite length, so
t:H'(U,L)—H*(U, L) isomorphism.

Thus r: H°(U, L)—H(Up, Lp) is surjective.
Lift back the constant 1 section to L.
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Stronger Grothendieck—Lefschetz

— (x € X) local scheme, x € D C X Cartier divisor,
- U:=X\{x}and Up := D\ {x},

— L line bundle on U such that

- LD = L‘UD = OUD-

- depthx OD 2 3.

— New assumption: depth, Op > 2 and dim D > 3.

= L= 0y.

— Conjectured around 2010

— Proved for semi-log-canonical (arXiv:1211.0317)

— Bhatt — de Jong: X normal over field (arXiv:1302.3189)
— General case (over a field) (arXiv:1407.5108)



Normal case in characteristic p

7 X7 — X normalization in algebraic closure of k(X).
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Normal case in characteristic p

7 X7 — X normalization in algebraic closure of k(X).
— Hochster—-Huneke: X is CM.

— previous proof runs on X (almost).

— L becomes trivial on X, so

— L becomes trivial on some finite degree cover.

— use norm map to show that L™ = O for some m > 0,

— work a little more ...



