Some boundary value and mapping problems for differential forms

Simon Donaldson ${ }^{1}$
 2

${ }^{1}$ Simons Centre for Geometry and Physics
Stony Brook
${ }^{2}$ Imperial College
London
April 25, 2021

PLAN of TALK.
(1) Background
(2) Outline of some older work in dimension $6+1$ (arxiv 1708.01649,1801.01806,1802.09694).
(3) Preliminary report on work in progress in dimension $5+1$ with Fabian Lehmann (and with important input from Robert Bryant).

Part 1. Background

There are special geometric constructions in dimensions 6,7,8 related to exceptional holonomy and special properties of differential forms in those dimensions.

Dimension 7

Let V be an oriented 7-dimensional real vector space and $\phi \in \Lambda^{3} V^{*}$.
We have a quadratic form on V with values in the line Λ^{7} defined by

$$
v \mapsto\left(i_{v}(\phi)\right)^{2} \wedge \phi
$$

The form is called positive if this is positive definite.
In that case we fix the scale by requiring that $|\phi|^{2}=7$. This gives a Euclidean structure g_{ϕ} on V, determined by ϕ.

We have a 4-form $* \phi=*_{\phi} \phi$.

The stabiliser in $G L(V)$ of any positive 3-form is isomorphic to the 14-dimensional exceptional Lie group G_{2}.

Fernandez and Gray: A torsion-fee G_{2}-structure on an oriented 7 -manifold M is equivalent to a 3-form ϕ which is everywhere positive and with $d \phi=0, d * \phi=0$.

One reason for being interested in these structures is that the Riemannian metric g_{ϕ} of a torsion-free structure has Ricci $=0$.

Hitchin's variational formulation

We have a volume function

$$
\nu: \Lambda_{+}^{3} \rightarrow \Lambda^{7}
$$

The derivative is

$$
\delta \nu=\frac{1}{3} \delta \phi \wedge * \phi .
$$

Let ϕ be a positive form on a compact M^{7}. It defines a volume

$$
\operatorname{Vol}(\phi)=\int_{M} \nu(\phi)
$$

Consider the volume as a functional on the closed forms ϕ in a fixed de Rham cohomology class (assuming that this space is not empty).

The condition for a critical point is

$$
\int_{M} d \sigma \wedge * \phi=0
$$

for all 2-forms σ.
Integrating by parts, this is equivalent to $d * \phi=0$.
So the torsion-free G_{2} structures correspond to the solutions of this variational problem.

Dimension 6

Let U be a 6-dimensional oriented real vector space and $\rho \in \Lambda^{3} U^{*}$.

Say ρ is positive if $i_{v} \rho$ has rank 4 for all $v \neq 0$. Assume this holds.

For $v \neq 0$, let $N_{v}=\left\{v^{\prime}: i_{v^{\prime}} i_{v} \rho=0\right\}$. So $v \in N_{v}$.
Then $\operatorname{dim} N_{v}=2$ and for each $v^{\prime} \in N_{v}$ the form $i_{v^{\prime}} \rho$ induces a symplectic form $\omega_{v^{\prime}}$ on the 4-dimensional space U / N_{v}.

The map $v^{\prime} \mapsto \omega_{v^{\prime}}^{2}$ defines a conformal structure on N_{v} and, thinking about orientations, we see that there is a corresponding complex structure on N_{V}. So we have a way to define $I_{\rho} v \in N_{v} \subset U$. This gives a complex structure I_{ρ} on U.

We also get a complex 3 -form $\Omega=\rho+i \tilde{\rho}$ which is of type $(3,0)$ with respect to I_{ρ}.

The stabiliser in $\mathrm{GL}^{+}(U)$ of a positive 3-form is isomorphic to $S L(3, \mathbf{C})$.

A complex Calabi-Yau structure on an oriented 6-manifold Z is equivalent to a 3-form ρ which is everywhere positive and with $d \rho=d \tilde{\rho}=0$.

Then the almost-complex structure I_{ρ} is integrable, so we have a complex manifold, and $\Omega=\rho+i \tilde{\rho}$ is a nowhere-vanishing holomorphic 3-form.

There is a similar Hitchin variational description, with a volume functional on the space of positive 3 -forms in a fixed cohomology class.

Part 2: Boundary value problem for G_{2}-structures

Let M be a compact oriented 7-manifold with boundary $\partial M=Z$ and ρ a closed positive 3-form on Z.

We consider the problem of finding a torsion-free G_{2}-structure ϕ (in a fixed "relative" class) on M which restricts to ρ on the boundary.

This has a variational description. (We consider variations $d \sigma$ with $\left.\sigma\right|_{z}=0$. Then

$$
\delta \mathrm{Vol}=\int_{M} d(* \phi) \wedge \sigma+\int_{Z} * \phi \wedge \sigma
$$

and the boundary term vanishes.)

Proposition This is an elliptic boundary value problem for ϕ, modulo diffeomorphisms of M fixing the boundary.

Brief discussion

Sketch of the standard case, for a closed manifold M.
We suppose that ϕ is a torsion-free G_{2} structure and want to consider the linearised equation (equivalently, the Hessian of the volume functional).

An infinitesimal variation of ϕ has the form $d \sigma$. The variations $L_{v} \phi=d i_{v} \phi$ for vector fields v are "trivial".

The 2-forms on M decompose into $\Omega_{7}^{2} \oplus \Omega_{14}^{2}$. This decomposition is preserved by the Laplace operator Δ.

The first factor corresponds to the $i_{v} \phi$. So we can suppose that $\sigma \in \Omega_{14}^{2}$.

Slightly over-simplifying, the linearised operator turns out to be the Laplacian on Ω_{14}^{2}.

The structure ϕ is a strict local maximum of the volume functional on the forms in the same cohomology class, modulo diffeomorphisms.

In the case of a manifold with boundary, the space Λ_{14}^{2} decomposes at a boundary point into a sum of 8 -dimensional and 6 -dimensional pieces. (The 8 -dimensional piece corresponds to the Lie algebra of $S U(3)$ inside the Lie algebra of G_{2}.)

The linearised operator associated to the boundary value problem turns out to be the Laplacian on Ω_{14}^{2} with boundary conditions

- $\left.d^{*} \sigma\right|_{\partial M}=0$;
- $\sigma \|_{\partial M, 8}=0$.
(Note that this is $6+8=14$ boundary conditions, of mixed Dirichlet and Neumann type.)

One checks that this is an elliptic boundary value set-up.

Consequence of the Proposition

For small variations of the data (i.e. the 3 -form ρ and the cohomology class of ϕ) there is a unique small perturbation of the solution to the B.V. problem for G_{2}-structures MODULO possible obstructions in a finite-dimensional vector space H_{ϕ}.

This is a relatively standard application of the implicit function theorem in Banach spaces, and elliptic theory.

One can prove is certain cases, and plausibly conjecture in some generality, that these obstruction spaces H_{ϕ} vanish. (Related to the question whether the solutions are local maxima in the variational theory).

Example If ρ_{0}, ρ_{1} are closed 3 -forms in the same cohomology class on a 6-manifold Z which are sufficiently close to a Calabi-Yau structure then there is a " G_{2}-cobordism" between them, perturbing the cylinder (Calabi - Yau $) \times[0,1]$.

Riemannian geometry aspects

To have any hope of general existence theorems one perhaps needs to impose conditions on the boundary data ρ.

If ρ is any closed positive 3 -form on Z^{6} the 4 -form $d \tilde{\rho}$ has type
$(2,2)$ with respect to the almost-complex structure I_{ρ}.
Thus there is notion of positivity of $d \tilde{\rho}$ and an intrinsic numerical invariant det $d \tilde{\rho}$.

If $d \tilde{\rho}>0$ and ρ is the boundary value of a torsion-free
G_{2}-structure ϕ on M then the mean curvature μ of Z in $\left(M, g_{\phi}\right)$ is positive and

$$
\mu \geq \frac{3}{2}(\operatorname{det} \tilde{\rho})^{1 / 3}>0
$$

This combines well with the fact that $\operatorname{Ricci}\left(g_{\phi}\right)=0$.
For example, if $\mu \geq \mu_{0}>0$ then the distance of any point in M from the boundary is at most $7 / \mu_{0}$.
(Proof similar to Myers' Theorem.)

Dimension reduction

Various interesting equations in lower dimensions arise by imposing symmetry.
Example Let $\Sigma \subset \mathbf{R}^{3}$ be the boundary of a convex domain U. Let T be a current of the form

$$
T(f)=\int_{\Sigma} a \nabla_{\nu} f+b f
$$

for functions a, b on Σ, where ∇_{ν} is the normal derivative.
Problem: Minimise $T(f)$ over solutions f of the Monge-Ampère equation $\operatorname{det}\left(\nabla^{2} f\right)=1$ on the domain U.

This arises from the G_{2} problem in 7 dimensions by imposing symmetry under an action of $\mathbf{R}^{3} \times S^{1}$.

Part 3: Boundary values of complex Calabi-Yau structures

Let Y be an compact oriented 5-manifold and ψ a closed 3-form on Y.

If Y is the boundary of a 6-manifold Z then we can seek a complex Calabi-Yau structure ρ on Z with boundary value ψ, in the manner above.

This is not an elliptic boundary value problem.

Note that, unlike the G_{2}-case, complex Calabi-Yau structures are locally trivial.
We focus on a variant of the problem, which is to seek Z as a domain in some fixed complex Calabi-Yau manifold Z_{+}, with holomorphic 3 -form Ω. For example $Z_{+}=\mathbf{C}^{3}$.

Then we have a mapping problem: Is there an embedding

$$
F: Y \rightarrow Z_{+}
$$

such that

$$
F^{*}(\operatorname{Re} \Omega)=\psi ?
$$

Informal parameter count.

A closed 3-form in 5 dimensions is given by $10-5+1=6$ functions, which is the same number as a map into a 6-manifold Z_{+}.

This is special to the dimension: for example, a closed 4 -form on a 7-manifold is given by $35-21+7-1=20$ functions, which is much more than 8.

A dimensionally reduced problem

Take $Y=\Sigma \times \mathbf{R}_{y}^{3}$ where Σ is diffeomorphic to S^{2} and

$$
\psi=\omega_{1} d y_{1}+\omega_{2} d y_{2}+\omega_{3} d y_{3}
$$

where $\omega_{1}, \omega_{2}, \omega_{3}$ are 2 -forms on Σ and y_{a} are co-ordinates on \mathbf{R}_{y}^{3}.

Take F to have the form

$$
F\left(u,\left(y_{1}, y_{2}, y_{3}\right)\right)=f(u)+\left(i y_{1}, i y_{2}, i y_{3}\right)
$$

for $\operatorname{amap} f: \Sigma \rightarrow \mathbf{R}_{x}^{3} \subset \mathbf{C}^{3}$.

Then the problem is to find f such that

$$
f^{*}\left(d x_{a} d x_{b}\right)=\omega_{c},
$$

for ($a b c$) cyclic permutations of (123), where x_{a} are co-ordinates on \mathbf{R}_{x}^{3}.
Clearly we need to assume that

$$
\int_{\Sigma} \omega_{a}=0
$$

Choose an area form σ on Σ. We have $\omega_{a}=h_{a} \sigma$ for functions h_{a} on Σ. Write $\underline{h}=\left(h_{1}, h_{2}, h_{3}\right): \Sigma \rightarrow \mathbf{R}_{x}^{3}$.

Assume that \underline{h} nowhere vanishes and that it induces a diffeomorphism $g=h /|h|: \Sigma \rightarrow S^{2}$.

Then finding the map f is equivalent to the classical Minkowski problem, solved by Nirenberg in 1953.

For, without loss of generality we can suppose that $|h|=1$ and that $\Sigma=S^{2}$ with g the identity map. Then ω_{a} are the 2 -forms on S^{2} determined by a positive function K :

$$
\omega_{a}=K^{-1} x_{a} d A
$$

where $d A$ is the standard area form on S^{2}.
The condition on the map $f: S^{2} \rightarrow \mathbf{R}^{3}$ is that the normal vector to the image at $f(x)$ is x and that the Gauss curvature is $K(x)$.

Closed 3-forms in dimension 5 (Incorporating suggestions of Robert Bryant.)

Let ψ be a closed 3 -form on the oriented Y^{5}. At each point ψ defines a skew form on cotangent vectors with values in Λ^{5} :

$$
(a, b) \mapsto a \wedge b \wedge \psi .
$$

Assumption 1 This has maximal rank, 4, at each point. (This is necessary for a form induced from $Y \subset\left(Z_{+}, \Omega\right)$.
The 1-dimensional kernel in $T^{*} Y$ correspond to a field of 4-dimensional subspaces $H \subset T Y$.

Assumption $2 H$ is a contact structure on Y.
There is a contact 1 -form θ with $(d \theta)^{2} \wedge \theta>0$. This is not unique; we could change θ to $f \theta$ for any positive function f. By construction $\psi=\theta \wedge \alpha$ for a 2-form α.

Assumption 3

$$
\theta \wedge \alpha^{2}>0
$$

(Assumptions 2 and 3 imply that if ψ is induced from $Y \subset\left(Z_{+}, \Omega\right)$ bounding a domain Z then, with the right choice of orientation, the boundary is pseudoconvex.)

We can then normalise θ by the requirement that $\alpha^{2} \wedge \theta=(d \theta)^{2} \wedge \theta$. Write $\omega=d \theta$ and fix the volume form $\mu=\omega^{2} \wedge \theta$.
We have a Reeb vector field v defined by the conditions that $i_{v} \omega=0$ and $\theta(v)=1$.

This gives a decomposition $T Y=H \oplus \mathbf{R} v$ and a subspace of forms $\Omega_{H}^{p} \subset \Omega^{p}$ so that

$$
\Omega^{p}=\Omega_{H}^{p} \oplus \theta \wedge \Omega_{H}^{p-1}
$$

We have

$$
d_{H}: \Omega_{H}^{p} \rightarrow \Omega_{H}^{p+1}
$$

The square d_{H}^{2} is the wedge product with ω. The choice of α can be fixed by requiring $\alpha \in \Omega_{H}^{2}$.

We have an indefinite inner product of signature $(3,3)$ on $\Lambda^{2} H^{*}$ defined by

$$
\left(\gamma_{1} \cdot \gamma_{2}\right) \mu=\gamma_{1} \wedge \gamma_{2} \wedge \theta .
$$

By construction $d_{H} \omega=0$ and $\omega \cdot \omega=\alpha \cdot \alpha=1$. The conditions that $\psi=\alpha \wedge \theta$ is closed is equivalent to $\alpha . \omega=0$ and $d_{H} \alpha=0$.

The orthonormal pair ω, α defines a complex structure J on H.

Let L_{v} be the Lie derivative along the Reeb field v. There is an invariant $\chi=L \alpha$ which satisfies $\chi . \alpha=\chi . \omega=0$, so χ has type $(1,1)$ with respect to J.

Thus there is a notion of "positivity" of χ.
There is also a numerical invariant $\chi \cdot \chi$ (a function on Y).
(Robert Bryant informs us that the tensor χ is the only second order invariant of closed 3 -forms ψ, satisfying our assumptions.)

One question is: which contact structures on 5-manifolds are compatible with a closed 3-form in this way?

Suppose now that ψ is obtained from an embedding $Y \subset Z_{+}$. The restriction of $\operatorname{Im} \Omega$ can be written as $\beta \wedge \theta$ for $\beta \in \Omega_{H}^{2}$ with $d_{H} \beta=0$ and ω, α, β form an orthonormal triple with respect to the inner product. The pair α, β defines another complex structure I on H, which is the usual CR-structure given by the embedding.
There is a unique metric on H with volume form ω^{2} and self-dual space spanned by ω, α, β.

Another question is: given $\psi=\alpha \wedge \theta$ as above, can we find a $\beta \in \Omega_{H}^{2}$ with $d_{H} \beta=0$ such that (ω, α, β) is an orthonormal triple, and if so is the solution unique? (Bryant)

This could be seen as a "contact" version of the Calabi-Yau problem in complex dimension 2 (the existence of a hyperkähler structure).

Given θ, α, β as above we have anti-self-dual forms Ω_{H}^{-}and a complex

$$
\Omega_{H}^{0} \xrightarrow{d_{H}} \Omega_{H}^{1} \xrightarrow{d_{H}^{-}} \Omega_{H}^{-} . \quad(* * * *)_{H} .
$$

Denote the cohomology by \mathcal{H}^{p}.

The linearised embedding problem

For definiteness, take Y diffeomorphic to S^{5} and $Z_{+}=\mathbf{C}^{3}$.
A solution of the embedding problem will never be unique because it can be changed by a holomorphic volume-preserving diffeomorphism of \mathbf{C}^{3}.
Suppose that ψ is induced by an embedding $Y \subset \mathbf{C}^{3}$ as the boundary of a pseudoconvex domain Z. The linearised problem can be expressed in terms of a complex

$$
E_{0} \xrightarrow{D_{1}} E_{1} \xrightarrow{D_{2}} E_{2}
$$

where E_{0} is the space of divergence-free holomorphic vector fields on Z, E_{1} is the space of sections of $\left.T \mathbf{C}^{3}\right|_{Y}$ and E_{2} is the space of closed 3-forms on Y.

We have the data (θ, α, β) on Y, as above.
Proposition Suppose that $\mathcal{H}^{2}=0$. Then D_{2} is surjective and $\operatorname{Ker} D_{2}=\operatorname{Im} D_{1}$.

This makes it plausible that, when $\mathcal{H}^{2}=0$, any small deformation of ψ can be realised by a small deformation of the embedding, unique up to volume-preserving holomorphic diffeomorphisms. In other words, the isomorphism class of $\left(Z,\left.\Omega\right|_{z}\right)$ would be uniquely determined by the boundary value ψ (with respect to small variations).

We expect/hope that Nash-Moser theory can be applied to prove such a result.

Proof of the assertion $\mathcal{H}^{2}=0$ implies that D_{2} is surjective.
The restriction of the tangent bundle of \mathbf{C}^{3} to Y is $H \oplus \mathbf{C} v$. For any section w let $K(w)$ be the restriction of the 2 -form $i_{w}(\operatorname{Re} \Omega)$ to Y. Then then the map D_{2} is

$$
D_{2}(w)=d(K(w)) .
$$

Any closed 3-form on Y can be written as $d \sigma$ and σ is unique up to $d \Omega{ }_{Y}^{1}$. It follows that the cokernel of D_{2} is isomorphic to the cokernel of

$$
d \oplus K: \Omega_{Y}^{1} \oplus \Gamma\left(\left.T \mathbf{C}^{3}\right|_{Y}\right) \rightarrow \Omega_{Y}^{2}
$$

The image of the bundle map K is the span of α, β plus $\Omega_{H}^{1} \wedge \theta$.
Since $d(f \theta)=f \omega$ modulo $\Omega_{H}^{1} \wedge \theta$, the cokernel of $d \oplus K$ is isomorphic to the quotient of the cokernel of $d_{H}: \Omega_{H}^{1} \Omega \Omega_{H}^{2}$ by the subspace generated by α, β, ω. This is the same as the cokernel of d_{H}^{-}.

The proof of the other assertion in the Proposition involves an integration argument to show that any $w \in \operatorname{ker} D_{2}$ is a holomorphic section in the sense of the $\bar{\partial}_{b}$ operator on Y, which then extends holomorphically over Z by a theorem of Hartogs type.

Analysis on S^{5}

It seems likely that the theory of hypoelliptic operators can be applied to these questions. In the case when $Y \subset \mathbf{C}^{3}$ is the standard sphere S^{5} with induced 3 -form ψ_{0} one can proceed in a more elementary way.

We have an S^{1} action with quotient $\mathbf{C P}^{2}$ and H is the pull-back of the tangent space of $\mathbf{C P}{ }^{2}$. Let $L \rightarrow \mathbf{C P}{ }^{2}$ be the Hopf line bundle. It has a connection with curvature a self-dual form on $\mathbf{C P}{ }^{2}$, which lifts to ω on S^{5}.

For each integer k there is a complex over $\mathbf{C P}^{2}$:

$$
\Omega^{0}\left(L^{k}\right) \xrightarrow{d_{k}} \Omega^{1}\left(L^{k}\right) \xrightarrow{d_{k}^{-}} \Omega^{-}\left(L^{k}\right) . \quad(* * * *)_{k}
$$

of a kind which is well-known in the deformation theory of Yang-Mills instantons.

Set $\Delta_{k}=d_{k}^{-}\left(d_{k}^{-}\right)^{*}$.

On a general Riemannian 4-manifold, the Weitzenbock formula on Ω^{-}is

$$
\Delta_{k}=\frac{1}{2} \nabla^{*} \nabla+\left(W_{-}+S / 3\right),
$$

where W_{-}is the anti-self-dual part of the Weyl curvature. For $\mathbf{C P}{ }^{2}$ this vanishes, the scalar curvature is positive and we have

$$
\Delta_{k}=\frac{1}{2} \nabla^{*} \nabla+4 .
$$

This implies that d_{k}^{-}is surjective.
(Remark: On self-dual manifolds like $\mathbf{C P}^{2}$ the complex above has a "twistor" description.)

Returning to S^{5}, we can decompose Ω_{H}^{*} into Fourier components with respect to the circle action and we find that the complex $(* * * *)_{H}$ on S^{5} can be identified with the sum over $k \geq 0$ of the complexes $(* * * *)_{k}$ on $\mathbf{C P}^{2}$.

The preceding discussion then implies that for ψ_{0} we have $\mathcal{H}^{2}=0$.

Going further, one can show that $\Delta_{k} \geq c k$ for some $c>0$ and use this to show that for any closed 3-form sufficiently close to ψ_{0} we also have $\mathcal{H}^{2}=0$ and there is a right inverse to the linearised operator d_{H}^{-}satisfying explicit estimates in Sobolev spaces. This is the crucial requirement to apply the Nash-Moser theory.

