Topological Recursion and Crepant Transformation Conjecture

Chiu-Chu Melissa Liu
Columbia University
(based on joint work with Bohan Fang, Song Yu, and Zhengyu Zong)

35th Annual Geometry Festival
Stony Brook University

April 23-25, 2021

K-equivalence

Let $\mathcal{X}_{ \pm}$be a smooth complex algebraic variety ($\Rightarrow \mathcal{X}_{ \pm}$is a complex manifold, locally isomorphic to \mathbb{C}^{m}) or a smooth (complex) Deligne-Mumford (DM) stack ($\Rightarrow \mathcal{X}_{ \pm}$is a complex orbifold, locally isomorphic to \mathbb{C}^{m} / G, where G is a finite group acting holomorphically on \mathbb{C}^{m}).

The canonical line bundle $K_{\mathcal{X}_{ \pm}}=\Lambda^{m} T_{\mathcal{X}_{ \pm}}^{*}$ is an algebraic (holomorphic) (orbifold) line bundle over $\mathcal{X}_{ \pm}$.

Following C.-L. Wang, we say \mathcal{X}_{+}and \mathcal{X}_{-}are K -equivalent if there exists a smooth variety/DM stack \mathcal{Y} and birational maps $f_{ \pm}: \mathcal{Y} \rightarrow \mathcal{X}_{ \pm}$such that $f_{+}^{*} K_{\mathcal{X}_{+}}=f_{-}^{*} K_{\mathcal{X}_{-}}$.

Crepant Transformation Conjecture (CTC)

The Crepant Transformation Conjecture (CTC) was first proposed by Y. Ruan around 2001, and later refined/extended by Bryan-Graber, Coates-Iritani-Tseng, Iritani, Coates-Ruan, etc.

CTC relates Gromov-Witten (GW) invariants of \mathcal{X}_{+}and \mathcal{X}_{-}. GW invariants of \mathcal{X} are virtual counts of parametrized holomorphic curves in \mathcal{X}.

In this talk, we will describe CTC for symplectic toric Calabi-Yau 3 -orbifold. Here we say a complex manifold/orbifold \mathcal{X} is Calabi-Yau if $K_{\mathcal{X}}$ is the trivial holomorphic line bundle $\mathcal{O}_{\mathcal{X}}$ on \mathcal{X}. (Borisov-Chen-Smith: smooth toric DM stacks)

Symplectic toric Calabi-Yau 3-orbifolds

Let $G=\left(\mathbb{C}^{*}\right)^{\mathfrak{p}}$ act on $\mathbb{C}^{\mathfrak{p}+3}$ linearly and faithfully:

$$
\lambda \cdot\left(z_{1}, \ldots, z_{\mathfrak{p}+3}\right)=\left(\rho_{1}(\lambda) z_{1}, \ldots, \rho_{\mathfrak{p}+3}(\lambda) z_{\mathfrak{p}+3}\right)
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\mathfrak{p}}\right) \in G,\left(z_{1}, \ldots, z_{\mathfrak{p}+3}\right) \in \mathbb{C}^{\mathfrak{p}+3}$, and $\rho_{i}: G \rightarrow \mathbb{C}^{*}$ are G-characters which satisfy the Calabi-Yau condition

$$
\prod_{i=1}^{\mathfrak{p}+3} \rho_{i}(\lambda)=1
$$

The action of $G=\left(\mathbb{C}^{*}\right)^{\mathfrak{p}}$ restricts to a Hamiltonian action by the maximal compact subgroup $G_{\mathbb{R}}=U(1)^{\mathfrak{p}}$ of G on

$$
\left(\mathbb{C}^{\mathfrak{p}+3}, \frac{\sqrt{-1}}{2} \sum_{i=1}^{\mathfrak{p}+3} d z_{i} \wedge d \bar{z}_{i}\right)
$$

Symplectic toric Calabi-Yau 3-orbifolds

If $\rho_{i}(\lambda)=\prod_{a=1}^{\mathfrak{p}} \lambda_{a}^{Q_{i}^{a}}\left(\right.$ where $\left.Q_{i}^{a} \in \mathbb{Z}\right)$, then (up to the addition to a constant vector in \mathbb{R}^{p}) the moment map of the $G_{\mathbb{R}}$-action is given by

$$
\mu: \mathbb{C}^{\mathfrak{p}+3} \longrightarrow \mathbb{R}^{\mathfrak{p}}, \quad z \mapsto\left(\mu^{1}(z), \ldots, \mu^{\mathfrak{p}}(z)\right)
$$

where $\mu(z)=\frac{1}{2} \sum_{i=1}^{\mathfrak{p}+3} Q_{i}^{\boldsymbol{a}}\left|z_{i}\right|^{2}$. Given a regular value $\theta \in \mathbb{R}^{\mathfrak{p}}$,

$$
\mathcal{X}_{\theta}=\left[\mu^{-1}(\theta) / G_{\mathbb{R}}\right]
$$

is a toric Calabi-Yau 3-orbifold with a Kähler form ω_{θ}; if the $G_{\mathbb{R}^{-}}$-action on $\mu^{-1}(\theta)$ is free then $\left(\mathcal{X}, \omega_{\theta}\right)$ is a 3-dimensional Käher manifold. The coarse moduli space

$$
X_{\theta}=\mu^{-1}(\theta) / G_{\mathbb{R}}=\left(\mathbb{C}^{\mathfrak{p}+3}\right)^{\theta-s s} / G
$$

is a simplicial toric Calabi-Yau 3-fold.

Example

$$
G=\mathbb{C}^{*}, G_{\mathbb{R}}=U(1), \mathfrak{p}=1
$$

$$
\lambda \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(\lambda z_{1}, \lambda z_{2}, \lambda z_{3}, \lambda^{-3} z_{4}\right)
$$

$\mu: \mathbb{C}^{4} \longrightarrow \mathbb{R}, \quad\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \mapsto \frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}-3\left|z_{4}\right|^{2}\right)$.
$X_{\theta}=\mu^{-1}(\theta) / U(1)= \begin{cases}\left(\left(\mathbb{C}^{3}-\{0\}\right) \times \mathbb{C}\right) / \mathbb{C}^{*}=\mathcal{O}_{\mathbb{P}^{2}}(-3)=K_{\mathbb{P}^{2}}, & \theta>0 ; \\ \left(\mathbb{C}^{3} \times(\mathbb{C}-\{0\})\right) / \mathbb{C}^{*}=\mathbb{C}^{3} / \mathbb{Z}_{3}, & \theta<0 .\end{cases}$
$\mathcal{X}_{+}=K_{\mathbb{P}^{2}}=X_{+}$is a symplectic toric Calabi-Yau 3-manifold
$\mathcal{X}_{-}=\left[\mathbb{C}^{3} / \mathbb{Z}_{3}\right]$ is a symplectic toric Calabi-Yau 3-orbifold
$X_{-}=\mathbb{C}^{3} / \mathbb{Z}_{3}$ is a simpicial toric Calab-Yau 3-fold

Inertia Stack and Chen-Ruan Orbifold Cohomology

$$
X=\mu^{-1}(\theta) / G_{\mathbb{R}}=U / G, \quad U=\left(\mathbb{C}^{\mathfrak{p}+3}\right)^{\theta-s s}, \quad \mathcal{X}=[U / G]
$$

The inertia stack of \mathcal{X} is
$I \mathcal{X}=\{(z, b) \in U \times G: b \cdot z=z\} / G=\bigcup_{b \in B} \mathcal{X}_{b}=\mathcal{X}_{0} \cup \underbrace{\bigcup_{b \in B \backslash\{1\}} \mathcal{X}_{b}}_{\text {twisted sectors }}$
where $B=\left\{b \in G: U^{b}\right.$ is non-empty $\}, \mathcal{X}_{b}=\left[U^{b} / G\right]$, and
$\mathcal{X}_{0}=[U / G] \cong \mathcal{X}$. If $\mathcal{X}=X$ is smooth then $I \mathcal{X}=\mathcal{X}_{0}=X$.
If $x \in \mathcal{X}_{b}, b$ acts on $T_{x} \mathcal{X}$ with weights $e^{2 \pi \sqrt{-1} \epsilon_{j}}$, where $\epsilon_{j} \in[0,1)$. age $(b):=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} \in\{0,1,2\}$. As a graded vector space over \mathbb{C}, the Chen-Ruan orbifold cohomology of \mathcal{X} is

$$
H_{\mathrm{CR}}^{*}(\mathcal{X})=\bigoplus_{b \in G} H^{*}\left(\mathcal{X}_{b}\right)[2 \operatorname{age}(b)]=\mathbb{C} \mathbf{1}_{0} \oplus H_{\mathrm{CR}}^{2}(\mathcal{X}) \oplus H_{\mathrm{CR}}^{4}(\mathcal{X})
$$

where $\operatorname{deg} \mathbf{1}_{0}=0, \operatorname{dim}_{\mathbb{C}} H_{\mathrm{CR}}^{2}(\mathcal{X})=\mathfrak{p} \geq \operatorname{dim}_{\mathbb{C}} H_{\mathrm{CR}}^{4}(\mathcal{X})=: \mathfrak{g}$.

Example

$$
\begin{aligned}
\mathcal{X}= & {\left[\mathbb{C}^{3} / \mathbb{Z}_{3}\right], \quad I \mathcal{X}=\mathcal{X}_{0} \cup \mathcal{X}_{\zeta} \cup \mathcal{X}_{\zeta^{2}}, \zeta=e^{2 \pi \sqrt{-1} / 3} . } \\
& \mathcal{X}_{0}=\mathcal{X}, \quad \mathcal{X}_{\zeta}=\mathcal{X}_{\zeta^{2}}=\left[0 / \mathbb{Z}_{3}\right]=B \mathbb{Z}_{3} . \\
& \operatorname{age}(\zeta)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1, \quad \operatorname{age}\left(\zeta^{2}\right)=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=2 . \\
& H_{\mathrm{CR}}^{*}(\mathcal{X})=\underbrace{\mathbb{C} 1_{0}}_{H^{0}} \oplus \underbrace{\mathbb{C} \mathbf{1}_{\frac{1}{3}}^{3}}_{H^{2}} \oplus \underbrace{\mathbb{C} \mathbf{1}_{\frac{2}{3}}}_{H^{4}} . \\
& H_{\mathrm{CR}}^{*}\left(K_{\mathbb{P}^{2}}\right)=H^{*}\left(K_{\mathbb{P}^{2}}\right)=\underbrace{\mathbb{C} 1}_{H^{0}} \oplus \underbrace{\mathbb{C}}_{H^{2}} \oplus \underbrace{\mathbb{C} H^{2}}_{H^{4}} .
\end{aligned}
$$

In general:

- $H_{\mathrm{CR}}^{2}(\mathcal{X})=H^{2}(\mathcal{X}) \oplus \bigoplus_{b \in B_{1}} \mathbb{C} \mathbf{1}_{b}$,
where $B_{1}=\{b \in B: \operatorname{age}(b)=1\}$.
- If \mathcal{X}_{+}and \mathcal{X}_{-}are related by a single toric wall-crossing
(e.g. $\mathcal{X}_{+}=K_{\mathbb{P}^{2}}, \mathcal{X}_{-}=\left[\mathbb{C}^{3} / \mu_{3}\right]$) then
$H_{\mathrm{CR}}^{*}\left(\mathcal{X}_{+}\right) \cong H_{\mathrm{CR}}^{*}\left(\mathcal{X}_{-}\right)$as graded vector spaces over \mathbb{C}.

Gromov-Witten invariants

$$
H_{\mathrm{CR}}^{2}(\mathcal{X})=\underbrace{H^{2}(\mathcal{X})}_{\mathfrak{p}^{\prime}} \oplus \bigoplus_{i=1}^{\mathfrak{p}-\mathfrak{p}^{\prime}} \mathbb{C} \mathbf{1}_{b_{i}}, \quad \text { where } B_{1}=\left\{b_{1}, \ldots b_{\mathfrak{p}-\mathfrak{p}^{\prime}}\right\} .
$$

Given $i_{1}, \ldots, i_{\ell} \in\left\{1, \ldots, \mathfrak{p}-\mathfrak{p}^{\prime}\right\}$,

$$
\left\langle\mathbf{1}_{b_{i_{1}}} \cdots \mathbf{1}_{b_{i_{\ell}}}\right\rangle_{g, d^{\prime}}^{\mathcal{X}} \in \mathbb{Q}
$$

is the virtual number of holomorphic maps $f:\left(C, x_{1}, \ldots, x_{\ell}\right) \rightarrow \mathcal{X}$, where C is a (nodal) orbicurve of genus g,

$$
f_{*}[C]=d^{\prime} \in H_{2}(X ; \mathbb{Z}) / \text { torsion }=\mathbb{Z}^{\mathfrak{p}^{\prime}}, f\left(x_{j}, \zeta\right) \in \mathcal{X}_{b_{i j}}
$$

$$
F_{g}^{\mathcal{X}}(\tau)=\sum_{d} e^{\sum_{a=1}^{p^{\prime}} d_{a} \tau_{a}} \prod_{a=\mathfrak{p}^{\prime}+1}^{p} \frac{\tau_{a}^{d_{a}}}{d_{a}!}\left\langle\mathbf{1}_{b_{1}}^{d_{p^{\prime}+1}} \cdots \mathbf{1}_{b_{p-p^{\prime}}}^{d_{p}}\right\rangle_{g, d^{\prime}}^{\mathcal{X}}
$$

where $\tau=\left(\tau_{1}, \ldots, \tau_{\mathfrak{p}}\right), \boldsymbol{d}=\left(d_{1}, \ldots, d_{\mathfrak{p}}\right)$ extended degree.
In particular, if \mathcal{X} is smooth then $\mathfrak{p}^{\prime}=\mathfrak{p}$ and
$F_{g}^{\mathcal{X}}(\tau)=\sum_{d} \prod_{a=1}^{\mathfrak{p}} Q_{a}^{d_{a}} N_{g, d}^{\mathcal{X}}$, where $Q_{a}=e^{\tau_{a}}$ and $N_{g, d}^{\mathcal{X}}=\langle \rangle_{g, d}^{\mathcal{X}}$.

Open Gromov-Witten Invariants
virtual counts of parametrized holomorphic curves in X with boundaries in $L \subset X$

Aganagic - Vata Lagrangian
generalization of Haney-Lawson SLag in \mathbb{C}^{3}
Harvey -Lawson Slay

$$
L=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}=1=\left|z_{1}\right|^{2}-\left|z_{3}\right|^{2} \quad, \operatorname{Im}\left(z_{1} z_{2} z_{3}\right)=1\right\}
$$

Aganagic-Vafa Lagrangian

Given $i_{1, \ldots} i_{l} \in\{1, \ldots, p-p 1\}$

$$
\begin{gathered}
\mu_{1}, \ldots, \mu_{n} \in \mathbb{Z}, \quad k_{1}, \ldots, k_{n} \in \mathbb{Z}_{m} \\
\left\langle 1_{b_{i_{1}}} \cdots 1_{b_{i 2}}\right\rangle_{g_{1} d_{1}^{\prime},\left(\mu_{1}, k_{1}\right) \cdots\left(\mu_{n}, k_{n}\right)}^{x_{1}(L, t)} \in \mathbb{Q} \text { are virtual counts }
\end{gathered}
$$

of holomorphic maps $u:\left(\Sigma, x_{1},, x_{l}, \partial^{\prime \prime}\right) \longrightarrow(X, L)$ genus $g \quad \prod_{i=1}^{n} R_{i}$

counts depend on the framing $f \in \mathbb{Z}$

$$
\begin{aligned}
& u_{*}[\Sigma]=d^{\prime}+\left(\sum_{i=1}^{n} \mu_{i}\right) \alpha \\
& \omega_{n} \\
& H_{2}\left(x_{i} \mathbb{Z}\right) \quad H_{2}(x, L)
\end{aligned}
$$

$d=\left(d_{1}, \cdots, d_{p}\right)$ extended degree $\rightarrow A$-modal closed string coordinates $\tau_{=}\left(\tau_{1}, \ldots \tau_{p}\right)$
$\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ winding numbers \rightarrow A-model open string coordinates $\left(\hat{X}_{1,1} \tilde{X}_{n}\right)$

$$
\begin{aligned}
& F_{g_{1},\left(k_{1}, \ldots k_{n}\right)}\left(\tau, \tilde{x}_{1}, \ldots, \hat{x}_{n}\right) \quad \tau=\left(\tau_{1}, \ldots, \tau_{p}\right) \\
& \left.=\sum_{d} \sum_{\mu} \prod_{a=1}^{p^{\prime}} e^{d a \tau_{a}} \prod_{a=p^{\prime}+1}^{p} \frac{\tau_{a}^{d a}}{d a!} \prod_{i=1}^{n} \hat{X}_{i}^{\mu_{i}}<I_{h_{1}}^{d_{p}^{\prime}+1} \cdots\right]_{b_{p-p}}^{d p} \sum_{g_{1} d^{\prime},\left(\mu_{1}, k_{1}\right) \cdots\left(\mu_{n}, k_{n}\right)}^{x,(L, f)}
\end{aligned}
$$

CTC for toric CY 3-rbifolds

- Cuates-Iritani-Jiang (z014): genu-zero equivariant CTC for K-equivalent toric $D M$ stack X_{+}, X_{-}related
by a single toric wall-crossing
\Rightarrow relating $F_{0}^{x_{+}}$and $F_{0}^{x_{-}}$
any dim
not necessarily Calabi-Yud
X_{+}, X - K-equivalent toric $C Y$ 3-orbifolds related by a single toric wall-crossing
- J. Zhou (2008)
$\mathbb{Z}_{\text {m ats }}$ on $\mathbb{C}^{2} \quad 3 \cdot\left(z_{1}, z_{1}\right)=\left(\zeta z_{1}, \zeta^{-1} z_{2}\right)$
$\mathbb{C}^{2} \mathbb{Z}_{m} \quad A_{m-1}$-surface singularity
$\widetilde{\mathbb{C}^{2}} / \mathbb{Z}_{m}$ toric crepant resolution of $\mathbb{C}^{2} / \mathbb{Z}_{m}$

$$
\begin{aligned}
& X_{+}=\mathbb{C} \times \widetilde{\mathbb{C}^{2} / \mathbb{Z}_{m}} \quad X_{-}=\mathbb{C} \times\left[\mathbb{C}^{2} / \mathbb{Z}_{m}\right] \\
& \mathbb{C} \times \mathbb{C}^{2} / \mathbb{Z}_{m}
\end{aligned}
$$

$F_{g}^{x_{+}}\left(\tau_{1}, \ldots, \tau_{m-1}^{+}\right) \longleftrightarrow F_{g}^{x}\left(\tau_{i}, \ldots, \tau_{m-1}^{-}\right) \quad$ all genus g
analytic continuation
tchange of variables

- D. Ross (2013) generalized this result to tric CY 3-0-bifolds

- Coates-Iritani, Lho- Pandharipande (2018)

$$
x_{+}=K_{1 p^{2}}, \quad X_{-}=\left[\mathbb{C}^{3} / \mathbb{Z}_{3}\right] \quad 3 \cdot\left(z_{1}, z_{3}, z_{3}\right)=\left(\zeta z_{1}, \zeta z_{3}, \zeta z_{3}\right)
$$

(c) $F_{g}^{x_{+}}\left(\tau^{+}\right) \longleftrightarrow\left\{F_{g^{\prime}}^{x-}\left(\tau^{-}\right), g^{\prime} \leqslant g\right\}$
analytic continuation

+ change of variables
+ symplectic transformation
- Fang-L-Yu-Zong (in progress) generalize (c) to K-equivalent toric CY 3-osbitolds selated by a single toric wall-crossing

Open CTC for tonc CY 3 -orbitolds relative to Aganagic - Vafa Lagrangiuns

- Brini-Cavalieri-Ross (2013)

$$
X_{+}=\mathbb{C} \times \widetilde{\mathbb{C}^{2} / \mathbb{Z}_{m}} \quad X_{-}=\mathbb{C} \times\left[\mathbb{C}^{2} / \mathbb{Z}_{m}\right]
$$

$F_{\text {gin }_{n}}^{x_{i}, \prod_{j=1}^{m}\left(L_{t}^{j}, f_{t}^{j}\right)} \longleftrightarrow F_{g_{1, n}}^{x_{1}},\left(L_{-}, f_{-}\right)$
analytic continuation + change of raniables analytic continnation + change of valiubles $+v^{\text {on }} \quad v \in \sigma L(n, c)$

- Ke-Zhou (2015)
X_{+}, X_{-}toric CY 3-urbipolds t conditions on $X_{+} \leftrightarrow \cdots X_{-}$

$$
\begin{aligned}
& L_{+}=L_{-}=S^{\prime} \times \mathbb{C} \\
& F_{0,1}^{x_{+}\left(L_{x}, f_{+}\right)} \longleftrightarrow F_{0,1}^{x_{-},\left(L_{-}, f_{-}\right)}
\end{aligned}
$$

analytic continuation + change of variubles

- $S_{1} Y_{u}(2 \Omega 0)$
X_{+}, X_{-}toric $C Y$ 3-orbitolds selated by a single wall-crossing
(1) If $L_{+}=L_{-}=\delta^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m}\right]$ then

$$
F_{0,1}^{x_{+},\left(L_{+}, L_{+}\right)} \longleftrightarrow F_{0,1}^{x_{-},\left(L, t_{-}\right)}
$$

analytic continuertion + change of variablas
(2) If

$$
\begin{aligned}
& L_{-}=\delta^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m}\right] \\
& L_{+}^{\prime}=S^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m_{1}}\right] \quad L_{t}^{2}=S^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m_{2}}\right] \quad m_{1}+m_{2}=m \\
& {\left[\begin{array}{l}
F_{0,1}^{x_{+}\left(L_{+}^{\prime}, f_{+}^{\prime}\right)} \\
F_{0,1}^{x_{+}\left(L_{+}^{2}, f_{+}^{2}\right)}
\end{array}\right]=\begin{array}{c}
U_{m 1, m_{2}} F_{0,1}^{x_{-},\left(L-, f_{-}\right)} \begin{array}{r}
\text { qualytic continuation } \\
G L(m, \mathbb{C})
\end{array}+\text { change of vainables }
\end{array}} \\
& \text { depending only on m, mz }
\end{aligned}
$$

- Fang - L-Yu-Zong (in progress)
(oI) If $L_{+}=L_{-}=S^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m}\right]$ then

$$
F_{g_{\text {in }}}^{x_{+},\left(L_{+}, f_{+}\right)} \longleftrightarrow\left\{F_{\operatorname{gin}^{\prime}}^{x_{-}(L, f)}\right\}_{\left(g^{\prime} n^{\prime}\right) \in I_{g^{\prime n}}}
$$

analytic continuation

+ change of uriubles
+ symplectir transformation
(0Z) If $L_{-}=S^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m}\right]$

$$
\begin{aligned}
& L_{+}^{\prime}=S^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m 1}\right], \quad L_{t}^{2}=S^{\prime} \times\left[\mathbb{C} / \mathbb{Z}_{m_{2}}\right] \\
& F_{g_{1 n}}^{x_{t},\left(L_{+}^{\prime}, F_{+}^{\prime}\right)\left(L_{-}^{2}, f_{-}^{2}\right)} \longleftrightarrow\left\{F_{g^{\prime}, n^{\prime}}^{x_{1}\left(L, f^{\prime}\right)}\right\}_{\left(g^{\prime} n^{\prime}\right) \in I_{g, n}}
\end{aligned}
$$

analytic continuation + change of variables

+ symplactic transformation $+U^{\infty n} \quad U \in G L(m \mathbb{C})$

Our prove relies on the Remodeling Conjecture Conjectured by Bouchand-Klemm-Marino-Pasquetti (BKMP) proved in full generality by Fang-L-Zong

The BKMP Remodeling Conjecture can be viened as a version of all-genus open-closed mirou symmetry $\left(X, \omega_{0}\right)$ toric Cy 3 -ohifold $+(L, f)$ $\theta=\left(\theta_{1} \ldots \theta_{p}\right)$ tramed AV Lagrangian
\longrightarrow spectral curre $\delta=(C, \log X, \log Y, B)$

- $C=\{H(x, y, q)=0\} \subset\left(\mathbb{C}^{*}\right)^{2}$ miroon curre

$$
\sum_{(m, n) \in p}^{\prime \prime} a_{\min }(q) X^{m} Y^{m} \quad q=\left(q_{1},, q_{p}\right)
$$

- $\bar{C} \subset \mathbb{P}_{\Delta} \leftarrow$ projective toric surface

Compactitied mitror lunce

$$
\operatorname{genus}(\bar{C})=\phi=\operatorname{dim} H_{C R}^{4}(X)
$$

- $B=B\left(p_{1}, p_{2}\right)$ meromophic symmetic 2 -form on $\bar{C} \times \bar{C}$ couble pule along $\Delta \subset \bar{C} \times \bar{C}$, holomuphic on $\bar{C} \times \bar{C}-\Delta$ In local holomorphic coordinate near $(p, p) \in \Delta$

$$
\begin{gathered}
B=\left(\frac{1}{\left(z_{1}-z_{2}\right)^{2}}+h\left(z_{1}, z_{2}\right)\right) d z_{1} d z_{2} \\
h_{0}(\text { nnorphic and symmetioc } \\
\int_{p_{1} \in \alpha_{1}} B\left(p_{1}, p_{2}\right)=0 \quad\left\{\alpha_{i}, \beta_{j}\right\} \text { symplatic basis of } H_{1}(\bar{c})
\end{gathered}
$$

Chekhov-Eynard-Orantion Topological Recursion Initial data: $\quad \omega_{0,1}=\log y \frac{d x}{x}, \omega_{0,2}=B$
$\underset{\substack{2 g-2+n>0 \\ n>0}}{ } \quad \omega_{g_{1} n}\left(p_{1} \ldots p_{n}\right)$ defined recursively by taking residue at the $2 g-z+h h$ ramification points \mathcal{F} the simply-branched cover $X: C \longrightarrow \mathbb{C}^{*}$ genus fo, in punctures
$W_{g i n}$ meromorphic symmetric n-form on $(\bar{C})^{n}$ holomorphic on $(\bar{C}-\operatorname{Cn} t(x))^{n}$
$\omega_{g, 0}(q)$ obtained by $\omega_{g i l}$

$O_{n} D^{n} \quad\left(\rho_{j, x} \cdots \times \rho_{j n}\right)^{*} \omega_{g, n}$

$$
=\underbrace{W_{\text {gin }},(j, \ldots, j n)\left(q, x_{1}, \ldots, x_{n}\right)}_{\text {holomorphic and symmetric }} d x_{1} \ldots d x_{n}
$$

Theorem (Fally-L-Zong)
$g \geqslant 2 \quad F_{g}^{x}(\tau)=\omega_{g, 0}(q) \quad$ under the closed mires map

$$
\begin{aligned}
\tau_{a} & =T^{a}(q) \quad a=1, \ldots p \\
& = \begin{cases}\log q_{a}+A_{a}(q) & a=1, \ldots, p^{\prime} \\
q_{a}+A_{a}(q) & a=p^{\prime}+1, \ldots, p\end{cases}
\end{aligned}
$$

$A_{a}(q)$ holomuphic $A_{a}(0)=0$
$2 g-2+n>0$

$$
\begin{aligned}
& d_{\tilde{x}_{1}} \ldots d \tilde{x}_{n} \\
& F_{g_{1},\left(k_{1}, \ldots k_{n}\right)}^{x_{1}(L, f)}\left(\tau, \tilde{x}_{1}, \ldots \tilde{x}_{n}\right) \\
&= \sum_{j_{1} \ldots j_{n}=0}^{m-1} \prod_{i=1}^{n} C_{k_{i}}^{j_{i}} W_{g_{1 n},\left(j, \ldots j_{n}\right)}\left(q, x_{1} \ldots x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

under closed mirin map $\quad \tau_{a}=T^{a}(q) \quad a=1, \ldots p$ and open nim. map $\log \tilde{X}_{i}=\log X_{i}+A_{0}(q)$
$A_{0}(q)$ holomorphic $A_{0}(0)=0$
It remains to relate $\omega_{g i n}^{+}$and $\omega_{\text {gin }}^{-}$.

For $X=X_{ \pm}$, we choose a basis $\left\{e_{1}, \ldots, e_{p}\right\}$ of $H_{c R}^{2}(X)$ such that $\left\{e_{1}, \ldots, e_{g}\right\}$ is a basis of $H_{c R, C}^{2}(x) \subset H_{C R}^{2}(x)$ Let $\left\{e^{\prime}, \ldots, e^{y}\right\}$ be the basis of $H_{c R}^{4}(x)$ dual to $\left\{e_{1}, \ldots, e_{g}\right\}$ I-function (Coater-Corti: Initani-Tseng; Cheong, Ciocan-Fountanime, Kim)

$$
\begin{aligned}
& I_{x}(q, z)=z 1_{0}+\sum_{a=1}^{p} \frac{T^{a}(q)}{t_{c l o s e d}} e_{a}+\sum_{b=1}^{\phi} W_{b}(q) \frac{e^{b}}{z} \quad \quad p=g+x-1-3 \\
& C \text { genus, it punctures }
\end{aligned}
$$

There is \mathbb{C}-linear isomorphism

$$
\begin{aligned}
& \pi: \quad H_{2}\left(\left(\mathbb{C}^{t}\right)^{2}, C ; \mathbb{C}\right) \rightarrow S_{x}={\operatorname{span}\left\{1, T^{\prime}, \ldots, T^{p}, W_{1} . ., W_{g}\right\}}^{\cong} \mathbb{C}^{2 y-2+n} \\
& \pi(\Lambda)=\frac{1}{(2 \pi \sqrt{-1})^{2}} \int_{1} \frac{d x}{x} \frac{d y}{Y}
\end{aligned}
$$

Choose $A^{p}=\left[T^{2}\right], A^{\prime}, \ldots A^{p}$ such that

$$
\begin{aligned}
& \pi\left(A^{0}\right)=1, \quad \pi\left(A^{a}\right)=T^{a}, \quad 1 \leqslant a \leq p \\
& \pi\left(B_{b}\right)=W_{b}, \quad 1 \leqslant b \leqslant g \\
& \left.H_{2}\left(\left(\mathbb{C}^{*}\right)^{2} ; C ; \mathbb{C}\right) \rightarrow H_{1}(C ; \mathbb{C}) \rightarrow H_{1}(\bar{C} ; \mathbb{C}) \Rightarrow \alpha^{a}:=\lambda \mid A^{a}\right) \\
& \beta_{b}:=\lambda\left(B_{b}\right)
\end{aligned}
$$

Then $\left\{\alpha^{\prime}, \ldots \alpha^{g}, \beta_{1} \ldots, \beta_{\mathrm{g}}\right\}$ is a symplectic basis of $H_{1}(\bar{c} i(\mathbb{C})$

- analytic continuation + change of variables + symplectic transformation $+U \in G L(m, \mathbb{C})$ are determined by Mu's disk CTC and

$$
\begin{array}{cc}
H_{2}\left(\left(\mathbb{C}^{*}\right)^{2}, C_{+} ; \mathbb{C}\right) \xrightarrow{G M} H_{2}\left(\left(\mathbb{C}^{*}\right)^{2}, C_{-} ; \mathbb{C}\right) \\
\text { s\| } \downarrow \pi_{+} & \text {si l } \downarrow \pi_{-} \\
S_{x_{+}} \longrightarrow & M B \\
& S_{x_{-}}
\end{array}
$$

GM: Gauss-Manin parallel thinsport
MB: Mellin-Barne analytic continuation
© computed by Boisor-Horja, generalized by Coates-Iritani-Jiang

Under the basis $\left\{1, T_{ \pm}^{\phi+1}, \ldots, T_{ \pm}^{p}, T_{ \pm}^{\prime}, \ldots T_{ \pm}^{g}, W_{1}^{ \pm}, \ldots W_{g}^{ \pm}\right\}$

$$
\left\{A_{ \pm}^{0}, A_{ \pm}^{g+1}, \ldots, A_{ \pm}^{p}, A_{ \pm}^{1}, \ldots, A_{ \pm}^{g}, B_{1}^{ \pm}, \ldots B_{g}^{ \pm}\right\}
$$

$M B$
$G M$
given by the $(2 g+n-2) \times(2 g+n-2)$ matrix

$$
U_{I}^{t}=\left[\begin{array}{c|c|c}
1 & * & x \\
\hline 0 & x & * \\
\hline 0 & * & U_{c}^{t}
\end{array}\right]_{\text {Sp (Iq) } 1}
$$

Under the basis $\left\{\alpha_{ \pm}^{\prime}, \ldots, \alpha_{ \pm}^{g}, \beta_{1}^{ \pm}, \ldots \beta_{j}^{ \pm}\right\}$
GM: $H_{1}\left(\bar{c}_{+} ; \mathbb{4}\right) \rightarrow H_{1}\left(\bar{c}_{-} ; \mathbb{C}\right)$ is given by U_{c}^{\dagger}
$U_{c}^{t} \in S p(2 y, \mathbb{C})$ determines the symplectir transformation between $\omega_{g, n} \leftarrow$ determined by $\left\{\alpha_{i}^{-}: 1 \leqslant i \leqslant g\right\}$ and $P\left(\omega_{g, n}^{+}\right) \leftarrow$ determined by $\left\{G M\left(\alpha_{t}^{-}\right): 1 \leqslant i \leqslant g\right\}$ \nearrow analytic continuation
$P\left(\omega_{g_{i n}}^{+}\right)=$graph sum n terms of $\left\{\omega_{g_{i}^{\prime} n^{\prime}}^{-}\right\}_{\left(g^{\prime}, n \mid\right) \in I_{g, n}}$
If $\operatorname{Span}\left\{\alpha_{i}^{-}: 1 \leq i \leq \phi\right\}=\operatorname{span}\left\{G M\left(\alpha_{i}^{-}\right): 1 s i \leq g\right\}$
then $P\left(\omega_{g i n}^{+}\right)=\omega_{g, n}^{-}$

Special case: $\theta_{0}=0 \quad$ (e.g. $X_{-}=\mathbb{C} \times\left[\mathbb{C}^{2} / \mathbb{Z}_{m}\right]$)

$$
S_{X_{ \pm}}=\left\{1, T_{ \pm}^{\prime}(q), \ldots T_{ \pm}^{p}(q)\right\} \cong \mathbb{C}^{p+1}=\mathbb{C}^{x-2}
$$

change of variables determined by U_{I}^{t}.

