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Background

◮ Background: Class of conformal covariant operators, GJMS

(’85) operators

Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



Background

◮ Background: Class of conformal covariant operators, GJMS

(’85) operators

◮ On (Md , g), k an integer, (Pd
2k)g is a class of differential

operator of order 2k with leading symbol (−∆g )k ; with the

conformal covariant property that under conformal change of

metric gw = e2wg , we have

(Pd
2k)gw (φ) = e−

d+2
2

w (Pd
2k)g (e

d−2
2

wφ)

for all smooth functions φ defined on M.
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Background

◮ Background: Class of conformal covariant operators, GJMS

(’85) operators

◮ On (Md , g), k an integer, (Pd
2k)g is a class of differential

operator of order 2k with leading symbol (−∆g )k ; with the

conformal covariant property that under conformal change of

metric gw = e2wg , we have

(Pd
2k)gw (φ) = e−

d+2
2

w (Pd
2k)g (e

d−2
2

wφ)

for all smooth functions φ defined on M.

◮ When k = 1, Pd
2 is the conformal Laplace or Yamabe

operator:

(Pd
2 )g = −∆g +

d − 2

4(d − 1)
Rg

where Rg is the scalar curvature of the metric g.
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Background

◮ When d > 2k , (Pd
2k)g (1) := d−2

2 (Qd
2k)g , e.g. when k = 1,

d > 2, Qd
2 = 1

2(d−1)R while when k = 1, d = 2, Q2
2 is defined

to be the Gaussian curvature.
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Background

◮ When d > 2k , (Pd
2k)g (1) := d−2

2 (Qd
2k)g , e.g. when k = 1,

d > 2, Qd
2 = 1

2(d−1)R while when k = 1, d = 2, Q2
2 is defined

to be the Gaussian curvature.

◮ When d = 2k , Branson’s curvature Q2k = Q2k
2k is also defined.

When (Md , g) is locally conformally flat,

Cdχ(M) =
∫

(Qd)gdvg ; in general,
∫

(Qd)gdvg is a conformal

invariant.
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Background

◮ Graham-Zworski (’04) introduced fractional GJMS operators

P2γ on the boundary of conformally compact Einstein or

Asymptotic Hyperbolic manifolds of dimension n + 1 via

Scattering matrix when 2γ ≤ n

Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



Background

◮ Graham-Zworski (’04) introduced fractional GJMS operators

P2γ on the boundary of conformally compact Einstein or

Asymptotic Hyperbolic manifolds of dimension n + 1 via

Scattering matrix when 2γ ≤ n

◮ Conformal covariant property

(Pn
2γ)gw (φ) = e−

n+2γ

2
w (Pn

2k)g (e
n−2γ

2
wφ)
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Background

◮ Graham-Zworski (’04) introduced fractional GJMS operators

P2γ on the boundary of conformally compact Einstein or

Asymptotic Hyperbolic manifolds of dimension n + 1 via

Scattering matrix when 2γ ≤ n

◮ Conformal covariant property

(Pn
2γ)gw (φ) = e−

n+2γ

2
w (Pn

2k)g (e
n−2γ

2
wφ)

◮ when γ = 1
2 ,

P1 =
∂

∂n
+

n − 1

2n
H

is the Robin boundary operator, where H is the mean

curvature and Q1 = 1
n
H.

Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



Background

◮ Graham-Zworski (’04) introduced fractional GJMS operators

P2γ on the boundary of conformally compact Einstein or

Asymptotic Hyperbolic manifolds of dimension n + 1 via

Scattering matrix when 2γ ≤ n

◮ Conformal covariant property

(Pn
2γ)gw (φ) = e−

n+2γ

2
w (Pn

2k)g (e
n−2γ

2
wφ)

◮ when γ = 1
2 ,

P1 =
∂

∂n
+

n − 1

2n
H

is the Robin boundary operator, where H is the mean

curvature and Q1 = 1
n
H.

◮ On the flat case, R
n+1
+ , g+ = dy2+dx2

y2 , where y > 0, x ∈ R
n,

for all γ > 0, we have

P2γ = (−∆x)
γ , Q2γ = 0.
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Background

◮ We are interested in studying positivity property of GJMS

operators That is, when is
∫

∂X
(P2γf ) f ≥ 0 for all functions f.
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Background

◮ We are interested in studying positivity property of GJMS

operators That is, when is
∫

∂X
(P2γf ) f ≥ 0 for all functions f.

◮ Such result usually leads to existence result of Q = constant

metrics in the conformal class of metric of g.
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Background

◮ We are interested in studying positivity property of GJMS

operators That is, when is
∫

∂X
(P2γf ) f ≥ 0 for all functions f.

◮ Such result usually leads to existence result of Q = constant

metrics in the conformal class of metric of g.

◮ Note when γ = 1, R (scalar curvature) > 0 implies P2 (the

conformal Laplace operators) > 0.
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Background

◮ We are interested in studying positivity property of GJMS

operators That is, when is
∫

∂X
(P2γf ) f ≥ 0 for all functions f.

◮ Such result usually leads to existence result of Q = constant

metrics in the conformal class of metric of g.

◮ Note when γ = 1, R (scalar curvature) > 0 implies P2 (the

conformal Laplace operators) > 0.

◮ Theorem (Gursky (’99)) On (M4, g) closed manifolds,

Y (M, g) > 0 and
∫

(Q4)gdvg > 0 implies that (P4)g > 0. In

particular, when Rg > 0, (Q4)g > 0 then (P4)g > 0.
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Background

◮ We are interested in studying positivity property of GJMS

operators That is, when is
∫

∂X
(P2γf ) f ≥ 0 for all functions f.

◮ Such result usually leads to existence result of Q = constant

metrics in the conformal class of metric of g.

◮ Note when γ = 1, R (scalar curvature) > 0 implies P2 (the

conformal Laplace operators) > 0.

◮ Theorem (Gursky (’99)) On (M4, g) closed manifolds,

Y (M, g) > 0 and
∫

(Q4)gdvg > 0 implies that (P4)g > 0. In

particular, when Rg > 0, (Q4)g > 0 then (P4)g > 0.

◮ Formulas of Pd
4 , Qd

4 by Paneitz (’83) and GJMS,

(Pd
4 )g = (−∆g )2 + div(adRicg + bdRg )D +

(d − 4)

2
Qd

4 g

Qd
4 g = c1(−∆gR + c2R

2
g − c3|tracelessRicg |

2)

where c1, c2, c3 are positive dimensional constants.
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Background

◮ Gursky-Malchiodi (’13) ( d ≥ 4),

On (Md , g) closed manifolds, if Rg > 0, and (Qd
4 )g > 0, then

(Pd
4 )g > 0 when d ≥ 4.

They have made an in-depth study of P4 operators, proved

strong maximal principle (P4u > 0 implies u > 0).
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Background

◮ Gursky-Malchiodi (’13) ( d ≥ 4),

On (Md , g) closed manifolds, if Rg > 0, and (Qd
4 )g > 0, then

(Pd
4 )g > 0 when d ≥ 4.

They have made an in-depth study of P4 operators, proved

strong maximal principle (P4u > 0 implies u > 0).

◮ Hang-Yang (’14) (d = 3) When Rg > 0 and (Q3
4 )g > 0,

Green’s function of (P3
4 )g is negative.
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Main Theorems

◮ Positivity of P2γ as boundary operators of conformal compact

Einstein manifolds On (X n+1, Mn, g+) Poincare Einstein

manifold, where Mn = ∂X , the conformal infinity boundary.

We (J. Case - Chang ) have two results:
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Main Theorems

◮ Positivity of P2γ as boundary operators of conformal compact

Einstein manifolds On (X n+1, Mn, g+) Poincare Einstein

manifold, where Mn = ∂X , the conformal infinity boundary.

We (J. Case - Chang ) have two results:

◮ Theorem 1: When 0 < γ < 1, d ≥ 2, and

Λ1(−∆g+) > n2

4 − γ2, Qn
2γ > 0 implies Pn

2γ > 0.

Remark: By a work of J. Lee, if R(Mn,g0) > 0, where

g0 = g |M , then Λ1(−∆g+) ≥ n2

4 .
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Main Theorems

◮ Positivity of P2γ as boundary operators of conformal compact

Einstein manifolds On (X n+1, Mn, g+) Poincare Einstein

manifold, where Mn = ∂X , the conformal infinity boundary.

We (J. Case - Chang ) have two results:

◮ Theorem 1: When 0 < γ < 1, d ≥ 2, and

Λ1(−∆g+) > n2

4 − γ2, Qn
2γ > 0 implies Pn

2γ > 0.

Remark: By a work of J. Lee, if R(Mn,g0) > 0, where

g0 = g |M , then Λ1(−∆g+) ≥ n2

4 .

◮ Theorem 2: When 1 < γ < 2, n ≥ 4, R(M,g0) > 0 and

Qn
2γ > 0 implies Pn

2γ > 0. When n = 3, the same result holds

when 1 < γ ≤ 3
2 .
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Main Theorems

◮ Positivity of P2γ as boundary operators of conformal compact

Einstein manifolds On (X n+1, Mn, g+) Poincare Einstein

manifold, where Mn = ∂X , the conformal infinity boundary.

We (J. Case - Chang ) have two results:

◮ Theorem 1: When 0 < γ < 1, d ≥ 2, and

Λ1(−∆g+) > n2

4 − γ2, Qn
2γ > 0 implies Pn

2γ > 0.

Remark: By a work of J. Lee, if R(Mn,g0) > 0, where

g0 = g |M , then Λ1(−∆g+) ≥ n2

4 .

◮ Theorem 2: When 1 < γ < 2, n ≥ 4, R(M,g0) > 0 and

Qn
2γ > 0 implies Pn

2γ > 0. When n = 3, the same result holds

when 1 < γ ≤ 3
2 .

◮ Key step in the proof: The “right” choice of the conformal

compactified Einstein metric in X n+1.
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Main tool, Extension Theorem

◮ Classical Setting: (work of Caffarelli-Silvestre)
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Main tool, Extension Theorem

◮ Classical Setting: (work of Caffarelli-Silvestre)

◮ Well-known result: f smooth on R
n

∆x ,yU(x , y)onR
n+1

+ = (x , y |x ∈ R
n, y > 0,

U
∣
∣
Rn(x) = f (x)

then

−Uy (x , 0) = (−∆)
1
2 f (x).

◮ Theorem (Caffarelli-Silvestre ′06)

0 < γ < 1, a = 1 − 2γ,

(∗)

{

div(ya∇U) = 0 on R
n+1
+

U
∣
∣
Rn = f .

Then

(−∆)γf (x) = Cn,γ lim
y→0

(yaUy )(x , y) on R
n.Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



◮ Actually 0 < γ < 1

f ∈ H̊
γ
(Rn) =

(

W̊ γ,2(Rn)
)

.
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◮ Actually 0 < γ < 1

f ∈ H̊
γ
(Rn) =

(

W̊ γ,2(Rn)
)

.

◮ Then
∫

Rn

∫

y>0
|∇U|2yadxdy =

∫

Rn

|ξ|2γ |f̂ (ξ)|2dξ =

∫

Rn

(−∆)γf ·f dx

which implies (a = 1 − 2γ)
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◮ Actually 0 < γ < 1

f ∈ H̊
γ
(Rn) =

(

W̊ γ,2(Rn)
)

.

◮ Then
∫

Rn

∫

y>0
|∇U|2yadxdy =

∫

Rn

|ξ|2γ |f̂ (ξ)|2dξ =

∫

Rn

(−∆)γf ·f dx

which implies (a = 1 − 2γ)

◮

(−∆)γf = Cn,γ lim
y→0

ya ∂U

∂n
|y=0.

Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



◮ Actually 0 < γ < 1

f ∈ H̊
γ
(Rn) =

(

W̊ γ,2(Rn)
)

.

◮ Then
∫

Rn

∫

y>0
|∇U|2yadxdy =

∫

Rn

|ξ|2γ |f̂ (ξ)|2dξ =

∫

Rn

(−∆)γf ·f dx

which implies (a = 1 − 2γ)

◮

(−∆)γf = Cn,γ lim
y→0

ya ∂U

∂n
|y=0.

◮ Applications to free-boundary problems, study of non-local

minimal surface etc.
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Work of Graham-Zworski

◮ On Conformal Compact Einstein Setting, a class of conformal

covariant operators P2γ exists for

0 < 2γ ≤ n (n even)
all γ > 0 (n odd)
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Work of Graham-Zworski

◮ On Conformal Compact Einstein Setting, a class of conformal

covariant operators P2γ exists for

0 < 2γ ≤ n (n even)
all γ > 0 (n odd)

◮ P2γ = (−∆)γ in special setting of (Rn+1
+ , Rn, g+), where

g+ =
dy2 + dx2

y2

while

ḡ = y2g+.

is the compactified metric.
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◮ Definition (X n+1, Mn, g+) is Conformally Compact Einstein

(or C .C .E .), where M = ∂X , if
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◮ Definition (X n+1, Mn, g+) is Conformally Compact Einstein

(or C .C .E .), where M = ∂X , if

◮ There exists some distance function r so that r2g+ is

compact. r > 0 on X , r = 0 on M, and dr 6= 0 on M. M

is called the conformal infinity of X n+1.
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◮ Definition (X n+1, Mn, g+) is Conformally Compact Einstein

(or C .C .E .), where M = ∂X , if

◮ There exists some distance function r so that r2g+ is

compact. r > 0 on X , r = 0 on M, and dr 6= 0 on M. M

is called the conformal infinity of X n+1.

◮ (X n+1, Mn, g+) is Poincaré-Einstein, if Ric g+ = −ng+.
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◮ Definition (X n+1, Mn, g+) is Conformally Compact Einstein

(or C .C .E .), where M = ∂X , if

◮ There exists some distance function r so that r2g+ is

compact. r > 0 on X , r = 0 on M, and dr 6= 0 on M. M

is called the conformal infinity of X n+1.

◮ (X n+1, Mn, g+) is Poincaré-Einstein, if Ric g+ = −ng+.

◮ If (X n+1, Mn, g+) is conformally compact Einstein, then there

exists some special defining function y so that
{

y > 0 on X , y = 0 on M

|∇y2g+
y | = 1 on M × (0, ǫ)
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◮ Definition (X n+1, Mn, g+) is Conformally Compact Einstein

(or C .C .E .), where M = ∂X , if

◮ There exists some distance function r so that r2g+ is

compact. r > 0 on X , r = 0 on M, and dr 6= 0 on M. M

is called the conformal infinity of X n+1.

◮ (X n+1, Mn, g+) is Poincaré-Einstein, if Ric g+ = −ng+.

◮ If (X n+1, Mn, g+) is conformally compact Einstein, then there

exists some special defining function y so that
{

y > 0 on X , y = 0 on M

|∇y2g+
y | = 1 on M × (0, ǫ)

◮ Thus

g+ =
dy2 + gy

y2
in M × (0, ǫ).

Denote ḡ = y2g+, then ḡ = dy2 + gy on X , and

gy

∣
∣
y=0

= g0 on M.
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◮ On (X n+1, Mn, g+), given f ∈ C∞(M)

Consider

(∗)s −∆g+u −

λ
︷ ︸︸ ︷

s(n − s) u = 0 on X .
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◮ On (X n+1, Mn, g+), given f ∈ C∞(M)

Consider

(∗)s −∆g+u −

λ
︷ ︸︸ ︷

s(n − s) u = 0 on X .

◮ Mazzeo-Melrose Except for finite number of points of

λ ∈ (0, n2

4 ), λ is not a (point) spectrum of −∆g+ ,

λ ∈
(

n2

4 ,∞
)

are essential spectrum.
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◮ On (X n+1, Mn, g+), given f ∈ C∞(M)

Consider

(∗)s −∆g+u −

λ
︷ ︸︸ ︷

s(n − s) u = 0 on X .

◮ Mazzeo-Melrose Except for finite number of points of

λ ∈ (0, n2

4 ), λ is not a (point) spectrum of −∆g+ ,

λ ∈
(

n2

4 ,∞
)

are essential spectrum.

◮ So for Re s > n
2 , except finite no. of s, yn−s and y s are

asymptotic solution of equation (∗)s .
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◮ On (X n+1, Mn, g+), given f ∈ C∞(M)

Consider

(∗)s −∆g+u −

λ
︷ ︸︸ ︷

s(n − s) u = 0 on X .

◮ Mazzeo-Melrose Except for finite number of points of

λ ∈ (0, n2

4 ), λ is not a (point) spectrum of −∆g+ ,

λ ∈
(

n2

4 ,∞
)

are essential spectrum.

◮ So for Re s > n
2 , except finite no. of s, yn−s and y s are

asymptotic solution of equation (∗)s .

◮ u = Fyn−s + Hy s , F , H ∈ C∞(X )
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◮ On (X n+1, Mn, g+), given f ∈ C∞(M)

Consider

(∗)s −∆g+u −

λ
︷ ︸︸ ︷

s(n − s) u = 0 on X .

◮ Mazzeo-Melrose Except for finite number of points of

λ ∈ (0, n2

4 ), λ is not a (point) spectrum of −∆g+ ,

λ ∈
(

n2

4 ,∞
)

are essential spectrum.

◮ So for Re s > n
2 , except finite no. of s, yn−s and y s are

asymptotic solution of equation (∗)s .

◮ u = Fyn−s + Hy s , F , H ∈ C∞(X )

◮ F
∣
∣
M

= F
∣
∣
y=0

= f ,

F = f + f2y
2 + f4y

4 · · · ,, where f2i ∈ C∞(M)
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◮ On (X n+1, Mn, g+), given f ∈ C∞(M)

Consider

(∗)s −∆g+u −

λ
︷ ︸︸ ︷

s(n − s) u = 0 on X .

◮ Mazzeo-Melrose Except for finite number of points of

λ ∈ (0, n2

4 ), λ is not a (point) spectrum of −∆g+ ,

λ ∈
(

n2

4 ,∞
)

are essential spectrum.

◮ So for Re s > n
2 , except finite no. of s, yn−s and y s are

asymptotic solution of equation (∗)s .

◮ u = Fyn−s + Hy s , F , H ∈ C∞(X )

◮ F
∣
∣
M

= F
∣
∣
y=0

= f ,

F = f + f2y
2 + f4y

4 · · · ,, where f2i ∈ C∞(M)

◮ u is the solution of the Possion equation with Dirichlet data f .
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◮ Define Scattering matrix

S(s) : C∞(M) → C∞(M), f → H
∣
∣
M

.
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◮ Define Scattering matrix

S(s) : C∞(M) → C∞(M), f → H
∣
∣
M

.

◮ Graham-Zworski

When s = n
2 + γ, γ 6∈ Z+,

define P2γ = S
(

n
2 + γ

)
is a non-local pseudo-differential

operator with leading symbol |ξ|2γ .
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◮ Define Scattering matrix

S(s) : C∞(M) → C∞(M), f → H
∣
∣
M

.

◮ Graham-Zworski

When s = n
2 + γ, γ 6∈ Z+,

define P2γ = S
(

n
2 + γ

)
is a non-local pseudo-differential

operator with leading symbol |ξ|2γ .
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◮ Define Scattering matrix

S(s) : C∞(M) → C∞(M), f → H
∣
∣
M

.

◮ Graham-Zworski

When s = n
2 + γ, γ 6∈ Z+,

define P2γ = S
(

n
2 + γ

)
is a non-local pseudo-differential

operator with leading symbol |ξ|2γ .

◮ When s = n
2 + k S has a simple pole,

define

P2k = Cn,k Ress= n
2
+k S

(n

2
+ k

)
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◮ Define Scattering matrix

S(s) : C∞(M) → C∞(M), f → H
∣
∣
M

.

◮ Graham-Zworski

When s = n
2 + γ, γ 6∈ Z+,

define P2γ = S
(

n
2 + γ

)
is a non-local pseudo-differential

operator with leading symbol |ξ|2γ .

◮ When s = n
2 + k S has a simple pole,

define

P2k = Cn,k Ress= n
2
+k S

(n

2
+ k

)

◮ P2k is the GJMS operators.
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Examples

◮ Flat model (Rn+1
+, Rn, gH). where

gH =
dy2 + dx2

y2
.
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Examples

◮ Flat model (Rn+1
+, Rn, gH). where

gH =
dy2 + dx2

y2
.

◮ Another model example is (Hn+1, Sn, gh). In this case, denote

gh =
|dy |2

(1 − |y |2)2
.
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Examples

◮ Flat model (Rn+1
+, Rn, gH). where

gH =
dy2 + dx2

y2
.

◮ Another model example is (Hn+1, Sn, gh). In this case, denote

gh =
|dy |2

(1 − |y |2)2
.

◮ Choose

r = 2
1 − |y |

1 + |y |
,

then

gh = r−2(|dr |2 + (1 −
r2

4
)
2

gSn).
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Examples

◮ Flat model (Rn+1
+, Rn, gH). where

gH =
dy2 + dx2

y2
.

◮ Another model example is (Hn+1, Sn, gh). In this case, denote

gh =
|dy |2

(1 − |y |2)2
.

◮ Choose

r = 2
1 − |y |

1 + |y |
,

then

gh = r−2(|dr |2 + (1 −
r2

4
)
2

gSn).

◮ (Hn+1/Γ, Ω(Γ)/Γ, gh), where Γ a Kleinian group.
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Examples

◮ Flat model (Rn+1
+, Rn, gH). where

gH =
dy2 + dx2

y2
.

◮ Another model example is (Hn+1, Sn, gh). In this case, denote

gh =
|dy |2

(1 − |y |2)2
.

◮ Choose

r = 2
1 − |y |

1 + |y |
,

then

gh = r−2(|dr |2 + (1 −
r2

4
)
2

gSn).

◮ (Hn+1/Γ, Ω(Γ)/Γ, gh), where Γ a Kleinian group.

◮ Schwarzschild space.
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Theorem (C- Gonzalez ′11)

On (X n+1, Mn, g+) conformal compact Einstein setting, given a

function f ∈ C∞(M);

(∗)s −∆g+u − s(n − s)u = 0 on X

x
y s = n

2 + γ

(∗)′s −divḡ (ρa∇ḡU) + E (ρ, a)U = 0 on X

U = ρs−nu U
∣
∣ = f

where ḡ = ρ2g+, 0 < γ ≤ n
2 , ρ: any totally geodesic defining

function.

We can express P2γf in terms of boundary behavior of U.
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◮ In general, the expression of E (ρ, a) is complicated, but in the

special case when γ = 1
2 , a = 0, E (ρ, a) = CnRḡ , the equation

becomes

(P2)ḡU = 0 on X .

.
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◮ In general, the expression of E (ρ, a) is complicated, but in the

special case when γ = 1
2 , a = 0, E (ρ, a) = CnRḡ , the equation

becomes

(P2)ḡU = 0 on X .

.

◮ It turns out a good choice of the ρ is ρ∗ defined as follows:

Suppose

−∆g+v − s(n − s)v = 0 (∗)s

and v is Possion operator on data f ≡ 1. Note if v > 0 on

X n+1, one can define ρ∗ = v
1

n−s then E (ρ∗, a) = 0, where

s = n
2 + γ and a = 1 − 2γ.
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◮ In general, the expression of E (ρ, a) is complicated, but in the

special case when γ = 1
2 , a = 0, E (ρ, a) = CnRḡ , the equation

becomes

(P2)ḡU = 0 on X .

.

◮ It turns out a good choice of the ρ is ρ∗ defined as follows:

Suppose

−∆g+v − s(n − s)v = 0 (∗)s

and v is Possion operator on data f ≡ 1. Note if v > 0 on

X n+1, one can define ρ∗ = v
1

n−s then E (ρ∗, a) = 0, where

s = n
2 + γ and a = 1 − 2γ.

◮ It turns out when 0 < γ < 1, v > 0 if and only if

λ1(−∆+) > n2

4 − γ2.
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Proof of Theorem 1

Lemma: When 0 < γ < 1, (a = 1 − 2γ) and

ρ∗ = y + dγQ2γy1+2γ + O(y3) > 0.

Given f , u = solution of Poission equation with data f,

U := (ρ∗)γ− n
2 u. Then for some positive cγ , we have

P2γf (x) = cγ lim
y→0

(ρ∗)a
∂U

∂n
(x) +

n − 2γ

2
Q2γf (x),

for x ∈ ∂X .
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Proof of Theorem 1

◮ Theorem 1: when ρ∗ > 0 on X d+1, Q2γ > 0 implies P2γ > 0

Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



Proof of Theorem 1

◮ Theorem 1: when ρ∗ > 0 on X d+1, Q2γ > 0 implies P2γ > 0

◮ Proof:

With the choice of ρ∗, g∗ = (ρ∗)2g+ ,we have

U := (ρ∗)γ− n
2 u and U|M = f , U satisfies the PDE

−divg∗((ρ∗)
a∇g∗U) = 0.

Hence ∫

X

(−divg∗((ρ∗)
a∇g∗U) U = 0

and ∫

M

(ρ∗)a
∂U

∂n
U =

∫

X

(ρ∗)a|∇U|2 ≥ 0.

We then apply the Lemma to finish the proof.
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Outline of the Proof of Theorem 2

◮ Theorem 2: When 1 < γ < 2, d ≥ 4, R(Md ,g0) > 0 and

Qd
2γ > 0 implies Pd

2γ > 0. When d = 3, the same result holds

when 1 < γ ≤ 3
2 .
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Outline of the Proof of Theorem 2

◮ Theorem 2: When 1 < γ < 2, d ≥ 4, R(Md ,g0) > 0 and

Qd
2γ > 0 implies Pd

2γ > 0. When d = 3, the same result holds

when 1 < γ ≤ 3
2 .

◮ Outline of Proof:
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Outline of the Proof of Theorem 2

◮ Theorem 2: When 1 < γ < 2, d ≥ 4, R(Md ,g0) > 0 and

Qd
2γ > 0 implies Pd

2γ > 0. When d = 3, the same result holds

when 1 < γ ≤ 3
2 .

◮ Outline of Proof:

◮ Step 1: Extend Caffarelli-Silvestre’s Extension Theorem to

1 < γ. On flat setting, work by R. Yang.
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Outline of the Proof of Theorem 2

◮ Theorem 2: When 1 < γ < 2, d ≥ 4, R(Md ,g0) > 0 and

Qd
2γ > 0 implies Pd

2γ > 0. When d = 3, the same result holds

when 1 < γ ≤ 3
2 .

◮ Outline of Proof:

◮ Step 1: Extend Caffarelli-Silvestre’s Extension Theorem to

1 < γ. On flat setting, work by R. Yang.

◮ Step 2: On compactified Poincare Einstein metric, using the

notion of metric space with measures to express the fractional

GJMS operators and its curvature terms, thus generalize the

extension theorem to such manifolds.
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Outline of the Proof of Theorem 2

◮ Theorem 2: When 1 < γ < 2, d ≥ 4, R(Md ,g0) > 0 and

Qd
2γ > 0 implies Pd

2γ > 0. When d = 3, the same result holds

when 1 < γ ≤ 3
2 .

◮ Outline of Proof:

◮ Step 1: Extend Caffarelli-Silvestre’s Extension Theorem to

1 < γ. On flat setting, work by R. Yang.

◮ Step 2: On compactified Poincare Einstein metric, using the

notion of metric space with measures to express the fractional

GJMS operators and its curvature terms, thus generalize the

extension theorem to such manifolds.

◮ Step 3: When R(∂X , g0) > 0, prove that R(X , g∗) > 0,

where g∗ = (ρ∗)2g+ and ρ∗ the special defining function.
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Outline of the Proof of Theorem 2

◮ Theorem 2: When 1 < γ < 2, d ≥ 4, R(Md ,g0) > 0 and

Qd
2γ > 0 implies Pd

2γ > 0. When d = 3, the same result holds

when 1 < γ ≤ 3
2 .

◮ Outline of Proof:

◮ Step 1: Extend Caffarelli-Silvestre’s Extension Theorem to

1 < γ. On flat setting, work by R. Yang.

◮ Step 2: On compactified Poincare Einstein metric, using the

notion of metric space with measures to express the fractional

GJMS operators and its curvature terms, thus generalize the

extension theorem to such manifolds.

◮ Step 3: When R(∂X , g0) > 0, prove that R(X , g∗) > 0,

where g∗ = (ρ∗)2g+ and ρ∗ the special defining function.

◮ Step 4: Apply the extension theorem and some proof similar

to that of Gursky-Malchiodi to establish the theorem.
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Extension Theorem in flat case when γ > 1

◮ Recent work of R. Yang, here for the special case when

1 < γ < 2.

Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



Extension Theorem in flat case when γ > 1

◮ Recent work of R. Yang, here for the special case when

1 < γ < 2.

◮ On R
n+1
+ = {(x , y) : x ∈ R

n, y > 0}, Denote

∆aU = y−adiv(ya∇U) = ∆U +
a

y

∂U

∂y

Then

∆aU = 0, with U|Rn = f

where a = 1 − 2γ, iff

(∆b)
2U = 0, with U|Rn = f , and limy→0y

b ∂U

∂y
= 0

with b = 3 − 2γ.

Sun-Yung Alice Chang, joint with Jeffrey Case Princeton University Geometry Festival Stony Brook, NYPositivity of Conformal Covariant Operators



Extension Theorem in flat case when γ > 1

In this case

◮ ∫

Rn

(−∆x f )γfdx = cn,γ

∫

R
n+1
+

(∆bU)2ybdxdy .

and
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Extension Theorem in flat case when γ > 1

In this case

◮ ∫

Rn

(−∆x f )γfdx = cn,γ

∫

R
n+1
+

(∆bU)2ybdxdy .

and

◮

(−∆x f )γ(x) = cn,γ lim
y→0

yb ∂

∂y
∆bU(x , y).

We have the “renormalized energy”, e.g. when γ = 3
2 ,

a = 1 − 2γ = −2, b = 3 − 2γ = 0, then

lim
ǫ→0

(

−

∫

Rn

∫

y≥ǫ

|∇U|2y−2dxdy +
1

ǫ

∫

y=ǫ

|∇x f |
2dx

)

=
1

2

∫

Rn

∫

y≥0
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Extension Theorem on Poincare Einstein setting

◮ Notation: Given a number m ∈ R, φ a function defined on

(X , g), (F , h) a metric space of dimension m; on the metric

measure space (X , g , e−φdvg ), denote Pm
2k,φ the GJMS

operators on the warped product space

(X ×e−φ Fm, g ⊕ e−
2φ

m h)

restricted to functions on X .
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Extension Theorem on Poincare Einstein setting

◮ Notation: Given a number m ∈ R, φ a function defined on

(X , g), (F , h) a metric space of dimension m; on the metric

measure space (X , g , e−φdvg ), denote Pm
2k,φ the GJMS

operators on the warped product space

(X ×e−φ Fm, g ⊕ e−
2φ

m h)

restricted to functions on X .

◮ In this notion, when m = ∞, Ricm
φ = Ric + ∇2φ the

Bakry-Emery Ricci tensor, ∆ operator is replaced by

∆φ := ∆ −∇φ ∇.
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Extension Theorem on Poincare Einstein setting

◮ Two key observations
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Extension Theorem on Poincare Einstein setting

◮ Two key observations

◮ (1) On (X n+1, ∂X , g+), C.C.E. with Ricg+ = −n, When

s = n
2 + γ, g = ρ2g+, the (∗)s equation

−∆g+u − s(n − s)u = 0, on X

can be re-written as (∗)′′

Pm
2,φU = 0 on X

where (Fm, h) is chosen to be the (sphere) with

Rich = (m − 1)h, U = ρs−nu and g = ρ2g+, m = 1 − 2γ and

e−φ = ρm.
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Extension Theorem on Poincare Einstein setting

◮ Second Observation:
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Extension Theorem on Poincare Einstein setting

◮ Second Observation:

◮ (2) When 1 < γ < 2, then u satisfies (∗)s implies it satisfies

(−∆g+−(s−2)(n−(s−2)))◦(−∆g+−s(n−s))u = 0, on X (∗∗)s
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Extension Theorem on Poincare Einstein setting

◮ Second Observation:

◮ (2) When 1 < γ < 2, then u satisfies (∗)s implies it satisfies

(−∆g+−(s−2)(n−(s−2)))◦(−∆g+−s(n−s))u = 0, on X (∗∗)s

◮ which turns out to be equivalent to

Pm2
4,φ2

U = 0 on X (∗∗)′s ,

where m2 = 3 − 2γ and e−φ2 = ρm2 .
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Extension Theorem on Poincare Einstein setting

◮ Second Observation:

◮ (2) When 1 < γ < 2, then u satisfies (∗)s implies it satisfies

(−∆g+−(s−2)(n−(s−2)))◦(−∆g+−s(n−s))u = 0, on X (∗∗)s

◮ which turns out to be equivalent to

Pm2
4,φ2

U = 0 on X (∗∗)′s ,

where m2 = 3 − 2γ and e−φ2 = ρm2 .

◮ With this notion, we have the extension theorem on Poincare

Einstein manifolds.
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Step 3, the right choice of compactified metric

◮ Recall if v = vs satisfies the Possion equation with Dirichlet

data f ≡ 1, under the condition R∂X ,g0 > 0, we have v > 0 on

X. Denote ρ∗ = v
1

n−s , and g = g∗ = (ρ∗)2g+, s = n
2 + γ.
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Step 3, the right choice of compactified metric

◮ Recall if v = vs satisfies the Possion equation with Dirichlet

data f ≡ 1, under the condition R∂X ,g0 > 0, we have v > 0 on

X. Denote ρ∗ = v
1

n−s , and g = g∗ = (ρ∗)2g+, s = n
2 + γ.

◮ Good properties of g∗ metric:
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Step 3, the right choice of compactified metric

◮ Recall if v = vs satisfies the Possion equation with Dirichlet

data f ≡ 1, under the condition R∂X ,g0 > 0, we have v > 0 on

X. Denote ρ∗ = v
1

n−s , and g = g∗ = (ρ∗)2g+, s = n
2 + γ.

◮ Good properties of g∗ metric:

◮ (a) Rm
φ = 0, when m = 1 − 2γ, e−φ = (ρ∗)m. (This

corresponds to the fact E (ρ∗, a) = 0 in previous notations).
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Step 3, the right choice of compactified metric

◮ Recall if v = vs satisfies the Possion equation with Dirichlet

data f ≡ 1, under the condition R∂X ,g0 > 0, we have v > 0 on

X. Denote ρ∗ = v
1

n−s , and g = g∗ = (ρ∗)2g+, s = n
2 + γ.

◮ Good properties of g∗ metric:

◮ (a) Rm
φ = 0, when m = 1 − 2γ, e−φ = (ρ∗)m. (This

corresponds to the fact E (ρ∗, a) = 0 in previous notations).

◮ (b) When 1 < γ < 2, (Q4)
m2
φ2

= 0, where m2 = 1 − 2γ,

e−φ2 = (ρ∗)m2
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Step 3, the right choice of compactified metric

◮ Recall if v = vs satisfies the Possion equation with Dirichlet

data f ≡ 1, under the condition R∂X ,g0 > 0, we have v > 0 on

X. Denote ρ∗ = v
1

n−s , and g = g∗ = (ρ∗)2g+, s = n
2 + γ.

◮ Good properties of g∗ metric:

◮ (a) Rm
φ = 0, when m = 1 − 2γ, e−φ = (ρ∗)m. (This

corresponds to the fact E (ρ∗, a) = 0 in previous notations).

◮ (b) When 1 < γ < 2, (Q4)
m2
φ2

= 0, where m2 = 1 − 2γ,

e−φ2 = (ρ∗)m2

◮ (c) When γ > 1, Rg∗|∂X = cγR(∂X , g0) > 0, where cγ > 0.
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Step 3, the right choice of compactified metric

◮ Another crucial property:

Lemma: Under the assumption R∂X ,g0 > 0, for all s ≥ n
2 + 1,

Rg∗ > 0 on X.

Proof: Due to property (b) above, we have the PDE for

R = R(g∗),

∆φ2R = c1R
2 − c2|E |2,

where c1 = c1(s), c2 = c2(s) are positive constants, and E

the traceless Ricci.
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Step 3, the right choice of compactified metric

◮ Another crucial property:

Lemma: Under the assumption R∂X ,g0 > 0, for all s ≥ n
2 + 1,

Rg∗ > 0 on X.

Proof: Due to property (b) above, we have the PDE for

R = R(g∗),

∆φ2R = c1R
2 − c2|E |2,

where c1 = c1(s), c2 = c2(s) are positive constants, and E

the traceless Ricci.

◮ It turns out when s = n + 1, c1 = 0, the metric has been

studied before by J. Lee ’95, where the equation by maximal

principle together with property (c) gives Rg∗ > 0.
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Step 3, the right choice of compactified metric

◮ Another crucial property:

Lemma: Under the assumption R∂X ,g0 > 0, for all s ≥ n
2 + 1,

Rg∗ > 0 on X.

Proof: Due to property (b) above, we have the PDE for

R = R(g∗),

∆φ2R = c1R
2 − c2|E |2,

where c1 = c1(s), c2 = c2(s) are positive constants, and E

the traceless Ricci.

◮ It turns out when s = n + 1, c1 = 0, the metric has been

studied before by J. Lee ’95, where the equation by maximal

principle together with property (c) gives Rg∗ > 0.

◮ We can now run a “continuity” argument on the parameter s

starting at s = (n + 1) , together property (c), apply strong

maximal principle to conclude Rg∗ > 0 on X for all s ≥ n
2 + 1.
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Proof of Theorem 2

When 1 < γ < 2, we will show that when R(∂X ,g0) > 0 and

Q2γ > 0, implies P2γ > 0.

Proof:

Given f defined on ∂X , by Extension theorem

∫

∂X

(P2γf ) fdvg0 =
n − 2γ

2

∫

∂X

(Q2γf ) fdvg0

+ cγ Energy term of (P4)
m2
φ2

.

We apply the fact Rg∗ > 0, together with an argument similar to

that of Grusky-Malchiodi to prove the 4-th order energy term is

non-negative, and which together with Q2γ > 0 establishes the

result.
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Some discussion

◮ Theorem

( J. Qing - Guillarmou ’10 ) On (X n+1, Mn, g+) C.C.E. manifolds

with n + 1 > 3, Y (Mn, g0) > 0 iff the first real scattering pole

≤ n
2 − 1.
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Some discussion

◮ Theorem

( J. Qing - Guillarmou ’10 ) On (X n+1, Mn, g+) C.C.E. manifolds

with n + 1 > 3, Y (Mn, g0) > 0 iff the first real scattering pole

≤ n
2 − 1.

◮ Equivalent Statement: Under the assumption Y (M, g0) > 0,

P2γ ≥ 0 for all 0 < γ < 1.
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Some discussion

◮ Theorem

( J. Qing - Guillarmou ’10 ) On (X n+1, Mn, g+) C.C.E. manifolds

with n + 1 > 3, Y (Mn, g0) > 0 iff the first real scattering pole

≤ n
2 − 1.

◮ Equivalent Statement: Under the assumption Y (M, g0) > 0,

P2γ ≥ 0 for all 0 < γ < 1.

◮ The result generalizes an earlier work of Schoen-Yau.
X = Hn+1/Γ, Γ a Kleinian group
Ω(Γ) ⊂ Sn domain of discontinuity of Γ
M = Ω(Γ)/Γ locally conformally compact
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Some discussion

◮ Theorem

( J. Qing - Guillarmou ’10 ) On (X n+1, Mn, g+) C.C.E. manifolds

with n + 1 > 3, Y (Mn, g0) > 0 iff the first real scattering pole

≤ n
2 − 1.

◮ Equivalent Statement: Under the assumption Y (M, g0) > 0,

P2γ ≥ 0 for all 0 < γ < 1.

◮ The result generalizes an earlier work of Schoen-Yau.
X = Hn+1/Γ, Γ a Kleinian group
Ω(Γ) ⊂ Sn domain of discontinuity of Γ
M = Ω(Γ)/Γ locally conformally compact

◮ Schoen-Yau: If M is of positive scalar curvature, then

δ(Γ) + Hausdroff dim of Sn \ Ω(Γ), then δ(Γ) ≤ n
2 − 1.

◮ Work of Sullivan − Patterson, P.Perry etc.
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Some discussion

◮ Some open questions:
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Some discussion

◮ Some open questions:

◮ When 0 < γ < 1, does Q2γ > 0 imply P2γ′ > 0 when

0 < γ′ ≤ γ ?
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Some discussion

◮ Some open questions:

◮ When 0 < γ < 1, does Q2γ > 0 imply P2γ′ > 0 when

0 < γ′ ≤ γ ?

◮ On R
n, P2γ1 ◦ P2γ2 = P2(γ1+γ2), In general, under curvature

conditions, do we expect semi-group property of the family

P2γ?
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Some discussion

◮ Some open questions:

◮ When 0 < γ < 1, does Q2γ > 0 imply P2γ′ > 0 when

0 < γ′ ≤ γ ?

◮ On R
n, P2γ1 ◦ P2γ2 = P2(γ1+γ2), In general, under curvature

conditions, do we expect semi-group property of the family

P2γ?

◮ Work of Gonzalez-Qing ’12 studied the Q2γ equation and

related positive mass problem when 0 < γ < 1. When γ = 1
2 ,

Q1 = cH, the mean curvature. In general, is there a geometric

description of the fractional Q curvature?
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