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Motivation

Poincaré’s second best question (1905)
Does every 2-sphere has a closed geodesic?



Results

• Birkhoff, (1917) Every (S2,g) admits a closed geodesic.

• Lusternik–Schnirelmann, (1929–1947) Every (S2,g) has three distinct
simple closed geodesics.

• Result is optimal on some ellipsoids.

• Also work by Kilingenberg, Ballman, Jost, Taimanov, Grayson.

• Franks, Bangert, (1992) Every (S2,g) has an infinite number of closed
geodesics.
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Minimal Surfaces
Just like geodesics are critical points for the length functional, Minimal
surfaces/hypersurfaces are critical points for the area/volume functional.

• Lawson (1970) The round 3-sphere admits embedded minimal surfaces
of every possible genus.

• Pitts (1981), Schoen–Simon, (1982) Every compact manifold (Mn+1,g)
admits an embedded minimal hypersurface smooth outside a set of
codimension 7.

• Sachs–Uhlenbeck, (1981) Every manifolds with πk (M) 6= 0, k ≥ 2 admits
a branched minimal immersed sphere.

• Simon–Smith, (1982) Every (S3,g) admits a smooth embedded minimal
sphere.

• Jost, (1989) Every (S3,g) admits 4 minimal embedded spheres.

• White, (1991) 3-spheres with positive Ricci curvature have one minimal
embedded torus.

• White Conjecture: Any 3-sphere has five minimal embedded tori.
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Result

• Conjecture (Yau, 1982) Every compact 3-dimensional manifold admits an
infinite number of immersed minimal surfaces.

Theorem (Marques–N., 2014)
Assume 2 ≤ n ≤ 6 and (Mn+1,g) compact manifold with positive Ricci
curvature.
Then M admits an infinite number of distinct smooth embedded minimal
hypersurfaces.

• Khan–Markovic, (2012) Every compact hyperbolic 3-manifold has
incompressible surfaces of arbitrarily high genus and thus an infinite
number of immersed minimal surfaces.

• Kapouleas outlined an approach to theorem above when n = 2 based on
desingularization or doubling methods.
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Some questions
• With the round metric, ωi (S3) = 4π for i = 1, ...,4.

Charles Nurser can show that ωi (S3) = 2π2 for i = 5,6,7,8 and
2π2 < ω9(S3) ≤ 8π.

Is ω9(S3) < 8π? If so, is it the Lawson genus 2 minimal surface?

• Does every n + 1-sphere admit a minimal embedded hypersphere?

• Conjecture: For bumpy metrics, ωk (M) should be realized by a minimal
hypersurface with multiplicity one and index k .

• Weyl Law for the k-width (Gromov Conjecture):

lim
k→∞

ωk (M)

k
1

n+1
= α(n)(vol M)

n
n+1 .
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Some questions

• Consider the first k + 1-eigenfunctions φ0, φ1, . . . , φk on M and

ωk (M) ≤ ω̄k (M) = sup
(a0,...,ak )∈Rk+1

vol{a0φ0 + . . .+ akφk = 0}.

How far is ωk (M) from the k -width?

• Conjecture: The minimal hypersurface realizing ωk (M) should be “well”
approximated by {φk = 0}.
Is Σk becoming equidistributed?

Is the first betti number of {φk = 0} proportional to k?
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