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Motivation

Poincaré’s second best question (1905)
Does every 2-sphere has a closed geodesic?
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Franks, Bangert, (1992) Every (S2, g) has an infinite number of closed
geodesics.
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White, (1991) 3-spheres with positive Ricci curvature have one minimal
embedded torus.

White Conjecture: Any 3-sphere has five minimal embedded tori.
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Result
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Theorem (Marques—N., 2014)

Assume 2 < n < 6 and (M"', g) compact manifold with positive Ricci
curvature.

Then M admits an infinite number of distinct smooth embedded minimal
hypersurfaces.

e Khan—Markovic, (2012) Every compact hyperbolic 3-manifold has
incompressible surfaces of arbitrarily high genus and thus an infinite
number of immersed minimal surfaces.

e Kapouleas outlined an approach to theorem above when n = 2 based on
desingularization or doubling methods.
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e Weyl Law for the k-width (Gromov Conjecture):
jim k(M)

1
k—oo ke

= a(n)(vol M)7.
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How far is wy (M) from the k-width?

e Conjecture: The minimal hypersurface realizing wx(M) should be “well”
approximated by {¢x = 0}.

Is ¥, becoming equidistributed?
Is the first betti number of {¢x = 0} proportional to k?




