Existence of minimal hypersurfaces

André Neves

(Joint with Fernando Marques)

Imperial College London

Motivation

Poincaré's second best question (1905)

Does every 2-sphere has a closed geodesic?

• Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.

- Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.
- Lusternik–Schnirelmann, (1929–1947) Every (*S*², *g*) has three distinct simple closed geodesics.
- Result is optimal on some ellipsoids.

- Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.
- Lusternik–Schnirelmann, (1929–1947) Every (*S*², *g*) has three distinct simple closed geodesics.
- Result is optimal on some ellipsoids.

• Also work by Kilingenberg, Ballman, Jost, Taimanov, Grayson.

- Birkhoff, (1917) Every (S^2, g) admits a closed geodesic.
- Lusternik–Schnirelmann, (1929–1947) Every (*S*², *g*) has three distinct simple closed geodesics.
- Result is optimal on some ellipsoids.

- Also work by Kilingenberg, Ballman, Jost, Taimanov, Grayson.
- Franks, Bangert, (1992) Every (S², g) has an infinite number of closed geodesics.

Just like geodesics are critical points for the length functional, Minimal surfaces/hypersurfaces are critical points for the area/volume functional.

• Lawson (1970) The round 3-sphere admits embedded minimal surfaces of every possible genus.

- Lawson (1970) The round 3-sphere admits embedded minimal surfaces of every possible genus.
- Pitts (1981), Schoen–Simon, (1982) Every compact manifold (*M*^{*n*+1}, *g*) admits an embedded minimal hypersurface smooth outside a set of codimension 7.

- Lawson (1970) The round 3-sphere admits embedded minimal surfaces of every possible genus.
- Pitts (1981), Schoen–Simon, (1982) Every compact manifold (*M*^{*n*+1}, *g*) admits an embedded minimal hypersurface smooth outside a set of codimension 7.
- Sachs–Uhlenbeck, (1981) Every manifolds with π_k(M) ≠ 0, k ≥ 2 admits a branched minimal immersed sphere.

- Lawson (1970) The round 3-sphere admits embedded minimal surfaces of every possible genus.
- Pitts (1981), Schoen–Simon, (1982) Every compact manifold (*M*^{*n*+1}, *g*) admits an embedded minimal hypersurface smooth outside a set of codimension 7.
- Sachs–Uhlenbeck, (1981) Every manifolds with π_k(M) ≠ 0, k ≥ 2 admits a branched minimal immersed sphere.
- Simon–Smith, (1982) Every (S³, g) admits a smooth embedded minimal sphere.

- Lawson (1970) The round 3-sphere admits embedded minimal surfaces of every possible genus.
- Pitts (1981), Schoen–Simon, (1982) Every compact manifold (*M*^{*n*+1}, *g*) admits an embedded minimal hypersurface smooth outside a set of codimension 7.
- Sachs–Uhlenbeck, (1981) Every manifolds with π_k(M) ≠ 0, k ≥ 2 admits a branched minimal immersed sphere.
- Simon–Smith, (1982) Every (S³, g) admits a smooth embedded minimal sphere.
- Jost, (1989) Every (S^3, g) admits 4 minimal embedded spheres.

- Lawson (1970) The round 3-sphere admits embedded minimal surfaces of every possible genus.
- Pitts (1981), Schoen–Simon, (1982) Every compact manifold (*M*^{*n*+1}, *g*) admits an embedded minimal hypersurface smooth outside a set of codimension 7.
- Sachs–Uhlenbeck, (1981) Every manifolds with π_k(M) ≠ 0, k ≥ 2 admits a branched minimal immersed sphere.
- Simon–Smith, (1982) Every (S³, g) admits a smooth embedded minimal sphere.
- Jost, (1989) Every (S^3, g) admits 4 minimal embedded spheres.
- White, (1991) 3-spheres with positive Ricci curvature have one minimal embedded torus.
- White Conjecture: Any 3-sphere has five minimal embedded tori.

• Conjecture (Yau, 1982) Every compact 3-dimensional manifold admits an infinite number of immersed minimal surfaces.

• Conjecture (Yau, 1982) Every compact 3-dimensional manifold admits an infinite number of immersed minimal surfaces.

Theorem (Marques-N., 2014)

Assume $2 \le n \le 6$ and (M^{n+1}, g) compact manifold with positive Ricci curvature.

Then *M* admits an infinite number of distinct smooth embedded minimal hypersurfaces.

• Conjecture (Yau, 1982) Every compact 3-dimensional manifold admits an infinite number of immersed minimal surfaces.

Theorem (Marques-N., 2014)

Assume $2 \le n \le 6$ and (M^{n+1}, g) compact manifold with positive Ricci curvature.

Then *M* admits an infinite number of distinct smooth embedded minimal hypersurfaces.

• Khan–Markovic, (2012) Every compact hyperbolic 3-manifold has incompressible surfaces of arbitrarily high genus and thus an infinite number of immersed minimal surfaces.

• Conjecture (Yau, 1982) Every compact 3-dimensional manifold admits an infinite number of immersed minimal surfaces.

Theorem (Marques-N., 2014)

Assume $2 \le n \le 6$ and (M^{n+1}, g) compact manifold with positive Ricci curvature.

Then *M* admits an infinite number of distinct smooth embedded minimal hypersurfaces.

- Khan–Markovic, (2012) Every compact hyperbolic 3-manifold has incompressible surfaces of arbitrarily high genus and thus an infinite number of immersed minimal surfaces.
- Kapouleas outlined an approach to theorem above when *n* = 2 based on desingularization or doubling methods.

• With the round metric, $\omega_i(S^3) = 4\pi$ for i = 1, ..., 4.

Charles Nurser can show that $\omega_i(S^3) = 2\pi^2$ for i = 5, 6, 7, 8 and $2\pi^2 < \omega_9(S^3) \le 8\pi$.

• With the round metric, $\omega_i(S^3) = 4\pi$ for i = 1, ..., 4.

Charles Nurser can show that $\omega_i(S^3) = 2\pi^2$ for i = 5, 6, 7, 8 and $2\pi^2 < \omega_9(S^3) \le 8\pi$.

Is $\omega_9(S_3) < 8\pi$? If so, is it the Lawson genus 2 minimal surface?

• With the round metric, $\omega_i(S^3) = 4\pi$ for i = 1, ..., 4.

Charles Nurser can show that $\omega_i(S^3) = 2\pi^2$ for i = 5, 6, 7, 8 and $2\pi^2 < \omega_9(S^3) \le 8\pi$.

Is $\omega_9(S_3) < 8\pi$? If so, is it the Lawson genus 2 minimal surface?

• Does every *n* + 1-sphere admit a minimal embedded hypersphere?

• With the round metric, $\omega_i(S^3) = 4\pi$ for i = 1, ..., 4.

Charles Nurser can show that $\omega_i(S^3) = 2\pi^2$ for i = 5, 6, 7, 8 and $2\pi^2 < \omega_9(S^3) \le 8\pi$.

Is $\omega_9(S_3) < 8\pi$? If so, is it the Lawson genus 2 minimal surface?

- Does every *n* + 1-sphere admit a minimal embedded hypersphere?
- Conjecture: For bumpy metrics, ω_k(M) should be realized by a minimal hypersurface with multiplicity one and index k.

• With the round metric, $\omega_i(S^3) = 4\pi$ for i = 1, ..., 4.

Charles Nurser can show that $\omega_i(S^3) = 2\pi^2$ for i = 5, 6, 7, 8 and $2\pi^2 < \omega_9(S^3) \le 8\pi$.

Is $\omega_9(S_3) < 8\pi$? If so, is it the Lawson genus 2 minimal surface?

- Does every *n* + 1-sphere admit a minimal embedded hypersphere?
- Conjecture: For bumpy metrics, ω_k(M) should be realized by a minimal hypersurface with multiplicity one and index k.
- Weyl Law for the k-width (Gromov Conjecture):

$$\lim_{k\to\infty}\frac{\omega_k(M)}{k^{\frac{1}{n+1}}}=\alpha(n)(\operatorname{vol} M)^{\frac{n}{n+1}}.$$

• Consider the first k + 1-eigenfunctions $\phi_0, \phi_1, \ldots, \phi_k$ on M and

$$\omega_k(M) \leq \bar{\omega}_k(M) = \sup_{(a_0,\ldots,a_k) \in \mathbb{R}^{k+1}} \operatorname{vol}\{a_0\phi_0 + \ldots + a_k\phi_k = 0\}.$$

How far is $\omega_k(M)$ from the *k*-width?

• Consider the first k + 1-eigenfunctions $\phi_0, \phi_1, \ldots, \phi_k$ on M and

$$\omega_k(M) \leq \bar{\omega}_k(M) = \sup_{(a_0,\ldots,a_k) \in \mathbb{R}^{k+1}} \operatorname{vol}\{a_0\phi_0 + \ldots + a_k\phi_k = 0\}.$$

How far is $\omega_k(M)$ from the *k*-width?

Conjecture: The minimal hypersurface realizing ω_k(M) should be "well" approximated by {φ_k = 0}.

Is Σ_k becoming equidistributed?

Is the first betti number of $\{\phi_k = 0\}$ proportional to k?

