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AN ACCOUNT OF THE THEORY OF
CRYSTALLOGRAPHIC GROUPS!

LOUIS AUSLANDER

Introduction. L. Bieberbach in two fundamental papers [2], [3]
established the fundamental theorems for the crystallographic groups
or Raumgruppen. We propose in this paper to give an almost com-
pletely self-contained account of these fundamental facts. We will
use only the elementary theory of groups, matrices and polynomials
from algebra, the basic geometry of euclidean space and the most
elementary topological considerations. At one point we will need the
exponential mapping for Lie matrix groups for which various ele-
mentary accounts are available.

I would like to thank M. Rosenlicht and P. Fong for useful con-
versations.

1. Definition of crystallographic groups. Let E" denote the #-
dimensional euclidean space and let R(z) denote the group of rigid
motions of E". Then let 0 be a point in E". The subgroup of R(n)
leaving 0 fixed is called the orthogonal group and we will denote it by
O(n). Let R be the subgroup of R(n) consisting of pure translations.
Then there are two facts which should be recalled: First, R* may be
identified with E® under the map r& R" goes into 7(0). Secondly, R*
is a normal subgroup of R(n), O(#)M\R" is empty and every element
of R(n) can be uniquely represented in the form gt, where gE0(n)
and t&ER*. These last three conditions are abbreviated by writing
R(n)=0(n)-R".

A subgroup I' CR(n) is called a crystallographic group if the fol-
lowing two conditions are satisfied:

1. Ifyy, - -+ ,%¥n + + - isasequence of elements from I' and xE E»,
then the sequence vy, 1=1, 2, - - -, is Cauchy if and only if there
exists N >0 such that y;=+y for all 2> N.

2. There exists a compact subset of E*, say F, such that for every
xE E™ there exists yET with the property that y(x) EF.

These two conditions are slightly awkward to work with. The fol-
lowing theorem gives a more convenient formulation of the crystal-
lographic groups.

Received by the editors February 17, 1964.
1 During part of the time this paper was being prepared, the author received sup-
port from the U. S. Naval Research Laboratory.

1230



THE THEORY OF CRYSTALLOGRAPHIC GROUPS 1231

THEOREM 1. A necessary and sufficient condition for a subgroup of
R(n) to be a crystallographic group is that T is a discrete subset of R(n)
and R(n)/T is compact in the quotient topology.

Proor. We will prove this theorem by means of the following two
propositions.

(A) A necessary and sufficient condition for a subgroup I' of R(n)
to act on E* without accumulation points (i.e., so as to satisfy condi-
tion (1) of the definition of crystallographic groups) is that T' be a
discrete subset of R(n).

For let T' be a discrete subgroup of R(z) and assume there exist
xo€E" and v,E€T, i=1, - - -, such that y(xo) is Cauchy. Further,
let to&€ R™ be such that £,(0) =xo. Then consider vy, ER(n). Now
vs=(gi, t:;) and

Yito = (gi, ad (gi)to + £5).2

Since #;(x) is Cauchy and is exactly (ad(g:)te+¢:)(0), we have that
ad(g:i)to+2: is a Cauchy sequence in R". Since O(n) is compact, we
can find a subsequence of the g; which is Cauchy. Hence the sequence
vito is Cauchy. But R(n)—R(n) obtained by right multiplication by
to is a homeomorphism and, hence, y; must be Cauchy. Hence it
must be trivial from some point on and we have proven our first
assertion.

Let I' CR(n) operate without accumulation points on E". Assume
v:&T is a Cauchy sequence and v;=(g;, ;). We must have, since
R(n) is topologically O(n) X R®, that g; and ¢; are both Cauchy se-
quences. Hence £;(0) =+,(0) must be Cauchy. This proves (A).

(B) A necessary and sufficient condition for a subgroup I of R(n)
to have a compact fundamental domain (i.e., satisfy (2) in the defini-
tion of crystallographic group) is that R(n)/I' be compact.

Proor. It is trivial to verify that I' has a compact fundamental
domain is equivalent to E*/T, in the quotient topology, shall be com-
pact. Now there is a well-defined continuous mapping of R(n)/T
into E*/T obtained by identifying two points of R(x) that differ by
an element of O(n) acting to the left. Hence, if R(#)/T is compact,
E»/T is compact.

But R(n)/T is compact if there exists F* CR(n) such that F* is
compact and every element of R(n) differs from an element of F* by
a multiple of T'. Clearly, we may choose F*=0(n) X F where F is
compact subset of R*. Assuming that I' acts with compact funda-

* We are using homogeneous coordinates and the multiplication is given by
(g1, 1) (g2, &) = (2182, ad (g)t2+11).
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mental domain on E* gives an F in E® which may be identified with
F in R by the standard identification of R* and E”. The assertion
is then trivially verified.

2. Neighborhoods of the identity in O(n). In this section we will
establish certain elementary properties of the orthogonal group O(%).
Let e always denote the identity element of O(n). Some of this mate-
rial has already appeared in print in [1] and is included for complete-
ness of exposition.

LeEMMA 1. Let O(n) denote the orthogonal group and let v, nE O(n).
Then there exists a neighborhood of the identity U(e) such that if
v, 1€ Ule) and yn=ny, then v will not commute with yny~~'= (v, 1).

ProoOF. Let us assume that 4 and (y, ) commute. Then v and
7y~ ! commute. Hence 7 can be represented as a permutation of
the invariant spaces of ¥~! or v amongst themselves followed by a
mapping of these spaces onto themselves. Hence, if 7 is sufficiently
close to the identity, # can only map these invariant spaces onto them-
selves. Hence 7 and ¥ commute. This proves our lemma.

We will now state a general fact giving a general proof. This is the
only fact from Lie-group theory we will use and if the reader is un-
familiar with it he can take it on faith or read it in [4, Chapter 2].

LEMMA 2. Let G be a connected Lie group. Then there exists a neigh-
borhood W(S) of the identity in G such that for any g1, g.EW(S),
(g1, 22) EW(S) and the sequence

(81(g1, £2)), (g1(g1(g1, 82)), - - -
converges to the identity.

Proor. Choose a canonical coordinate system about the identity
in G. Then the coordinates of (g1, g») can be expressed as a power
series in the coordinates of g; and g, with quadratic leading term.
This proves our assertion.

LEMMA 3. There exist arbitrarily small neighborhoods Ul of the iden-
tity in O(n) such that, for all gE0(n), gUag = U.

PRroOF. Note merely that the set of elements of O(n) whose eigen-
values £ satisfy an inequality I‘g’— 1| <e is a neighborhood of the
identity in O(zn).

DEFINITION. A neighborhood of the identity in O(n) satisfying the
conclusions of Lemmas 1, 2 and 3 will be called a stable neighborhood
of the identity.
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3. Lemmas on crystallographic groups.

LemMA 4. Let T be a crystallographic group and let xC E". Then the
set {y(x) } for YET cannot lie in a linear space of dimension less than n.

PRroOF. Assume the lemma is false and that x,& E" exists such that
{v(x0) } lies in W, a proper linear subspace of E". By a new choice of

origin in E* we may assume O(n) leaves %, fixed and then y&T,
v=1(g(7), t(y)) must have t(y) EW.

Since I'is a group, g(W) =W for all g=g(y). Let W* be the orthog-
onal complement of . Then, clearly, since points in W* at a distance
d from the origin stay at a distance d, I' cannot have a compact funda-
mental domain. This proves our assertion.

LEMMA S. Let T be an abelian crystallographic group; then T' con-
tains only pure translations.

Proor. Let vo&T and let vo=(g(v0), fo), where g(vyo) #e. Then we
can always choose an origin and a coordinate system in R* such that,
using homogeneous coordinates,

to
0f,
1

S o O

I
Yo = |0
0

where I is the (rXr) identity matrix, (6 —I) is a nonsingular sXs
matrix, £ is a (1 X7) matrix and 1 is a 1 X1 matrix with 1 as an entry
and s+7=n. Then, by Lemma 4, there exist y&ET such that

A 0
'y=0 B tz,
0 0 1

where A is (rXr), B is (sXs), t; is 1 X7, and #; is a (1 Xs) nontrivial
matrix. Then, since T' is abelian, yyyoyi'=7o and this implies that
(8—I)t;=0. Since (8—1I) is nonsingular, this is impossible as ;0.
This proves our assertion.

4. Main theorems.

PrOPOSITION 1. Let T' be a discrete subgroup of R(n) and let  denote
the homomorphism of R(n) onto O(n) with kernel R*. Then the identity
component of the closure of Y(T') in O(n) is abelian.
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Proor. Let U be a stable neighborhood of the identity in O(n) with
the further property that for all g€ U all the matrix values of g
satisfy [S;j—-ll <1/10. In some orthonormal basis choose v;, v:ET
with the property that Y(v,)EU, ¢=1, 2. Then v;,=¢(y.)t(y.),
which we will abbreviate x.y;.

Then

(11, 72) = (%1, 2) ad(ai? 277 [(ad(x2) — Dy1 + (I — ad(21))ye],

where ad(x) is the automorphism of R" induced by x~'R"x. We then
form the sequence v1, (v1, v2), (v1, (172)), (v1, (v1, (¥1,72))), * - - . By
our construction, the coefficients in O(#) and R" of this sequence are
easily seen to be bounded. But by Lemma 1, this series can never be
the identity, and, by Lemma 2, it can never become trivial at any
point not the identity. Hence, since I' is discrete, the identity com-
ponent of the closure of Y(I") is abelian.

BieBERBACH THEOREM 1. Let I' be a crystallographic group; then T
satisfies the following three conditions:

1. TMR" is a vector space basis for R* as a real vector space.

2. T/TNR»=F(T') is a finite group.

3. F(I') has all integer entries with respect to any basis of R deter-
mined by the generators of T R",

ProoF. Assume first that I'\R* is trivial. Then Y(T") is an iso-
morphism of I' into O(zn) and we will let I,(¥(T')) denote the identity
component of the closure of Y(I'). Since O(n) is compact, the closure
of Y(I') can have only a finite number of components. Hence, since
I,(y(I)) is abelian, I' contains a subgroup T’y of finite index which is
abelian. But then TI'j, being of finite index in T, is also a crystallo-
graphic group. Hence, by Lemma 5, I'; consists of pure translations.
Thus we see that I'\R" is nonempty.

Let W CR* be the subspace of R" spanned by the pure translations
of T, i.e,, by TR~ Then, clearly, if R(#n)=0(n)-R* again and
v€ET is given by (g(v), (7)), g(v) €0(n), t(y) ER", then g(y) leaves
W invariant since '\R* is normal in 7. Note further that {g(y)}| W
all y&€T is a finite group, for otherwise it would contain elements
arbitrarily close to the identity which would, under inner automor-
phism with a basis of I''\R", force I' to be nondiscrete. From this we
see that I induces an action on R*/W which is that of a crystallo-
graphic group with no pure translations. By the first part, this implies
the dimension of R*/W is zero.

This discussion verifies part one and part two of the Bieberbach
Theorem, part three follows trivially from parts one and two.
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JorDAN THEOREM. There exists a positive function of n, n=0, f(n),
such that, for every finite group FCO(n), there exists an abelian normal
subgroup A(F) such that the order of F/A(F) s less than f(n).

Proor. Let U be a stable neighborhood of the identity as defined
in §2. Let A(F) be the subgroup of F generated by FN\U. The defini-
tion of U insures that 4 (F) is normal and abelian. Now assume O(n)
has Haar measure with total measure 1. Let the measure of U>1/m,
m an integer. Then it is easily seen that the order of F/A4(F) must be
less than m.

THEOREM 2. Let Fo, a=1, - - -, k, be the set of subgroups of O(n)
which can be expressed as imteger matrices with determinant +1 in
GL(%n, R). Then k is a finite cardinal.

ProoF. A subgroup of a group satisfying our hypothesis again
satisfies our hypothesis. Let A, be the normal subgroup of F, de-
scribed in the Jordan Theorem. Since the order of F./4, is bounded,
there exist only a finite number of distinct groups of the form F./4.,
a=1, - - -, k. If we can show there exist only a finite number of 4,,
we will have proven our assertion as the group extensions must then
also be finite. Now A4, is the abelian semisimple group. We will show
that there are only a finite number of elements of O(z) which can be
in 4, for all @. Hence 4, must consist of a finite collection of groups.
First note that » times the distinct characteristic polynomials is
greater than the number of distinct elements of O(n) in 4,. But since
all roots have absolute value one and the coefficients of the char-
acteristic polynomials are the elementary symmetric functions, they
can take on at most a finite number of values. This completes the
proof.

CoROLLARY. Let T' be a crystallographic group and R* the group of
pure translations. Then, for each n, there exist only a finite number of
groups T/TNR*, ‘

BiEBERBACH THEOREM 2. For each n, there exist only a finite number
of crystallographic groups.

ProoF. We have seen that I satisfies an exact diagram
1—-2Z"—>T—->F—1,

where Z* is # copies of the integers and F can range over a finite col-
lection of groups. It is well known that for each finite group F there
are only a finite number of nonisomorphic groups satisfying the
above diagram. This completes our argument.
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EXTENSION OF NORMAL FAMILIES OF
HOLOMORPHIC FUNCTIONS

THEODORE J. BARTH!

Let X be a Stein manifold, and let A be an analytic subset of X
A well-known application of Cartan’s Theorem B [2, Théoré¢me 3
p. 52] states that each holomorphic function on A4 is the restriction
of a holomorphic function on X. This paper presents a generaliza-
tion of this application, namely that each normal family of holo-
morphic functions on 4 is the restriction of a normal family of holo-
morphic functions on X.

1. Let X be a topological space which is ¢-compact, i.e., the union
of a countable family of compact sets. Let K(X) denote the set of all
compact subsets of X. For K€K(X) and f: X—C define |f||x
=sup{|f(x)| |*E€K}. Define

B(X) = {f|f: X = C,||fl|lx < = forall K € K(X)}.

Clearly B(X) is a complex vector space, and {|| |x] KEK(X)} is a
family of pseudonorms on B(X) which then becomes a locally convex
vector space. Since X is o-compact, B(X) is metrizable, and it is
readily checked to be a Fréchet space.

DEFINITION. Let V be a vector subspace of B(X). We say that a
set FCV is normal with respect to V iff every sequence in F has a
subsequence which converges in V.

Received by the editors October 29, 1964.

1 This research supported in part by the National Science Foundation while the
author held a Graduate Fellowship at the University of Notre Dame.




THE BIEBERBACH CASE IN GROMOV'S ALMOST FLAT MANTFOLD THEOREM

* Ko
Peter Buser and Hermann Karcher

1. Introduction (and abstract)

In 1976 M. Gromov has shown that every compact Riemannian manifold with normalized
diameter whose sectional curvature is sufficiently close to zero is covered by a com-
pact nilmenifold (= quotient of a nilpotent Lie group). [3] . This theorem, known
as the almost flat manifold theorem has soon become famous not only because of its
content but also because of the many unconventional methods Gromov has introduced to

Riemannian geometry to get the proof.

The aim of the present notes is to explain how the ideas from Gromov's proof of the
almost flat manifold theorem can be specialized to give a proof of the Bieberbach
theorem. Since this specialization is much more asccessible than the almost flat mani-
fold theorem, one can very nicely explain some of Gromov's ideas in this context. Tt
is also interesting to compare this new proof with older proofs of Bieberbach's

theorem.

2. The Bieberbach theorem

We fix some notation. A euclidean motion R*-RY is given by X = Ax+a ,
A€0(n), s €R" . We call A= (o) the rotational part and a = t{o) the trans-
.dational part of the motion. To each rotation A corresponds an orthogonal decom-

position

n
R™ = EO®E1®"'$ER

such that A restricted to Ei is a rotation through the angle Gi » in the orienta-

tion reversing case E, 1is eigenspace of A for the eigenvalue - 1, we include this

k

in the case Qk =3 . Then

¥ (x,A%) =6, for all x€E, .

These =0 called main rotational angles are arranged in increasing order:

= < .o
0 80 Gl< <8k

* Bupported by the Swiss National Science Foundation

** written under the programm "Sonderforschungsbereich Theoretische Mathematik",
Bonn University.
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The dimension of EO may be zero. The main rotational angles give rise to the fol-

lowing biinvariant distaence function (Finsler metric) in the orthogonal group:

1

lall= 8, = max ¥ (x,Ax) , d(a,B) =[laB 1 .

lldl=1

From this metric we derive a distance function for the entire group of motions by

2.1 ldl: = max{llx(c)ll, const-|t(@)]} , d(a,B) = los™ i .

There is a degree of freedom in the choice of the constant. It will be fixed later

according to the momentary needs.

A crystallographic group is a discrete group of euclidean motions with compact funda-

mental domain.

2.2 Theorem {Bieberbach) [1] . Let G be a crystallographic group in R” .

(1) Each t€G has either A = id or d(A,id) Z% )
(1) The group T of pure translations in G is a normal subgroup of finite
index. G/T has order < 2'(hﬂ>dmnSO(n)

(iii) In addition to (i): If «€G , r(a) €50(n) and 0<8, <... <6,

are the main rotational angles of A = r{«) then

)n~k

1
GKZ —2‘(41( s, n=l,...,k

The original version of Bieberbach's theorem consists only of the statement that

G/F has finite index. It was used by Bieberbach to solve the 18th Hilbert problem:

2.3 Corollary (Bieberbach) [1], For each n there exist only finitely many iso-

morphism classes of crystallographic groups in R .

In the formulation 2.2 of the Bieberbach theorem the most important part is 2.2 (i):
The translations in G are thoge motions which have a rotational part smaller than
% . This characterization is Gromov's discovery; the proof depends as all other
proofs of the Bieberbach theorem on commutator estimates, but Gromov combines these
with the a priori bound 2.5 on the length of nontrivial commutators. The further
statements 2.2 (ii) and 2.2 (iii) follow rather easily in 2.9 and £2.10. In particu-
lar the bound 2.2 (ii) on the order of G/F implies that there are only finitely
many possibilities for the group of rotational parts; this is the main part of the
finiteness theorem 2.3. The remaining part is a group cohomology argument dealing

with nonisomorphic extensions of 7z by finite groups.
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Proof of the Bieberbach theorem {Following Gromov).

We introduce the finifte subset
€
6, = focc|lir(@li<e , |t(@)] <]

of G , where O<e§—12— and >0 (large), and denote by (G;) the smallest sub-
group of G which contains GZ . The working tools will be lemmas 3,4,5 in section !

The proof is divided into two parts:
2.4 For any R>O0 we can find some p>R such that for all x€R" with |x| S%p
there is ozEGe;J with |t(Q) - x| <p/b .
€ n”
2.5 (Gp) is d-nilpotent with d4<3

By d-nilpotent we mean that 211 d-fold commutators [... {§1,62},. .. ,Bd} are tri-

vial ([a,B] = o G F)

Hence instead of showing that the pure translations provide a vector space basis of

Rn

(=GZ) do, and instead of showing commutativity one starts with nilpotency. The rea-

, it is first shown that {the translational parts of) the almost translations

son why this procedure carries over to more general situations is that both, 2.4

and 2.5 are proved by means of estimates rather than by equations.

2.4 and 2.5 together suffice to show 2.2 (i) and in particular that G; is in fact

a set of pure translations.

Assume there is y €G with r(y) = C , t{y) = ¢ such that |{c}| = GE(O,%) . Then

decompose R" into E®E' where E is en invariant plane of maximal rotation and

let x = XE+ x* be the corregponding decomposition of vectors in R . put

. 6,d . .
€ = i%(SlnE) and choose p>2|c| in 2.4 so that one can find «€G with |4l <e
and |a- x| S-E- for x€E, |x| = %p-, consequently e} <]aj 52§3E[ . Consider

the iterated commutators
o =[.doy],eeepy] (k-fold) , k=1,...,d
From 4.3 we have the estimate
A, 4t = HacTi <alla li-liel <fiall <... <liAll <e

which we use in the decomposition
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81 = (1d—C)ak+ (1d-C)ak+ (id - [Ak,C])Cak+ AkC(ld-Ak)C c

to obtain first inductively

oy, 1| <Cicl+ A, 1) -1a ]+ lai-le] <la] -

Then, since E,El are invariant under € we can use the last two estimates to

obtain

laf] > [(ia-c)al_|-11la,_ ,Cll-1a, Il - 1A, li-|e]
> EIag_lisin%- 2¢]al
> (2 sin%)d- |a.E‘ - 2¢|al 'd};'l (2 sin%)k
k=0
> IaLE|(sin%)d .

Now !a&’ >0 , which contradicts 2.5 and proves 2.2 (i)

2.6 A pigeon hole argument (Proof of 2.h).

Put o, = (R+1)-100Y, 4= O,...,2-int(2n/e)dlmso(n) =N(e), where r is the dia-

i
meter of the fundamental demain of G .(This is the only point in the proof where
n
compactness of Rn/G is used). Define ui = {Ot€G| |t(a)| <pi} . For each x€R™ ,
[ %] <—gp, choose «, €G with a. = t{x,) next to x ; then |a, -x| <r and
L i i i i -

1 . —1 1 =1
r+p, 4 <ip; imply for all BEY, , that |t(aep) -x|< 1o, end [t(opeBT)] <p, -
Therefore if 2.4 were false for all the p; we would have for each i some 0, €G

. =1
with ||r(aios N>e for all BEU; 4 -

r(ozi) €0(n) with pairwise distance > e, contradicting lemma L.L.

In particular we get N(e)+1 elements

2.7 The short basis (Proof of 2.5)

We fix the constant in 2.1 to be S/p . Then llofl<e for all aé(}; , and k.3

implies
Iasplll < minfllafl I8} (28 €67)
A short basils {0(1, v ,ocd} is defined inductively by choosing a nontrivial
aléag with minimal llogll

o:i+lEG:-({al,...,ai}) with minimal o, Il
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(({ogl,...,ai}) is the smallest subgroup of G containing {o ,.--,ozi}-)

The basis is finite since GZ is finite. The important point is that d has an

upper bound which is independent of p and e : If we could find i<j<d such

= -1 €
th L50L) <o, . < > .
st d(og,00) <llegll , then iy &ifl <llol < ¢ hemee 0,07 €G] and also

O‘j&j{e ({al""’o'j-ln since HOth is minimal in the complement.  Now

—.l . . Py
O‘j = (O‘j Oti)oozj € {{o ""’aj—l}) ig impossible. Hence the elements of a short
basis satisfy the pairwise distance condition of 4.5 so that d§3n+ dim 50(n)
This d 1is also a bound on the length of nonvanishing commutators since
H[Og,aj}ﬂ < mln(HOEH,HobH) implies first

(2.8) [ai,aj] €{{aysenns0 H (1<3)

1
Then use induction on the wordlength based on the formulas [ B,y] =

—1 —1 .
Byl [lysBl,al-[a,y] and [a,y] = (&, [v,a]l-{y,@] and an induction on i to
show that <{Qi""’ai}> is i-nilpotent.

2.9 Proof of 2.2 (ii)

The translations in ¢ - clearly a normal subgroup, have been described as the set
of all o« with |All <—:;~'. From 2.4 Rn/l" is compact hence G/I" is finite. The
homomorphism r: G=0O(n) induces an isomorphism between G/I" and a discrete sub-
group of O{n) whose elements satisfy the pairwise distance condition of h.h with
g = % . Therefore G/T has order < N(%) (2.6.)

2.10 Proof of 2.2 (iii)

Consider pairwise orthogonal 2-planes ng El, .. "

.,RKEE
1 . .
that A as restricted to Ri is a rotation by Gi . Let Si be the unit circle

through the origin such

in Ri . Fix u<k-1 . Then A acts isometrically on the flat torus

Tn = Si_H‘x e X Si; not only with respect to the Riemannian but also with respect

to the Finsler distance d(x,y) = max{ ¥ (xi,y.l)f i=owrl, ...k, (;%.. = orthogonal
projection of x to Ri} . The function d(x,Ax) is constant on T% . Since each
torus has the same volume as the Finsler ball of radius wx in its tangent space
and since points of pairwise distance % give disjoint balls of radius % we have
the volume ratio m% = int(hn)k_% as a bound on the number of such points. It
follows that for some power A" » O<m<m , we have a(x, A%) <% for a1l x €T ,

which implies | ¥ (X,Amx)| <% for all XEEml@"' ®E, . Therefore, if we had
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>u—k ]

1 m 1
<=k i .. 2] - that -
o<8 ) ( T it would follow from O <91 < < " < m% ha é/: ( X,A X) < o

for a1l x€R*, i.e. A <2 but A" 4 ia, a contradiction to 2.2 (i)

3. Earlier proofs

In this section we sketch Bieberbach's original proof [1] and the one given in Wolf's
book {4] . Both use commutator estimates though in different form. To simplify the

deseription we use L.3.

3.1 The structure of Bileberbach's approach consists of the following observations
(X p. 317 and XIT p. 328, Math. Ann. 70 (1911))

(i) A1l main rotation angles occurring in G are rational (€n@)

(ii) An infinite discrete group of motions has elements without fixed points.

The two propositions are proved independently. From (i) it follows that each infinite
subgroup of G contains translations, and by a not too complicated induction argu-

ment Bieberbach then concludes:

(iii) If all translations of G are contained in a subspace E of R™ , then

also all translational parts are contained in E .

At this point the proof is complete: Since G has compact fundamental domain E
must be R° . While the proof of (ii), based on the commutator estimate (Hilfssatz
on p. 328) makes no trouble we like to comment on (i), which is the heart of Bieber-
bach's arguments. The way of proving (i) is by showing that irrational angles would

imply the existence of infinitesimal sequences, i.e. seqguences in G which do not

contain the identity but which converge to it. First €6 is chosen with the maxi-
mal possible number of irrational angles 91""’9k . By taking powers it is achieved
that all other angles are zero. By a change of origin there is a 22X - dimensional
invariant subspace Eg;Pn such that t(q) €E' and r(a)[EL = id. Since G has
compact fundamental domain there is v €G  with t@){El. This v does not com-
mute with any power o?(m%:o) . Certainly one can construct a set of powers of «
such that the rotational parts form an infinitesimal sequence. The problem is to
have the translational parts converge also. This is achieved together with vy in

the following way.

By Minkowski's theorem on simultaneous rational approximation there exist for all

j=1,2,... integers Xl(j}""’xk(j) and n(j) such that simultaneously

%, (3) 1
len——n(j) -9,,15—3-, 5 L=1,...,
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Now for each fixed m {which serves as parameter) Bieberbach considers the seguence

of m-fold commutators

Yy T [---['\(:an(j)]:"';an(wj ’ J=12,-..

&)

from this by an involved calculation the following orders of magnitude are shown

Due to Minkowski's inequality the powers op have small rotational angles, and

.1-m
J

{3 A+ 2-m
= o™, s = oM, mze

Therefore the proof of (i) is complete if for m = A+ 3 the sequence {V;J)} = does

J=1
not contain the identity. Now by the particular choice of o and v one finds these
sequences free from the identity for m = 2 and 3 . Yet there may be a minimal
m>k  such that {Vif)}jil is not infinitesimal. If this happens, various cases

must be considered. If m = 4% and

W41 G2ag s e (T I 2

3

is infinitesimal instead. If m =k and [yéJ) yé‘))} = 1 then {\((3'])} is infin-

(s ) ;
itesimal. For m =5 one can take {[yéJ),yia)ng)]} . And finally for m>6 the

sequence looked for is {Véfi '(Vé?é)_l}

It is interesting, how a little more information about vy simplifies the proof of

(i). From the pigeon hole argument 2.6 one can choose v such that in addition

()i < % . Then Yég} £ 1 for all m, (§j>3) ; for otherwise by the lemma

I s
below, YZJ) and a fortiori each further y53> is a translation which due to the
choice of « and vy has always a nonzero component in E , a contradiction. Hence
3 o<
{V;J)}j~1 is always infinitesimal, in particular for m = A+ 3 . However there

(j)} @

is a still simpler argument: Look at the series {y(J)} ® instead of {y j=1 °

m “m=1l
As mentioned, it does not contain the identity. By the commutator estimate (c.f. 2.7)

it converges to the identity. Thus it is infinitesimal.
3.2 Bieberbach's proof succeeded by extracting translations from G by means of
powers (based on the non-existence of irrational angles). Thellogical structure od

Gromov's proof is different. He first defines a subgroup ((Gi)) of finite index

(by the pigeon hole argument) in G and then proves that the subgroup is already a
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group of translations (by the short basis trick). Wolf's proof also starts by
defining a suitable normel subgroup G* = r-l(T)EEG where TCS0(n) is the identity
component of the closure of r(G) . G/G* is almost immediately finite: Since T

is closed and $0(n) is compact, only finitely many different sets r(y)+T occur

as v runs through G . The task is again to show that G¥ 1is purely translational:

First one observes {([L] p. 100)
Lemma If A,B€30(n), [Jall, IIBf <x/2 then

[[4,B],B] = 1 implies [4,B] =1 .

(This lemma is not used by Gromov since due to occurring homotopy errcrs there is no
analogue for non flat situations). Together with the commutator estimate {c.f. 2.7)

ome finds T +torsl in 80(n) . Hence the subspace W = {x eRan(x) = x} 1is charac-
terized as the fixed point set of a single rotation r(yO), Yo €G6*% , and by a change

of origin one may assume t(yCQ €W . Since T is abelian, one checks that t{y) €W
for all further v €G*¥ also. Since Rn/G* is compact this is possiblc only if

W=R". Hence T = r(g*) = {id}, i.e. G* is a set of translations.

4. The group of motions.

The lemmas of this section will be proved with differential geometric techniques. We

recall the following facts:

4.1 The orthogonal group O(n) is a Lie group with identity component SO(n) . Its
Lie algebra so(n) 1is the space of skewsymmetric matrices X,Y,... and is canoni-
cally identified with the space of left invariant vector fields, using that the brac-

kets of left invariant vector fields are left invariant.

(1) adX (¥): = [X,¥] = XY - ¥X
® Xk

The exponential map exp: so{n)—=80(n) , expX = id+ € %T relates to ad and con-
k=1 *°

jungation K,: B-ABA L as follows:

. . ~Y) =
(2 expY . expX -exp(-Y¥) exp(dKeXpYX)
s K
L. 1 e x
(3) Exp (tad¥): = id + k>_:l o (tady) {da ﬁex‘pt‘[)id

Denote by DL the left invariant connection for which left invariant vector fields
are parallel, then
L 1

Dyl: = DY + 5 [X,Y]
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defines a torsion free biinvariant connection with parallel curvature tensorfield R:
1
R(X9Y>Z = E{Za [X;Y]] .

Obviously

L L

L. Ly
R{J): = Dy Dy J+ Dé[c,J] =D, D, J+ R{J,C)e

for vector fields J along geodesics t—c(t) = exptX . The solutions of R(J) = O

are the Jacobifields and are either obtained as

t) kL: R=so(n) , Wl [X,RL] =

!
O
-

(LA(B): = A*B) where dL (

(%) is parallel translation along ¢ with respect to the

. L
connection D~ , or as

(%) 3(t) = B k(t), ki R=so(n), K-+ (a00)% =0
where
t
(6) Pt' = ch(t)oExp(— 2adX)
is parallel translation along ¢ with respect to the connection D . The differen-

tial dexp can be described with Jacobli fields as follows

D

DL
2 3(0) (=230 =¥

(73 (dexp)tXY = % J(t) if J(0) = ¢

L.2 If for §€ soln) we put

st = mex{|sv]; veR" , |v] =1} ,
then from (1)

(8) f1s,21 < alisf - {iTll -

By left translating this norm to all other tangent spaces we obtain a Finsler metric
for O(n) whose distance function

n

a(A,B) = max{ ¥ (v,Av)| vE€R , |v| = 1} .

has already been introduced in section 2. The diameter of §0(n} and the injec-

tivity radius of exp with respect to the Finsler metric are = . Since the distance



function is biinvariant, (dKA) i so(n) = so(n) is a norm isometry and it follows
from (3)
(9) liBxp (ad¥) Xl = Xl , X,Y€so(n)

Hence both parallel translations dLC( £) {(by definition) and Py (by (&) and (9))

are norm preserving.

£ J(t) = au_,.. k(t) is a Jacobifield (h) , then k' satisfies k'(t) =

o(t)
Bxp (tadX)-k(0) , [IK'(£)|l = Ik(0)] (9) and therefore
L
1) = (6] < ¢l 3 I(oN = ¢l

(10) Il(aexp) ¥l <t
i.e. exp does not increase lengths in the Finsler metric.

4.3 Lemma,

a([a,B],id) < 2a(A,id)-a(B,id), A,B€50(n)

Proof Let A= expX, B=expY and connect A with pap t by the curve (c.f. (2)
and (3))
t=y (t) = exp (Exp (tad ¥)-X), t€[0,1]
Prom the biinvariance of the Finsler metric
-1 1
a([A,B],1d) = a(A,BAB ) < [ liy(t)llat
o]
Since exp does not increase lengths (10)
Hoay 4 (§)i -
Iy ()l <1 g5 (Bxp(tady) X |I"= 1Exp(t ad ¥) - [¥,X 1]
(8) . ;
(2) B YM < 2ixl-lvl = 2 a(a,1d) -a(B,1d)
b Lemma
dim s0(n)

For €>0 there exist at most N(e) = 2int (2x/e) rotations in 0(n)

with pairwise distances > e .
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Proof. It suffices to prove N(e)/2 as upper bound on SO{n) . Since metric balls
Be/:é of radius e/2 around the considered elements have pairwise disjoint interior

and equal volumes, it follows from B = 50(n) that

1
vol Bn / vo B€ /2
is an upper bound. To get it explicitly we estimate de‘c(dexp)ch in the standard
Riemanmian metric (which provides the volume function on S0(n)}; the Levi-Civita
comnection is D . WNorms with respect to the Riemannian metric are denoted by |.| -

We use an orthonormal Basis {Yl,...,Ym}g so{n) of eigenvectors with eigenvalues

2 2
Kl,...,)\m of the nonnegative symmetric operator - (adX)g, m = dim so{n) . If J is
the Jacobifield (7) for Y = Y, , then in (5) obviously k(t) = ki sin% )\i is a
i
solution. Therefore since the Levi-Civita parallel translation P, perserves |.]
we conclude from {6} and (7) that the Jacobifields corresponding to Yl,...,Ym are
pairwise orthogonal along c(t) = exptX and satisfy
tA
—1 - i.-1
| (dexp), Y] = t7]d(t)] = tl]k(tH = (—5) TsintA, /2, t<=x .
tX 2 i -
2
Since |ladX[|< 2 X[| < 2x (1), the eigenvalues of ~(ad)()2 are < kx” . Hence
% sint
det(dexp)tx = .TT -ﬁ-(Exi)
i=1
is not increasing and wvol Bn/volBtS(n/t)m N g.e.d.
4.5 Lemma
. n-dim 80(n) . . . - .
There exist at most 3 euclidean motions «,B,... which pairwise satisfy

the condition (c.f.2.1)

ale,B8) >max{lidll, il .

n
Proof Consider m such motions oy and corresponding pairs w, =(Si,ai) € so(n) xR

where exp 8, = A, = r(ozi), a, = t(ozi) . Introducing the norm |[(8,a)]| =
max{||S||,e+| |} (the constant is irrelevant) in the vectorspace so(n) % R" we find
m points ﬁi = ”wi”-lwi on the unit sphere satisfying

A P e A [ A N

(if w.l.0.g. ]leHSHwiH) , since by (10)
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i, -wJ.H zd(ai,oaj) >max{llall, HOle} = max{HwiH,ijH}

It follows that the open balls of radius L/E around the Wi are pairwise disjoint

and contained in a ball of radius 3/2 . Now m cannot exceed the volume ratio
. n
3dlm(so(n) XK ) q.e.d.
Remark. There is no finite bound if the condition is replaced by d(o,B) >
emax {||ofl,l1Bl]} e<1 . 1In many cases as e.g. in the proof of Gromov's theorem, it

is desirable to have an open condition. One such condition is

a{a,B) >max{lidl - elgll,ligll - ellol]}

The number of motions is then bounded above by (Q:E)n+d1mso(n)

e , the proof is the

same .
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ALMOST FLAT MANIFOLDS

M. GROMOV

1. Introduction

1.1. We denote by V a connected n-dimensional complete Riemannian
manifold, by d = d(V) the diameter of ¥, and by ¢* = ¢*(V) and ¢~ = ¢~ (V),
respectively, the upper and lower bounds of the sectional curvature of V. We
set ¢ = ¢(V) = max (j¢*|,|c7 .

We say that Vis e-flat, e > 0, if cd® < .

1.2. Examples.

a. Every compact flat manifold is e-flat for any ¢ > 0.

b. Every compact nil-manifold possesses an e-flat metric for any ¢ > 0.

(4 manifold is called a nil-manifold if it admits a transitive action of a nilpotent
Lie group; see 4.5.)

The second example shows that for n > 3, ¢ > 0 there are infinitely many
e-flat n-dimensional manifolds with different fundamental groups.

1.3. Define inductively ex,(x) = exp (ex;_,(x)), exy(x) = x, and set é(n) =
exp (—ex,(n)), where j = 200. (We are generous everywhere in this paper be-
cause the true value of the constants is unknown.)

1.4. Main Theorem. Let V be a compact é(n)-flat manifold, and r its funda-
mental group. Then:

(@) There exists a maximal nilpotent normal divisor N C r;

(b) ord (z/N) < exy(n);

(c) the finite covering of V corresponding to N is diffeomorphic to a nil-

manifold.

Corollary. If' V is é&(n)-flat, then its universal covering is diffeomorphic to R™.
If V is &n)-flat and = is commutative, then V is diffeomorphic to a torus.

1.5. Manifolds of positive and almost positive curvature. For such manifolds
one expects the properties (a) and (b) from Main theorem 1.4, but we are able
to prove only the following:

(i) If Vis a manifold of nonnegative sectional curvature (¢~ > 0), then its
fundamental group = and every subgroup of = can be generated by 3" elements.

i) Ifd(V)<9,c(V)> —K, K> 0, then = can be generated by N <
3" ex,(nK9?) elements; if x is a free group and K2* < &(n), then « is generated
by one element.

Received June 26, 1976, and, in revised form, August 27, 1977.
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1.6. Manifolds of almost negative curvature. The universal coverings of such
manifolds are expected to be contractable. If n = 2, it is so for ¥ with ¢*(V)
< 1,d(V) < iz (S. Mayers, see [4]), but for » = 3 we have

Counterexample. For given ¢ > 0 there exists a manifold V diffeomorphic
to the sphere S* such that d (V) < e, c*(V) < e. (See [5].)

1.7. 'The volume and the injectivity radius. A slight modification of Cheeger’s
arguments from [1], [2] shows that the lower bound on the volume vol (V) or
on the injectivity radius reduces drastically the number of almost flat manifolds
(compare with Examples 1.2):

(a) The number of distinct up to diffecomorphism manifolds with d(¥) < 1,
vol (V)> K7, ¢ (V) < K, K > 0, is less than exy(n + K), Cheeger [1].

by Ifd()<1,vol(V) > K ', K>0and ¢(V) < én + K), then V is
diffeomorphic to a flat manifold.

1.8. The second statement is a weak pinching theorem. For positive curva-
ture there is much better result:

Ifc*(V) < 1, (V) > 0.97, then V is diffeomorphic to a manifold of a con-
stant positive curvature (Grove, Karcher, Ruh [7]).

The following is known for the negative case:

Ifc* (V)< —1,¢7(V) > —1 — k, £ > 0, then in the following three cases
V is diffeomorphic to a manifold of constant negative curvature:

(@) & < (exy(n + d(V))'; (E. Heintze, see [8]).

() £ < (ex{n + vol(V))'and n # 3 (for n = 3 it is unknown).

(¢) mnis even and k¢ < (exy(n + |x(V)])~!, where y(V) is the Euler char-

acteristic.

Proof. 1In view of the Margulis-Heintze theorem (see the next section) one
can apply to (a) Cheeger’s arguments as in the previous section. About (b) see
[6]. The case (c) follows from “b” and the Gauss-Bonnet theorem.

1.9. About the proof of the main theorem. Our arguments imitate the proof
of the Bieberbach theorem (see [9]). The first application of the discrete group
technique to geometry is due to Margulis who proved (but has never published)
the following analog of the Kazdan-Margulis theorem (see [9]):

If V is compact, ¢*(V) < 0, ¢c=(V) > —1, then vol(V) > C;1,C, < ex,(n).
(Margulis is not responsible for that particular C,.)

This fact was independently discovered by Ernst Heintze (see [8]).

To prove that theorem Margulis established the following:

The Margulis Lemma. Let V be as above, and suppose «, B € m = m(V, vy)
can be represented by loops of the length < C'. If C > ex,(n), there is a natural
number m such that a™, ™ C r generate a nilpotent group.

The ideas of Margulis lying behind his lemma are crucial for our proof of
the Main Theorem. I am also very much indebted to Yu. Burago, J. Cheeger,
D. Gromoll, V. Eidlin, W. Meyer and J. Milnor for discussions having led to a
simplification of the proof. T am essentially thankful to Professor H. Karcher
for his constructive criticism and suggestions. In particular, the present versions
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of statements 2.3, 2.5, 2.6, 2.8.and 7.2 are due to him.

2. Almost positive curvature

2.1. For a group /" with a function y — ||7|| € R, we denote the “ball”
(I D70, p] by I", C I'. We say that I is discrete with respect to || || if all balls
are finite.

We call 4,75, - - -, 75 € I" a short basis (or short generators) and the sequence
of subgroups e = I'yC I'y € --- C I'y = I' a short filtration with respect to
Il I, if I'; is generated by 7y, - - -, 7; and ||y;,,| is minimal for all y from the
complement I"\I',.

2.2. From now on we fix a point v, € V, denote the tangent space at v, by
T, and set = = m,(V, v,). For a geodesic 1:[0, /] — V with 2(0) = v, we denote by
t(2) e T the corresponding tangent vector with length (#(2)) = length (2). For
a ¢ = we denote by | «| the length of the shortest loop representing «.

2.3. Leta, pem and 2, 4 be the corresponding shortest loops with ¢ the
angle between #(2) and #(y). Put p = max (||«||, || 8])) and #* = max (0, —c~(V)).
If cos ¢ > coshkp-(1 + coshkp)™* (i.e., for £ = 0 if ¢ < 4n), then ||| <
max (| ], | B]).

_ Proof. Apply the Toponogov comparison theorem to the universal covering
V.

2.4. Proof of 1.5 (i). Take the short basis 7, -+ -, 7, € = and the corre-
sponding shortest loops 2, - - -, .. From 2.3 it follows that all angles between
t(2)) and #(2,), 1 <i<j<s, are at least z/3 and so s < vol (S™)/vol (BZ,) < 3".

2.5. If p>2d(V), then the ball =, C = generates =, since every loop strictly
longer than p can be decomposed into two shorter ones.

2.6. Therefore we can estimate the number of generators in 1.5 (ii) by using
¢ from cos ¢ = cosh 2k2)-(1 + cosh 2t2)~" by

s < vol(S)/vol(B},) < 3"-cosh” (D) .

For the last statement we need an algebraic fact.

2.7. For a group [" with generators y,, - - -, r, we denote by N¥(y,, - - -, 1,)
the smallest number N such that every subgroup in I” generated by words of
length < k admits a system of N generators. Denote by N*(/") the minimum
of all N*(y,, - - -, 7,) with respect to all systems of generators of I.

If I' is free and noncommutative, then N*(I") > k. This is obvious and in
fact N*¥(I") grows exponentially.

2.8. End of the proof of 1.5. For a short basis y,, - - -, 7, C 7 we conclude
as before N*(y,, - -, 1) < 3"-cosh” (¢-k2D). Now, if £-9 < 37%*, then this
upper bound for N%(y,, - -, 7,) is, for noncommutative x, incompatible with
k < Ny, -+ -, 70), (e.8., at kK = 37).
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3. g-isometries

3.1. A set in a metric space X is said to be d-dense if it intersects every ball
of radius 4. A discrete set 4 C X is said to be g-uniformly d-dense if for any
two balls 4, B C X of radius § the numbers i, j of points in 4 N 4, B N 4 satisfy

o' <ifj<o.

A map ffrom one metric space to another is called a R-restricted g-isometry
if for any two points x, y with dist (x, y) < R we have

-1 o dist (f(x), /()
TE a7

3.2. For a complete Riemannian C*~-manifold X, a discrete set 4 C X and
a finite C=-function y+: R, — R, we construct a map ¢: X — H = [*(4) (= the
space of /’-functions on 4): (p(x)) () = + (dist (x, »)), x € X, y € 4. Further
we fix » with properties: 4, is supported in the interval [0.1, 1] if x €[4, ],
then (x) = x and (x) + |4/ (x)] + | (x)] < 100, x € [0, 1].

3.3. Let X, and X, be manifolds as above of dimension n, and 4, C X, 4,
C X be ¢-uniformly §-dense sets. Denote by R, the minimum of the injectivity
radii Rad (X,), Rad (X,), and by K the maximum of the curvatures ¢(X,) and
c(X,). Let f: 4, — 4, be a bijective R-restricted g-isometry. If ¢ < 2,0 <
exp(—10n), R, Ry > 10, g < 1 + exp (—10n), K < exp (—10n), then there
exists a diffeomorphism F: X, — X,.

Proof. Using f: 4, — 4, we identify 4, with 4,, and set H = [I*(4,) = I*(4,).
It is easy to see that the maps ¢,: X, — H and ¢,: X, — H are smooth imbed-
dings, the image X7 of the first map is contained in a normal tubular neighbor-
hood of the image X, of the second map, and the normal projection X — X,
is a diffeomorphism.

3.4. Remark. Our construction for F is metrically invariant. So if f com-
mutes with an isometrical action of a group in 4, and 4,, then so does F. (We
suppose here that a group acts isometrically on X, and X,, and 4,, 4, are in-
variant sets.)

3.5. Notice that 1.7 (a) immediately follows from 3.3 and the Cheeger in-
equality: If (V) < 1, then Rad (V) > vol (V) (ex,(n + K)7'; see [1].

4. Lie groups

4.1. The group of motions. We normalize the biinvariant metric in O(n) by
the condition d(O(n)) (= diam (O(n)) = 1, and denote by M(n) the group of
rigid motions of R"™ with the metric induced by the decomposition M(n) =
O(n) X R™. We denote the projections M(n) — O(n) and M(n) — R by “rot”
and “trans” respectively. In all three groups we denote by | «| the distance
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from « to the identity element, and by B,, a > 0, the ball of radius a centered
at the identity element.

By [«, 8] we denote the commutator of « and 5. For 4 € O(n) by E,,.; (4) C
R" we denote the eigenspace corresponding to the (complex) eigenvalue A max-
imizing the distance: dist (4, 1).

4.2. The following properties of the commutators are obvious and well
known (see [9]):

(@ |l Blll < Callall-[I8ll, where a, g from O(n) or M(n), [|«|, [|8]| < 1 and
C, < exy(n);

(b) Let Ae On), be E, . (A4), and a: x — Ax, : x — x + b, x € R" be the
motions from M(n). Set o, = [a, 8], @; = [@, a;_;]. Then ||ee;|| > n~% || A]|*||b]|.

Nilpotent groups

4.3. Let L be an n-dimensional simply connected nilpotent Lie group, and
[ its Lie algebra. Equip / with an Euclidean structure, and L with the corres-
ponding left invariant metric. Expressing curvature of L in terms of / we have

44. If|[x,»]]| < clix|[l¥l, x, » € I, c > 0, then the curvature c (L) satisfies
¢(L) < 100c?.

4.5. Take a triangular basis x;, - - -, x, € [ (i.e., [x, x;] € l;_,, xe [, and /,;_,
is spanned by x,, - - -, x;_,), and for x = } 7, a;x; set | x| = 27, wds,
> 0.

If ;1 < 47 and g, is small, then the curvature ¢(L) is small because of 4.4,
and for given uniform discrete subgroup I" C L the diameter d(L/I") is also
small. This provides the second example in 1.2.

4.6. For vectors x, ---, x, € R", k < n we denote by 9(x,, - - -, x;) the
volume of the k-dimensional parallelepiped spanned by x,, - - -, x,. We say that
a system of independent vectors x,,- - -,x; is regular if ||x;|| < 3% '||x,|, 1 < i
<Jj< kyand D(x,, - -+, xi) > A, [5x4, 470 = exy(n).

4.7. Consider an n-dimensional lattice 4 C R"™ equipped additionally with
the structure of a nilpotent group without torsion. Let 4,, - - -, 2, C 4 be a basis
in A such that the sublattices 4, = {3]%_, m;4,} are also invariant subgroups
with respect to the nilpotent group structure, [4, 4, C 4;_,,i= 1, ---,n, and

'HMZ;M e Zﬁn = Z?=1mi2i, m; = .- -, _150’ 1, 7l= 17 PR
Realize 4 now (see [9]) as a uniform discrete subgroup in a nilpotent group
L and associate with the basis 4,, - - -, 2, € 4 C R" a left invariant metric in L

as follows: take x,, - - -, x, € / with exp (x;) = 2; € 4 C L, equip / with the
Euclidean structure induced by the isomorphism R™ — [ extending 1; — x;, and
take the corresponndig metric in L. For 4, e 4 C L we denote the distance
with respect to this metric by d(2, p).

4.8. Suppose that for 2, g € 4 C R™ with [|2]}, || ¢]] < p > 0 we have ||[2, 4]||
< c||2)|||gll- If the basis 2, ---, 2, € 4 C R™ is regular and p/||2,|| > exy(n),
then c(L) < (¢’)%, ¢’ = c-exy(n), and for 1€ A4 C R™ with ||2]| < (c exy(n))~* we
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have ¢=' < d(e, 2)/||2|| < g, where e e 4 C L is the identity element and ¢ <
exp (c-[|2]]- exo(n)).

Proof. The product in the nilpotent group 4 C R" is given by a polyinomial
P: A X A— A of degree < n. Extending this polynomial to R” X R™ provides
on R" the structure of a nilpotent Lie group isomorphic to L. The bracket in
the Lie algebra may be expressed in terms of the coefficients of P and so by an
obvious interpolation argument inequalities ||[4, #]|| < || 4]/ || | in the ball in 4
yield the analogous inequality for /:

1D YU < 107%¢" ||l yll,  x,yel.

This, together with 4.4, proves the first statement of the lemma and the same
interpolation arguments prove the second.

5. Pseudogroups

5.1. A pseudogroup is by definition a set /" with a product «-g e I" defined
for some pairs «, 5 € I" and having the following properties:

There is the unique identity element e € I, and every y € /" has a unique in-
verse.

If the products («f)y and «(8y) are defined, they are equal and are written
as afy. Generally, the notation 7,7, - - - 7, means that the product is defined for
any setting of brackets.

5.2. Example. A symmetric subset of a group, containing the identity ele-
ment, is a pseudogroup.

5.3. Any pseudogroup I' can be viewed as a presentation (by generators
and relations) of a group = = n(I"). If the natural map I" — r is injective, we
say that I" is injective. The pseudogroups from the above example are injective.

5.4. A symmetric subset of a pseudogroup containing the identity is again
a pseudogroup, but we use the term “subpseudogroup” only for sets closed
with respect to the multiplication.

5.5. A function y — ||7]|e R,,7 €I, is called a norm if it is symmetric
(l77" = ll7 ), positive outside the identity element, and ||e8| < [l«| + [|8]]-

We introduce the radius rad (") = max,¢, ||yl and say that I" is radial if
for a, 8 e I' with ||| + ||8]| < rad (I") the product «- 8 is defined.

5.6. Example: the local fundamental pseudogroup. Denote by £ the H-
space of all piecewise smooth loops in ¥ based at v, € ¥V with the composition
denoted by ¢ o for ¢, v € 2. Denote by 2,, p > 0 the set of loops of length
less than or equal to p and by I" = =, the set of all geodesic loops in 2,. We
denote by |7}, 7 € I', the length of 7. If p’c*(¥) < 0.1 we define for @, fe I
with @o 8 € 2, the product af e I": af is the shortest loop homotopic in £, to
a o B. The pseudogroup I” so defined is discrete (see 2.1) and radial, and if p >
4d(V) then n(I") is.canonically isomorphic to =,(¥, v,); but it may be not injec-
tive (see 1.6).
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Our major concern is the injectivity for the almost flat case. To prove that
we shall later need the following two facts. For their proof note that a pseudo-
group is trivially injective if it can be described as a pseudogroup of transfor-
mations of some set.

5.7. Let I" be discrete and radial (we use the notation from 3.1).

(a) If subpseudogroup 4 C I' is injective and §-dense in /7, then the ball
I', C I' (with the induced pseudogroup structure) is injective for p < 0.1 rad(I")
— 106.

(b) Suppose N, A C I' are injective subpseudogroups, N is invariant
(I’NI'"* C N when the product is defined), the map (v, «) »> v-we [',ve N,
« € A, is injective (where it is defined) and every y € I', C I, p < rad ", admits
the decomposition y = va, v € N, a € A. Then the ball I",, C I is injective for
0, < 0.1 p.

5.8. Nilpotency. We say that a set 4 C I is nilpotent if in the sequence
Ay, = A, A, = [A, A,_,] all commutators are defined and there exists a number
d such that 4, = {e}. A minimal such d is denoted by nil (4).

A system of generators 7, - - - 7, € I" is called a nilpotent basis if all commu-
tators [r;, 7;], 1 < i, j < s, are defined and [y;, 7,;] € [';_,, where by I"; we de-
note the subseudogroup generated by 7, - - - 7;.

Let I" be a discrete pseudogroup of radius R, and 4 C [, C I" a symmetric
set containing the identity element. If 4 has a nilpotent basis a;, - -+, a; € 4,
and R > p ex,(s), then nil (4) < .

This is obvious.

6. Pseudogroups of motions

6.1. A map h: ' — G from a discrete radial pseudogroup to a Lie group
G (both with the norms || ||) is called an e-homomorphism if

he)=e,  hG™) = (RGN

if afy = e, a, p, v € I, then || (a)h(Bh()|| < ellall || 8]

6.2. Letr: I — O(n) be an e-homomorphism (about O(n) see 4.1), and let
00> 1> 0, ¢ be given numbers with 0 < g, < p, <rad I',0 < 6, p < 1.

If poor* < ¥, N > (10 + 07')°%, k = dim O(n) = 4n(n — 1), and ple < 0.14,
then there exists a p, p, < p < p;, such that the inverse image r~'(B8,) C I" of
the ball B, C O(n) is §-dense in I, C I" with § < pp.

Proof. This follows from the possibility of covering 0(n) by N balls of the
radius 4.

6.3. Let r: " — O(n) be an e-homomorphism with image in the ball B, C
O(n), § < exp(—n). If p < rad (/") and e < 0.1(Gp?), then ||r(y)|| < 100p7 || 7|,
rel.

Proof. If a,a* --- «'e B, then ||« = i||«|l. Given this, the inequality
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lrGH| < 6, with i = ent (o/||7|)), yields the proof.

6.4. For an c-homomorphism m: " — M(n) we set t(y) = trans (m(y)) € R®
and r(y) = rot (m(y)) € O(n), y € I'. We suppose that ||z(y)|| = |I7]-

6.5. Let m be as above, and let 6, p be positive numbers. Denote by N C
I', C I' the pseudogroup generated in ", by I", N r~'(B,), B, C O(n). If 6 + p
< exp (—ex;n), rad I' > p exy(d), d = 10%, k = dim M(n) = in(n + 1), and
¢ < 0.01, then nil (N)< d.

Proof. In N take a short basis 7,, - - -, 7, € N with respect to the function
7 — |lm(7)||. As in 2.4 we conclude that p < d; from 4.2 (a) it follows that this
basis is nilpotent, and applying 5.8 we finish the proof.

6.6. Let m be an e-homomorphism as in 6.4, let I", C I, p < | be the ball
with nil (I",) < d, and let ¢, &', , § > 0 be real numbers with ex,(n + d + 67
<(+6 + @+ @+ d) )" If the set r'(B,)) C " is §’-dense in I",, and
the image of #: I' — R" is §-dense in the ball B, C R", then ||r(y)|| < 6,7 ¢ T,.

Proof. Take x € E, (r(y)) (see 4.1),y € I',, with || x|| = $p and a € r7'(B,/)
with ||#(@) — x|| < § 4+ ¢ + 2. Consider a; = [a, 7], - -+, s = [a;_1, 7], - - -.
If ||r(y)]| > 6, then using 4.2 (b) we conclude: ||a;|| > A~ 46/2)! |||, i = 1,- - -,
d, but the condition nil (I",) < d yields ||a,| = ||e|| = 0, and the contradiction
proves the lemma.

6.7. A discrete set I' C R" equipped with a pseudogroup structure is called
an e-lattice of radius R = R(I") = max,. ||7| if the origin in R" serves as the
identity element in /’, the product «f is defined for «, 8 € I" with ||| + || B
< $R,and |jaf — a — B|| < ¢|«]|||8]| . Here || || means the norm in R” but as
a function on [ it may not satisfy the conditions in 5.5, and we do not sup-
pose that I" (as a pseudogroup) has any norm at all. Notice also that /" C R"
is not necessarily symmetric: y™' % —7.

Example. Let m: ' — M(n) be an e-homomorphism as in 6.4 with ||r(y)||
< vyl 7 eI, and let the map ¢: I' — R" be injective. Then its image is an e-
lattice with ¢’ < (¢ + v) exp (n + 10).

6.8. For an e-lattice I" C R™ we call the system of generators 7y, - - -, 7, € I
a normal basis if the following conditions are satisfied:

1. If the commutator [y, y],7€ [,i=1, ---, k, is defined, then [y, y;] €
I";_,, where I'; is the subpseudogroup generated by r,, - - -, 7.

2. If |||l < exp (—exy(n)) R(I"), then there exists a unique representation
=t

3. The system of vectors 7y, - - -, 7 is regular (see 4.6).

6.9. Consider an e-lattice I” C R™ with a normal basis 7y, - - -, 7, € I'. For
7 e I" represented as y = 7™ - - - yn» denote the sum y = X7, m;y; by 2= A(y).
A simple calculation shows

g Al < Irll < qljfl, with 1 < g <1+ 17,7>0,
exsn + ) > (lrD" .
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If the commutator [, 8] € I and A(«), (), 4 ([a, B]), &, B e I", are defined,
then || ([, B < €’ [[ (@) [[[|2(B)]l, where ex;(n + (£)7") > 7"

6.10. Let ' C R" be an e-lattice of radius R. If I" is -dense in the ball By
C R™ and (¢R + 6R™")™! > exy(n), then there exists a normal basis 7, - - -, 7,
in [,

Proof. Take a nontrivial 7, € I" C R™ with minimal norm, and consider
R"™' C R" orthogonal to 7,. Obviously (compare with 6.5) 7, belongs to the
“center” of I'. For y e I" with ||7|| < 4R consider the trajectory {rir},i= ---,
—1,0,1, - -+, as far as it is defined, and take 7 e {yiy} with the properties:
{Fory = 0,417, r> < 0. Such a 7 exists and it is unique. Denote by 7’ C
R""! the orthogonal projection of 7 to R*™!, and by /7 C R""' the set of all
such ¢’ e R™. Setting y1y; = (718,)’ we equip I with a pseudogroup structure.
It is easy to see that I is ¢’-pseudogroup of radius R’ where ¢’ < 20¢, R’ > LR.

Now, by induction having constructed the normal basis 75, - -+, 7, € I/, we
take 7.,7,, - - -, 7, for the normal basis in /', and verfy the properties 1-3 in 6.8
again by an obvious induction.

6.11. Consider an e-homomorphism m: ' — M(n) as in 6.4. If ¢! >
ex,(n + 1), rad I > 10, then the restriction of ¢: I" — R” to the unit ball [",_,
= [, C I is injective, and we identify I"; with the image of that restriction ¢:
I'i — R".

Let I, C R™ be j-dense in the unit ball B, C R™ where (6 + €)™ > exg(n).
Then there exists a subpseudogroup N, C [, with the following properties:

1. N,is ¢’-dense in B, with §" < ex,(n)d.

2. Ifye N, then|r(y)| < vyl where exp,(n + v™") = (¢ + d)".

3. Ifjlr(p)| < exp (—ex,(n)), y € I',, then y € N. (Notice that § > v.)

4. Both pseudogroups /', and N, are injective; the group n(N,) C =([)) is
a maximal nilpotent subgroup and the maximal invariant nilpotent subgroup
at the same time; =(,) has no torsion, rank (z(¥,)) = »n and ord (z(I",)/x(N.))
< exy(n).

Proof. Take the ball I', C I" with p = exp (—ex,(n)), and generate N, by
the intersection I", N r~(B,), B, € O(n), § = exp (—ex,(n)).

From 6.2 it follows that N, is §”’-dense in I"; with 6”7 = exp (— ex,(n)), and
properties 2 and 3 for y e I, follow from 6.3, 6.5, 6.6. Property 2 shows that
I', C R" is an ¢-lattice, and ¢’ is small enough to apply 6.10 (see the example
in 6.7) and to construct a normal basis in N,. The existence of the normal basis,
together with 6.6, 5.7 and properties 2, 3, yields property 4 with the exception
of the last inequality, but that inequality is reduced now to the following ob-
vious fact:

If a maximal nilpotent subgroup N C =z is invariant and has no torsion,
rank (N) = r and the group G = =/N is finite, then ord (G) < ex;(n).

Noticing that #(I",) = =(I",) and n(N,) = =(N,) we extend all properties of
I', to I'}, again using 6.6. Notice in the end that the inequality ord (z(",)/z(N))
< ex,(n) yields property 1 with & < 8.
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7. The proof of the main theorem

7.1. We return now to the manifold ¥ with a fixed point v, € V (see 5.6).
We identify the tangent space of V at v, with R, and denote the linear and the
affine holonomy maps by r: 2 — O(n) and m: Q2 — M (n) respectively

Consider a contractable loop w € 2, w: [0, 1]— V and a deformation w;,: [0, 1]
— V, with w, € 2, ¢t [0, 1], w,_, = w and w,_, the constant map. The family
w, can be viewed as a map of a 2-dimensional disk to V. Denote by S the area
-of that map and denote by L the maximum of the lengths of w,, ¢ € [0, 1].

7.2. From |R(x, y)z|< 2-¢ (V)-|x A y|-|z| for the curvature tensor and as-
suming ¢(V) < ¢ we have

”r(W)” g 2:¢-§ >
[mw)|| < L-(e*5 — 1) + 2S .

‘Together with simple comparison arguments (see [3]) it yields:

7.3. If c(V) < 107%, 0 < ¢ < 1, then the restrictions of the maps r and m
to the local fundamental pseudogroup I" = x,, p < 10 (see 5.6) are e-homo-
morphisms, m enjoys the properties from 6.4, and the image of ¢t: I — R" is
d-dense in B, C R" with § < 2d(¥).

7.4. Now everything is ready for the proof of 1.4. We can suppose that
d(V) + (V)™ > ex;(n), and can apply 6.11 to I" = =, because of 7.3. This
gives (a) and (b) of 1.4.

Take N, as in 6.11, and realize #(,) as a uniform discrete subgroup in a
nilpotent Lie group L. Take in N, C I'; C R" (see 6.11) (viewed as an e-lattice)
a normal basis 7y, - - -, 7, and identify z#(N,) with the lattice 4 C R" spanned
by 75, -+ -, 1, matching y =y - -y to 2 = i myys.

Now equip L with the metric associated with that basis (see 4.7), and consider
‘the map f from N = n(N,) C L to the universal covering (7, 9,) of (V, vy),
given by f(y) = r(9,). (N lies in =;(V, v,) and so acts in V.) Applying 4.8 and
6.9 we conclude that f'is an R-restricted g-isometry satisfying all properties of
3.3 (L corresponds to X, in 3.3, ¥ to X,, N to 4,, and Im (f) to 4,), and apply-
ing 3.3, 3.4 we construct the diffeomorphism F: L — ¥V commuting with the
action of N and so inducing the diffeomorphism of L/N to V/N.

8. Appendix: The proof of the Margulis theorem

8.1. The Margulis lemma follows (up to ex;-nonsense) from 7.3, 6.2, and
6.5. To prove the theorem we need two obvious facts about = = =(¥, v,) for
ct(V) <.

8.2. A. Every nilpotent subgroup of = is cyclic.

B. For every cyclic subgroup N C r there exists an « € z such that ||ava™!||
> 1,ve N, (about || || see 2.2).
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8.3. Now take the shortest y e 7,(V, v,). If ||7]|™* < ex,(n), then the injec-
tivity radius at v, e V satisfies Rad (V, vy) > i(ex,(n))~'. This yields the
Margulis theorem. Otherwise we take the maximal cyclic subgroup N C « with
re€ N and e e x as in 8.2B. Realize « by a loop: w: [0, 1] — V, and for ye N
denote by y,, t € [0, 1], the shortest loop at the point w(z) € ¥ homotopic to
the loop wigg ;0 5o w3, Where wy, 5t [0, 11— V is the restriction of w and ¥ is
the geodesic loop at v, realizing v. By continuity there is a #, € [0, 1] such that
min, ¢y (||v;,|)) = (ex,(n))~'. Using the Margulis lemma and 8.2A we conclude
that at the point w(z,) € V the length of any geodesic loop is at least (ex,(n))™?,
and the proof is finished.

Those arguments (up to minor details) are due to Margulis, and for the
homogenous case to Kazdan and Margulis (see [9]).
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REPORT ON M. GROMOV'S ALMOST FLAT MANIFOLDS (*)

by Hermann KARCHER

1. Introduction

A basic theme in Riemannian geometry is the following guestion : To what extend do
assumptions on local invariants determine global properties ? Very important such
assumptions are bounds for the curvature of the metric - recall that in Riemann's
normal coordinates the curvature tensor is obtained as the second derivative of the

metric., Examples of known results are :
; : sps . 2 2
(i)} The only surfaces which carry positive curvature metrics are S and P (R) ,

because 217.%(M) = f Kab .
M

(ii) A complete simply connected Riemannian manifold Mn of nonpositive curvature
is diffeomorphic to R® , because the Riemannian exponential map expp has maximal

rank on the tangent space TPM and is in fact a covering map.

(iii) More specifically, if M" has zero curvature ("flat") then expp is an iso-
metric covering map, i.e. the fundamental group ni(M’P) operates as a discrete -
and for compact M : uniform - group of isometries on R" . From Bieberbach's classi-
fication of such groups it follows that compact flat manifolds are covered by flat

tori.

. n o e X
(iv) If M is complete, noncompact and has positive c¢urvature then convexity argu-

ments show that M~ is diffeomorphic to R© .

1
{v) If Mn is simply connected, complete and has curvature bounds Z < K = 1 then
M s homeomorphic to s . For even dimensions 2 4 the result is sharp since

n . R . 1
P (€) carries a metric with i SKSs 1.,

(vi) 1f M is complete and has curvature bounds O0.7 K £ 1 then the following
holds : The universal cowering M is diffeomorphic to " in such a way that the

n . n
action of W1{M,p) on M is conjugate to an orthogonal action on S , i.e. M

is diffeomorphic to a space of constant curvature.

(*) This work was done under the program "Sonderforschungsbereich Theorethische
Mathematik" at Bonn. Discussions with Gromov during the Arbeitstagung 1977 were
very helpfull. Since early 1978 I am working jointly with Peter Buser.
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(vii) In principle similar results hold if the model space s s replaced by
any of the other symmetric spaces of compact type, but the precise formulation is

more elaborate.

The purpose of this lecture is to explain the proof of the following theorem
of M. Gromov [6] which differs from all the previous results by the fact that the
model space is not known a priori but has to be constructed in the proof. ([6] is

a general reference throughout the paper.)

1.1. THEOREM.- Let M be a compact n-dimensional Riemannian manifold, assume that

the sectional curvatures K of M are bounded in terms of the diameter d(M) :
-2 . 2 \
|K| < e * 4d(M) with € € exp(- exp(exp(2n”))) (present estimate).

q
-n(n -1}
Then there is a finite - at most 2 * (&) fold - covering of M which is

diffeomorphic to a compact quotient of a nilpotent Lie group.

There are many more manifolds than the compact flat ones which allow for

-2
every € > 0 an €&-flat metric, i.e. one which satisfies |K| < e * d(M) .
(6] a, .
N i3
t.2. Example.- he ni i = {A= T, i a . €R
xample On the nilpotent Lie algebra ¢ { . alj € '
0] o}

1si<js n} define the following family of scalar products :

g2 - L a2 e P07
1<y

i3
and extend them by left translation to the corresponding nilpotent Lie group G

of upper triagular matrices. From the estimate ||[A,B]||q < 2% (n-2) ’”A|lq' ”B]lq

one derives the following qg-independant bound for the curvature tensors Rq of

these left invariant metrics

2
Irg@arm) c [l = 26m=27 = [lafl = [zl el -

or < 24 01—2)2 .

1Rqll 4
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Each compact quotient F\F can be given an arbitrarily small diameter by
. . G
appropriate choice of g ; therefore f\ is €-flat for each € > O . If one
takes for I the integer subgroup of G , then ' is not a Bieberbach group

G
since the rank of its free Abelian subgroups is too small and therefore E\ does

not carry any flat metric.

1.3. The first steps of Gromov's proof. Because of the strong curvature assumptions

the maximal rank radius rm of the Riemannian exponential map is much larger than
the diameter of M . Therefore many short geodesic loops exist and Gromov defines

a product between short loops at p which satisfies the relations of a group where

it is defined. From this torso one can generate the fundamental group ﬂ1(M,p)
abstractly : by generators and relations. Each short loop at p 1is mapped onto
its holonomy motion and this map is almost compatible with the Gromov product since
small curvature implies that parallel translation varies only slightly with the
change of the path. Therefore commutators of loops almost behave as commutators of
motions, i.e. iterated commutators converge to the identity if the rotational part
of the corresponding holonomy motion is small ( < % ). Every set consisting of
loops with ﬁotational parts < 1 will therefore generate a nilpotent subgroup of

3
n1(M,p) if the homotopy errors are not too large. Moreover the degree of nilpotency

5
40 3 n(n+ 1)
of all such subgroups has the a_priori bound 4 = (TE) which is derived
by a counting argument in the group of motions. - We continue this summary in

2.15 after the more detailled explanations of chapter 2 have been given.

2. Products of short loops

From Riemannian geometry we have

2

2.1. Rauch's THEOREM [5].- Curvature bounds -~ Vg ks A" imply for the Riemannian
exponential map exp at p (for v,wE T M )

P

sin Altv sith Altv
< . < .
Kh Aty (@ ey, * vl ] A ev ’

-1 “ 1

(a exp) , has maximal rank if |tvj < fe A (s mee *d(M) in 1.1).

2.2 Klingenberds Long-Homotopy-lemma [5].-~ Let ro be the maximal rank radius of

expp i assume exppv = exppw . Then any homotopy which joins the geodesic arcs

exp tv and exp tw (O S t £ 1) contains a curve of length 2 roo-
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2.3. DEFINITION.- A homotopy which contains only curves shorter than the maximal
rank radius r. of the exponential map is called a short homotopy. The correspon-

ding equivalence classes are called short homotopy classes.

From 2.2 and the standard shortening process by geodesic segments we have

2.4, Every short homotopy class of closed curves at p contains exactly one geodesic

loop at p .

2.5. DEFINITION.~ Let &« and B be geodesic loops at p ; assume that the sum of
their lengths is less than the maximal rank radius r.oroe.g.

-1

o]+ 8] <mee 72

* d{M) . Let B*a be the closed curve "first « then B ",

as usual. Gromov's product B * o is the unique {!) geodesic loop in the short

homotopy class of Beo .

If one 1lifts the curve By to TPM by expp , then the ray to the

-1
endpoint of this curve is mapped by expp onto the loop B * ¢ . Clearly o is
the loop « parametrized backwards and associativity holds as long as the sum of

-1

the lengths of the factors is < rm(2 moE /2 d(M)). Every closed curve can be
decomposed (in n1(M,p)) into a product of curves shorter than 2d(M) + T (T >0
chosen) ; therefore ﬁ1(M,p) is generated by geodesic loops £ 2d(M) + T . Under
the mild additional condition 5 < me 5-1/2 it can already be proved that all rela-

tions in ﬂ1(M,p) are products of relations which are given by short homotopies
between loops of length <« 5¢ d(M) . Therefore the short loops (< 5®d(M)) with

Gromov product generate a group isomorphic to ﬂ1(M,p) .

2.6. DEFINITION.- Let ¢ be a curve and let a vectorfield X along ¢ satisfy

the differential equation ll-x(t) = &(t) . The map mic) : —

ac Te(o) To(y™

given by X{(0) —» X(1) is called affine translation {10)] along c. m{c) is a

motion, since its linear part is Levi=~Civita translation along ¢ .

2.7. Path dependence of translations [2]. Let Cy v ©y be two curves from

Ci(O) =p to ci(1) = g ; assume the existence of a smooth homotopy from Cy to 02

with area < F and longest curve S L . Let Xi(t) be Levi-Civita parallel along
ci and XI(O) = Xz(o) ; let Yi(t) be affine parallel along Ci with Yi(o) = 0.

Let i}Ri} be a bound for the curvature tensor along the homotopy. Then
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Pg xp o, x,000] s |[r]|*F
v, (H] £ length (c;) , [Y (1) =¥ (M| < Lef[rlfeF .

Our most important application of 2.7 is to homotopies which are given by geodesic
segments spanned in geodesic triangles. L is the sum of two edgelengths and P is

obtained from

2.8. Aleksandrow's area comparison [1]. Consider a geodesic triangle and span any

surface with geodesic segments. Agsume a curvature bound K < A2 along the surface.
Consider a triangle with the same edgelengths as the given one in the plane of cons-
tant curvature A2 (if A2 > 0 this requires a circumference < 2‘rr[\.1 }. Then the
area of the spanned surface is not larger than the area of this constant curvature

triangle. In particular, if two edgelengths, a , b are <€ m* (3[\)"1 then

F S 0.7ab (S 0.5b if A= 0)

To conveniently express how closely the Gromov product B * o and the compo-
sition of the holonomy motions m(B) ¢ m(@) are related we use the following Finsler

metrics

2.9. DEFINITION.- For A , B € SO(n) define d(a,B) = max{|9¥ (B-1AX,X)1 s O#XERY;
the corresponding norm in the tangent space TidSO(n) of skew symmetric matrices

is |s) = max{|sx| ; x € rR", [%| = 1} . For motions Ki(x) =A *X+a, define

3) . (Az should be thought of as a

a@A, , AZ) = max(d(a,, Az} , 3h" §a1 -a,

curvature bound ; the factor 3A makes the definition independent of renormaliza-—
tions of the metric of M ; it is also convenient in 2,12,) Abbreviate

ata, ia) = |[af} ; A&, i@ = ||7) .
We summarize 2.5 - 2.9 (note |K‘ = A2 =3 "RH = § A2 )
2.10. Homotopy errors. Let « , § Dbe geodesic loops with B * ¢ dJdefined. Let r(w)

and t{@) be rotational and translational part of the holonomy motion 2.6. Assume

2
curvature bounds 'Ki;g A . Then

Ar(p * o), T(B) o x(@) 5 A|t(e)|*]t®)] ,
|zB) st + £(B) - B * 0| < (Jem]|+|e®)]) * 4] * [e@®)] .

For commutators better estimates are true than follow from 2.10. One needs

2.11, Comparison of Riemannian and Euclidean translation [9]. Let w(t) be a parallel

2
vector field along the geodesic c{t) = exp tv . Assume IK! < A" ., Then
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1 ; {
dfexplv +w(0)),exp_ \\ wi1)) = = A(|v|fw| sinn Mlv] + WD
-1 -1 )
First the translational part of the commutator ([B,o] = § * o * B x & is esti-
mated directly with 2,1 and 2.11 ; then this information is used to get a good
bound on the homotopy error of the rotational part from 2.7 and 2.8. Gromov does not

seem to use 2.11.

2.12. Commutator estimates [2]. Let ¢ , B be short geodesic loops (2.5) at bp

and assume lK{ < A% . Then

[e([8,ah] = % [e@|leB)]e A sinh A(Jt(@)] + J£(B)]) + 2 sin (%[]r(ﬁ)“ e ecen] +

+2 sin(% Iz re]eBy]

1

alr([B,@]) , x(8) ler(@) lax(Brer(a)) = /\2(2|t(°’)||t(3)| + (Je@) |+ |e®r])e]t[B,e]]).

Assume in addition |m(0t)| ;mB)y] s % (hence |t(a>} , |t(B)] s (9/\)"1 (2.9)),

then |[m([B.@])]] £ 2.4m®)] «[|m(B)]] = 0.8 min (| m@)] . [[mB)]] ).

This result is very powerful. It shows that - after handling the homotopy
errors - one can work with commutators of loops almost in the same way as with commu-
tators of motions (we recall )I[X',E][1 <2 HX” '||E“ ). This use of commutators
seems to go back to Margulis who derived from 2.12-type estimates a lower bound for
the volume of a compact negatively curved Riemannian manifold, Gromov uses 2.12
to generate nilpotent subgroups of the fundamental group. Very surprisingly the

following holds :

2.13. A priori estimate [2]. The degree of nilpotency of all subgroups of ﬂ1(M,p)

which are generated from s?ts of loops which satisfy ||m(d)” s % has a bound
§n(n+ 13}
a = (—‘59) < 176"
13
Proof, Choose economic generators as follows : 01 is such that ||m(d1)H is
minimal (in the generating set U ). If a1,...,aj are already.chosen, then consi=-
der the set U, of Gromov-products of these and choose @j+1 in U‘\Uj such that

i m(dj+1}” is minimal. After finitely many Steps one has a so called short basis

m1,...,ak for U . Because of 2.12 one cam show by induction that the degree of

nilpotency of the generated group <a1'...,ak> cannot be larger than k . From the
construction follows
-1
llm(di * aj)” z max Q]m(ai)” ,'|m(aj)||) ’

and with 2.10
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)™ e || = maxc] meap || o [[miep]] ) = gljmep| < || mep]| 2

1 1
= max(| mlap || - 35 [lmeep ]l [[mep ]| - 5 {imte ]
There are at most as many motions which pairwise satisfy these inequalities as there
are unit vectors {(Finsler length) in the tangent space of this group which satisfy

26 1 ;
w, - w,| 222 . The balls of radius 13 around such W, are disjoint and contai-

i L 27 27
(4O)Erﬂn+1)

40
ned in a ball of radius == . The volume ratio 3

27 of the balls

gives an upper bound for the number of vectors w, .
i

2.14, We have formulated 2.13 for the generated group. It is important to observe,
that the inductive proof in fact shows : if d is the length of a short basis, and
if a d~fold commutator of loops is defined in the sense of 2.5, then this d-fold
commutator is already O as a loop (while 2.13 only says that this loop is 0O in

T ).

2.15. The next steps of Gromov's proof. We have constructed nilpotent subgroups of

ﬂ1(M) ; next, one has to find one such subgroup which can be embedded as a uniform
discrete subgroup [ into an n-dimensional nilpotent Lie group G . Cbserve that
such a Lie group can be identified with R" such that the product is given by
Malcev's polynomials [11] of degree % n . These polynomials are uniquely determined
if one knows their values on sufficiently many points of an uniform discrete sub-

group of G . Gromov shows that a selected set of short loops, called T , can be
1
found and (in 3.4) be identified with so large a ball of an integer lattice in R

that the products of these loops determine Malcev polynomials [11] which define a

n
product on R turning it into a nilpotent Lie group G . The mentioned set T

1
of loops is such that the Gromov product behaves almost as the translational parts

of the loops do (3.2.5). Therefore one can choose a basis in the same way as in a

translational group and express the short loops in Fp as words in the basis
1
elements ; these words allow the identification of the short loops with the lattice

points of a large ball, even in such a way that loop length and lattice length

almost coincide (3.4.2). - The set T of loops is constructed in 3.2 ; this cons~
1
truction requires curvature assumptions (see 3.2.3) which are so strong that homo-

topy errors at all other parts of the proof turn out to be almost neglegible.
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3. Small rotational parts

3.1, A Dirichlet choice. We have to find a radius PO with the following proper-

ties : for every v € TpM , IVI = 390 , one has a loop o with

- 1
(2.6m™ % (recall a = 1.76""* 1M

[t(@ - v| =p +am and |[r(]| <1,
from 2.13).

The smallness of ﬂ1 is explained in 3.2. To estimate the index of the cons-

A
3 n{n=~ 1)
tructed subgroup in n1(M) one needs P z 2+ (6m) * d(M) (see 3.3).

4 -
N = n{n-1) 2
One can find 90 S 4 % 2(6m) s 3{M) with N = explexpi{n }}

Proof., First, a lifting argument shows that the translational parts of loops at p
“1/2

are d(M)-dense within the ball of radius rm (2 e a{M}} 1in which expp

has maximal rank. However the nearest loop to a given Vv ¢ TPM need not have small

rotational part, but it suffices if its retational part occurs ﬂ1-almost among loops

of length = po . {(Homotopy errors are neglected since they cause a neglegible con-

3

tribution.) Let B, be a (Finsler=-) ball of radius §n1 in 8SO0(n) ; there are
30
dim 50(n)
at most N = vol O(n) E 2( 2n ) < explexp n2) rotations in
vol B, ﬂ1
3 1
5 n{in-1)

O(n) with pairwise distance =2 ﬂ1 . Therefore, if [JL_"1 = 2% (6M7) * d(M)

r
does not have the desired property, one tries 0 =4*p ; after at most N

0,2 0,1

such 4-fold increases one must have found a suitable OO , Since it cannot be true
at each step that one finds a rotational part for a loop of length between ZPO

and 490 which does not ﬂ1-a1most occur among the loops = Oo .

3.2, The almost translational set of loops. Consider the set Tp of loops with

1
3n2

p
lengths < Py = e po and rotational parts ¥ % . {The large ratio 1

Py

needed in 4.1 to have sufficiently many products available to determine the Malcev

1
polynomials.) Under the curvature assumption 3 Ap1 = 3 we have 2,14 for Tp ’
1

+1
n{n ) so that all d-fold commutators

i.e. a short basis of length = 4 = 1.76

vanish. Let T be the set of all Gromov products of elements in rp such that
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the products are inductively defined and have lengths = p1 . We claim :

3.2.1, All rotational parts in T are in fact = Z—d ; in particular Fp =1 .
1 1
- -d
Proof. Let & € Fp be a loop with ||r(6)|| =06>2 . Because of the inductive
1

= 1
definition of Tp it is sufficient to assume 6 S 3 . 'We choose a vector ve‘rpM
1

with ; § (r{8)*v,v)| = 8 and with 3.7 £ind a loop @ such that }}r(a)gg < ’Tl1 and
ety - v] = P, - Consider the da-fold commutator [...[e,6],...,8] 7 2.14 shows
that it is trivial ; on the other hand we can estimate its translational part directly

and after some computation find it # 0 if the following is true :

d
-toe - 2.4 8
3.2.2, ﬂ1'(3.2d+(2 sing) o1 '(O.5+2'104d)‘ («—e <% .
PO 2 sin =
2
-3 . . ~da 1
From ﬂ1 < (2.6M) follows that 3.2,2 is true for © ¢ [2 ~, 3] , therefore

these 8 cannot occur in FE .
1
In the proof of 3.2.2 one has to use the estimates of homotopy errors from
chapter 2-; in particular one needs 3 A{t(a); S*{r(a)” or

‘{n(n— 1)

6 Aa e (6m) cam s T, = (2.6m~%  (compare 3.1).

More explicitly,

2 2 .
3.2.3. A . d{N)2 * exp({exp(exp 2n )) 5 1 is a sufficient curvature assumption.

We repeat : this assumption is so strong that homotopy errors at all other parts

of the proof do not significantly change the estimates.

-1 .
An immediate consequence of 3.2.1 is (since at least 91‘ it(u)l iterations

of o are possible in fp ) os
1

- t{a)
3.2.4 1f o€ rp then ||zr(a) || = 2 d-lp—L
1 1
Therefore we have the following almost translational behaviour ( €<< 1 con-

tains the homotopy erxror).
-a [t * [t(B)]
3.2.5. If o,B ¢ I“p then |t{o*B)-t(@)~c(B)| 52 5 s (1+E)
1 1
Moreover we have from 2.12 (as a consequence of 2.11) already at this point a

commutator estimate which Gromov derives only later.
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5 o1+ €)

3.2.6. If &, B € Tp then |t([a,B])] S 202°
1 1

3.3, The index estimate. We estimate the index of the group I generated by Tp

1
in ﬂT(M,p) as follows :

(i) The finitely many loops at p of length = 2¢d(M) generate ﬂ1(M,p) .
(ii) If all the words of wordlength = £4 1 in these generators occur already
in equivalence classes mod I of the words of wordlength = £ , then there are no
further equivalence classes in1longer words.
{iii) Two short loops (= p1) are in the same equivalence class mod T if their

1

1
rotational parts have a distance S 3 in 0O{n) (homotopy errors neglected).

i
Therefore there are at most W = vol O(ni//iol B < 2 (6m) im SO(n) different

i
3
equivalence classes among the short loops.

(iv) Words of wordlength S W are still short as loops (2W *d(M) < 2@0) .
Therefore (ii) must occur among the words of wordlength S W , so that there are

not more than W equivalence classes mod [I in ﬂ1(M) .

3.4. The lattice identification. The almost translational behaviour 3.2.5 allows to

pick generatbrs in T in the same way as in a discrete translational subgroup
1

of R . Let 51 be the shortest loop in T ;b commutes with all other

°y 1

loops because of 3.2.6. For each § € Tp consider the orbit {6? *= 8} Cifp .
1 1
Scalar products (t(51), t(éi * §)) and lengths }t(é? * 5}i along the orbit can

be controlled with 3.2.5 to find a unique representative % in the orbit determined

by <t(61), t(g)> >0, <t(61), t(é:1 * 5y) € 0 . starting from 5 one needs at

-4 - t(8 +1
most 1+ (1 -2 d) 1, L(é ;‘) multiplications by 61 to reach B .
i 1

Let ['' be the set of orthogonal projections of representatives T onto the
orthogonal complement of t(51) in Rn =7 M and define for o' , B' €' the
P
product «' * B' to be the projection of the representative of o« E'. Starting
from ]6‘{ s T < 1,50 6] one proves that the inequalities 3.2.5 and 3.2.6 hold
; ' . -d -d n -d . )
in T with 2 replaced by 8¢ 2 ; note that even 8 2 is still much

smaller than needed for the present arguments. To define a product ' * B' one
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needs the product ‘@ * B of somewhat longer elements in [ , but for a' , R' € I''
1

with 1&'[ . !6‘? < 3P, the product is clearly defined. Therefore one is ready

for an induction which for dimension reasons terminates after at most n steps :

If inductively the basis 85 P 6;, for T' 1is already selected then choose

8. .8, 4.... 8
n

2 as basis for T . Since the loops from Tp are po—dense in

1 1
the 4po—ball in Rn (see 3.1), and since we do not lose significantly from this

6n(n+1)

relative denseness through n inductive steps (recall 4 = 1.7 Yy, we will

obtain exactly n generators 61,...,6n for T ,which is Gromov's "normal basis".
1

3.2.6 shows at each inductive step that the shortest element is in the center ;

therefore all loops 8§ €T of length = 370 Py have a unique representation
k 1k
5 - ~
as a normal word 61 L ﬁnn . (The factor 3 % Stems from |6| < 1.516'| H
it could be almost removed since for |31:>> ’61| a much sharper inequality is
k
4
true.) Clearly we can identify the loop 61 * ... * 6" with the n-tuple
n n
(k1,...,kn) or even with the lattice vector E: ki.éi in TPM . This identifica-
i=1

tion is much better than one might expect since the inductive choice of the normal

basis gives

8n(n—1)

3.4.1. |det (s ..,5n)| z o. "61|'...'|6

J
From 3.2.,5 and 3.4.1 we prove that the lattice-identification is very close
k

1 -
to the translational part, namely (if |t(61 x L., énn)| <3 " CP I
n n
k k 2
1 - 1 2
3.4.2. ft(s *...*én)-Zk,.é_l 240" -|Z k.6
1 n . i"ilT M p N i"7i
i=1 P 1 i=1

We interpret now Gromov's product of loops as a product between the lattice
points E: ki.éi of T M and since lattice length and loop length almost coincide
P

by 3.4.2 we have :

n

3.4.3. Inequalities 3.2.5 and 3.2.6 hold for lattice vectors of length < 37 7 p1
k1 kn
if loop length t(61 AU én ) is replaced by lattice length | E: ki.6i|

and €& is increased slightly.

Finally we note that at each inductive step the shortest vector is S 2po ’
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therefore we have for the normal basis

s |6, ] < 2p 0 (15t (1= 1,.0.m) .

4. The n.ilpotent Lie group

4.1. The Malcev polynomials. 3.4.3 shows that commutators [6i ,6j] are generated

by 8,.,...,8 . L. . Therefore the product of two words
1 min{i,j) -1
k k £ £ p P
1 1 1
8 * L. w8 0 ws * ... * 8" is anew word b * ... * 58" where the p.
1 n 1 n 1 n i
are polynomials of degree < n+ 1-i in the exponents k1""'kn ’ !1,...,ln [11].

(Commutators are so much shorter than their factors that the rearranging of the
product into its normal form does not change its length very much ; therefore the
rearranging can be considered an algebraic procedure as in [11].) We want to use

these so called "Malcev polynomials" to extend the product from a ball in the

lattice E: ki.éi to all of R" and thus obtain the desired n-dimensional
nilpotent Lie group G . If one knows associativity, inwerses and the nilpotency
relations on sufficiently many lattice points then the polynomials expressing these
relations are satisfied on all of Rn and therefore define the nilpotent Lie group

n
structure on R .

The inverse is given by a polynomial of degree < n , associativity is
expressed by a polynomial of degree n3 and the vanishing of the various n-fold
commutators is expressed by polynomials of degree = n3n . Since commutators are
shorter than their factors one stays in the domain where products are defined.

;|ki, < N} £ ne*N '2po’ 1.5n_1 it follows that

Together with max { , E: ki.éi

it is sufficient to have products defined for all loops of length

2
3 -1
$ 2n°®n n '1.5n 'po . This leads to p1 = e3n 'po , the assumption made in 3.2.

Therefore the Malcev polynomials are uniquely determined by the Gromov products of

loops in Fp and they satisfy all relations to define a nilpotent Lie group
1
n 1
structure on R ! The set rp of loops = p1 with rotational part < 3 is
1
identified in a product preserving way with a subset of this Lie group G , and

the group I (which is abstractly generated from Fp with the short relations
1
(2.5) between its elements) is identified as an uniform discrete subgroup of G via

the integer lattice points }; ki.éi in R .
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4.2. Injectivity. Obviously ' has a natural homomorphic image in ﬂ1(M) i we
need this to be an isomorphic one. Therefore one has to exclude the possibility
that the othex short loops, i.e. those with rotational parts > % , generate (in
ﬂ1(M) ) additional relations between the elements of I . To achieve this we iden~
tify (in 4.2.1) all loops < 37 ‘91 bijectively and product preserving with trans-
formations of some set S . Clearly, the group generated from the loops is isomor-
phic to the group generated from the transformations ; therefore there are no
further identifications in the generated group. Recall, that all relations in ﬂ1(M)
are generated from the short relations between loops of length < 5d(M) - which is
n

< 3 e B, ¢ this proves that the natural image of [ in W1(M) is an isomorphic

H

one. -

4.2.1. The definition of the set S . Consider two loops £ 37" 91 eqguivalent if

they differ by a loop in T , then take A as a set of shortest representatives

p
from these equivalence classés and put S = A x [, To define the action of
any loop b (= 3~n ‘01) on (a,8) € A xT write b * a =a' * §' (a' € A,
' €¢T') and put be(a,8) = (a', &' * &) . To check that this identifies the loops

n A .
=3 '91 injectively and product preserving with transformations on S ; one uses

that Fp is fairly dense among all loops € 3‘np
1
and that fp can be identified with its left actions on I (see end of 4.1).
1

1 (see 3.4, in particular 3.4.2)

4.3. The left invariant metric on G . We 1ift the "normal basis"® 61""'6n £ G

with the exponential map Exp of G +to a basis of the tangent space TeG and use
this basis for an isometric identification of TeG with T M ; then we left
translate this metric to all of G . Next, the curvature teégor of this metric

- or equivalently the norm of the Lie bracket - has to be estimated. We do not
understand Gromov's "interpolation argument” , but we estimate the third order
remainder term of the Campbell-Hausdorff power series inductively over the subgroups

spanned by 61,...,6i :

4.3.1. If H(X,Y) 1is defined by Exp X*®Exp Y = Exp H(X,Y) » then we have

’

]H(X,Y) - X -y - %[X,Y]' < ‘[X,Y]i .o c(‘X' + ’YI)

where X € T i i 3
€ eG is arbitrary, Y ¢ TeSpan(ét""'éi) and € depends on the norm

of the Lie bracket on T span($8
e

11-“l6~ ) -

i-1

Consequently we have (side conditions as in 4.3.1) :

4.3.2. [r(eP X

Y, -y} - [X,Y]{ < ‘[X,Y], - € ‘('X‘ + ?Y}) .

Because of 4.3.2 and EXp X ®*EXp Y ® Exp(-X) * Exp(-Y) = Exp H(eAdX *Y, -Y) we can

33
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use the commutator estimates 3.4.3 to get, inductively over the subgroups
Span(51,...,5i) , estimates for the Lie bracket which are about as good as 3.2.6.
(In other words : the elements 61,...,6n are indeed so close to the identity in
G that the higher than second order terms in the Campbell-Hausdorff series can be
neglected for the computation of commutators.) In particular, the curvature of G
is very small. (We do not give any more numbers, since the curvature assumption we
were forced to make in 3.2.3 makes all estimates ridiculously small compared to

what the present arguments would need.)}

4.4. The TI'-equivariant diffeomorphism. I' acts isometrically by left translations
on G and - as the deck group of a finite covering of M - [' also acts isometri-~
cally on the universal covering M . From the "normal basis" 61""'6n in T and

the exponential maps of G and M we obtain natural basis for TeG and Téﬁ H
therefore, after left translation by T , we have corresponding natural basis in
the tangent spaces of all "lattice points" in ¢ and M which identify these tan-
gent spaces almost isometrically. Then, with the exponential maps of G and M

we obtain maps from large balls around the lattice points in G onto corresponding
balls in E . These local maps are compatible with the action of [' and they are
very close to isometries since the curvatures of G and M are so small (see 2.1},
Moreover, their differentials can be described by Jacobi fields, hence, again
because of the small curvatures, these differentials are close to the identity (if
we identify different tangent spaces by Levi-Civita parallel translation). Therefore
a center-of-mass-average [9] of these local maps will produce a [~equivariant map

of maximal rank from G to M , i.e. a T-equivariant diffeomorphism.



i1

(2]

3]

[4]

£s)

{6l

£7]

(8]

o]

[10]

526-15

LITERATURE

A. D. ALEXANDROW - Metrische Riume mit einer Krimmung nicht grdsser als K ,

5.

In : Der Begriff des Raumes in der Geometrie, Bericht von der Riemann=-
tagung 1957.

BUSER und H. KARCHER - Diskrete Gruppen und kleine Krimmung nach Gromov,

to appear.

CHEEGER, D. EBIN -~ Comparison Theorems in Riemannian Geometry, North-

Holland Math. Library, New York, 1975.

GROVE, H. KARCHER, E. RUH - Finsler Metrics on Compact Lie Groups with

an Application to Differentiable Pinching Problems, Math. Ann., 211 (1974),

p. 7=21.
GROMOLL, W. KLINGENBERG, W. MEYER - Riemannsche Geometrie im Grossen,

Lecture Notes in Math., n® 55, Springer Verlag, Berlin, 1968.

GROMOV - Almost Flat Manifolds, Journ. Diff. Geom.,

to appear.

GROMOV - Manifolds of Negative Curvature,

to appear.

HEINTZE - Mannigfaltigkeiten negativer Krimmung, Habilitationsschrift,

Bonn, 1976.

KARCHER -~ Riemannian Center of Mass and Mollifier Smoothing, C.P.A.M.,

Vol. XXX, p. 509~541, 1977.
KOBAYASHI, K. NOMIZU - Foundations of Differential Geometry I, John Wiley

and Sons, New York - London, 1963.

[11] A. I.MAL'CEV - On a Class of Homogeneous Spaces, IzveStiya Akad. Nauk SSSR,

Ser. Mat. 13, 9-32 (1949), translated in : Lie groups, AMS Transl.

Series 1, vol. 9 (1962).

[12} J. WOLF ~ Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

35



A. Katsuda
Nagoya Math. J.
Vol. 100 (1985), 11-48

GROMOV’S CONVERGENCE THEOREM
AND ITS APPLICATION

ATSUSHI KATSUDA

One of the basic questiohs of Riemannian geometry is that “If two
Riemannian manifolds are similar with respect to the Riemannian invari-
ants, for example, the curvature, the volume, the first eigenvalue of the
Laplacian, then are they topologically similar?”’. Initiated by H. Rauch,
many works are developed to the above question. Recently M. Gromov
showed a remarkable theorem ([7] 8.25, 8.28), which may be useful not
only for the above question but also beyond the above. But it seems to
the author that his proof is heuristic and it contains some gaps (for
these, see § 1), so we give a detailed proof of 8.25 in [7]. This is the
first purpose of this paper. Second purpose is to prove a differentiable
sphere theorem for manifolds of positive Ricei curvature, using the above
theorem as a main tool.

For a d-dimensional Riemannian manifold M, we denote by K, the
sectional curvature, by vol (M) the volume, by diam (M) the diameter, by
dy(m, n) the distance between m and n induced from Riemannian metric
g and by i, the injectivity radius.

A subset B is called J-dense when for any point m € M, there exists
a point n e B with d,(m, n) < 4. A subset B is called 5-discrete if n, n,e B
(n, # n,) implies dy(n,, n,) = d. Let M(d, 4,i,) (resp. M(d, 4, p, v)) be the
category of all complete Riemannian manifolds M with dimension = d,
Kyl £ 4 and i, = i, (resp. dimension = d, |Ky| < 4, diam (M) < p,
vol (M) = v).

The following theorem is seemingly different from 8.25 in [7] but the
inwardness is essentially same.

THEOREM 1 (Gromov’s convergence theorem). Given d, 4,i, > 0,0 < R
< min (1/2v/ 4, i,/2), for any & > 0, there exist a = a(d, 4, i,, R; ) > 0 and

Received December 10, 1983.
Revised October 22, 1984.
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12 ATSUSHI KATSUDA

e=¢e(d, 4,1, R;0) >0 such that if M, M'e M, 4,i) have an e-dense,
¢/10-discrete subset N[e] = {m.,}}s,C M and N'[¢] = {m/}}*, C M’ containing
the same number of members with
d y(mi, m))
l—ag "0 <144 for 0 <d,(m,,m) <R,

dy(m;, m;)
then there exists a diffeomorphism F: M — M’ with ||dF,(§)| — 1| <d for
& e UM, where UM is the unit sphere bundle of M.

We can estimate constants a, ¢ > 0 explicitly, but we omit it to avoid
non-essential complexity. Here we call it Gromov’s convergence theorem
because he proved a convergence theorem (8.18 in [7]) with respect to the
Hausdorff distance using this theorem as a main tool.

An easy application of Theorem 1 and Dirichlet drawer principle is,

THEOREM 2 (Cheeger’s finiteness theorem). The number N of the dif-
feomorphism classes of the manifolds in M(d, 4, p, v) is finite.

This theorem was originally proved by dJ. Cheeger [2] except for
d = 4. After this, in Cheeger-Ebin’s book [3], it was stated in the above
form without proof. It was also given by M. Gromov [6]. S. Peters [12]
gave another (simple) proof.

The following is the differentiable sphere theorem mentioned above.
Let Ric, be the Ricei curvature of M.

THEOREM 3. Given d, 4 > 0, there exists §, = d,(d, 4) > 0 such that if
a compact d-dimensional Riemannian manifold M has the property that
Ricy, =d — 1, |Ky| £ 4, vol(M) = w, — 6,, wWhere w, is the volume of the
d-dimensional unit sphere, then M is diffeomorphic to S°.

In [16], T. Yamaguchi obtained the same conclusion under a stronger
assumption and in [9], Y. Itokawa showed that, under the essentially
same assumption except for the estimate of the constant, M has the same
homotopy type as S?% (He only assumes the upper bound of K, but
under the condition of Ric, = d — 1, the lower bound of K, is automati-
cally derived.) But it should be remarked that in [15], K. Shiohama
proved that M is homeomorphic to S¢ under a weaker assumption than
ours.

Finally we remark that for the diameter or the first eigenvalue of
the Laplacian 1,(M), the following pinching theorem is obtained by using
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the above one and the results of C.B. Croke [5] and A. Kasue [10].

CoRroLLARY. Given d, 4, v > 0 there exist 6, = d(d, 4,v) > 0 and §, =
o(d, 4,v) > 0 such that if a d-dimensional Riemannian manifold M with
Ricy, =d—1, |Ky| <4, vol(M) = v has the property that diam (M) =
T — 08, or (M) < d + 0,. then M is diffeomorphic to S°.

ACKNOWLEDGEMENT. The author would like to thank T. Sakai, who
showed [13] and refined arguments of the first version, and T. Sunada who
gave valuable advices and continuous encouragements. He is also in-
debted to A. Morimoto, K. Shiohama, P. Pansu, K. Fukaya, T. Yamaguchi,
N. Innami and J. Itoh.

Remark. After the preparation of this paper the author learned that
D. L. Brittain also got the same result as Corollary independently.

[Donald L. Brittain, A diameter pinching theorem for positive Ricci
curvature. (preprint.)]

§1. Outline of the proof of Theorem 1

Firstly we observe the case when M, M’ < M(d, 4, i,) is compact. For
an e-dense, ¢/10-discrete subset N[e] = {m,;}¥,, we define a map f: M — R":
using the distance from m;. If ¢ is sufficiently small, then f is an em-
bedding (§ 2). We can estimate 6 > 0 such that the normal exponential
map Exp is a diffeomorphism on the d-tubular neighborhood of f(M);
Bi(f(M)) (§4). For M’'e M(d, 4,1, and for f’: M’ — R": which is defined
similarly to f, we see that f(M) C BJ(f'(M")) and f'(M’) C B{f(M)). From
this, the normal projection P:f(M) — f/(M’) can be defined (§ 5). Nextly,
we see that the tangent spaces T,f(M) and T, f(M’) are almost parallel,
where p’ = P(p) (§6). Using this, it can be shown that P: f(M) — f/(M’)
is a diffeomorphism (§7). For F = f'"'o Pof, we estimate dF(¢)| (§38).
In the case when M is non compact, the diffeomorphism is given by the
approximation arguments (§ 9).

Here the author would like to comment on Gromov’s proof in [7] 8.25.
Firstly he says that it suffices to estimate § > 0 so that Exp is locally
diffeomorphic but it really needs to estimate § > 0 so that it is globally
diffeomorphic. (We add Lemma 4.3.) Secondly P may cut the two points
of f(M), for this possibility, he says “good” one can be chosen without
detailed arguments. (We add Section 6.) Thirdly for the argument of the
estimate of |dF (&), it needs more arguments than that given there.
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Though almost all arguments owe to Gromov [7], we give a full proof
for the sake of completeness. It should be noted that the author also
referred to T. Sakai [13].

§2. Definition of the embedding f: M — R":

We firstly prove the Theorem 1 in the case when M is compact.
Take constants 0 <r < R and ¥ > 0. Let h: R — [0, 1] be a C~ func-
tion such that

Rt) =1 if t<0,h(t)=0 if t>r

—Aew <=2 w TapHT

r r 8 8

4 . 2r ar br or
—_ h'(t 0 if = < — — <t —

r< 1) < i 8< =3 or 3 = <8
k<K@ <O if 0<tg_28_’ or %’gtgr

Note that we may take x > 0 arbitrarily small, which is needed in
Section 8.
Put

k= max( 0 (‘1{ + %)‘ V20 |) and A= (1 - ,3%5)”2.

In the following, we remark that the constants ¢; >0, >0, --- which
appear in the proof, are depending only on d, 4,i,r, 6 > 0 and A(2).

Put
—min(. T 5,r) 1 — A2 (_1_ _ r )( A E)-l)
f = (16’ 5 ¢ "3 e\t ) )
where s.(?) is the function
A sin @), if £>0,
7172
t, if =0,

1 Gnh(— oy, ifr<o0.

(= o

Using this A(f) and an e-dense, ¢/10-discrete subset N[e] = {m,}ls, with ¢ <e,
we define a C* map f = f.: M — R by
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fi(m) = (Mdy(m,, m)), - - -, h(dﬂl(m.\’,) m))) .
We show that f, is an embedding by the following two lemmas.
Lemma 2.1. f. has maximal rank at every point m e M.

Proof. Take an orthonormal basis {e;}{., of the tangent space T, M
to M at m and choose {m;}}_., C N[e] satisfying d,(exp.(r/2)e; m,;) < .
Put ¢, = |exp;'m;| and u; = t;' exp;'m,. Note that 3r/8 < dy(m,, m) <
5r/8. Then, from the Rauch’s comparison theorem (R. C.T.)(cf. [3] or [13]
(1.2.20)), we see

S| rf29e, — o] < dulm, expu(rDe) <o < S @ - A

and this implies g(e;, u;) > A = (1 — (1/3d%)".. From this, we see {u;}%,
are linearly independent. Since grad dyl,, = u;, we can get the conclu-
sion by

the rank of df at m = rank df|,
= rank (d-A(du(mey s - - - d-hldu(mes )]
= rank (h'(dy(m,, m)u,, - - -, W'(dxy(m,,, m)u,)
=d. q.e.d.

LEmmMmA 2.2. f, is an embedding.

Proof. If not, then there exist m, n ¢ M with m # n such that f(m) =
f(n). Since d,(m;, m) = d,(m,, n) for all m, e N[e] N B,(m) = N[e] N B,(n), we
see d,(m, n) :=d < 2 <r/8. Let 7 be the minimal geodesic from m to n and
put z = 7((r/2) + d). Then ze B, ,(n) — B,,(m) and B,.(2) C B,(n) — B,,(m),
where B,(m) is the set of the point p with dy(p,m) <r and B is the
closure of B. Take a point p € N[e] N B,.(2) with d’ := d,(p, n) = r/2 — 2,
d’ < r/2 and the vector ue T,M that is the unit initial vector of the
minimal geodesic 4 from n to p. Now we estimate g(u, 7(d)). From R.C.T.,
we get

|(r/2)i(d) — d’u| = |exp;'z — exp;'p|

rj2
= 5r(2)

2

re r
+du(p, 2) < s(rf2) " 65,2

from which follows
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5 80@, ) = g((127(@d) ~ d'u, u) + d
>d —|(r2i@d) — d'u|> T —2—__ T
= |(r/2)7(d) u| > 5 T 6.072)
>T (1T ),
— 4 ( 434(r/2))
namely
203 1 r
(d), =l - ).
8@, w >3 ( 4sd(r/2)>
On the other hand, note that d,(p, 7(t)) < r for 0 <t < d and d,(p, 7(0))
= dyu(p, 1(d)), then from the Rolle’s theorem, there exists a point m, = 7(t,)

(0 < t, < d) with g(7(t), u,) = 0, where u, is the unit initial vector of the
minimal geodesic from 7(f) to p. Then we have

2@, w) = [ L g(it), e

— (* Hess dy, (7(®), 7())dt

k) J

< f (mjr—(t» + ng<p, 7@ )dt

8 rd
2el — + =) .
<E(r+2>

After all we get

e(ra+2)> (5~ ss’xr?/é)"> :

It contradicts the fact

= 4

Except for (x) we get the conclusion.

To show the inequality (x), we need following sublemma. Put d,, (-)
= dM(pr ')'

SuBLEMMA ([7] 8.23 or [13] (1.4.4), iii). If |K,| < 4, then the hessian
of dy, at x=Hessdy (x, %) <|x[(1/dy(p, m) + (4/2)d\(p, m)) for x |
grad dM,p]m and dM(p, m) < r. q.e.d.
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§3. Estimate of df

The contents of this section are detailed arguments developed by
Gromov’s hints.

(i) Estimate of the number of the elements in N[¢], which are nearly
orthonormal.
Firstly, we take ¢, > 0 with

b,(¢/20)b(e,/4)

¢, < inf ZAMTTTART
o<e<e/10 b_,(4r)-b_,(e)

where b.(f) is the volume of the ball with radius ¢ in the space of the
constant curvature z. Note that ¢, can taken as positive because
lim, ,,b,(2/20)/b_(t) = 20~%. Put N, = sup,, $(B,.(m) N N[e]), i, = exp,((r/2)e,)
and Dj[e] = B.,(m,) N N[el.

LemMA 3.1, If e < ¢,/10, then ¢, < #(Di[e])/N. < 1.

Proof. From the fact

Bs(q) C Be;/z(mi)

¢ € Beyla(mi) NN [<]
B.(9)C B,,(m)

q€ Bar(m)NN[e]

and the volume comparison theorem ([7] or [13]), we have

’ b(e,/4)
Dife]) = 24522
#(Dile]) 0

N < b—74(4r)

T by(e/20)
Combining these, we get the conclusion.
(i) Estimate of df.
Lemma 3.2, For e < ¢, there exist c,, ¢, > 0 such that
NV < |df. (&) < e, N*  for any e UM .
Proof. From the definition of f., we see
dfon(8) = (@81, €), -+ -, Ay, 8(uy, ) ,

where a;, = h'(d,(m, m;)). We may put ¢; = supy,<,|h/(f)]. For the ex-
istence of c,, we take the representatives m,, € Dile] and put u,, =
exp;'m, /lexpy'my,|. Let £ = £y, ... pn: TwM — R® be a linear map defined by
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g(&) = (aklg(ulcu S)’ tt akdg(ukd» E)) .

Then we see that it satisfies the following estimate

min [£(€)| = S > 0.
le1=1 2r

In fact, if we put a;; = g(u,, e;) and & = 3, &e;, then from the proof of
Lemma 2.1 a,; = A, |a,| <1 — A)(E +j) and 4/r = |a,,| = 3/r. Thus,
we get

|£(§) '2 = i;e alzciéfélaijail
= Z a;,&lal; + (the other terms)

=(3)a-a(dYa-arz(2) >0

On the other hand, from Lemma 4.1, we see
#{(k,, - - -, k)| my, € Di[e]} = inf $(Di[e]) = ¢, N, .

Combining these, we get

A= X [lu. m@r.z_cl(i) A..
(K1yeee, ka) 27‘

Therefore we may put

c, = c}”(%) . g.e.d.

Remark. We discuss here the dependence of r on ¢, ¢, ¢, when r is
sufficiently small, which is essential in Section 8. Since the function

f(®) = b(t/20)/b_,(t) is decreasing and we may assume ¢, = r/60d, we can
take

o= oay < (L. 1Yo b.(c,/200)b,(c,/4)
‘ =\40"1600d ) = b_(e/10)b_ (4r)

b(e[20)b,(e)
o<e<e10 b_(4r)b_,(e)

3 ) 3 _
=2 2.} = 2.(10°d)- 4" ,
=G (2r 2r( )

IA

4
C, = —.
r
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§4. The tubular neighborhood of f(3) and the normal exponential
mapping

Let Exp: Nf(M) — R" be the normal exponential map of the normal
bundle Nf(M). Put

By(Nf(M)) = {(p, u) e Nf(M)||u| < 3} .
We estimate 6 > 0 such that Exp |0, is a diffeomorphism.
(i) Local estimate.

The following Lemma 4.1 owe to [7] and [13].

LEMMA 4.1. There exists ¢, > 0 such that if ¢ < ¢, and 5 < ¢,NY?, then
EXP ;v sy ©8 an immersion.

Proof. Suppose that n e RY: is a critical value of Exp. Namely there
exists a curve c¢(s) = f(m(s)) in f(M) and the normal vector field n(s) along
¢(s) such that n = ¢(0) + n(0), ¢(0) + 7(0) = 0. From g(n(s), ¢(s)) = 0, we
have

g(m0), &0)) = —g@(0), ¢(0)) = [¢(0) .
Since c(s) (- - -, A(d,(m;, m(s))), ---), we have

e = (-, WAt mO)(- L] dulm, ms))

+ W dulmy mO)(-Ty | dilm, m(s) ).

Recall that

] 2 | dy(m,, m(s» g(grad dy; .., m(0)| < |(0)],

I__ 1
ds* dy(m,, m(O))

Note that max (|A'(£)(1/t + 4t/2)|, |h(Y)]) = k. Then we see
1¢O)F < |n(0)][&(0)] < 2|n(0)||m(0) RN

and this implies,

d,(m,, m(s»‘ < 1O + 2 dulm,, m(0))

L [eOF
dy(n, f(M)) = |n(0)| = RN ]m(o) R
= _>/2l U.l1= 5 ZkNl” AlVe = —E V-
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Thus we get the conclusion by putting ¢, = c/2k.

Hereafter we denote by d, the distance on f(M) defined by the induced
Riemannian structure of f(M) from RY¢ and by d, the euclidean distance
of RY,

(ii) Relation between d, and d. ()

LemmA 4.2, Fix o« > 0. If ¢ < min (¢,/100, «/100c,), then there exists
& > 0 such that if d,(p, q) = a-N2, then d(p,q) = & N¥%. For the case
a = ¢,/10, we put @ = 3c,.

Proof. Since du(p, q) = «-N2, we see d (f(p), f'(q)) = afc,, Put
&, = min (r/10, «/10c,) and B = |A(%,) — h(e)| > 0.

Take the balls B,, B, of radius ¢, centered at f~'(p), f~'(g) respectively.
By the method similar to Section 3-(i), we find that there exists 5> 0
such that

#B.NN[ED/N. =23 (=12

Therefore we get
Ne ~
d(p, 9 = 2, {R(du(f(p), m)) — h(du(f(a), m))Y = N, .
We have done if we take & < 5'°8.
(ii1) Global estimate.

Lemma 4.3. If e <min (¢,/100, ¢,/1000¢,) and 6 < ¢, N2, then ExXp| s,
is a diffeomorphism.

Proof. Suppose that there exist (p, u), (q, v) € B;(Nf(M)) with (p, ©)
# (q,v) and Exp(p, v) = Exp(q,v) := x. Then from Lemma 4.2, we see
d.(p, @) < ¢,/10- N¥* because

d(p, q) = d(Exp (p, u), Exp (g, v)) + d(Exp (p, u), p) + d(Exp (g, V), @)
<lu| + v £ 2, N2,
Now we define a smooth map
F(s, 1): [0,1] x [0, 1} ——> R":

by F(s, t) = (1 — £)7(s) + tx, where 7(s) is the minimal geodesic from p to
q in f(M).

Since

d(F(s, ), f(M)) < d(F(s, 1), 7(s)) = d(x, 7(s))
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< d(x,q) + du(p, q) < ¢, NV + ~-1%- N2 < % N,

we observe
F(s, t) C Bieyn.av(f(M)) = Exp (B, .52 (Nf(M)) .

The following sublemma is crucial in the proof. Put B =
By svANF(M)).

SuBLEMMA. There exists a smooth map
G(s,t): [0,1] x [0,1] —> B
such that Exp (G(s, t)) = F(s, ).

Proof of the sublemma (cf. J. Schwartz [14] 1.23). Let I be the set of
te [0, 1] such that G(s, t) can be defined for all se[0,1]. Since G(s, 0) =
7(s), 0e I ¢. It is sufficient to prove that I is open and closed.

We see that I is open by the following argument. Take a e l. Since
Exp|; is an immersion and |_J, G(s, @) is compact, it can be covered by a
family of finite open sets {U,}, which are mapped by Exp diffeomorphically
to open neighborhoods {V,} of F(s, a,) and | J; V; D |, F(s, @¢). This implies
G(s, t) can be defined beyond a and I is open.

We show that I is closed. Since the closure of B C B, zi(Nf(M))
is compact, there exists A > 0 such that |d Exp| = A. Then for all (s, 1)
el0,1] x I,

|G£(89 t)l = IdExp_IHFt(s’ t)l é A—liFL(s9 t)l = As < S}

where G,, F, mean the derivative with respect to ¢
Integrating this we get

IG(S7 tl) - G(S, to)] é As]tl - tOI .

It implies lim,_,,; G(s, t) exists and G(s, sup I) can be defined. It means
I is closed whence the conclusion.

From this sublemma, we see Exp (G(s, 1)) = x. But this contradicts
the fact that Exp|; is an immersion. Therefore Exp|sw,an is a diffeo-
morphism. q.e.d.

§5. Definition of the projection P
Take another M’ ¢ M(d, 4, i,), which has an e-dense ¢/10-discrete subset
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N'[e] = {m}} ¢ M’ such that

1—a_§_M”m/) <l4a for 0 < d,(m;, m;)) < R.
dy(m;, my)

We define f’ for M’ in the same way as f for M. From the definition of
f and ' we get

>

d(fm, £/m) = (33 1h(dum, m)) — h(donl, mi)F) "
(i (a- SUpIh’(t)l)2> < 4e g,
r

The last inequality follows from the fact |A/(f)] = 0 if ¢ = r. Therefore we
see

d(f(m), f'(M")) < d(f(m), f(my)) + d(f(m,), f'(m})

< 4050 gy,
r

where m, is the point of Nl[e] with dy(m, m,) <e If a, ¢ < c,r/10, then
f(M) C B, zv(f'(M")) and similarly f"(M’) C B, z(f(M)). From Lemma 4.3,
the normal projection P: B, zv(f'(M’) — f/(M’) is well defined. In the
later section, we show that for sufficiently small a, e > 0 P|,: f(M) —
f/(M’) is a diffeomorphism.

§6. T,f(M) and T, f'(M’) are almost paraliel

(i) Relation between d,, and d. (I)

Firstly we investigate the relation between d, and d. We have already
done in Lemma 4.2, but here, we need the estimate of d,/d in the case
when d,(x, y) is small, which is different from previous one.

LEMMA 6.1. There exists ¢, > 0 such that if ¢ < ¢,/10 and d,(m, n) <
,/10, then

= dulf(m), fm) _
= d(fom), fm) =

Proof. Let 7 be the minimal geodesic from m to n. Put d, = d,(m, n)
and z = 7((r/2) + d,). For pe B, (2)NN[e] with d,(n,p) < r/2 — (¢/10), if
P’ e B, 1,(p) NNe], then p’ e B, ()N N[e] and d,(n,p’) <r/2. Thus, by the
argument of the proof of Lemma 2.2, we see
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. 1 r
le,u’>~—<1— —),
g(@(d), v) 1 15,072)
% 4 > — @ d v & 16
g((d), u) — g((®), u) = | —-g@®),u)dt < (= +rd),
¢ dt 10\ r
where u/, u, are the unit initial vector of the minimal geodesic from n,
7(t) to p’ respectively. This implies

. : 1 r e (16
£ g(i(0), ,2_<1—__ﬁ>—;1‘(_* A):: > 0.
Anf 800 w) 2 4 L)) 10\ TTA)i=AZ0

Since |A'(t)| > 3/r for te [3r/8, 5r/8], and 3r/8 < d,(p’, 7(t)) < 5r/8,

@, ) — hda(p', m)] = | [ W(dulp, TV G, w)at

> min(L, dl).‘el.i > 3Bd,
10 r 10r

Combining this with the fact that there exists ¢, > 0 such that
#(B.. (D) NN[D/N, = ¢, ,

which is obtained by the same method as Section 3-(i), we get, using the
method similar to Section 4-(ii),

d(f(m), f(n)) = cv*- 3B Rnd, .
10r

On the other hand, from Lemma 3.2, we get
&M(f(m)’ f(n) < Czﬁi/gdl .
These two estimates imply the conclusion.

For simplicity, we define some constants. For the later purpose, we
introduce a new parameter ¢ > 0. For fixed ¢ > 0, we put

4 = max (8¢-'c;%icta, 1000(4 + 1), g =S N
1004
el fj]i__ = ,0‘96773 ,N‘1/2
™ = 710004 T e, T
04 =__027]3 _N:N:_v_l_, 775=E.N;'1/2‘
Cg 14 Gy

In the later parts, we denote by B/(p) the ball with radius ¢ and
centered p in R": and B9 p) is the z-neighborhood of p in @ with respect
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to the induced metric of a subset @ in R¥. Let P: R — T,f(M) be the
normal projection.

(i1) The position of f(M) and T,f(M).
For p, e f(M), put 5, = P(p,).

Lemma 6.2, If d(p,p,) < n < 29, then d(p,, po) < 7/1000.

Proof. Let B(t, n) be the (d + 1)-dimensional ball centered at Exp (p, tn)
with the radius ¢ in the (d + 1)-dimensional subspace of Rc spanned by
a unit vector n normal to T,f(M) and the vectors in T,f(M). Then
B(t, n) is tangent to T,f(M) at p. Put B(t) = U, B(t, n).

Cramv: If t < ¢, NV, then BONFM) = {p).

Proof. Suppose that B()Nf(M) contains another point gq. Let n be
the unit vector normal to T,M such that 8B(t, n)Nf(M) — {p} # ¢. Put
x = Exp (p, tn). Then there exists ¢’ ¢ f(M) such that p + ¢/, d(x,q') =
d(x,f(M)) := ¢ <t. Note that the vector v = c;’—;c is perpendicular to
T, f(M). Since Exp(q/, t'v/|v]) = x, it contradicts that Exp|z,, is a diffeo-
morphism.

Then this lemma follows from the following elementary fact. In
general, let B be the ball in euclidean space with the radius a, tangent
to an affine subspace H at p. If we take a point g e H with d(p, ¢) < a/b
(b = 1000), then d(q, q@’) < a/b?, where ¢’ is a point of B which projects
normally on q. qg.e.d.

(iii) P(BIY"(p)) occupies a “large portion” in BT»70D(p).
Let (., -) be the standard inner product of R":.

LEmMMA 6.3. For any xe U,f(M), there exists p,e B! (p) such that

<ﬁ0, x> = /'

Proof. Put A, = {v=tx + y|ve BI?’(p), |t| < 7, {x,¥) = 0}. It suf-
fices to prove that P(B{f’”)(p)) 1s not contained in A%. From Lemma 3.2,
we see B/ (p) D f(BY(f~'(p))), where B;(-) is the ball with radius 5 in
M. Take a maximal y,-discrete subset {n;} in BX(f(p)). From the volume
comparison theorem, we have

Vs b)) S ()
Hng = z(%) ,

because
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s> T and s, < T

From Lemma 3.2, we observe that {f(n,)} is a ¢,N¥*,-discrete subset with
respect to d,; in f(BXE(f'(p)). From Lemma 6.1, it is an y,-discrete subset
with respect to d in B, (BI?»’“"(p)). On the other hand, we consider z,-
discrete set {nj} in B,,(A?). Since 7, < /1000, we easily see that {f’(nf)}
is 7,/2-discrete in A%, C Af,. Then,

74t N4

N — P < VOL(AL) - (4n\)*
bl = 4P} = 7 O =(m) ,

From

(ﬂ)‘“ — (it < (fﬂ)d - <J7;>d,
74 CsCsy 750
there exists (n;) ¢ B,,(A?), whence the conclusion.

(iv) Estimate of the “‘angle” between T,f(M) and T, f(M’).
Put p’ = P(p) and take a <e¢<c,:=n5r/10- N;2. Hereafter we
assume this. Then, for y(c) := (10¢/r)N* < ,,

f(M) C B, (f(M') and f(M') < B,.(f(M)) .

For ve U, f(M) and v' e U,.f'(M’), let < (v, V) be the angle between v and
v, which is equal to cos™' (v, v').

LemMmA 6.4. For any ve U,f(M), there exists v € U, f(M’) such that
. 1 )
N < W)=y, .
F@v) sin (o) i=

Proof. If not, then there exists v, e U,f(M) such that
inf L (v,v)= max ( inf < (v, V) >y, .

W EUprf (M) vEUpf(M) v E€Upif'(M’)

Let H, be the plane through p’ parallel to T',f(M) and H= H, N T, f'(3’).
Then v, is perpendicular to H. In fact, let P": T,f(M)— T, f'(M’) be the
normal projection and decompose v, as v, = A,u, + A,v,, where 2} + 22 =1,
v, | H and v,e H Since |[P'Qu, + ,0)| = |P'Au) + 2,v,| = |P(v)| and
|P'(v,)| is minimal, we see 1, = 0 and therefore v, is perpendicular to H.
For x = v,, we take p,e B/“Y(p) satisfying {p,, v,» = 7,, by Lemma 6.3.
Translate p, to pie H, and decompose p; = p| + p} + pi, where p| is v,
component, p,e H and p; belongs to the orthogonal complement. Put
P'(p)) = q.. Then,
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d(po, Ty f' (M) > d(Bo, T, f'(M")) — d(o, Do)
=Ip(/)“‘%[_ﬁz—ﬂzg‘p{”“Q1I"'2772
= 7 sin (g,) — 2, = 59, — 2, = 3y, .

On the other hand, from d(p, p) < d.(p, p,) < 7., we get

d(P(py), p") < d(P(py), po) + d(p,, p) + d(p, P) < 27, + 0 < 2, .
Therefore, since Lemma 6.2 can be applied,
d(py, T, f'(M") < d(po, P(py) + d(P(po), T, f' (M)
St np= 2772 .

It is a contradiction. q.e.d.

§7. The diffeomorphism from M to M’
(i) Pl;u is an injection.
LemmaA 7.1. Pj, . is injective.

Proof. Suppose P(p) = P(q) = p’ with p #+ q. Note that the vector p—c;
is perpendicular to T, f'(M’). From Lemma 6.4, there exists a unit normal
vector n, which is parallel to the orthogonal complement of T',.f'(M’) of

;):1, such that
(09 < g,
Now, put x = Exp(p, ¢,N¥?n). Since Exp|,,, 52 (Nf(M)) is diffeomorphic, we
see d(x, p) < d(x, q). Let r be the point of the through x and ¢ and 1;' 1 q_;c
Note that d(p,r) < d(p,q) and p:= < (n, pZ). Therefore,
d(p, @) Z d(p,r) Z ¢,N¥* cos (1) > 3, .
On the other hand, since f(M) C B,(f(M’)) and P(p) = P(q) =p/,
d(p,q) < d(p,p) = d(p, q) < 27,
This is a contradiction. g.e.d.
(i1) P),;un is an immersion.

It sufficies to show the following.

LeMMA 7.2.

1—sin(u) Pg)] < 1+ sin(z,) M
142 < |dP@®)| < 12 for ee UM,

where 2 = 27(e)r/ciNY2,
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Proof. Firstly, we estimate the principal curvature of f(M). For xe
U,f(M), let c(s) = f(m(s)) be the curve with ¢(0) = x, m(0) = m. From the
definition, the second fundamental form H(x, x) is the normal component
of d*/ds*|,_,c(s). Let vl be the normal component of the vector v.

o = (2] ) = (2 s

— ( ., h/(dM(mi’ m)) Hess dM,mi<'|’Zl(%))“)I“, IIZ((O(;)I>

+ 1/ (s, )i (grad [’;1(%)) )

By the argument similar to Lemma 4.1,

|H(x, x)| < 2k]\7§/2- ","@lz, < ~2—k—N;1/2 .
1¢(0) c

Nextly, let x(s) be the curve on f(M) with %(0) = & and put y(s) = P(x(s)).
Then it can be written as x(s) — y(s) = 4(s)n(s), where n(s) is the unit
normal vector field along y(s). Since & — dP(&) = %(0) — y(0) = £(0)n(0) +
£(0)7(0), we get
P'(§) = P'(dP(¢) + 4(0)n(0) + £(0)1(0))
= dP(®) + UOP'((0))
where P’ is the normal projection to T, f (M.

Note that P/((0)) is the tangential component of 7(0). The above estimate
implies,
|P/(§) — dP(®)] = |UOP'(0)] < —%l:wr/(e)ﬁs”zldP(&)l
2
= 2|dP(9)] .

On the other hand, from Lemma 6.4, if we denote by £ the parallel trans-
lation from p to p’ of & then

|§ — P(&)] < sin (u,) .
Therefore
|dP(&) — & < |dP(E) — P(®)| + |P(&) — &
< sin (g,) + 2|dP(§)].

From this, we get a conclusion.

Finally, we get the diffeomorphism F: M — M’ by F = f'"'c Pof.
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§8. Estimate of dF
We show that |dF| is close to 1, if we take sufficiently small r > 0,
a, ¢ > 0.

(i) Triangle comparison theorem.

Following lemma is an easy consequence of triangle comparison
theorem in [3] Chap. 2.

Let 4(a, b, c) © M be the geodesic triangle whose segments are a, b, ¢
and 4(a) be the length of ¢ and < (e, b) is the angle between a and b.

LemMmA 8.1. For any & > 0, there exist c,, ¢,, > 0 such that if 4(a, b, c)
C M and A(e', V', ) © M’ satisfy the following,
) ¢ = a), 4b), 4a), L) = c,/10,
i) [4(a) — £(a)l], [£(B) — £(b)], [4(c) — 4(c)] < ¢y,
then | <L (a,b) — L (@, 0)| < 9.
(ii) Estimate of |d,(m;, m) — d,.(m}, F(m))|.
LEMMA 8.2. There exist c,, ¢, > 0 such that if a < e <cy,, then
[dM(mi’ m) — d.(mj, F(m))l S ce.
Proof. Take m;e N[e] and mj e N’'[e] satisfying
dy(m,m;) <e¢ and dy(F(m),mp) <e.
From this,
a(f'(m), f'(my) < d(f'(m}), f(mp) + d(f(m)), f(m))
+ d(f(m), Pof(m)) 4+ d(Pof(m), ['(m}))
< BT 4 e 00 4 9(E) + o,
r

10
r

<(Lhe+ 204 o)mm o

r
We recall Lemma 4.2 and take a = ce,/10. For sufficiently small @, > 0,
we see c,e < & Thus we see JM,(f'(m;-), fi(my) < (ce,/1I0)NY? and from
Lemma 3.2, d,.(m), m;) < /10. So we can use Lemma 6.2, then,

dy (), mp) < {'}N;I/Zd«'(m;), f/(m2))

2

IN

Cs r_1af 40 & N N
ENA(SERE + N 4 (0 + V)
Cs r

CeCiy ¢

CZ

IA
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From the above, we observe,
|d x(m, m;) — dy.(F(m), m))|
< ldM(mi’ mj) — dy.(m, m;)l + dy(m, mj) + dM'(F(m), m;)
< 2ra + d,(m, my) + dy (F(m), m;) + dy.(my, m;)
CeCis

<2re + e+ ¢4 = cCue. g.e.d.
C, .

(ii1) Definition of the isometry I: T, M — T,,,M’ .

Put u, = exp;! m,/|exp;' m,|
and
Uj = €XDr(m) Mi[|€XPrim M| .

Combining Lemma 8.1 and 8.2, we get for any &’ > 0, there exist ¢, ¢
> 0 such that if ¢, = d,/(m,;, m) = ¢,,/10 and ¢ < ¢;;, then

[{usy uyy — i wip] <07
We choose u,,, - - -, u,;, satisfying {u,, u,» =1 — (1/100d®) and [{u,, u, )| <

1/100d% (j #+ k). From these, we get the orthonormal basis {e;}?.; of T, M
by Schmidt’s orthogonalization. Namely e, = u,,

€, = (uim — kzijl Uiy ek>ek)/i Uiy — i‘l (Uit ek>eki, N
We also get the orthonormal basis {e;}{.; of T, M’ from {u;}/_,. Puta, =
{e;, u;,y and a;/ = <e}, u;,y. Then by inductive arguments, we see
la;, — af] < (100d)7+*0” < (100d)*49” .
We define the isometry I: T, M — Ty, M’ by I(e;) = e,.

(iv) Estimate of dF.
From the definition, we know

Afn(@) = (-, WQ@) 225006, -+ +)
for £ =3 ¢e,e U,M and t, = dy(m,m,). Put ¢, = d, (F(m), m{).
LemmA 8.3. For any 6 > 0, there exist ¢y, ¢, Cis > 0 such that if r < ¢y,
k£ < ¢y, (see §2), a, &€ < cy, then,
[dF() — I(§)] < 3.
Proof. Firstly, we estimate |df(¢) — df’(I(£))|. From the definition,

@) — df A@)F = 35 (W(t) T and, — W(E) T L)y
+ 3

ti»lle[r/8,7r/8] otherwise

I

IA
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From Lemma 8.2, there exists ¢, > 0 such that if a, ¢ < ¢, then |A/(¢) —
A(t)| < ¢,/10d. Thus, from |A/(t)| < 4/,

(first term) < ) > (@) (as; — aijE))
ti,t}€[2r/8,6r/8) i
+ (W'(t) — P'(t) }; a; &)

~

d 2
100d)5"d* + c,, ) N. .
( (100d)3"d* + ¢ L

Note that if ¢, ¢[0, r/81U[7r/8, r], then ¢ [0, 2r/8] y[6r/8, r] := J. Since
¢, >k > |W(t)| on ted, we see

(second term) < ( 25 [W/(t) + W) 2 a:é;| + 120 aisés )
tt.lieJ

< 4c%-4d*N, .
Therefore,

\df(e) — dffA@)F < (((100d>2d d + 4d7)- )(5’/ + 2,7,
< (100d)“-r‘2(6" + 2¢,,)" Na .

Secondly, from Lemma 7.2, we find
(AP df(@) — df(®)] < 21) + SR EEL afce).
For fixed r > 0, there exists ¢y, ¢,, > 0 such that if a, ¢ < ¢, 0 > ¢, then the
righthand side of the above inequality is smaller than (10°d)~%(6/10c,)|df(&)],
by the definition of 7(¢) and p, (§6, §7).
Therefore since ¢, = (10°d)-¢/3/2r, (§ 3 Remark),

1
e |dPo d’ —_ d’lo

< (cZNz“)-'((de)Mr**(a" + 20) W2 + 10°d) e Nv)
Cy
< 10°d )% (5" 2¢,, o
A0y Q" + 20) + 2.

For ¢ > 0 satisfying (10°d)*?6” < 6/10, take c,, >0 as ¢, < ¢, and ¢,;, > 0
as (10°d)**2c;; < 6/10 and ¢;; > 0 as ¢, < min (¢, ¢4, Cyp).
Finally we get,

|dF(§) — I(8)]

I

|df'~* e dPodf(§) — 1(9)]

1
< ——— _|dPodf(§) — df’' oI :
< infeldf’(é)ll () — df' < I(§)| <& qg.e.d

A
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§9. In the case when M is noncompact

In the case when M is noncompact, let M, be the set of all points
m of M with dy(m, m;) < b for fixed mye M. In the above, we get the
map F,: M,_,, — M),. Note that the estimate of constants do not depend
on b, thus for fixed b, F,|y, = F, |y, for b, &' > b, Let F: M — M’ be
the inductive limit of F,.

We see that F is a diffeomorphism. The injectivity and immersivity
follows from those of F,. Surjectivity follows from Lemma 8.3 and the
implicit function theorem. g.e.d.

§10. Proof of Theorem 2

From the result of Heintze-Karcher [8] or Maeda [11], we get the
estimate of the injectivity radius i, in terms of d, 4, p, v, namely,

i,y = min (n/A‘/Z, ™ exp (—(d - 1),:41/2)) .
a

Therefore we can use Theorem 1. Take a, ¢ > 0 which satisfy the
assumption of Theorem 1. Let My, be the set of elements in M(d, 4, p, v),
which have a minimal e-dense subset {m,}”;. From the volume comparison
theorem, we see N, < b_,(0p)/b,(¢/2) := N,. Therefore it suffices to estimate
the number of the diffeomorphism classes in M, for N, < N,.

Now, take a function

(N1-

O: My,—>Q=""T11  [og (2, log (o]

defined by
O(M) = {log (dy(mf, mo)R2f-"

where @ is the direct product of the intervals [log (¢/2), log (0)] and £ is
a loxicographic order of (i,j). We define the distance d, on @ by,

do(x,y) = max [x, — ¥,
1SkSN1(N1-1)

where x = {x,}, ¥y = {¥:}.

Then, Theorem 1 says that if dy(d(M), d(M')) < —log(l — a) := b,,
then M and M’ are diffeomorphic. Therefore it is sufficient to estimate
the cardinality of maximal set P, in @, of which elements «, B (« # B)
satisfy d(a, ) > b,
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#PM < <—g§&)m(m+1> < (2—b2>N°<N°+1) ’

1 b,
where b, = log (o) — log (¢/2). After all we can estimate the number of the
diffeomorphism classes of M(d, 4, p, v), which is smaller than N(2b,/b,)¥o¥o+b,

q.e.d.

§11. Outline of the proof of Theorem 3

Let M be a compact d-dimensional Riemannian manifold with |K,| <
4 and Ric, =d — 1. Let m, n, m;, m,, ---, be the points of M and p, q,
Py D2 - - -, be the points of S? We denote by T'D(m) the interior of the
tangential cut locus i.e., TD(m) = the interior of {ve T, M|d,(m, exp, v)
= |v|]}. For the linear isometry I: T,S* — T,M, we define the map F =
exp, o Ioexp;': B,(p) > M. Put D' = exp,(I-'(TD(m)). From the theorem
of Myers, we see D’ C B.(p). Moreover if the closure of D’ is not contained
in B.(p), then diam, =, so M is isometric to S? by Cheng’s Theorem
[2]. We may argue the case when the closure of D’ is contained in
B.(p).

We give an outline of the proof of Theorem 3. From |K,|< 4, |dF|
can be estimated in D’. We see that vol(S¢ — D’) is small and |dF| is
close to 1 on much part in D’ —this is “good” part—, using the fact
vol (M) = vol (S?) — 6. Since the volume of the “bad” part is small, we
can choose ¢/2-dense, e[4-discrete subset {p,} of S¢ in D’ such that the
geodesic connecting the points of {p,} intersects small “bad” part. So we
see that dg(p;, q;) is not much smaller than d,(m,, m,), where m, = F(p,).
Therefore, if we see that

(1) {m,} is e-dense, ¢/10-discrete in M.

(2) dsip;, py) is not much larger than d,(m, m)),
then, from Theorem 1, we find that M is diffeomorphic to S¢. We show
(1) by the following arguments. If not, then there exists a point n ¢ M such
that min d,/(n, m,) is larger than 3¢/2. Since F does not much expand on
“good” part and so B,,(n) is intersect only “bad” part. But since “bad”
part is very small, it cannot cover B,,(n). This contradicts the fact F is
surjection. Assume that (2) does not hold, namely there exist p;, p, such
that dg.(p;, p;) is much larger than d,(m;, m;. Let B, B, be the ball
with the center p,, p,, of which radius is a half of ds(p;, p;). From the
assumption, we see that vol (B,U B,) is much larger than vol (F(B,U B,)).
It contradicts the fact vol (M) > vol (S¢) — 4.
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§12, Estimate of dF

LEMMmA 12.1. i) |detF| <1 on D.
1) For any 6, > 0, there exists L = L(d, 4: 6,) > 0 such that

|[dF|<L  on B, (p).

Proof. From Ric, = d — 1, i) follows from the volume comparison
theorem (cf. [7] or [13]). For ii), we quote from [1] 6.4.1, that is |(d exp,,),,w|
< |w|(s_«(8)/r) on M, where |v] =1, v_| w and this inequality holds as long
as Sqm4.0(r) =r is positive. Since |(d exp,),,w| = |w|(sin (r)/r) on S¢,
we may put L = s_,(z — 8,)/sin (x — §,). q.e.d.

Put A[5] ={geD'||dF,|> 1+ 4} and B[5] = {ge D’'||detdF,] <1
—4,}. Notice that A does not mean the closure of A here.

Lemma 12.2. For any d,, 8, > 0, there exists 6, = dd, 4;5,) > 0 such
that if vol (M) = vol (S% — d,, then vol(A[s,]) < d,, vol (B[3,]) < d, and
vol (8¢ — D) < 4.,

Since the proof of this lemma is elementary but complicated, so we
only give here an outline and the detailed proof is left over to Section 14.
It seems to be able to prove more easily.

From Lemma 12.1, F is volume decreasing. With F(D') = M and
vol (M) = vol (S?%) — 4, we see that the vol (B[4,]) < d, and vol (S¢ — D’)
< 8;. To show the first inequality, we observe that the arguments of the
equality case of the volume comparison theorem in [8] can be modified
to the near-equality case. So we find K, is close to 1 on much part.
From this, using Rauch’s comparison theorem, we see |dF| is close to 1
on much part.

§13. Proof of Theorem 3

(i) Construction of e-dense set {p;} on S°.

LemMmA 13.1. For any 6., 6, > 0, there exists 8, = 6,(d, 4; d,, 0;) > 0 and
a d-dense subset {p;} of S* in B, _;.,(p) such that if vol (M) = vol (S%) — d,,
then

dF ), Fo) — 1

for dsu(p, p;) < - .
dsd(pss D)) * 72

0

Proof. We may assume 0 < J, < §, < 1. Take a §,/2-dense, §,/2-discrete
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subset {q.}).; of S? in B,_; »(p). Put N = #{q,} and B, = B,,(q.). Note
that B, C B,_, .(p). Take

o (10 Y (Y
20N =« 100 1000

A[BB] = {q € Bn—ﬁm(p)Hqu‘ = 14 58/2} = Brﬂ?m(p) - K[53/2] .
From Lemma 12.2, there exists d, > 0 such that if vol (M) = vol (S%) — §,,

then
1 5 2 [44 a . i
vol (B, _;,(p A[d, S bl< _s,_), ( ) 1-d< >
O ( 50( ) [ ]) < 20N 100 4 1 sin 10

We define

where « = 6,0,/200L and L = L(6,)) = s_,(xr — d,))/sin(z — §,;) in Lemma
12.1.

Hereafter we denote by 7, , the minimal geodesic from p to g. Then,
we observe that for gq;e B, q;¢€ B,, if Tora; C B, _, . (p), then

duF@), F@) = [ 1dF|d

:J \dF| dt +j \dF| dt
AL8INT 42 o rq/_)q}—/l[ﬁs]

< (1 + 05/2)dse(q; @) + L-m(7 0, — Al5]) 1= A,

where m(.) is the canonical measure on T oy
If m(rq;,q; — A[8)) < a, then

duF@), F) — A

Sd(qu q_;) = dS'i(QU q_;)
(%) <1 + o L
Sd(qu qq)
<14+ % % +—_1+5B.

In the following, we prove that p, can be taken in A4[5]N B, For the
existence of p, € B,N 4[3,], we only note the inequality vol (B,_;, — A[5))
< vol (B)).

Nextly, suppose that there exist points p,, p., ---, p. (p; € B;) such
that

for dsu(psp) < . (1Zi,j<k)
dsd(pu p ) * ! 20
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Then, we show that there exists p,., € B,,, which satisfies

d(F(pe.s), F(p)) <143, fori<k.
dso(Dis1s P2) - o

In fact, if not, then for any ¢ ¢ B,.,, there exists p, € B, such that

du(F(Q, F(P)) 1 . 5.
ds«(q, p,) Z

Then from (x), m(r,,,, — Al6]) > & or 7,,,NB;(p) + ¢, where p is the
antipodal point of p. Let S; be the set of q e B,,, such that m(r, , —
A[8g]) > « and S} be the set of g€ B,,, such that 7, ,NB;,(p) # ¢ and S, =
StUS2 Since, by the assumption, B,,; € |, S;, we may assume that

(%) vol (S,) = max vol (S) = '21W -vol (B..,) .

Let C* be the cone consisting of the points of 7, ,(ge S} and Ci=
exp;1(CY). Put Ei= C*'NBy(p,). Since m(7,,,, — A[d]) > «, for q e S}, from
the Fubini’s theorem, we observe

VO1 (Bx —Elo(p) - A[58])
gj ) ( j () sind =t (8) dt)dvl,msa.
Up,SEnC13w

0

where 7, is the geodesic emanating from p, with initial vector v, 2,(¢) is
the characteristic function of the set A and dv,,s. is the canonical measure
on U,S* induced from Lebesgue measure on T,S°.

> J~ ((J-a/z n jur—aw ) sin?-i(¢) dt)dvgplsd
Up,SeNCy 0 7—010 —a/2
a t d-1
SN O
UpSencs \Jo \ 2 n

2 a)d
= 2(£) d .
[ C L

Namely,

| vy, 5o < vol (Bo_s, — AlG]) - i.(&)“,
UpSenCi 7 2 o

On the other hand, since dg(p,, B;,(p)) > 9,/100, we see

vol (E% ) < vol (E) ,
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where E is the cone in S¢ which contains B, (p) far from its summit
with distance J,/100 and the length of generating line is smaller than =/10.
From the spherical trigonometry, we calculate

10005,, \¢-!
1 E < T ( 10>
vol (B) = d 10 '\,

Thus we estimate, from m(7,N B,) < §,/50.
vol (S)) < vol (E},,,N B)) + vol (E2,,)
(] #onnso® sin®=* @ dt)dvy 50 + vol (E2p0)
T

jUplsdﬂ€190

= [, st () 2 duy o vol (B2
P1 1

10/ 50
2\¢ . T 0
< vol (B,_,,(p) — AI5 ._.<_). d—1<_)._s
< vol (B,_,,(p) [a])2 —) -sin 10/ 5o
1.z ( 10003, )“
+ d 10 g
= b( ) L vol (B:.1) ,
100 2N
namely,
vol (S) < -zlw -vol (By.,) ,
It contradicts (xx). g.e.d.

(ii) Proof of Theorem 3.

We take a, ¢ > 0, which satisfy the assumption of Theorem 1. For
8, = ¢/2, take d, > 0 satisfying J; < min ((1/2)b,(6,/10)w;?, a/10). Let {p;}
and « > 0 be the same as in Lemma 13.1. From Theorem 1, it suffices
to prove that there exists > 0 such that, if vol (M) = vol (S¢) — §, then
{F(p,)} is an e-dense, ¢/10-discrete in M and it satisfies

u(F(p) F(pj)) >1— for 0 < dg
Do~tn 4 s AP py) < -
de(pz’ p]) g ! 20

Cramvm 1: {F(p,)} is 25, (= ¢)-dense in M.
Proof of Claim 1. If not, then there exists ne M such that
Bs.i) (U Bsoo(F(P2)) = ¢
Put
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B = {q e Bi(p)|q €T, a0 €3Bs(P),
m(7 g0, — Al6g]) > « or 7, ,,N B, (D) # ¢}
and I§i = B;(p;) — B;. From (x) in the proof of Lemma 13.1, we see
F(J,B)) < (U B367/2(F(pi)))'
From the similar argument to Lemma 13.1, we see
d [4\¢ 1/ = \/10005,, \¢!
1(B, g_-(_) 1(B, . (p) — AI5, —<¥)<w. 1&) (=4,
Vo ( )._. 2 o Vo ( on(p) [ ]) + d 10 7'[58
vol (B) = vol (B,(p)) — 4, .
Note that

vol (F(B,ND’ — B[3)) = (1 — 6,) vol (B,n D’ — B[3,)),
where B[d,] appears in Lemma 12.2.
From this, we have
vol (M) = vol (B;,(n)) + vol (U F(B,))
= vol (Byu(n)) + (1 — 6)(vol (U (B.N D’ — Bls,))
= vol (B;, (1)) + (1 — d5)(vol (U By)) — vol (S* — D) — vol (B[d,])
= vol (Buu(m) + (1 — 3)(vol (U B,(p) — NA, — vol (S* — D)
— vol (B[3.)) Z
= vol (B;,1(n)) + vol (89) — §,vol (S?) — NA, — vol (S¢ — D)
— vol (B[d,])
where N = #{p,}.
From Lemma 12.2, there exists d,, > 0 such that if vol (M) = vol (S¢)
— 05, then
3, vol (8% 4+ NA, + vol (S¢ — D’) + vol (B[d,]) < b,(5./10)
< vol (B;,1,(n)).
(The constants are determined in following order, §, — 6, — 6;,— L — ¢ — 4,;.)
Therefore, we see,
vol (M) > vol (S8¢) + vol (B;,,(n)) — b,(3,/10) = vol (S¢) = vol (M) .
It is a contradiction.
Cramg 2: GlF@)LF(®)) o 1 551 4
dsi(pi, p;)
Proof of Claim 2. If not, then we may assume d,(F(p,), F(p,) <

(1 — d9dsdpy, p), Put d’ = dp, p,) and d” = d,(F(p,), F(p,)). There
exists §,, > 0 such that
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_di) _ b<_ﬁ_ 5 ) __E,,.b(i _ Q’L)
b‘(z \ 2 ‘”<10”2 2/
For this 4,,, similarly as Lemma 13.1, there exists 7 > 0 such thatif d,(F(¢’),
F(p;) > d’|2 for ¢’ €9B,./,_5,(p:), then

m(rq’,pi - A[aa]) > 7 or 7’q’,pi n Bﬁm(f’) == ¢ .
Put

2
B = }Jﬂ (Bd’/z-ﬁm(pi) — {q € Bd'/z-m(pi) lqe Tarpor

q' €3By(p:), My, — Al&]) > 9 or 7., NB; (D) # ¢} .
and

e S8t 3 ().

Then we observe F(B) C (B, (F(p))UB,.(F(p.))) and

VOl (F(Byj2-5,,(P) U Byro-s,i(P2)) — A,
< vol (F(B)) = vol (By.(F(p) U By.s(F(p.)))
< vol (By(F(py)) + vol (B, (F(p.)))
— Vol (Byjz-avo(2))

where z is the mid point of the minimal geodesic from F(p,) to F(p,).
These inequalities imply that

vol (M) < vol (F(D" — (By:/{py) U By:o(P2)))
+ vol (F(D' N (By/(p) U By.x(P))))
< vol (8¢ — (Buy(p) N By p2)
+ vol (By/(p) — Boyrje-s,,(P1)
+ vol (By/p2) — Bajo-5,,(D2)
+ vol (F(Bd'/z-a,z(px) U By j2-5,(D2)
< vol (S* — (By(p) U By o o))

o) -8(% )

+ vol (B,(F(py)) + vol (B, (F(p))
— vol (By/jz-ar2(2))

< vol (S — (Bu(p) U By« D))
+ vol (By{py) + vol (By(p)) + A,

~ Ly (4

2 \2 " 2
1,(d d”
< Sd+A2—-—b(_.—-~—).
< vol (S9) 5 b 5
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Note that the second term of A, can be small if we take sufficiently small
0. From Lemma 12.2, there exists §,, > 0 such that if vol (M) = vol (S9)
— 05, then

A< b (L - 47,

2 2

We take

8, = min (513, 1. bd(iii — ,di>)

5 2 2
in Theorem 3. Then if vol (M) = vol (S¢) — §,, then
vol (M) < vol (S%) — %- b4<—‘é: _ 5‘52'1) < vol(S,) — 3.

It is a contradiction. ¢/10-discreteness of {F(p,)} follows immediately from
Claim 2 with a < £4/10. q.e.d.

Corollary follows from the above and the following two theorems.

TraeoreM A. (C.B. Croke [5], Theorem B.) Let M be a compact d-
dimensional Riemannian manifold with diam(M) < D <r and Ric, = d — 1.
Then there exists C(d, D) > 1 such that 2,(M) = C(d, D)-d.

TueoreMm B. (A. Kasue [10], Theorem 4.1.) Given d, 4, v, > 0 with
4> 1, v, < w,, for any Ve (v, w,), there exists a constant p = p(d, 4, vy; V)
> 0 with p < r such that if d-dimensional Riemannian manifold M has
the property that Ricy, =d — 1, |Ky| < 4, vol(M) = v, and diam (M) = p,
then vol(M) = V.

§14. Proof of Lemma 12.2,
We firstly take constants which satisfy the following.

0 <log(1+34), 6, < E&%@T and 1og( si_ri((aél))> < %i,
5y < 522 , 0y < min (53, %757&;515), < %%ﬁsfq),

G < 57* 5 < (532‘8)2,

o <min (5 S0 Y ok, KK 5 P10

i 0
9, < min <54, 1-— exp(- 21023)16 )> ,
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?

d*K, 3 s_Jm)\* , Ks_,x)
K, > K>3 dA( A7)\ 4
21 2 i s,(0,) ) 5,(05)

S _A(ﬂ') 172 1/2)) -1
K, > <E o+ s-tal2a” ))(sxn/ZA ),

X o (@) |
it @00 T = )

Then we can conclude by putting

0, = min (~556“5‘5 sin?-! <§>, 555“) .

T 3
Put
C[d, 8,5, 03] = {ve U,S*|7(t) = exp, tv,
m(r((0, = — DN (B3.,JUS* — D)) > 8.},
Dby, by, 8] = U,S* — C[8s, ,, 855] ,
and

D[53’ 514, 515] = I(E[539 514’ 515]) .
Cram 1: If vol(M) = vol (S¢) — &,, then

vol (B[5,]) < vol (B[5,]) < ; <8, vol(S*— D)<,

14

o 30 0
voly sy (C 84 6y, 035]) < - 2200 T8
(Up8 )( [ 3 Y1ip 1]) 6“515 si ‘1'1(515/3) 27[

where vol 5.y means the canonical measure on U,S*.

Proof of Claim 1. Since
vol (§%) — 8, < vol (M) — j dvy = j |det dF| dvsa
M D’

<, (—a)dvs+ | dvgs
B[é14] D’ ~B[614]
= vol (§%) — vol (8¢ — D) — §,,vol (B[4.]),
we see

vol (Ba,]) < g and vol (S¢ — D) < 5,

14

From the Fubini’s theorem,
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vol (B[6,]US? — D)
= j (j X0 Brasau sd-om(t) sin? ' ¢ dt)dvUpS,
UpSdaw

) . a0
< I_ ~Besin® -2 )duy e,
Clos, o14,015] O 3

namely
— 3vol (B[s,JUS? — D)
L s (Cl3y, 81, 6,5)) < 2 YO0 U ST — T
VOl ,s y ( [ 1 D= 5 sint-" (3,,/3)
< 8% - 0
T 0,0, 81n" 71 (9,5/3) 2z
q.e.d.: Claim 1.
For v e D[4, d,, 0], put 7(?) = exp,, tv and 7(f) = exp, tI'(v). Let U(?)
(resp. U;(t)) 1 <i<d—1) be the linearly independent parallel vector
fields along tv (resp. tI '(v)) which is perpendicular to v (resp. I-'(v)).
Put Y,(t) = d exp, (tU,(¥), Yi(t) = dexp, tU() and W(t) = P,o I P_,Y (),
where P, and P_, are the parallel translations along 7(f) and 7(¢) respec-
tively. For 7(s,) e D’ — B[3,], we put

Ego[aléi] = E§0[53, 514; 515, 516]
= {1(s)|s € [0, 5], (log|Yi(s) A\ -+ A Yaoi(s))
< (10le1(3) AN A Yd—l(s)l)/ + Oy} -

Crame 2: m(r([0, s,]) — Ei[5,]) < ,r}9g§1;§;o, <l
16

Proof of Claim 2. It is an easy consequence of the following two
inequalities,

(log|Yis) N+~ A Yo i) < (og|Yi() A+ A Yau(9)),

log|Yis) A---A Y. (s)] < (log|Yi(sy) A---A Y, (s) — log(1 —d,),
g.e.d.: Claim 2

In the following, we fix s, € E;[d,]. We may assume s, =7 — d, —
0:/10 — 8,5 > =/2. Since the value

(log|Ys) A=A Yoei®)) — (log|Yi(s) A+ A Yo i)

does not change when we replace Y, and Y, by linear combination, so
we may assume that {Y,(s,)} and {Y.(s,)} are orthonormal.
We denote by I,(Y,, Y,) the index form of Y; along 7|y
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Cram 3: If 17(s,) €710, so]) — E7[65], then
I (W, W) < I(Y,Y)+ 0.
Proof of Claim 3. From the argument of Heintze-Karcher [8], we sez
(log|Yi(s) A+ A You(s)))
= z I(Y,Y) ({Y.(s))} are orthonormal.)

[

= dZ_]l I (W,W,)  (the index lemma.)

=1

d-1 o _ _
< 2, LY, ¥ = (log|Yi(s) A+ A Yaos(s)l)
= (IOg l Yl(sl) VARRRWAN Yd—l(sl)[)/ + 5]6

d—

L (Y, Y) 4 b

1

(2

Thus with the index lemma, I, (Y, Y,) < I, (W, W,), we get
IL(W, W) <I(Y,Y)+3d, for each i.
q.e.d.: Claim 3

Since {Y,(s)} is a basis of T, M, we may put W,(s) = >4, fi,(s)Y,(s).
For fixed i, we define

Fi[0,1] = Fi[0s, eus 01, 016 011l
| d 2
= {1@1sel0. 81, 3 F@YO[ < i)

Cuant 4 (1) m(r(B, s)) — Filos]) < 0=

17

(ii) If 7(s) € Fi,[3,,], then,
s a
' O;Z_;:lf;’jfikg(yj, Yk),dti < 0Oy »

Proof of Claim 4. From the arguments of Cheeger-Ebin [3] (Chap 1,
§8, 1.21), we have

sy | d
LW, W) = LY, Y) + [ 5 1.7,

J

2
dt,

therefore,

2
dt < 6y for s <s,.

d
Z fi; Y,
Jj=1

This implies (i).
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By the integration by parts, we observe,

[y a = 3 rifue, v,

0lj=1 Jrk=1

— [ 33 Fifus(y, Yot
— [ 33 Fufule(¥s, ¥ + &(¥, Yt

For the estimate of

1 (s d
j 33 Fifug(Y, Yot

| 0 j,k=1
firstly we see g(Y/}, Y,) = g(Y,, Y;) by taking the derivation of the both

sides. (cf. [3] p. 256 (xx))
Nextly, from R.C.T., we have

|Y.(s)| = |Y0)|sin (s) = | Yi(s))| - :’112 E:)) = :I;l E:)) <Z,

, L5489 _ s.[8) _ s.4m)
| Yi(s)| = | Yi0)|s_4(8) = |Yi(s)] 5.5 34(31) = 60D
Thirdly, we estimate |f..|. Put Y,(s) = > a,e., Wis) = 2, be,, where
{e.}i, is the orthonormal basis of T,,,M. From W, = 3f,Y; we get b,
= > fi;0;. Let Bj be the matrix such that the ¢-th column of A = (a,,)
is replaced by b;,, By Cramer’s formula, f;;, = det Bi/det A. Note that
det A=Y, A---AY,] and

1 sin (s) [ s_4(s)
maxldetB = max(IWl H RO sin (s,) ( 5,(0,) )

Since 7(s) e D’ — B3],
YA AY S| A A YA —6) < sin?(s)(1 —d,) .
It implies

i 1 _ sin(s) [ s_4(s) \**
|fie] < max |det Bi/det A| < sin? (s)(1 — ;)  sin(s) ( 84(s1) )

IA

K.

Fourthly we have
|Yi(s)| = K,

by the following arguments.
We may assume 4 > 1. Decompose Y, (s) as Y.(s) = Z,(s) + Z.(s), where



44 ATSUSHI KATSUDA

Z(s) are Jacobi fields with Z(s,) = Zi(s,) = 0, Z(s) = Yi(s,)) =1 and Zi(s)
=Y;(s). From the Berger’s comparison theorem ([2] 1.29),
|Z(s, — n[24'%)| < c_,(x[24"%) .
Then,
|Z(s, — n[24'%)| < | Yi(s, — n/24'%)| + | Zy(s, — =[24")]|

8_4(71') 172
s 20 + c_ (z[24") .

Thus, we get
Yi(s)| = |1Z4(s)| < (:’:4@- + c-mn/2A‘ﬂ>)<sd<n/m2>>-* <K,
34(53)
Fifthly we have
s d sy d ,
[ 3 vipae = [0 53 viae
0 k=1 0 k

=1

I

d S1 . N
3 [ e @, i, Yodt + g(YiGe), Yis)ds
< d-[" @241 YuPdt + | Yi(s)]| Vi) at

3 S_ (7!') 2 KQS-A(”)
< 2add( S-AD ) R8-S g
=5 () Ny
Therefore, we get, from W, = > f.,Y,,

[ 3 fofus¥, Yot
<[ Y dt+ S8, W)
+2 [ 5 fufes(¥, Yodt
< b + | 3 AV WO
w2, ) (] S s )

é 516 + ‘2—2};—2 + 2(516K3)‘/2 < 515 . q.e.d.: Claim 4

3

172

We put

GLIK) = {1(9) € Fi o]

S IV@R K.

Then, from Claim 4 and (%), we see,
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m(GLIK]) = s, — ‘;_ - % .
Cramv 5: If 7(s) e G [K.], then
Uo g(R(T, 1Y, T) — g(R(Y,, Y, Yi)dtg <5,
Proof of Claim 5. From g(Y/,Y,) = g(W/, W,) and
Wi = (S %)) = 5 (5, + 2007 + F,¥9),
we find if 7(s) € G[K,], then,
[ @@, 177, 20 — R, 17, Wodt

S . . d !
—|[[e@r. V) — 2 sy, Wodt

d

s d
= :;g(YJ’ WZ) + 2 Z u zkg(Y Y/)dt

JE=1

s d | |
= U 2, fi;8(Y;, Wodt| + 21[ 3 £, Y,dt max (.| Vi)
J= | |
= 01 + 20, KK <y . ge.d.: Claim 5

We put G* = M, Gi{[K,]. We take another orthonormal basis {X}'}
at 7(s;) with X¥ = (X, + Y))/(]Y: + Y;|) and repeat the above arguments
for each (i,j). Put G' = M), G¥# and

G= M G .

#(0)€ D[83,614,015]

Then, since s, = & — 0, — 0,/10 — 6,5, we see

() mG) =1 — 5, — _% -5 — da(% ¥ 5&) > — 6, — 8.

17 2

On the other hand, we find if 7(s) € G", then for any Xe T}, S,
[ e@We, i, W) — g(BE, 17, X dt| < =160 + DI,

where Wy = P,oIoP_(X). It is easily derived from the following ine-
quality,

[ E(S 2y, fav)d < 52 K, vd

0
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d S
regiaal(|[ K@+ v, Yo+ v)a

).

where K(Z, Z)) := g(R(Z, )7, Z) — g(R(W,,, D7, W,) and 3¢, 2 = 1.

+ UZ K, Yi)dt’ + UZ K(Y,, Y)dt

Cramm 6: For 7(t) e G,, |dF, | <1+ 4.

Proof of Claim 6. Similarly as above, put Y(t) = dexp, (tU() and
Y(¢) = dexp, (I"(U(®))). Take 7(¢,) e G' with ¢ = 5, and put

YO Y(2) T ¢
Vi) = -2 V(@) — -2~ and W) = P,ol-P_ V@) = >.f,V,,
| Y()] 1Y) ahv
where {V,} are the linearly independent Jacobi fields such that {V(z)}
are orthonormal. For fixed
szr—g, 8L 0) 5
€16

put

V) = YO _ oy, 1Y@ = P,oI-P_ V)
VO = 3oy = VO gy 24 WO =Piel-P VO

Then, similarly as above, we see

LV, V) — L(W, W)| < s

and therefore
LV, V) = 1V, V)]
2 o = e T3 [
= 0. + [ (@R, 1y, W) — g(BV, 1), V)t

&RV, 1, Wy — a(R(V, 77, Vyae] - 1T
< 0 + [, B, D7, W) — gR(V, 7, V|- ged

< 5, + (16d° + 1)619( sin (sl)) <6y
sin (3,)

Namely,
|Qog | Y(@)) — (log [Y(t))| < 6u

For 7(t)e G, since the value (log|Y(?)]) does not change when™ Y(¢)
replace by constant multiple of Y(2), for t < ¢, we see
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(log | Y)Y = TY((%L(V, V)

< f SNAY fdt + [ erew, 7, )

0 ,i=1

<6, 4 24(_ ?_>2 < 347:(%)2,

O3

and similarly,
(log|Y(1)) =< m(i)z .
0,
Integrating these, we get

log| Y(t)| — log | ¥(9)| < log (f.:-ﬂ@) ¥ O+ (—?—)23(4 + Dby < 0,
sin (d,) 0,

Therefore we see

Y(o)| .
dF.,| = YOI — oen Gy <1435, . e.d.: Claim 6
|dF; ] Y| = exp(d,) <1+ q aim

Note that A[6,] ¢ D' — F(G) := A[3,] .
Cramm 7: vol (A[s,]) < vol (A[s,]) < 4..

Proof of Claim 7. Since m(F-(G")) = m(G’), we have, from Claim 1
and (xx),

vol (A[5))) < f (j sin?-! tdt)duyps,z
Clé3, 014,015]

0

+ J q sin®-! tdt)de-pS,z
D[ o3, 614,015] (7(L0,z]) = GT)
< VOI(Upsd) (CI[6,, 6., 0,57

+ max m(7([0, z]) — G") vol (S¢~")

< .;Ln 4 3y + 8) vol (S2-1) < 3, . qed.: Claim 7
T
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COLLAPSING RIEMANNIAN MANIFOLDS
TO ONES OF LOWER DIMENSIONS

KENJI FUKAYA

0. Introduction

In [7], Gromov introduced a notion, Hausdorff distance, between two metric
spaces. Several authors found that interesting phenomena occur when a
sequence of Riemannian manifolds M, collapses to a lower dimensional space
X. (Examples of such phenomena will be given later.) But, in general, it seems
very difficult to describe the relation between topological structures of M; and
X. In this paper, we shall study the case when the limit space X is a
Riemannian manifold and the sectional curvatures of M; are bounded, and
shall prove that, in that case, M, is a fiber bundle over X and the fiber is an
infranilmanifold. Here a manifold F is said to be an infranilmanifold if a
finite covering of F is diffeomorphic to a quotient of a nilpotent Lie group by
its lattice.

A complete Riemannian manifold M is contained in class .#(n) if dim M <
n and if the sectional curvature of M is smaller than 1 and greater than —1. An
element N of #(n) is contained in #(n, p) if the injectivity radius of N is
everywhere greater than p.

Main Theorem. There exists a positive number e(n, ) depending only on n
and p. such that the following holds.

If M € #(n), N € #(n,p), and if the Hausdorff distance ¢ between them is
smaller than €(n, ), then there exists a map f: M — N satisfying the conditions
below.

(0-1-1) (M, N, f) is a fiber bundle.

(0-1-2)  The fiber of f is diffeomorphic to an infranilmanifold.

(0-1-3) If § € T(M) is perpendicular to a fiber of f, then we have

O < |df(£) /1] < 7.

Received October 21, 1985 and, in revised form, April 11, 1986.
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Here 1(¢) is a positive number depending only on €, n, pn and satisfying
lim__, ,7(e) = 0.

Remarks. (1) In the case when N is equal to a point, our main theorem
coincides with [6, 1.4].

(2) In the case when the dimension of M is equal to that of N, the
conclusion of our main theorem implies that f is a diffeomorphism and that
the Lipschitz constants of f and f~' are close to 1. Hence, in that case, our
main theorem gives a slightly stronger version of [7, 8.25] or [8, Theorem 1]. (In
{7] or [8], it was assumed that the injectivity radii of both M and N were
greater than p, but here we assume that one of them is greater than p.)

Next we shall give some examples illustrating the phenomena treated in our
main theorem.

Examples. (1) Let 7> = R*/Z & (1/i)Z be flat tori. Then lim
(= R/Z) and T? is a fiber bundle over S’.

(2) (See [9].) Let (M, g) be a Riemannian manifold. Suppose S! acts
isometrically and freely on M. Let g, denote the Riemannian metric such that
g.(v,v) = & - g(v,v) if v is tangent to an orbit of S* and g,(v,v) = g(v,v)if v
is perpendicular to an orbit of S*. Then lim, _, o(M, g,) = (M /S, g’) for some
metric g’. In this example, the fiber bundle in our main theoremis $* - M —
M/St

(3) Let G be a solvable Lie group and T its lattice. Put G, = G, G, = [G,G],
G, =1[G,,G],--,G;.; =[G, G;]. Take a left invariant Riemannian metric g
on G. Let g, denote the left invariant Riemannian metric on G such that
g.(v,0) =¢"2-g(v,v) if v € T,(G) is tangent to G, and perpendicular to
G, .- (Here e denotes the unit element.) Then lim,_, ,(I'\ G, g,) is equal to
the flat torus I'\ G/G,, and the sectional curvatures of g, are uniformly
bounded. In this example, the fiber bundle in our main theorem is
(G,ND\G, »T\G->T\G/G,.

Finally, we shall give an example of collapsing to a space which is not a
Riemannian manifold.

(4) (This example is an amplification of [7, 8.31].) Let (G,, T;) be a sequence
of pairs consisting of nilpotent Lie groups G, and their lattices T,. Let (M, g)
be a compact Riemannian manifold and ¢, a homomorphism from T, to the

group of isometries of (M, g). Put T=N,U,,, q)ji l“j)) Here the closure,
U jsi <pji I, ), is taken in the sense of compact open topology. It is proved in [1,
7.7.2] that there exists a sequence of left invariant metrics g; on G, such that
the sectional curvatures of g, (i = 1,2, - - - ) are uniformly bounded and that
lim, , (I;\ G, g;) = point. On M X G,, we define an equivalence relation ~
by (9.(y7')(x),8) ~ (x,78). Let M X G, denote the set of equivalence

T2=S1

i—>o0 i
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classes. Then it is easy to see
lim (M Xy G, gXg)=(M/T,3).
1—> 00
In this example, there also exists a map from M X G; to M/T.

This example gives all possible phenomena which can occur at a neighbor-
hood of each point of the limit. In fact, using the result of this paper, we shall
prove the following in [5]:

Let M; be a sequence of compact m-dimensional Riemannian manifolds
such that the sectional curvatures of M, are greater than —1 and smaller than 1.
Suppose lim;_, M, is equal to a compact metric space X. Then, for each
sufficiently large i, there exists a map f: M, — X satisfying the following.

(1) For each point p of X, there exists a neighborhood U which is
homeomorphic to the quotient of R” by a linear action of a group 7. Here T
denotes an extension of a torus by a finite group.

(2) Let Y denote the subset of X consisting of all points which have
neighborhoods homeomorphic to R*. Then (f; | iy [TN(Y),Y) s a fiber
bundle with an infranilmanifold fiber F.

(3) Suppose p has a neighborhood homeomorphic to R”/T. Then f,'( p) is
diffeomorphic to F/T.

The global problem on collapsing is still open even in the case of fiber
bundles.

Problem. Let F be an infranilmanifold and (M, N, f) a fiber bundle with
fiber F. Give a necessary and sufficient condition for the existence of a
sequence of metrics g; on M such that the sectional curvatures are greater than
-1 and smaller than 1 and that lim, _, (M, g;) is homeomorphic to N.

The organization of this paper is as follows. In §1, we shall construct the
map f. In §2, we shall prove that (M, N, f) is a fiber bundle. In §3, we shall
prove a lemma on triangles on M. This lemma will be used in the argument of
§§2, 4, and 5. In §4, we shall verify (0-1-3). In §5, we shall prove (0-1-2). Our
argument there is an extension of one in [1] or [6].

In [7, Chapter 8] and [9] (especially in [7, 8.52]), several results which are
closely related to this paper are proved or announced, and the author is much
inspired from them. Several related results are obtained independently in [3]
and [4]. The result of this paper is also closely related to Thurston’s proof of
his theorem on the existence of geometric structures on 3-dimensional orbi-
folds. The lecture by T. Soma on it was also very helpful to the author.

Notation. Put R = min(g,7)/2. The symbol ¢ denotes the Hausdorff
distance between M and N. Let o be a small positive number which does not
depend on e. We shall replace the numbers ¢ and ¢ by smaller ones, several
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times in the proof. The symbol 7(a|b,---,c) denotes a positive number
depending only on a,b,---,c, R,p and satisfying lim,_ ,7(a|b,---,c) =0
for each fixed b,- - -, c. For a Riemannian manifold X, a point p € X, and a
positive number r, we put

B(p,X)={xeX|d(x,p)<r},
BT(p,X)={(€ T(X)||gl<r}.

Here T,(X) denotes the tangent space. For a curve /:[0,T] = X, we let
(Dl/dr)(t) denote the tangent vector of / at /(). For two vectors &, § € T,(X),
we let ang(&, £') denote the angle between them. All geodesics are assumed to
have unit speed.

1. Construction of the map

First remark that Rauch’s comparison theorem (see [2, Chapter 1, §1])
immediately implies the following.

(1-1-1) For each p€M and p’' € N the maps exp|yr , ,, and
exp| BT, (', vy Dave maximal rank. Here exp denotes the exponential map.

(1-1-2) On BT, x( p, M) [resp. BT, x( p’, N)], we define a Riemannian metric
induced from M [resp. N] by the exponential map. Then, the injectivity radii
are greater than R on BTR(p, M) and BTR(p’, N).

Secondly we see that, by the definition of the Hausdorff distance, there
exists a metric d on the disjoint union of M and N such that the following
holds: The restrictions of d to M and N coincide with the original metrics on
M and N respectively, and for each x € N, y € M there exist x' € M,
y’ € N such that d(x, x") < ¢, d(y, y’) < & It follows that we can take subsets
Zy of N and Z,, of M, a set Z, and bijections j,,:Z — Z,,, jy:Z — Z,,
such that the following holds.

(1-2-1) The 3e-neighborhood of Z,, [resp. Z,,] contains N [resp. M].

(1-2-2) If z and 2’ are two elements of Z, then we have

d(jn(2), jn(2)) > & and  d(js(2), ja(2)) > e.
(1-2-3) For each z € Z, we have
d(jN(z)’jM(z)) <e.

Now, following [8], we shall construct an embedding fy:N — RZ. Put
r =oR/2. Let k be a positive number determined later, and h:R — [0,1] a
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C*-function such that
(1-3) h(0)=1and A(t)=0ift > r,
S<w() <t if¥<i<i,
“2<h(t)<0 if¥<rgs¥or¥gt<
k<h'(t)<0 if0<t<¥or¥<t<r.
We define a C*-map fy: N = RZ by fy(x) = (h(d(x, N, ez, In[8], it
is proved that, if € and ¢ are smaller than a constant depending only on R, g,
and n, then f,, satisfies the following facts (1-4-1), (1-4-2), (1-4-3), and (1-4-4).
The numbers C,, C,, C;, C, below are positive constants depending only on R,
u, and n.

(1-4-1) f, is an embedding [8, Lemma 2.2].
(1-4-2) Put

B-(Nfy(N)) = {(p,u) € the normal bundle of f,(N)|[u| < C},
K =sup #(B,(p,N)Njy(Zy)).

x€N

Then the restriction of the exponential map to B¢, x12(Nfy(N)) is a diffeomor-
phism [8, Lemma 4.3].

(1-4-3) For each £’ € T, (N) satisfying |£’| = 1, we have

G, K% < |dfy(¢’)] < C;K'/* [8, Lemma 3.2].

(1-4-4) Let x, y € N. If d(x, y) is smaller than a constant depending only

on o, p, and n, then we have
K'2-d(x,y) < Cy-dpa(fy(x), fy(»)) [8, Lemma6.1].

The next step is to construct a map from M to the C,K/?neighborhood of
fv(N). The map x — (h(d(x, jy(2)))),c~ has this property. But unfor-
tunately this map is not differentiable when the injectivity radius of M is
smaller than r, and is inconvenient for our purpose. Hence we shall modify
this map. For z € Z and x € M, put

d(x)=[ d(y,x) dy/Vol(B,( jy(z), M)),
YE€B,(ju(2), M)

fM(x) = (h(dz(x)))(zezy
Assertion 1-5.  d, is a C'-function and for each ¢ € T, (M) we have

[£(d(y, ")) dy
¢£(d,) = VoA

Here A = {y € B,(jy(2), N)|y is not a cut point of x }.
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Assertion 1-5 is a direct consequence of the following two facts: d, is a
Lipschitz function; the cut locus is contained in a set of smaller dimension.
(Remark that d is not necessarily of C*-class.)

Lemma 1-6. f,,(M) is contained in the 3¢K'/* 7-nezghborhood of fy(N).

Proof. Let x be an arbitrary point of M. The definition of 4, implies
|d(ja(2), x) — d,(x)| < e. Take a point x” of N such that d(x, x") < e. Then
condition (1-2-3) implies that |d(j,(z), x) — d(jy(2), x")| < 2e. It follows
that |d(jy(2), x") — d,(x)| < 3e. The lemma follows immediately.

Lemma 1-6, combined with facts (1-4-1) and (1-4-2), implies that
futeomeExp o f,, = f is well defined, where 7: N(fy(N)) = fy(N) denotes
the projection. This is the map f in our main theorem.

2. (M, N, ) is afiber bundle

The proof of the following lemma will be given in the next section. Let §, §’,
and » be positive numbers satisfying § < §’.

Lemma 2-1. Let;:[0,t;] > M(i = 1,2) be geodesics on M such that [,(0) =
1,(0), and 1] :[0,¢/] (i = 1,2) be minimal geodesics on N such that 1{(0) = 1;(0).
Suppose

(2-2-1) d(1,(0),1,(2,)) = t, < »,

(2-2-2) d(1,(0),1/(0)) < »

(2-2-3) d(1,(2),1(1])) <»

(2-2-4) 8R/10 <t, <8R and O&'R/10 <1, < &'R.

Then we have

ang( 2(0), 22(0)) - ang[ S 0), 5

o)

<7(8) + 'r(v|8,8') + 'r(s|8,8').

Now we shall show that (M, N, f) is a fiber bundle. It suffices to see that f,
is transversal to the fibers of the normal bundle of f, (N ). (Here we identified
the tubular neighborhood to the normal bundle.) For this purpose, we have
only to show the following lemma.

Lemma 2-3. For each p € M and ¢ € T;(py(N), there exists £ € T, (M)

satisfying

|dfy (&) — dfy (£)|/|dfn (&) | < 7(0) + 7(e]0).
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To prove Lemma 2-3, we need Lemmas 2-4 and 2-9.
Lemma 2-4. Suppose 0 < 8, v < 0/100. Let I,:[0,¢,] > M, 15:[0,25] > N
be minimal geodesics satisfying the following

(2-5-1) d(15(0),13(0)) < »,
(2-5-2) d(1,(13),15(15)) < »,
(2-5-3) 8R/10 < 15,1, < 8R.

Then we have

Dl o)) - ar [ 25
dfM( i (O))Dl'di( a (O)) <1(0) +7(v|0,8) + 7(e|0,8).

| F0) ’
Proof. Put p = 15(0), § = (Dl5/dt)(0), £ = (DI;/dt)0). For an arbitrary
element z of Z satisfying
(2-6) d(p, ju(z))>r+2v or d(p,jy(z)) <r/8—2v,
we have, by (1.3), that

(27) (A (d(jn(2), D)1 <k, (R(d()))] <k,

in some neighborhoods of /5(0) and /5(0), respectively. Next we shall study the
case when z € Z does not satisfy (2-6). Assume that an element y of
B.(jy(z), M) is not contained in the cut locus of p. Let /,:[0,7,] > M and
1;:0,¢;4] = N denote minimal geodesics joining /5(0) to y and /5(0) to jy(z)
respectively. Since oR/10 <r/8 —2e —2v <r + 2¢ + 2vr < oR, we have
o6R/10 < t, < oR, 8R/10 < t; < 8R. Hence, Lemma 2-1 implies

1¢'(d(jn(2),-)) — &(d(y,))|< (o) + 7(v|0,8) + 7(e0,8).

Therefore, by using Assertion 1-5, we have

(2-8) [¢'(d(jn(2), ) = &(d.(-))| < (o) + 7(r]0,8) + 7(¢]0,8).
Then, Lemma 2-4 follows from (2-7), (2-8), and (1-4-3) if we take k sufficiently
small.

Lemma 2-9. For each p € M, we have d( p, f(p)) < 7(¢).

Proof. By the definition of f and Lemma 1-6, we have

(2-10) de(fu(p), In(f(p))) < 3eK'>.

Let ¢ € N be an element satisfying d( p, q) < &. Then, by the proof of Lemma
1-6, we have '

(2-11) dR”(fM(p)’fN(q)) < 3eK'/2,




146 KENJI FUKAYA

Inequalities (2-10) and (2-11) imply
du-(fn(q), In(f(p ) < 6eK'/2.
Therefore (1-4-4) implies
d(q,f(p)) < 6C,e.
The above inequality, combined with d( p, ) < &, implies the lemma.

Proof of Lemma 2-3. By assumption, there exist geodesics /5:[0, 73] > M,
15:10, 6] > N such that L,0) = p, 50) = f(p), d(l(1s). li(13) < e,
(DI/dt)(0) = ¢, and 6R/10 < t5,¢t; < oR. Lemma 2-9 implies d(/5(0), /5(0))
< 7(¢). Therefore, Lemma 2-4 implies

(&) = df 220) | (€)1 < 7(0) + 7(el),

as required.

3. A triangle comparison lemma
To prove Lemma 2-1, we need the following:
Lemma 3-1. Ler /;:[0,2,] > M (i =5,6) be geodesics on M such that
1.(0) = [4(0). Suppose

(3-2-1) 15(0) = I5(15),
(3-2-2) 1d(15(0), 1s(2)) — 6] <,
(3-2-3) 82R <ty <28R and 8R/10 <t <8R.

Then we have

(DIS(O) Dlé(o)) _,,/2‘<T(3)+7(V|a)+7(e!8)

Proof. Let [{:[-1¢/8,t,/8] > N be a minimal geodesic satisfying
d(14(0),14(0)) < e and d(l4(te),l¢(ts)) < 3¢ + ». (The existence of such a
geodesic follows from (3-2-2).) Take a minimal geodesic /,: [0, z;] = M satisfy-
ing /5(0) = /5(0) and d(/,(t;), l¢{(t¢/8)) < e. Let 13:]0,ts] = M be a minimal
geodesic joining /¢(t4) to /;(¢,). Then, since |tg + tg — t,| < 7(») + (&), and
since /, is minimal, it follows that

D10, Z2O)) < 7(+18) + 7(e18).

Let /4:[0, 15/8] = M denote the geodesic such that /|, , ;= /s. Put 15 = 1,/8
(< R). Inequality (3-3) and the fact |t;, — 15| < 7(¥) + T(E) imply

d(1;(17),15(15)) < 7(v|8) + 7(e|8).

(3-3) ang
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Hence, by the minimality of /,, we obtain
(3-4) d(0,15(15)) = t5] < 7(v|8) + 7(e|8).
) Now let 7,-:[0, t;] > BTR(1,(0), M) (i = 5,9) denote the lifts of /, such that
1,(0) = 0. Then, (3-4) implies
(3-5) d(I5(15),14(1)) > d(I5(0),I5(25)) — 7(#|8) — 7(e]8).
On the other hand, by (3-2-3), we have
(3-6) ts/ty <208 and &°R < 5.
Inequalities (3-5), (3-6), and Toponogov’s comparison theorem (see [2, Chapter
2]) imply
Dig

() ang ZEO), ZEO) > /2= 7(8) = 7(218) = 7(¢13).

Next, let /,4:[0,1,0] = M be a minimal geodesic satisfying /5(0) = /,,(0)
and d(l¢(—t¢/9d), ,¢(t1)) < & Then, since

|d(16(2), 1ho(110)) = (ts + 110) | < 7(v) + 7(e),

(016 ). Dlw(o)) .

On the other hand, by the method used to show (3-7), we can prove

(3-9) ang(DlS(O) Dll°(o)) 7/2 — 7(8) — 7(v|8) — 7(¢|d).

The lemma follows immediately from inequalities (3-7), (3-8), (3-9).

Remark that to prove Lemma 2-1 we may assume § = §’. When ¢,, 15 < 8R,
clearly we can take § = §’, and when ¢,,¢; > 8R, Assertion 3-10 implies that
we can replace /5, 1; by L| (o sz} 3110, 55)-

Assertion 3-10. d(/,(8R),5(8R)) < 7(»|8,8") + 7(¢|9,8").

Proof. Take minimal geodesics /{;:[0, R] = N and /;;:[0, t;;] = M satis-
fying 15(0) = 1,,0), d(l,(8R), I};(8R)) < 2v + 2&, 1,(0) = I;,(0), and
d(l;,(t11), 1{1(25)) < e Let 1,:]0,¢,,] > M denote the minimal geodesics
joining /,(8R) to l;,(¢y;). Then, since |t;, + 8R — t};| < 7(v) + 7(e) and since
/;; is minimal, it follows that

ang(D12(8R) D’u(o))«( 18,8") + 7(e18,8).

DIy

it follows that

(3-8)

<7(vi8) + 7(e|8).

Hence we have
d(1,(1,),1,(1,)) < 7(v18,8”) + (] 8,8").
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On the other hand, by assumption, we have

d(L,(1),15(15)) <vo  d(ly(m), 14(85)) <&

Then, we conclude
d(13(13), 111(15)) < 7(v18,8") + 7(e18,8").
Therefore, applying Toponogov’s comparison theorem to N, we obtain
d(15(8R),1;,(8R)) < 7(v|8,8") + 7(e]8,8").

The assertion follows from the above inequality and the fact d(/,(8R),
1/;(6R)) < e.

Therefore, in the rest of this section, we shall assume 8 = 8. Take a minimal
geodesic /,5:[0, t,5] = M joining /,(¢;) to I,(z,). Let 7,:[0, t;] = BTR(1,(0), M)
(i = 1,2,13) denote the lifts to /, such that 7,(0) = 0 (i = 1,2) and /,(0) =
(1) ; 3

Assertion 3-11.  We have d(ll3(t13) 1,(t,)) < (7(8) + 7(v|8) + 1(¢|8)) - 6.

Proof. Put ¢ = d(ll3(t13) I,(1,)). We may assume §°R < 1. Take another
lift l of [/, satisfying i ,(ty) = 113(t13) Let l [0, t]—> BTR(ll(O) M) (l =
14, 15) denote the minimal geodesics joining lz(tz) to 113( t;;) and 1,(0) to 12(0)
respectively. Then Lemma 3-1 implies

ang(Dlz(O) D’“( )) 7/2‘<T(3)+T(u|8)+7(8|s),

ang( 220), 205 (1) - 2

s 22(1), 2 0)) /2] < (6) + (v18) +(e1),

<1(8) +7(v|8) + 7(¢|8),

ang(Dlz(tz) D’“(tl)) 7/2| < 7(8) + 7(218) + 7(e19),

ang( Dll 0), Dlls (0)) _ 71/2’ <7(8) +7(v|8) + 7(¢]8),

DI DI
ang[ 22 (1), 24 (010)) = /2| < 7(8) 4 (518) + (e19),
Hence, a standard argument using Toponogov’s comparison theorem implies
d(15(0), I,(1,))

> {1 —7(8) —7(»|8) —7(e]|8)} —8{7(8) — 7(»18) — (| 8)}.
But /;,(0) = I,(1,). The assertion follows immediately.
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Now we are in the position to complete the proof of Lemma 2-1. Assertion
3-11 implies
1d(1,(1,), (1)) — d(1(1,), 15(1,))] < 26 + 8{7(8) + 7(v]8) + 7(¢]8)}.
On the other hand, we have
Hence, Toponogov’s comparison theorem implies
pi, . DI, Dl Dl
ang( 520, 220)) - ang[ 500, 20

7(8) + 7(v|8) + 7(¢|98),

and 8R/10 <1, <8R (i=1,2).

as required.

4. f is an “almost Riemannian submersion”

In this section we shall verify (0-1-13). First we shall prove the following:

Lemma4-1. |df| <1+ 7(0) + 7(¢|0).

Proof. Since the second fundamental form of fy(N) is smaller than 7(o),
the norm of the restriction of the exponential map to B, x2(Nfy(N)) is
greater than 1 — 1(0) — 7(¢| o) (for details, see the proof of [8, Lemma 7.2]).
Therefore Lemma 4-1 follows from Lemma 2-3 and the definition of f.

Let p € M, q = f(p). Put k = (the dimension of N). We introduce a new
small positive constant 6 and assume o < 6. Take points z{,z},---, z;
of N such that d(gq,z;) = 6R and that the set of vectors
grad ,(d(z1, *)),- - -, grad ,(d(z;, -)) is an orthonormal base of T,(N). Let z,
be a point of M such that d(z;, z]) < &. For x € Byp2p(p, M), put

g(x)= [ d(x, y) dy/Vol(B,(z,, M)),

YE€B/(z;, M)

and let II;(x) denote the linear subspace of T.(M) spanned by
grad ,(g,),- - -,grad (g,), and II,(x) the orthonormal complement of II,(x).
P,;: T (M) — II,(x) denotes the orthonormal projections.

Lemma 4-2. For each ¢ € I1,(x) satisfying |é| = 1, we have

1df (£)] = 1é1] < 7(0) + 7(e]0).

Proof. By Lemmas 2-4, 2-9, and the definitions of f,,, fy and g;, we can
prove

|dfM grad (8)) - di(gradf(x) : )‘< (1(o) + 7(elo)) - K'/2.



150 KENJI FUKAYA

Therefore, by the definition of f, we have
|df (grad . (g,)) — grad (d(z/, )1 < 7(0) + 7(e]0).
It follows that
|1df (grad (8:))| — 1] < 7(0) + 7(e| o).
This inequality, combined with Lemma 4-1, implies Lemma 4-2.
The following lemma is a direct consequence of Lemmas 4-1 and 4-2 and the
fact dimII,( p) = dim N.

Lemma 4-3. Let x € Byg(p, M). Then for each § € T (M) tangent to the

fiber, we have
1P (£)1/1§] < 7(0) + 7(e]0).

Now, (0-1-3) follows immediately from Lemmas 4-1, 4-2, and 4-3.

In the rest of this section, we shall prove several lemmas required in the
argument of the next section.

Lemma 4-4. Let x € Byxx(p, M) and let § € 11,(x) be a vector with
|€| = 1. Then we have

|d(x,exp,(s£)) — 5| < 7(0) — 7(e|o)
and

1d(f(x), f(exp,(s¢))) = 5| < 7(o) = 7(e|0)
for each s smaller than R.

Proof. Put & = df(§), and I'(¢) = exp(¢§’/|¢’)). Lemma 4-2 implies ||§’|
— 1] < 7(o) + 7(e|lo). Let [:[0,R] > M be a minimal geodesic satisfying
d(I(R),!I'(R)) < 4e + R(|¢'| — 1). Put n = (DI/dt)0). By Lemma 2-3 and
the definition of f, we have
(4-5) |df(n) — &) < 7(0) + 7(e|o0).

Hence we have ||df(n)| — |n||/|n| < 7(¢) + 7(&|0), Therefore, Lemmas 4-1,
4-2 imply
(4-6) |Py(n) —nl < 7(0) + 7(e|o).
Inequalities (4-5), (4-6), combined with the facts ¢ € II,(x), df(£) = £, and
Lemmas 4-1, 4-2, imply |n — §| < 7(0) + 7(¢| o). Furthermore, by the defini-
tion of 7, we have

1d(/(x), f(exp.(sn))) = 5| < 7(0) + 7(e] o).
The lemma follows immediately from these facts.

Lemma 4-7. Let x € Bpp(p, M), and &, &, € I1,(x) be vectors such that
[€11 = |€,] < oR. Then we have

|d(exp(£,), exp(§,)) — 2 - £, - sin(ang(§,,£,)/2)| < 7(0) + 7(e| o).
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Proof. By Lemma 4-4, we have
|d(q. f(exp(£))) = 11 < 7(0) + 7(e] o).
On the other hand, Lemmas 4-1 and 4-2 imply
lang(df (£,), df (£,)) — ang(£,,£,)| < 7(0) + 7(e] o).
Hence, applying Toponogov’s comparison theorem to N, we obtain the lemma.
Lemma 4-8. Let x € By:p(p, M) and § € 11,(x) be a vector with |§| = 1.
Then we have
d(f(exp(s£)), f(x)) < (7(a) + 7(8) + 7(e]0,0)) - 5
for each positive number s smaller than 6°R.
Proof. Put l,,(t) = exp(£). Since § € I1,(x), we have

(4-9) ang(g’ gradx( gl)) = 77/2
Lemma 4-8 follows immediately from Lemmas 4-1, 4-2, 4-3, and the following;:
Assertion 4-10. For each t < s, we have

DI
ang(Tm(tLgrad[m(z)(gi)) - 77/2 < 7(8‘0) + 7(0)

Proof. Let !, :[0,¢t,] > M (k = 17,18) be minimal geodesics joining x and
l16(1) to z, respectively. By the definition of g;, we can take /;; and /;4 so that
they satisfy

(411) ang( 22(0), ~grad (5] < 7(c19),

(4-12) ang( Z22(0), ~grad, 0 (5,)) < r(el6).

Let 1 (j =16,17, 18) denote the lifts of /; (j =16,17,18) to Bg(x, M)
satlsfymg I4(0)=1,000=0 and [,(0) = llé(t) and let [,4:[0,1,0] =
Br(x, M) denote the minimal geodesic joining ,(,7) to I 4(t;5). Put I;g =
exp, /5. Then Lemma 3-1 implies that one of the following holds:

(4-13-1) tio < 0°R,

ang( 22 (1), 2(0)) = 7/2| < (6) + 7(210).
(413-2) DI DI

ang( 2 (1), 22 (1) = 7/2| < 7(6) + 7(219).

If (4-13-2) holds, then applying Toponogov’s comparison theorem to By(x, M),
we obtain

t>(1—1(e)8) —1(8)) - t,6.
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Then, in each case, we have d(I},(t,,), [;s(t;5)) = 1,0 < 20°R. Therefore, by a
standard argument using Toponogov’s comparison theorem, we can prove
(4-14)

DI DI DI DI
ang( Z2(0), Z2(0)) - ang[ 220, 22 0))

Assertion 4-10 follows immediately from (4-9), (4-11), (4-12), and (4-14).

<7(0) + 7(e|98).

5. The fiber in an infranilmanifold

In this section we shall verify (0-1-2). The following is a direct consequence
of Lemma 2-9.

Lemma 5-1.  The diameter of the fiber, f \(q), is smaller than 7(e).

If we can obtain an estimate of the second fundamental form of f~!(g),
Lemma 5-1 combined with [6, 1.4] would imply (0-1-2). But as was remarked at
§1, the map f is only of C'-class and not necessarily of C>-class. Hence, it is
impossible to estimate the second fundamental form. Then, instead, we shall
modify the proof of [6, 1.4] in order to verify (0-1-3). The detailed proof of [6,
1.4] is presented in [1]. Therefore, in the rest of this section, we shall follow [1],
mentioning the required modifications.

We introduce a new positive constant p smaller than §2R. Let 7, denote the
local fundamental pseudogroup introduced in [6, 5.6] or [1, 2.2.6] (in [1] the
terminology, local fundamental pseudogroup, is not introduced, but the nota-
tion =, is defined there). Here we take p as the base point. Following [1, 2.2.3],
we let * denote the Gromov’s product on ,. For a vector space V, the symbol
A(V') denotes the group of all affine transformations of V. Let m:m, —
A(T,(M)) denote the affine holonomy map introduced in [1, 2.3], r its rotation
part, and ¢ its translation part. The following lemma is proved in [1, 2.3.1].

Lemma5-2. Fora,fB € ,, we have

d(r(B)or(a),r(B*a)) <|t(a)|-|t(B)],
lt(m(B)om(a))| = |t(B+a)] < |t()]|t(B)(1t(a) + (B)))-

Next we shall prove the following:
Lemma 5-3. For each o € ,, we have

|Pyor(a)e Py — P <1(8)+1(c]|8)+1(p|0) +7(e|0,8).

Proof of Lemma 5-3. Put s = (the length of «). Let £ be an arbitrary
element of IT,( p) satisfying |§| = OR. First we shall prove

(5-4) d(exp(¢),exp(r(a)(£))) < 7(p|0).
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In fact, let £ € T,(BTx( p, M)) be a vector satisfying (d(expp))(é) =§ leta
curve @:[0,s] = BTg(p, M) denote the lift of « satisfying a(0) = 0, and let
fer, a(s)(BTr( p, M)) be a vector satisfying d(expp)(é) = r(§). By the defini-
tion of r, the vector £ is a parallel translation of £ along a. Let £(1)

T1)(BTr(p, M)) denote the parallel translation of £ along a|[0 - Set J, (u)
= D/dt|,_ " expa(,)(u £(1)). Since J,(+) is a Jacobi field along the geodesw
u— expa(,)(u £(t0)), and since |J, (0)| =1, it follows that |J, (1)| has an
upperbound depending only on n and |€|. Therefore, £(s) = £ 1mphes that

d(exp(£).exp()) < [ 17,1)1di < 7(p10).
Inequality (5-4) follows immediately.
(5-4) and Lemma 4-4 imply
(5-5) 1d(p,exp(r(a)(£))) = Ir(a)(§)| < (o) + 7(p|8) + 7(e]0).

Next we shall prove the following:
Assertion 5-6. We have

1Py (r(a)(£)) = r(a)()1/1r(a)(§) < 7(8) + 7(0|0) + 7(p|0) + (|0, 0).

Proof.  Put Ly(t) = exp,(t - r(a)(§)/I€) and 15, = |§|. Let /3,:[0, 15] = N
denote the minimal geodesic satisfying /5,(0) = g, d(/5(Z5), I50(t5)) < &, and
l5:10,7,;] = M be a minimal geodesic joining p to exp,(r(a)(£)). Then, by
inequality (5-5) and Lemma 2-9, we can apply Lemma 2-1, and obtain

(57)  fang[ Z2-(0). r(a)(®))

On the other hand, by Lemma 2-4 and the definition of f, we have

‘ (DlZl(O)) Dl21 0)

<7(0)+1(c|0) +7(p|8) + 7(e|0,6).

< 1(o) +7(e|0).
It follows that
a(Z20)|-|Z20]| /|« Z2 o)

Therefore, Lemmas 4-1 and 4-2 imply

Dl,, 0), Pl( ;tzl (O))) < 1(0) + 7(¢| o).

Inequalities (5-7) and (5-8) immediately imply the assertion.
Now, Lemma 5-3 follows immediately from inequality (5-5) and Assertion
5-6.

<7(0) + 7(e|o).

(5-8) ang(
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We put 7=7(0)+ 1(p|0) + 7(c|8) + 7(¢| 0, p, 0). The following lemma
corresponds to [1, Proposition 2.1.3].

Lemma 5-9. For each ¢ € I1,( p) with |§| < p, there exists a € m, salisfy-
ing |€ — t(a)| < p.

Proof. By Lemma 4-8, we have

d(f(exp(§)),q) <-4

This formula and Lemma 5-1 imply that

d(exp(£), p) < (e) + - £|.

The lemma follows immediately.

Next we shall prove a lemma corresponding to [1, 2.2.7]. Following the
notations there, we define a group 4, as follows. Let W(,) be the free group
of words in the elements of 7; let Ny(m,) be the set of words aBy~! where
y = a*p; let N(m,) be the smallest normal subgroup in W(m,) which contains
No(m,). Put 7, = W(m,)/N(m,).

Lemma 5-10. If p is smaller than a constant depending only on n and p., and
if o and € are smaller than a constant depending only on n and R, then there
exists a natural isomorphism b @, = m(f “1(q)).

Proof. Since f is a fiber bundle and since any p balls in N are contractible,
we see that m(f!(q)) is isomorphic to the image of 7,(B.(p, M)) in
m(Be(p, M)), where 0,e < 7(C) < C < C’/2 < C’ < p. Using this remark,
we can prove Lemma 5-10 by the same method as [1, Proposition 2.2.7].

Using Lemmas 5-2, 5-9, and 5-10, the arguments of [1, Chapters 3 and 4]
stand with little change. Then, we obtain the following result which corre-
sponds to [1, 4.6.5].

Lemma 5-11.  We can choose p such that the following holds.

(1) The natural map m, — #, is injective and %, = 7715 f7(q), p)-
(1) #, has a nilpotent, torsion free normal subgroup T, of finite index. We put

r,= f‘p N,
(i) T, is generated by m loops vy, - +,v,, such that each element y € T, can
uniquely be written as a normal word y =y} --- ylm;, these generators are

adapted to the nilpotent structure, i.e.
Yj'<Yl""’7i>'Yj_1=<'Y1»"',Yi> 1<ig<jgsm).

Here m denotes the dimension of f ~'(q).
Furthermore, Corollary 3.4.2 in [1] implies the following.
Lemma5-12. If a € T,, then |r(a)| < .
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Next we shall follow the argument of [1, Chapter 5]. By Corollary 5.1.3 of
[1], we have the following:

Lemma 5-13. The structure of nilpotent groups on fp =(Z",-) can be
extended to R". Namely there exists a nilpotent Lie group G = (R", -) such that
r , is a lattice of G.

Following [1, 5.1.4], we shall introduce a left invariant metric on G.

Definition 5-14. Put X, = P,(1(y;)), Y, = exp’}(y;) € L. Here L denotes
the Lie algebra of G. We introduce a scalar product on L such that the linear
map given by X; — Y, is an isometry between II,(p) and L, and extend this
product by left translation to a Riemannian metric on G.

Let B be a subset of M containing B,,(p, M) and satisfying m(B) =
7,(f %(q)). Let B denote the universal covering space of B, and 7: B — B the
projection. Take a point p in 7 -!( p). By the method of [1, 5.4], we can prove
the following two lemmas.

Lemma 5-15. For each a € Fp, we have

ld(p,a(p)) —dg(e,a)| <.

Here d is the distance induced from the metric defined in 5-14, and e denotes
the unit element.

Lemma 5-16. The absolute value of the sectional curvature of G has an
upperbound depending only on the dimension.

Let f;: G — LZ(I‘p) be the map defined by x — (h(dg(x, Y(f’))))yerp, where
h is a function satisfying condition (1-3), and as the number r in (1-3) we take
a constant depending only on p, R, and n. The restriction of f; to B,(e,G) is
an embedding. Let dz:B — Lz(I‘p) denote the map defined by x —
(h(d(x,Y(P))yer, Now using Lemmas 5-15 and 5-16 we can repeat the
argument of §§1, 2 and obtain the following. The symbol C; below denotes a
constant depending only on p, R and, n.

Lemma 5-17. Let B’ be the Cs-neighborhood of {v(p)|y € I,_ }. Then
there exists a map ®: B’ — B (e, G) such that the following hold:

(5-18-1) @ has maximal rank.

(5-18-2) If x € B', y € [, v(x) € B’, then y(®(x)) = ®(y(x)).

(5-18-3) If x € B’, ¢ € T (B’) satisfy d®(gx) = 0, then we have

ang(dn(§),1,(x)) <

(see Lemma 4.3).
Now we are in the position to complete the proof of (0-1-2). Put F =
77} f~Y(q)). By Lemma 5-1, we may assume F C B’ replacing & by a smaller
one if necessary. Hence, by Lemma 5-17, we obtain a map F/ I‘ - G/ T . Fact
(5-18-3) and Lemma 4-3 imply that this map is a covering map. Hence F "/ F is
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a nilmanifold. On the other hand, F/I , is a finite covering of f “(q).
Therefore f~!(q) is an infranilmanifold. Thus the verification of (0-1-2) is
completed.
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§0. Introduction.

The purpose of this paper is to investigate the phenomena that a sequence
of Riemannian manifolds M; converges to ones with lower dimension, N, with
respect to the Hausdorff distance, which is introduced in [11]. We have studied
this phenomena in and proved there that M, is a fibre bundle over N with
infranilmanifold fibre. In this paper, we study which fibre bundle it is, and
give a necessary and sufficient condition. We will describe it in Theorem 0-1
and 0-7.

THEOREM 0-1. Let M; be a sequence of n-+m-dimensional compact Rieman-
nian manifolds and N be an n-dimensional compact Riemannian manifold. Assume

(0-2-1) M, converges to N with respect to the Hausdorjf distance,
(0-2-2) |sectional curvature of M;| < 1.

Then, for sufficiently large i, there exists a map n;: M;—N such that the follow-
ing hold.

(0-3-1) =, is a fibre bundle.

(0-3-2) =Y p)=G/I", where G is a nilpotent Lie group and I" is a discrete group
of affine transformations of G satisfying [I': GNI']J<oo. Here we put the
(unique) connection on G which makes all right invariant vector field parallel,
and G is regarded to be a group of affine transformations on G by right
multiplication.

(0-3-3) The structure group of m; is contained in the skew product of
C(G)/(CG)NT) and Autl’, where C(G) denotes the center of G.

REMARK 0-4. Statements (0-3-1) and (0-3-2) were proved in [7].

REMARK 0-5. [7, 0-1-3] also holds. Namely x; is an almost Riemannian
submersion in the sense stated there.

This research was partially supported by Grant-in-Aid for Scientific Research (No.
63740014), Ministry of Education, Science and Culture.
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REMARK 0-6. It is well known that the group =,(Diff (G/I")) is not finitely
generated in general, but 7,(C(G)/(C(G)N")XAutl") is always finitely gener-
ated. Therefore, there exist a lot of fibre bundles which satisfy (0-3-1) and
(0-3-2) but do not satisfy (0-3-3).

THEOREM 0-7. Let M be an n+m-dimensional manifold, N an n-dimensional
complete Riemannian manifold with bounded sectional curvature, and w: M—N be
a smooth map. Suppose that = satisfies (0-3-1), (0-3-2) and (0-3-3). Then, there
exists a family of Riemannian metrics g. on M such that the following hold.

(0-8-1) The sequence of Riemannian manifolds (M, g.) converges to the Rieman-
nian manifold N, with respect to the Hausdorff distance.

(0-8-2) There exists a constant C independent of ¢ such that
Isectional curvature of (M, go)| £ C.

Theorems 0-1 and 0-7, combined with [9, Theorem 0-6], imply the following :

THEOREM 0-9. For each m and D, there exists a positive constant e(n, D)
such that the following holds. Suppose an m-dimensional Riemannian manifold M
satisfies

(0-10-1) wvolume of M < e(m, D),

(0-10-2) diameter of M < D,

(0-10-3) |sectional curvature of M| £ 1,

(0-10-4) =m,M)=1,  for k=2.

Then, Minvol M=0, where Minvol M is defined in [10].

Theorem 0-9 is a partial answer to the following

PROBLEM 0-11. Does there exist &, such that Minvol M<e,, implies Minvol M
=07’

If we can remove the conditions (0-10-2) and (0-10-4), we will have the
affirmative answer.

The organization of this paper is as follows. Sections 1 to 5 are devoted
to the proof of Theorem 0-1. The outline of these sections is in §1. In the
course of the proof, we shall prove some results on eigenfunctions of Laplace
operator, which improve one of [6]. These results may have an independent
interest. In §6, we shall prove Theorem 0-7. In §7, we shall give an orbifold
version of Theorem 0-1. The proof of Theorem 0-9 is in §7. In §8, we add
some remarks concerning the case when the limit space is not a manifold.

The author would like to thank Max-Planck-Institut fiir Mathematik where
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this work is done. He would also like to thank Prof. T. Yamaguchi and the
refree who pointed out that the orbifold case is not completely analogous to the
manifold case.

NOTATION. For a Riemannian manifold M, Vol M denotes the volume of
M, Diam M denotes the diameter of M. For a metric space X and x&X we
put
Bp(x, X) = {yeX | d(x, y)<D}.

B(C) stands for B:(0, R*). For two metric spaces X, Y, dx(X, V) denotes the
Hausdorff distance between them which is defined in [1I], lim zX;=X means
l'imi..de(X, X,)ZO.

§1. Outline of the proof.

Our main Theorem 0-1 is a consequence of the following:

THEOREM 1-1. Let M; and N be as in Theorem 0-1. Then, for each suffici-
ently large i, there exists a fibration m;: M;—N such that the following hold.

(1-2-1) For each p=N, there exists a flat connection on m7'(p), which depends
smoothly on p.

(1-2-2) There exists a nilpotent Lie group G and a group of affine transforma-
tions I' of G such that =7 (p) is affinely diffeomorphic to G/I" and that
[(I:I'NGl< 0.

Theorem 1-1 is a generalization of Ruh’s result [14], which corresponds
to the case when N is a point.

Theorem 0-1 is a corollary of Theorem 1-1. In fact, let =;: M;—N be as
in Theorem 1-1. Then, by (1-2-1) and (1-2-2), we can find (U}, ¢ ;) such that

(1-3-1) U, =1, 2, --- is an open covering of N,
(1-3-2) ¢,,; is a diffeomorphism between #3*(U;) and U;xXG/T,

(1-3-3) the restriction of ¢, ; to each fibre gives an affine diffeomorphism be-
tween n37(p) and {p} XG/I'.

By (1-3-3), the transition function of z; with respect to the chart (U, ¢;. ;) is
contained Aff(G/I"), the group of affine diffeomorphism of G/I'. We may
assume that G is simply connected. Then, we have the following:

LEMMA 1-4, There exists a split exact sequence
1—> G/ I'NC(G) — A (G/]") — Autl —> 1.
Here C(G) denotes the center of G.
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We omit the proof, which is straightforward. Let Aff’(G/I") be the sub-
group of Aff(G/I') generated by C(G)/I'"C(G) and Autl’. Then we have
Aff(G/I")/Aff"(G/)=R*. Therefore the structure group of the Aff(G/I")
bundle =;: M;—N can be reduced to Aff'(G/I’). And Aff"(G/I') is a skew
product of C(G)/I'NC(G) and Aut(I"). This implies Theorem 0-1.

The proof of Theorem 1-1 occupies Sections 2 to 5. Since it is long, we
shall give an outline first. The proof uses a parametrized version of Ruh’s
argument in [14]. To apply it, we have to improve the result of and to
prove that the fibres of the fibre bundles f;: M;— N obtained there are almost
flat. ({7, 0-1-2] implies that fibres are diffeomorphic to almost flat manifolds.
But, in [7], we did not obtain the estimate of the curvatures of the fibres.)
Namely we shall prove Lemma 1-6 below. As will be remarked at the begin-
ning of §5, we can assume, without loss of generality, that

(1-5) |VER(M;)| < Cy .

Here R(M,) is the curvature tensor, | | the C’norm, and C, a constant inde-
pendent of ;. For x=M;, we let exp,..: B(r)—»M; denote the exponential map
at x. We fix a coordinate system (Uj, ¢;): U;SR", ¢;: U;—N.

LEMMA 1-6. Let M; and N be asin Theorem 0-1. Assume that M, satisfies
(1-5). Then, for sufficiently large i, there exists a fibration m;: M;—N such that
i 1S an almost Riemannian submersion in the sense of [7, 0-1-3], and that

(1-7) 0'*(¢pomi€Xpa, 1),

I < C
. 0x%...gxen | T T7C

holds for each multiindex a. Here C, denotes a constant independent of 1.

and the fact that z; is a Riemannian submersion imply that the sec-
tional curvatures of the fibres of z; are uniformly bounded. Hence, the fibres
are almost flat for sufficiently large ;. Therefore, shows that there exists
a flat connection on each fibre satisfying (1-2-2). A little more argument is
required to obtain a connection on zx37'(p) depending smoothly on p. This is
done in §5.

The proof of Lemma 1-6 is performed in Sections 2 to 4. Recall that in
[ 7] we used embeddings M;, No.R? in order to construct the fibration M;—N.
The embeddings there were constructed by making use of the distance function
from a point. To obtain an embedding satisfying [I-7), we have to approximate
this embedding by one with bounded higher derivatives. The approximation
we used in [7] is not sufficient for this purpose, because it is not of C®-class.
In this paper, we use another embedding constructed by making use of eigen-
functions of Laplace operator. This embedding is appropriate for our purpose
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since eigenfunctions enjoy uniform estimate of higher derivatives. In order to
apply the argument of [7, §§1, 2] to our embedding, we need to study the
convergence of eigenfunctions. In [6], we introduce a notion, measured Haus-
dorff topology and proved that the k-th eigenvalue of the Laplace operator on
M; converges to that of the operator Py,,, defined in [6, §0], if M; converges
to (N, p) with respect to the measured Hausdorff topology. We also proved an
“L*convergence” of eigenfunctions there. But, for our purpose, L2-convergence
is not sufficient. We have to prove a “C*-convergence”. (Precise statement will
be given as Theorem 3-1.) For this purpose, we shall begin with proving that
eigenfunctions of Py,,, are smooth. [6, Theorem 0.6] implies that the measure
¢ is a multiple of the volume element £y by a continuous function Xy. If Xy
is of C'-class, our operator Py, ., is written as

(1-8) Py, iy = Adyo—<Lde, dly>/Xy .

Therefore, to prove that the eigenfunctions of Py, ,, are smooth, it suffices to
show that Xy is smooth., This is done in §2. In §3, we shall prove the “C!-
convergence”. The proof of Lemma 1-6 is completed in §4.

REMARK. In 1984, S. Gallot proposed to embed Riemannian manifolds using
heat kernels, in order to study Hausdorff convergence. The embedding we use
in this paper is essentially the same as Gallot’s.

§2. Smoothing density functions.

LEMMA 2-1. Let M; be a sequence of n+m-dimensional compact Riemannian
manifolds satisfying (0-2-2) and (1-5), and X be a metric space, i a probability
measure on it. Suppose M,; converges to (X, p) with respect to the measured
Hausdorff topology defined in [6, 0.2 B]. Then there exists a function Xx on X
such that

(2-2-1) p =XxX(the volume element of X),
(2-2-2) Xx is of C=-class,
(2-2-3) Xx satisfies [6, 0.7.1 and 0.7.3].

ProorF. In [6, 0.6], we have already proved (2-2-1) and (2-2-3). By the
argument in [6, § 3], it suffices to show (2-2-2) in the case when X is a com-
pact Riemannian manifold N. Put V;=VolM,, puy,=%24,/V:, where 24, denotes
the volume element of M;. By the definition of measured Hausdorff topology,
we can take e;-Hausdorff approximation f;: M—N such that (f)«(us,) con-
verges to g with respect to the weak* topology. (Here ¢;—0. The definition
of the Hausdorff approximation is in [8, 1.6].) In view of [7], we may assume
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that f; is a fibration. Then, by [6, §3], the functions p—Vol(f7 (p))/V;, i=
1,2, --- on N converge, with respect to the C’norm, to a continuous function
Ay satisfying (2-2-1) and (2-2-3). We shall prove that Xy is of C=-class.
Choose (not necessary continuous) section ¢;: N—M; to f;,. Take an arbitrary
point p, of N and put p;=¢(p,). We shall prove that Xy is of C=-class at p,.
Put B=B(1). Let Exp;: B—M; be the composition of a linear isometry B—
Tp,(M;) and the exponential map T, (M;)—M;. Let g; denote the Riemannian
metric on B induced by Exp; from the metric on M;. In view of [I-5), we
may assume, by taking a subsequence if necessary, that g; converges to a
metric g, with respect to the C>-topology. Now, recall the argument in 8,
§ 3], where we constructed a sequence of local groups G; converging to a Lie
group germ G, such that

(2-3-1) G; acts by isometry on the pointed metric space (B, g,), 0),
(2-3-2) ((B, g4), 0)/G; is isometric to a neighborhood of p; in M;,
(2-3-3) G acts by isometry on ((B, g.), 0),

(2-3-4) ((B, go), 0)/G is isometric to a neighborhood of p, in N.

Let P;: (B, g.)—M,, P: (B, go)— N denote natural projections. (In fact, P;=Exp;.)
In our case, since N is a manifold, the action of G on B is free. Let g denote
the Lie algebra of G. Choose a basis X, ---, X,, of g. We can regard X, as
a Killing vector field on (B, g,). For x& B, we put

(2-9) 1(x) = [ X{(N - AXp(2)].

Since the nilpotent Lie algebra g is unimodular, it follows that % is G-invariant.
Therefore, there exists a function X on a neighborhood of p, such that X-p=7%.

Clearly X is of C=-class. Hence, to prove Lemma 2-1, it suffices to show the
following :

LEMMA 2-5. Xy/X is a constant function on a neighborhood of p..

PROOF. Put
, 1
(2-6-1) Gi={reG: | dw, ¢p(r(0), <5}
, 1
(2-6-2) ¢’ ={reG | des.a(70), <5}

There exist a neighborhood U of p, in N and a C®-map s: U—B such that
(2-7-1) s(po) =0,

(2-7-2) P-s = identity,

(2-7-3) d(.4(s(q), 0) = d (g, po) holds for g=N.
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Put

(2-8-1) Ei(g, 0) = {x< B | there exists r€G; such that d, (%, rs(g))<0},
(2-8-2) E(g, 8) = {x=B | there exists 7=G’ such that d, z(x, 75(g))<6}.

SUBLEMMA 2-9. There exists a positive number C independent of q such that

1 Vol(Edg, 8)
b i G 5% - Vol (/5 (q)

The proof of the sublemma will be given at the end of this section. Next
we see that

—c|=0.

: Vol(Eug, 0)) .| _
(2-10) lim B | Vol(Edq, 9)) 1"0

holds for each ¢>0. Thirdly, we put

G'(g) = {rs(¢) | reG'}.
Then, clearly we have

(2-11) lim Vol (E«(g, 0))/0") = W Vol(G'(¢))
. Vol(G'(g)) __ Vol(G'(g")
@12 W )
for g, ¢’€U. Here n=dim N, W,=Vol B*(1). [2-11) and [2-1Z) imply
(2-13) lim Yol (Ed(g, 0))-X(q") _

i< VOL(Eo(g, 0))-X(g)
From Sublemma 2-9, Formulas and we conclude
-1 4
lim Vol (f7Hg)X(g")

e VOL(f7Hg M)
On the other hand, we have

1.

. Vol (f7g) Xn(@"))

| —1/=0.
S Vol (777 Mx (@) 0
Therefore,

An(gX(q") _
An(g"X(q)

This implies Lemma 2-5.
PROOF OF SUBLEMMA 2-9. Put s;=PF,es: U—M,;. Choose an open subset
Vi(0) of B such that the following hold.
(2-14-1) If reG}, v#1, then yV,(0)NVi(0)=O.
(2-14-2) Py(V(d)) is a dense subset of B(si(q), M,).
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(2-14-3) Vi(0)C By(s(g), (B, g:) and if x&< V;(9), r=Gi, then

d(r(x), s(g)=d(x, s(q)).
Put Ei(q, 0)={y(x) | reG}, x=Vd)}. Then, by the definition of V,(d) and
E.(q, 8), we have Ei(q, 0)=FEg, 0). Hence, by (2-14-1), we have

(2-16) Vol (V(8) = YQ%y 0)) '

On the other hand, put
¢ =supd(si(p), ps), d; = sup Diam f7'(p).
pEU PEU

Then, lim;_..c;=lim,;_.d;=0. It is easy to see

2-17) Fi¥Bi-a,-e(, N) C Bi(sd@), M) C fBsvayee g, N)),
(2-15), ﬁZ—lGﬂ, and [(2-17) imply

. #G;-SPGBMN)Vol(fz*(p))-QN
2-18) Him - Vol (Exg, ) =1

where £y is the volume element of N. Since the family of functions p—
log (Vol (f7Xp))), i=1, 2, ---, is equicontinuous ([6, Lemma 3.2]), it follows that

. SIJEB(;(q.N)VOI (fi_l(p))'QN
(&-19) A R LA O ) B
The sublemma follows immediately from [2-18) and [2-19). Q.E.D.

§3. C('-convergence of eigenfunctions.

THEOREM 3-1. Let M; and (X, p) be as in Lemma 2-1. Then, there exist
smooth maps f;: M;—X such that the following hold.
(3-2-1) f; satisfies [7, (0-1-1), (0-1-2), (0-1-3)], if X is a Riemannian manifold.

(3-2-2) (foupea;) converges to p with respect to the weak* topology, where

(3-2-3) Let ¢;,x be a k-th eigenfunction of the Laplace operator on M; satisfying
SuPzew,; | @i, k()| =1. Then there exist functions ¢i , on X such that

(@) @i is a k-th eigenfunction of Pcx, .,
(b) for each p;=M;, we have

[ i, (D)) — @i 2 (f (P < &i(k),
(¢) for each vector V,;&T(M,), we have
| Vilei, ) —(fx(Vi)oi, )| < elk)-1V.],
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where ¢(k) denotes positive numbers depending only on i and k and
satisfying lim;_..e;(k)=0.

REMARK. In the case when X is a manifold, (3-2-1) means that f; is a

fibration with infranilmanifold fibre.

First, we shall prove C’-convergence, (b). We begin with the following
Ascoli-Arzela type lemma.

LEMMA 3-3. Let X; and X be compact metric spaces, ¢, : X—X,; e;-Hausdorff
approximation, lime,;=0, and ¢; be continuous functions on X;. Assume
(3-4-1) ¢4, 1=1,2, 3, -+, are uniformly bounded,

(3-4-2) ¢;, i=1,2,3, ---, are equi-uniformly continuous. Namely for each ¢>0,
there exists >0 independent of i, x and y such that d(x, y)<4d, x, yeX;
implies |p(x)—@y)| <e.

Then, there exist a subsequence i; and a continuous function ¢ on X such that
1. — ;0@ — .
lim sup lo(x) =i, (x)| =0

The proof is an obvious analogue of that of Ascoli-Arzela’s theorem, and
hence is omitted. Next we need the following:

LEMMA 3-5. ¢i., =1, 2, 3+, are equi-uniformly continuous for each k.
Proor. By [6, 4.3], we have
PV e, )l < k-] VIlgsllze/Vol (M)'?
for each VeT(M;). The lemma follows immediately. Q.E.D.

Now we shall prove (3-2-1), (3-2-2) and (3-2-3) (a) and (b). We constructed,
in [7, Theorem 0-1], the map f, satisfying (3-2-1) and (3-2-2). Suppose that
we can not find f, satisfying (3-2-3) (a) and (b). Then, there exist >0 and
a subsequence 7; such that

(3-6) rg}‘l{p I@ij.k(x>—‘§0°fij<x)| >0

holds for each ; and each k-th eigenfunction ¢ of Pcx,,,. On the other hand,
Lemmas 3-3 and 3-5 imply that we may assume, by taking a subsequence if
necessary, the existence of a continuous function ¢. on X such that

(-7 im sup [, ¢(x)—@ufi(x)] =0.

Jooo .reMij

Moreover, [6, Theorem 0.4] implies that the L-distance between ¢; ;°¢; and the
k-th eigenspace of Pcx,, converges to 0, where ¢j:X—>M¢j is a measurable
map satisfying fijogb,-:identity. Therefore, (3-7) implies that ¢. is a k-th eigen-



342 K. Fukava

function of Pcx,,. This contradicts [3-6)
REMARK. We have not yet used Assumption 1-5.
To prove (3-2-3) (c), we first remark the following elementary inequality
LEMMA 3-8. Let ¢:(a—s¢, b+e)—>R be a C:-function satisfying

d*p
de® |

sup
tera,b]

Then we have

i CZ) (a)— go(b;:g;(a) i < C-(b—a).

Secondly, [6, 4.3.2] implies the following.

LEMMA 3-9. There exists a constant C, independent i such that the following
holds. Let [:[0, 1]>M, be a geodesic with unit speed. Then

| 2 . o
sup d* (@i, x°0)

sup S ey

By a method similar to [6, § 7], we may assume that X is a manifold, N.
Then, since the k-th eigenspace of Py, ,, is finite dimensional and consists of
smooth functions, it follows that
i sel) |

dt* |
holds for each geodesic /: [0, 1J—-N with unit speed.

Now let V;=T(M;) be a unit vector. We put L(t)=exp(t- V), lit)=
exp (t-(f)«(V)/|(fx(V]). Then, by [7, §4], we have

(3-10) sup < Cy,

te[o0,11

(3-11) lim sup_d(fuli(t), L) =0,
(3-12) limsup|(f)«(Vl = 1.

Let 0 be an arbitrary small positive number. Lemmas 3-8 and 3-9 imply

Sot E° 11(5) @1 k° Z(O)
0

On the other hand, by Lemma 3-8, Formulae [3-10), [3-12), we have
(sz 1(5) Sozk Z<O)

(3-13) | Vi(QDi, r)— ’ < Cy0

(3-14) limsup (f x( Vgl e)— 5 < ¢4
Furthermore (3-2-3) (b) and imply
(3-15) lim sup 1p:.s=dilt)—gh4=Li0)] =0.

100 tE[0
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From Formulae [3-13), [3-14), [3-15), we conclude
11_23\ Vi(‘Pi.k)—(fi)*( ViXei, )l = (Cr+Ch)o.

Q.E.D.

§4. Estimating derivatives of the fibration.

In this section we shall prove Lemma 1-6. Let M; and N be as in Theorem
0-1. By [1], we obtain, for each §>0, metrics g;; on M; such that
(4-1-1) lgi5—g: <),
(4“‘1"2) Ika(A/[n gi,5>l < C(k’ 5) .
Here g; denotes the original Riemannian metric on M;, and 7(9), C(k, J) are
positive numbers independent of 7 and satisfying lim;.,t(0)=0. By taking a sub-
sequence if necessary, we may assume (M;, g:5), i=1,2,---, converge to a

metric space N; with respect to the Hausdorff distance. Then, [8, Lemma 2-3]
implies that N; is diffeomorphic to N and

(4-2) limd. (N, N;) =0,

where d; denotes the Lipschitz distance defined in [11]. Therefore, it suffices
to show Lemma 1-6 for M;; and N;. Hereafter we shall write M; and N in
place of M, ; and N;. Thus, we verified that we can assume while prov-
ing Lemma 1-6.

By [6, Corollary 2-11], we may assume, by taking a subsequence if neces-
sary, that M; converges to (N, Xy£2y) with respect to the measured Hausdorff
topology. Then, Lemma 2-1 implies that Xy is smooth. Hence the operator
Py, xyoy is elliptic with smooth coefficients. It follows the following:

LEMMA 4-3. There exists J such that the map I,: NoR’ defined by I,(P)=
(@i(P), -+, ¢s(P)) is a smooth embedding. Here ¢, denotes a k-th eigenfunction
of P(N,xNQN)-

Next, we apply Theorem 3-1 to obtain eigenfunctions ¢, , and ¢; , satisfy-
ing (3-2-3). Put

Ii(x) = (@i,1(x), =+, @i,5(x)) .
Then, there exists a sequence of isometries L; of R’ such that L;-I; converges
to I, with respect to the C*-topology. We have the following:

LEMMA 4-4. There exist smooth maps I,: Mi—R’, Iy: N->R’ such that
(4-5-1) 1, is an embedding,
(4-5-2) lim sup [[(x)— 1o fo(x)] =0,

im0 2EM g
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(4-5-3) lim sup [(J)(V)—Loe fi)(V)I =0,
i—o0 VET (M)
(4-5-4) 4% < C*I 1.

Here fi,: M;—N 1is a fibration of §3, and C is a constant independent of 7 and k.

Proor. Put I,=L.,-I{. We have already proved (4-5-1), ---,[(4-5-3)
Formula follows from the definition of /; and the estimate of the eigen-
functions of Laplace operators (see [6]). Q.E.D.

Now, put
B;N(N) = {(p, w) =R’ | |u|<d, u is perpendicular to ([o)«(T ,(N))}.

Let E: B;N(N)—R’ denote the map E(p, u)=I,(p)+u. Then, by (4-5-1), we
can choose d such that E: B;N(N)—R’ is a diffeomorphism to its image. Then,
by [4-5-2), we see that, for sufficiently large 7, we have I, (M,)CE(B;N(N)).
Thus, the map m;=P-E-'<I; is well defined, (P: E(B;N(N))—N is defined by
P(p, u)=p). As in [7, §2], the fact implies that z; is a fibration.
Facts and imply that z; satisfies [I-7). The proof of Lemma 1-6

is now complete.

§5. The construction of a smooth family of connections.

In this section, we shall complete the proof of Theorem 1-1. Then, Lemma
1-6 implies the following:

LEMMA 5-1. Let m;: M;—N be as in Lemma 1-6. Then, there exists a con-

stant C independent of 7, such that
|the second fundamental form of m7'(p)l < C.

On the other hand, we have

(5-2) lim sup Diam (z7'(p)) = 0.
i— PEN

Hence, by [14], we can construct, for each ; and p= N, a flat connection on
w7Y(p) such that n37%(p) is affinely diffeomorphic to G/I', where G and I are
as in Theorem 1-1. Hence it suffices to modify these connections so that they
depend smoothly on p. If the flat connection constructed in were canonical,
then there would be nothing to show. But, unfortunately, the connection there
depends on the choice of the base point on an almost flat manifold. Therefore,
we should check carefully the construction there. In [147], the construction of
the connection is divided into three steps. In the first step, a flat connection
V¥V’ with small torsion tensor is constructed. The connection ¥V’ is used, in the
second step, to construct a flat connection with parallel torsion tensor. In the
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third step, it is shown that almost flat manifolds equipped with a flat connection
with parallel torsion tensor are affinely diffeomorphic to G/I". Roughly speak-
ing, we do not have to modify the arguments in the second and the third steps,
because connections constructed there depend smoothly on the data given in the
first step.

Now, we shall present the parametrized version of the first step. First we
change the normalization of the metric of the fibres. (Our normalization so
far was |curvature| <1, Diameter—0. The normalization in was Diameter
=1, |curvature|—0.)

LEMMA 5-3. Let m;: M;—N be as in Lemma 1-6. Then, there exists ¢
smooth family of Riemannian metrics g,(p) on n7*(p) such that
(6-4-1) Diam (z3'(p), gp)) =1,
(5-4-2) |VkR(gi(17))| < &y

where lim;_.e;, »=0.

Secondly, we introduce the C*-norm on z3Y(p) as follows. Take xezn7'(p)
and let Exp,: B(100)—=z7}(p) be the exponential map. Let A be a tensor on
f7'(p). We define |A|,. to be the C*-norm of the coefficients of E*(A). This
definition is independent of x modulo constant multiple. Then implies

(5-4-3) IR(g(P)] g = €0t -

Thirdly we put p,EN, V,=B,(p;, N), U;=DB,,(p;, N), where g is the one third
of the injectivity radius of N. Assume \JV,=N. Let s;;:U;—M; be smooth
sections to w;. Then, using s; {p) as a base point of n7'(p), we can follow
the argument of [14, p. 5, p. 6] and obtain the following:

LEMMA 5-5. For each ¢ and j, there exists a smooth family of connections
VD (p) on w7 (p) (p<U;) such that
(5-6-1) V<-9(p) is flat,
(5-6-2) |TP(P)| 5 <&i.r, where T D(p) is the torsion tensor of N (p),
(5-6-3) VD(p) s a metric connection with respect to the metric g p).
Fourthly, we shall estimate the tensor V¢ ?(p)—V7(p), and prove
(5-6-4) | VD)=V IDY g < €is -

By the construction of V¢ ?(p) (which is presented in [14, p. 5, p. 6]), it suffices
to estimate the parallel transform (Sublemma 5-7). Let &, ;(p) be the metric
on B(100) induced by the exponential map Expsi,j(m:Tsi’jm(n;l(p))—m;‘(p).
For x< B(100), we identify R™ and T ,(B(100)) in an obvious way. Then, for
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x, y€ B(100), the parallel translation along the shortest geodesic pi:4?: T ,(B(100))
—T,(B(100)) with respect to the metric g; ;(p), can be regarded as an element
of GL(n, R). Put

LyAZ) = PEIP—PLe .

QL:%? is a matrix valued function. Now, follows from the following:

SUBLEMMA 5-7. There exists €,(0) independent of i, j, p such that if |x—y)|
<0 then Q5% Z)| ;e<ew(0). Here lim;.,e,(0)=0.

PROOF. If Sublemma does not hold, there exist x;, y;, 28 B(100), 7, ji,
#>0 and a multiindex « such that

0'“!(Prhy) _ 0'(Pypd) |
azrltl azgn 82‘111 azgn |z %

(5-8-2) %im d(xi, y1)=0.

(5-8-1) >0,

By taking a subsequence, we may assume that limx,=lim y,=W, limz{}=2z
and g, ;,(p) converges to g. with respect to the C~-topology. Then we have

)
(0)

=2

avmpxill
.- 0z&n

= lim

)_ 0'“' Py, 0! Pyl:3t
) 0z%1 - §zan | b0 loeo 0791 - 9z8n

(5-9) lim( 52

[-sc0

where P> denotes the parallel translation with respect to g.. (5-9) contradicts
8-1). Q.E.D.
Vi

Thus, we have verified [5-6-4). Finally we shall prove the following:

LEMMA 5.10. There exists a smooth family of connections Ni(p) on n37*(p)
(pEN) such that

(5-11-1) Vi(p) is flat,
(5-11-2) |T{p)| ;e=es, 1, where Ti(p) is the torsion tensor of Vi(p),
(5-11-3) Vi(p) is a metric connection with respect to the metric g(p).

PROOF. For simplicity, we assume V,\UV,=N. First we shall find a gauge
transformation O,,; such that V2 (p)=031-V*?(p)-0,,; holds for peU,NU,.
Here O,,; is a section of the fibre bundle Aut(F(x7'(p)=F(x7'(p))Xaa00m),
where F(z37'(p)) is the frame and m=dimz7;(p). We have two monodromy
representations §{#®, 579 : I'»O0(Ts, (77" (p))) with respect to the flat con-
nections V¢ (p) and V“'Z’(p), respectively. (Here we recall n3'(p)=G/I’. And
O(Ts, ,p(m7'(p))) denotes the set of linear isometries of T's; | »>(x3'(p)).) By the
construction of V#(p) presented in [14, p. 5, p. 6] we see §»P(['NG)=
7 P(I'MG)=1. Hence there exist a projection P:/I'—/ to a finite group A
and representations p?, PP A->O(Ts, (77" (p))) such that p{»®eP=
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PP, piP P P=p{" . Then, since #4<c and p{»* and p{»* are close to
each other, there exists a.(p)eO(T;, ,;(w7'(p))) depending smoothly on p such
that ps? P =a(p) o> () aip), and a,(p) converges to identity with respect
to the C>-topology when 7 tends to c. Now we define O, (x): T .(z7'(p))—
T (=3 (p)), for x=x7'(p), as follows. Let /:[0, 1]-=7X(p) be an arbitrary curve
connecting x to s;4(p), and Py, Po: T (#x7'(p)—Ts, (77 (p)) denote the parallel
translations along [/ with respect to the connections V¢ P(p) and V¢-2(p), re-
spectively. We put

(5-12) Op.:(x)V) = P3ai(p) - P(V)).

Using a(p)™' 5"V -a;(p)=ps""?, it is easy to verify that O, ,(x) does not de-
pend on the choice of /. The equality YV V(p)=03'V"D(p)0, ; is also
obvious from the definition. By construction, O, ; converges to the identity
with respect to the C~-topology. Therefore, the section log O, ; to F(z7'(p))
Xaa0(m) is well defined, (where o(m) is the Lie algebra of O(m) and m=
dimz3'(p)), and log O,,; satisfies

(5-13) llog Op.il g = &i(k).

Take a smooth function ¢: N—[0, 1] such that ¢=1 on a neighborhood of
V,\U, and that ¢=0 on a neighborhood of V;"U,. Put O}, ;=exp (¢(p)log O,..),
for peU,NU,. We define Vi(p) by

= 0y VED(p)e 0y peUnU,

() =VE2(p) reV,—-U,
= V& D(p) peVi—-U,.
implies that Vj(p) depends smoothly on p. implies (5-11-2). Facts
(5-11-1) and (5-11-3) are obvious from the construction. Q.E.D.

Thus we have proved the parametrized version of the first step in [14].
The rest of the argument is completely parallel to [I14]. We use Newton’s
method to obtain a sequence of flat connections Vj, .(p) and a connection V(p)
such that

(5-14-1) Vi.o(p) = Vi(p),
(6-14-2) Lim |V (D) =Vi(p)] 2 = 0,
(5-14-3) Vi(pXT(p)) =0, where T,(p) is the torsion tensor of V.(p).

(In the convergence of Vi .(p) to V; is the C°’-convergence. But, in our
case, we can prove the C*-convergence for an arbitrary %, thanks to (5-11-2).)
By (5-14-2) V(p) is a C%family of connections. It is easy to modify it to a
C>-family. Then (5-14-3) implies, as in [14, p. 13], that V,(p) is the connec-
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tion we have been looking for. The proof of Theorem 1-1 is now completed.

§6. The construction of a collapsing family of metrics.

In this section, we shall prove Theorem 0-7. Let n: M—N be a fibre
bundle satisfying (0-3-1), (0-3-2), (0-3-3). T denotes the structure group of the
fibration . Then T is an extension of a torus T, by a discrete group 4 con-
tained in Aut/’, where I" and G are as in (0-3-2). Choose a T connection of
. It gives a decomposition of T .(M) to its horizontal subspace H.(M) and
vertical subspace V. (M)=T (z 'n(x)). We put

(6-1-1) gV, W) = gn(m«(V), m(W)), if V,WeH(M),
(6-1-2) g(V,W)=0, if VeH, (M), WeV(M).

Here gy denotes the Riemannian metric of N. We shall define g.(V, W) for
V, We V. (M).

Let =,: P,—N be the principal T-bundle associated to =, and =,: P,—N be
the principal A-bundle induced from =,. (Namely P,=P,/T,.) Let g be the Lie
algebra of G. Put gi=q, gi+:=[8% ¢], and g,=gi+(center of g) if g;#0, g,=0
if g;=0. We have [g, gx1Cgr+1- - If gg=0, gx-,#0, then gx_,=center of g.
Since AcAutl’, Malcev’s rigidity theorem (see [13, p. 34]) implies ACAutG.
Hence A4 acts on g by isomorphism. It follows that 4 preserves the filtration
=80 D0g: D - Dgx=0. Put E=P,X,, -, E, ,=PX,gk. Then m,: E=N,
7. E,—N are vector bundles. Fix a metric A, on £ and let F, be the inter-
section of E,_, and the orthogonal complement of E,. Then, F,, k=1, 2, ---
are orthogonal to each other and GF,=FE. We define h. by

(6-2) he(V, W) = 84, 1 (2" iV, W)

for VEF,, WeF,.. Let U,CN, ¢;: z-'(U,)»U;xG/I" be a coordinate chart
and s, (p)eT (pU;NU;) be the transition function. Namely, if ¢.(p)=(p, g)
then ¢,(p)=(p, s;,{(p)-g). Let ¢i:ns'(U:)—U;Xg be a coordinate chart. By
definition we can take ¢; so that the transition function of this chart is P(s;, ),
where P: T—A=T/T, is the natural projection. Namely

(6-3) diu) = (p, P(si,i(p))-a) if ¢iu)=(p, a).
For V,We&g, p=U,;, we put
he, {pXV, W)= h{i (P, V), ¢i(p, W)).

The quadratic form #h. «(p) gives a right invariant metric g. (p) on G. Hence
it induces a Riemannian metric on G/(GNI"). By Lemma 1-4, I'/(GNI") is a
finite subgroup of Aut(G). Therefore, we can choose A, so that A. (p) is pre-
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served by ['/(GNI')CAut(g). Then, Z.(p) induces a Riemannian metric on
{p} XG/I'. This metric, together with and (6-1-2), determines a Rie-
mannian metric g.,; on U;XG/I'. Then, using (6-3) and the fact that T, is
contained in the center of G, we can easily verify that g.; can be patched
together and gives a Riemannian metric g. on M. The equality IETH(M’ g.)=N

is obvious. Thus, we are only to show that the sectional curvatures of g. have
an upper and a lower bound independent of ¢. Since the problem is local, we
have only to study U;XG/I'. Hence it suffices to obtain an estimate of sec-
tional curvatures of (U;XG, Z..;). (Hereafter we omit the index 7.) Now, let

ey, -+, en be an orthonormal frame of vector fields on U, and e, -+, e, denote
their horizontal lifts to U XG. Choose an orthonormal basis X,(p), -, Xa(p)
of (g, hi(p)), such that there exists a nondecreasing map O: {1, ---, m}—Z*

satisfying X:(p)eFo(p), where F,(p) denotes the orthogonal complement of
gr in (ge-1, A:(p)). We may assume that X;(p) depends smoothly on p. These
elements X,;(p) determine, through the right action of G, a vector field on
{p} XG. Thus, we obtain a vector field f; on UXG. Then, (e, -, eqn, f1, ", fm)
is an orthonormal frame of vector fields on (UXG, §,) and (ey, -, en, e 2°Vf,,
e, g% F Y is one on (UXG, &.). We shall calculate commutators of those
vector fields. First, since our connection of x is a T-connection, it follows that

n
~4- el = o ko
(6 4 1) [el) Q]] kz‘_]lat,]gk +0(k)§O(m)bz,]fk »
where a} ; and b% ; are functions on U. Secondly, since [gx, §]Cgr+;, We have
A4 CFT = B
(6-4-2) [fo 1=, 5 Chrf,
0k)>0())

where C% ; are functions on U. Next we shall calculate [f;, ¢;]. Let Yy, -, Y,
be a basis of g. We may assume that Y, is contained in gociy-1=PDreoirF 2(P).
The element Y, of g, through the right action of G, induces a vector field f*
on UXG. Since our connection of x is a T-connection and in particular is a
G-connection, it follows that the horizontal lift is invariant by the right action
of G. Therefore

(6-5) Lew, f¥1=0.

On the other hand there exist functions «;,; on U such that
- : = (D). X

(6-6) fip 9=, 3 auip)fib, 8).

We regard U as an open subset of R", and put

(6-7) eUp) = Z BesP) g5
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Then, [6-5), [6=6) and [6-7] imply

— _a,LEhL *
[es, f]](p’ g) —O(‘ﬁ)é%"(i) ﬁj,k(i)) ap] fEp, g).
Therefore, we have
4 1= ko
(6 4 3) [et, f}] O(k)EgO(i)dl']fk »

where d¥% ; are functions on U.
Now, let e!, -, e", fi, -, ffeAUXG) be the dual base of (ey, -+, e,,
20V f o e2%™F N Then, by [6-4-1), [(6-4-2), [6-4=3), we have

(6-8-1) de® = Zk atrel Ne*
Js
(6-8-2) if O@)#O0(m), then
df: — E C;;k'820(1')_20(]')_20(12)-f_g/\f;;+ 2 }k‘sgo(i)_go(k)ej/\ff

0(i)z0Ck)
(6-8-3) if O3F)=O0(m), then
df‘lé — 2 C}k'EzOCi)_ZO(j)_ZO(k)'fe/\flg

0()>0 ()
0 (1) >0<k)
1 0 _90Ck) 4 { 0y 4
4+ 3 AU [ 2 e Nek

0(Hz0Ck)

. i i i) i) _ k P 001 _90(j> ; oD
We see that the coefficients ai,, ciy-g20P-200-20F g1, 20020 1 i 200 e

bounded, with respect to the C*-norm, while ¢ tends to 0. Therefore, we can
prove that the sectional curvatures of g. are uniformly bounded thanks to the
well known formula which expresses the curvature tensor in terms of these
coefficients. The proof of Theorem 0-7 is now complete.

§7. The orbifold version of the main theorem.

For our application in §8, we use a little more general result than Theorem
0-1. In other words we need to treat the case when M, converges to a Rie-
mannian orbifold.

DEFINITION 7-1. Let X be a metric space. We say that X is a Riemannian
orbifold and {(U;, ¢i, I'y)} its chart if the following hold.

(7-2-1) U, is an open subset of R" equipped with a Riemannian metric.
(7-2-2) I’; is a finite group of isometries of U,.

(7-2-3) ¢, is a map: U;—X which induces an isometry: U;/I"i—¢U,).
(7-2-4) {i(U,)} is an open covering of X.

REMARK. The definition of the Riemannian orbifold here is not equivalent



Collapsing Riemannian manifolds 351

to one in [4]. The definition in is a little more restrictive.

Next we shall define fibre bundles and their structure group in the category
of orbifolds. We remark that if X is a Riemannian orbifold, we can modify
its chart so that the following hold in addition.

(7-2-5) Suppose ¢;(U;)N\@,U;), i<j. Then there exist a map
@i, 71 i QiU N@ U N7 @U@ Uy), a homomorphism
mi;: I'i—1I;, and a subgroup A, ;CI"; such that:

(7-2-5-1) ¢ 7x) = T, T )pi, X).
(7-2-5-2) ¢;,; induces an isometry between @7 (U )NeU;)/ 4., ; and
o7 (0U)Ne U ).
(7-2-5-3) =;,; induces an isomorphism between [I';/A4; ; and I';.
(7-2-5-4)  @i(pi. {x) = ¢i(x),  for xE¢7 (@ UNeLU;).
DEFINITION 7-3. Let M, F be manifolds, X a Riemannian orbifold, and G

a Lie group action on G. A map f: M—X is said to be a fibre bundle, F its
fibre, G its structure group, if there exist a chart {(U;, ¢;, ')} of X satisfying
(7-2-5), and {(g..;, ¢, 0:)} such that:
(7-4-1) ¢, is a map: U;XF—f~'¢;(U;).
(7-4-2) g, ; is a continuous map from ¢7'(p(U)Ne,Uy) to G.
(7-4-3) 6, is a homomorphism from I'; to G. We let ['; act on U;XF

by 7(x, y)=(rx, 0.)y).
(7-4-4) ¢u(r(x, ) =71¢i(x, y)  for rel.
(7-4-5) ¢, induces a fibre preserving diffeomorphism between

(U;XF)/F,, and f—lgbi(Ui>.

(7-4-6) For i<j<k, x=@7 (0 U)\JeUN¢:U,)), we have
25 1(0i, (%)) i, £x) = gu,(x),
where ¢, ; is an in (7-2-5).
(7-4-7) For i<j, xeei (UM U,)), r<l’s, =i ;: I''—1";, we have
04z, 1)) g x) = ga. (¥x)- 07) .
(7-4-8) We define
Piit 97 (@UN@ U NXF —> 030U )N, U D)X F
by @i, {x, ¥)=(¢s.{x), gi,{x)y). Then, we have
&ibi x, ¥)=¢ix, v),  for each (x, y)€¢3:p:U:)N@sUjy).

REMARK 7-5. In the case when F=S!, G=0(2). Definition 7-3 is equi-
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valent to that of Seifert fibred space.

Now we have:

THEOREM 7-6. Theorem 0-1 holds also in the case when the limit N there
s replaced by a Riemannian orbifold X.

SKETCH OF THE PROOF. Let FM; be the frame bundles of M;. FM; con-
verges to a Riemannian manifold Y on which O(n) acts by isometry so that
Y/O0(n) is isometric to X (see [8], §10). By an argument in §§2, 3, 4, we
obtain O(n) equivariant fibrations: FM,—Y with bounded higher derivatives. It
induces a smooth map f: M;—X with bounded higher derivatives. By an argu-
ment similar to one in § 1, we see that it suffices to construct a smooth family
of flat connection on fibres such that their torsion tensors are parallel. There
exists a natural stratification 2;CX such that Y;—2;_; are Riemannian mani-
folds. By the argument of §5, we can construct smooth family of connections
with parallel torsion tensor over each X;—2;_.;. We can extend this family to
one over B, (Y;)—B.,_(2:-1), where ¢; and ¢;-,/¢; are very small. By construc-
tion, those connections are close to Levi-Civita connection with respect to the
C>= norm. Therefore, we can use the arguments of §5 again to construct a
desired family of connections over X. The conclusion holds.

THEOREM 7-7. Theorem 0-7 holds also in the case when N is replaced by a
Riemannian orbifold X.

We omit the proof.

§8. A gap theorem for minimal volumes.

In this section we shall prove Theorem 0-9, by contradiction. We assume
that there exists a sequence of n-dimensional Riemannian manifolds M; such that

(8-1-1) Diam M; £ D,

(8-1-2) VolM; <1/i,

(8-1-3) Isectional curvature of M;| £ 1,
(8-1-4) Minvol M; = ¢ > 0,

where ¢ is independent of /. Using [9, Theorem 0-6], we can find a subsequence
M,,, and an aspherical Riemannian orbifold X/I" such that

(8—1'5) ‘limHM,,i - X/F,

where an aspherical Riemannian orbifold stands for the quotient X/I" of a con-
tractible Riemannian manifold X by a properly discontinuous action of a group
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I" consisting of isometries of X. By a modification of the argument in §§1---5,
we can generalize Theorem 0-1 to the case when the limit space is an orbifold.
Hence we obtain a fibration x,,: M, —X/I' whose fibre is G/I" and whose
structure group is the extension of C(G)/(C(G)NI") by Autl’, where G and I’
are as in (0-3-2). Hence, Theorem 0-7 (more precisely its generalization to
orbifold case) implies that there exist metrics g. on M, such that

8-2-1) limy (M., go) = X/1I,

(8-2-2) |sectional curvature of g.| < C,

where C is a number independent of . On the other hand, (8-1-2) and [11,
8.30] imply dim X//I'<dim M,,. Hence, by (8-2-1) we have

(8-2-3) lirgl Vol(M,,, g.) =0,

(8-2-2) and (8-2-3) contradict (8-1-4). Q.E.D.

§9. The case when the limit space is not a manifold.

So far, we have studied sequences of Riemannian manifolds converging to
a manifold. In we have studied more general situation. The method of
this paper can be joined with one in to prove the following:

THEOREM 9-1. Let M, be a sequence of n+m-dimensional Riemannian mani-
fold satisfying (0-2-2) which converges to a metric space X with respect to the
Hausdor i distance. Then, there exist a C*“-manifold Y and =m,: FM;—Y, such
that the following hold. (Here FM; denotes the frame bundle.)

(9-2-1) O(n+m) acts by isometry to Y. We have X=Y/On-+m).
(9-2-2) #; satisfies (0-3-1), (1-2-1), (1-2-2).
9-2-3) 7, is an O(m-+n)-map, and the diagram

-
it

FM, > Y

T
M, — X
commutes.
(9-2-4) Let g=O(n+m), p=Y. Then the map g: z:"(p)—77(g(p)) preserves
affine structures.
We omit the proof.

Unfortunately, our method in §6 does not give the converse to Theorem
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9-1. In other words, it seems that (9-2-1), ---, (9-2-4) is not a sufficient condi-
tion for the existence of a family of metrics g. on M; and that limg(M;, g.)=X
and that |sectional curvatures of g.|<C. o

In [2] and [3], Cheeger and Gromov developed another approach to study
collapsing. They introduced the notion, F-structure there. Our Theorem 8-1
implies the following :

COROLLARY 9-3. There exists a positive number e(n, D) such that the follow-
ing holds. Suppose an n-dimensional Riemannian manifold M satisfies

(9-4-1) Vol(M) £ e(n, D),
(9-4-2) Diam(M) £ D,
9-4-3) |sectional curvature of M| < 1.

Then M admits a pure F-structure of positive dimension.

REMARK 9-5. The assumption of Cheeger and Gromov in is less re-
strictive than ours in the point that they do not assume the uniform bound of
the diameter. Our conclusion is a little stronger. (In [3], the existence of F-
structure is proved.)

REMARK 9-6. The converse to Corollary 9-3 is false. A counter example
is given in [2, Example 1.9].

PROOF OF COROLLARY 9-3. We prove by contradiction. Assume M, satisfies
(9-4-2), (9-4-3) and lim,., Vol (M;)=0, but M,; does not admit pure F-structure
of positive dimension. By taking a subsequence if necessary, we may assume
that M, converges to a metric space X with respect to the Hausdorff distance.
Therefore, by Theorem 9-1, we have Y, 7;, n; satisfying (9-2-1), ---, (9-2-4).
Let G/I'=#,P). Then C(G)/(I'"\C(G)) acts on each fibre. In view of (0-3-3),
this action determines a pure (polarized) F-structure on FA[;. Then, (9-2-4)
implies that this F-structure induces a pure F-structure on ;. We shall prove
that this F-structure is of positive dimension. Remark that we can assume
(1-5). Let xX, p.=ni' (x)&SM,. We recall the argument in [8, §3]. We
have metrics g;, g. on B=DB(1l), local groups H;, and a Lie group germ H such
that

(9-7-1) H; acts by isometry on the pointed metric space ((B, g.), 0),
(9-7-2) (B, g:)/H; is isometric to a neighborhood of p, on M,
(9-7-3) H acts by isometry on the pointed metric space ((B, g.), 0),
(9-7-4) (B, g.)/H is isometric to a neighborhood of x in X,

(9-7-5) g; converges to g. with respect to the C>-topology.
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Let C(H;) and C(H) denote the centers of H; and H, respectively. By con-
struction, the dimension of the orbit through p; of our F-structure on M; is
equal to the dimension of the orbit C(H)0). We shall prove dim C(H)(0)=0.
If 0 is not a fixed point of C(H), there is nothing to show. We assume that
there exists y<C(H)\{1} such that 7(0)=0. Take y,=C(H,) such that limy,=7.
We have

(9-8) lim d(7:(0), 0) = 0,

Let & be an arbitrary small positive number. Then (9-8) and the fact that
the action of H; is free imply the existence of n; such that

9-9) 8 = lim d(y4(0), 0) = 0.

We can take a subsequence k(¢) such that lim,..yz&® converges to an element
vy’ of C(H). Then by (9-9) we have

(9-10) o0 = d(y'(0), 0) # 0.

Since ¢ is arbitrary small, (9-10) implies dim (C(H )(0))#0.
Thus we have constructed a pure F-structure on M; for a sufficiently large
i. This contradicts our choice of M,. Q.E.D.
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1. DIFFERENTIAL. GEOMETRY
23 (1986) 309—346

COLLAPSING RIEMANNIAN MANIFOLDS
WHILE KEEPING THEIR CURVATURE
BOUNDED. 1.

JEFF CHEEGER & MIKHAEL GROMOV

0. Introduction

Let Y” be a complete connected riemannian manifold, and p € Y". The
injectivity radius, i, of the exponential map at p is defined to be the smallest
r such that expp|B,i p) fails to be a diffeomorphism onto its image. The
present paper is the first of two which are concerned with the situation in
which the size of injectivity radius is “small” relative to the curvature.

In this part I, we show that if a smooth manifold X” admits a certain
topological structure called an F-structure of positive rank, then X" also admits
a family of metrics, g, such that as § — 0, i, converges uniformly to zero at all
points, p, but the curvature, K, stays bounded (independent of p and 4).
Such a family of metrics is said to collapse with bounded curvature (by
rescaling, one can assume | K| < 1).

In part II we prove a sort of strengthened converse to this collapsing result.
A riemannian manifold Y” is said to be e-collapsed if i, <e for all p.
Intuitively, such a manifold appears to have dimension < # if one examines it
on a scale > e. We show that in each dimension, there exists a critical radius,
e(n), such that if Y" is e(n)-collapsed and |K|< 1, then Y” admits an
F-structure of positive rank. Thus, if Y” admits a metric which is sufficiently
collapsed, it actually admits a family of metrics which collapse with bounded
curvature.

An F-structure on a space, X, is a natural generalization of a torus action.
Different tori (possibly not all of the same dimension) act locally on finite
covering spaces of subsets of X. These local actions satisfy a compatibility
condition, which insures that X is partitioned into disjoint “orbits.” The
F-structure is said to have positive rank if all orbits are of positive dimension.

Received Oct. 15, 1985 and, in revised form, November 25, 1985. The author’s research was
supported in part by the National Science Foundation under Grant MCS 8102758 for the first
author and Grant MCS 8203300 for the second author.
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The existence of an F-structure of positive rank is a definite constraint on
the topology of a space. In the compact case, it implies, for example, that the
Euler characteristic is zero (compare however Example 1.6 of [4]). This
vanishing phenomenon does rot carry over to Pontrjagin numbers, except in
the presence of further hypotheses; see Example 1.9 (we will show elsewhere
that the Pontrjagin numbers of X*' vanish if it admits a so-called “pure
structure of positive rank, with amenable holonomy”). However, there is a
strong interaction between F-structures, characteristic numbers, and secondary
geometric invariants; see [3], [5], [13].

The collapsing family of metrics g;, associated to an F-structure of positive
rank is obtained roughly as follows. Start with a metric g which is invariant for
the structure in the sense that the local torus actions are isometric. Then shrink
g in certain directions tangent to the orbits. In some cases, it is also necessary
to expand g in directions orthogonal to the orbits, in order to keep the
curvature bounded. Thus, the diameter, diam(Y,, g5), and volume, Vol(Y,,, gs),
may go to infinity as (Y, g5) collapses; it may also happen that they stay
bounded or converge to zero.

The following examples (although they are presented informally) should
serve to give some feeling for the concepts mentioned so far; see §1 for the
precise definition of “F-structure” (which is somewhat technical).

Example 0.1 (The Klein bortle). View the Klein bottle as the total space of a

. P . .
circle bundle S*'.— K? - S!. For each interval, I, in the base space, there are

two canonical fiber preserving circle actions on p~'(1), which differ by the
automorphism x — x1. If one of these local actions is continued around the
base circle, the opposite action is obtained. As a consequence of this kolonomy
phenomenon, no global action exists. (See Example 1.2 for further discussion.)

Example 0.2 (Graph manifolds). Take a finite collection of surfaces, 2?2, with
927 = UY)S! ., a disjoint union of circles. The product manifolds, =? X S},
have boundary components which are tori, S}; X S!. Form a manifold with
empty boundary, Y?, by identifying these tori in pairs by elements of SL(2, Z).

On each piece =2 x S} c Y3, S? acts by rotation of the factor S.. At
boundary components which have been identified, the corresponding circle
actions need not agree. But if not, they generate an action of a 2-torus, which
extends both of them. Thus, in this example, the torus which acts locally is of
dimension 2 near such identified boundary components and of dimension 1
elsewhere.

Example 0.3 (Compact flat manifolds). If X" is compact and flat, by the
Bieberbach Theorem there is a finite normal covering X", which is isometric to
a torus. Since the action of this torus on itself is transitive, the induced orbit
structure on X" consists of a single orbit, X".
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Example 0.4 (Collapse by scaling). 1f (Y,, g) is a complete manifold with
injectivity radius uniformly bounded from above, then the family (Y,,8%)
collapses (intuitively, to a single point, in the compact case). However, for this
collapse, the sectional curvature does not remain bounded unless Y, is flat.

In view of Example 0.4, from now on the word “collapse” will be taken to
mean “collapse with bounded curvature.”

The following is the most transparent and in a sense the most basic collapse
with bounded curvature.

Example 0.5 (Generalized warped products). Start with a surface of revolu-
tion, M?, obtained by revolving an arc in the upper half plane about the
x-axis. Thus, M? is diffeomorphic to S! X I. The obvious isometric circle
action on M? lifts to an isometric R action on the infinite cyclic covering
M? =R X I Let {8Z} C R denote the subgroup generated by a translation
of size 8. Then the family M2/{8Z} collapses, but the curvature remains
unchanged (we have unrolled M ? and then rolled it up more tightly).

To extend the above example to higher dimensions, take M**/ = X* x R/,
with (generalized) warped product metric

!
(0.1) g=g(x)+ Z aij(x) dyidyj'
i,j=1

Then M**! = X* x R'/8Z' collapses (to X*).

Note that the orbits of the F-structure on M**! have constant dimension, |.
In such cases (as above) the collapse can always be performed so that the
diameter remains bounded. In particular, the volume goes to zero.

Example 0.2 (continued). The collapse associated to the F-structure on the
graph manifold, Y3, is particularly easy to describe if the identifications of the
boundaries simply interchange the roles of the two circles. In this case, choose
a “cusp-like” metric on =? which near the boundary is isometric to the
product of an interval and a circle, S3, of length 8. The curvature and volume
can be chosen bounded independent of the size of § for such a metric.

Now form ZZ X S} with the product metric, and identify corresponding
boundary components. The resulting manifold, (Y3, g,), has injectivity radius
everywhere = 8. In fact, Vol(Y?, g;) < ¢8. However, the orbits of the F-
structure are not of constant dimension and diam(Y?, g5) — co.

As far as we are aware, the first example of collapse (apart from warped
products and scaling) was discovered by M. Berger in about 1962. He con-
sidered the collapse of the unit sphere S>, obtained by shrinking the circles of
the Hopf fibration. It is clear that the “limit” of this collapse should be S (in
fact, with a metric of curvature = 4). The notion of the limit of a collapse can
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be made precise by introducing the concept of Hausdorff limit: see [9] and §2.
Berger’s interest in the collapse of S° stemmed from his observation that it
provides a counterexample to a specific conjecture concerning a lower bound
for the injectivity radius on odd dimensional manifolds of positive curvature.
Another significant collapse (with variable topology) was discovered in the
context of manifolds of positive curvature by Aloff and Wallach [1]. They
exhibited an infinite sequence of pairwise nonhomeomorphic, homogeneous
7-manifolds with uniformly pinched positive curvature. By the finiteness
theorem in riemannian geometry (see {2], [4], [9], [11]) such a sequence must
collapse.
The remainder of this paper is divided into five sections and one appendix_
as follows.
1. T-structures and F-structures
2. Pure polarized collapses with bounded diameter
3. Polarized volume collapses
4. Nonpolarized collapses
(a) Introduction
(b) Main computation
(c) Construction of slice polarizations
(d) Collapse
5. F-structures and complete metrics on open manifolds
(a) Introduction
(b) Construction of a complete metric, g,
(c) Expansion of g,
(d) Collapse of the expanded metric
Appendix: Pure polarized structures on essential manifolds.

In §1, we define and give examples of generalized group actions called
#-structures. Essentially, an F-structure is a g-structure for which all the
groups which act locally are tori. In §2, we consider the case of a pure
structure. Basically, this means that a single connected group acts locally, up
to automorphism, on a finite covering space. We assume, moreover, that all
orbits are of the same positive dimension; compare Examples 0.1, 0.4, and 0.5.
This second condition defines what is called a pure polarized structure. For
such structures, by shrinking a compatible metric in the direction of the orbits
while leaving it unchanged in the orthogonal directions, we obtain a collapse
for which the diameter stays uniformly bounded.

In §3 we consider the polarization for which the groups which act locally are
not all of the same dimension. In this case, we can collapse in such a way that
Vol(Y,, g5) — 0, but diam(Y,, gs) — oo; compare Example 0.2.
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As already indicated, there exist manifolds, M}/, admitting F-structures
(which are in fact pure) of positive rank, but for which some characteristic
number is nonzero. By the Chern-Weil theory, these manifolds admit no
collapse with bounded curvature, such that Vol(M7, g,) — 0. In particular,
M2 does not carry any polarized F-structure. However, in §4, we show that
any F-structure of positive rank admits what we call a slice polarization. This
can be used to collapse in such a way that the volume behavior is controlled by
the geometry of the orbit structure. For example, the manifolds M} can be
collapsed so that the volume stays bounded. But it can also happen that the
volume goes to infinity or to zero (even though the slice polarization is not an
honest polarization: compare [10]).

In §5 we consider open manifolds which carry an F-structure outside a
compact set. On such manifolds, we obtain complete metrics of bounded
curvature with properties analogous to those of the metrics constructed in
§2-4. '

In the Appendix we exhibit a class of manifolds with the property that if a
pure F-structure exists, it must be polarized. As a consequence, many of these
manifolds can be shown to admit no pure F-structure of positive rank,
although they do not admit such structures which are not pure.

Portions of this paper were written while the first author enjoyed the
hospitality of the Institute des Hautes Etudes Scientifique, Blires-sur-Yvette
and the Mathematical Sciences Research Institute, Berkeley.

We are indebted to Ofer Gabber for conversations which helped us to
formulate the definition of a g-structure in the language of sheaves.

1. g-structures and F-structures

In this section, we discuss certain generalizations of the concept of a group
action.

A partial action, A, of a topological group, G, on a Hausdorff space, X, is
given by the following data.

(i) A neighborhood 2C G X X of e X X, where e € G is the identity
element. This 2 is called the domain (of definition) of the action.

(i) A continuous map 4: 2 — X, also, written (g, x) — gx, such that
(8,82)x = g,(g,x) whenever (g, g,x) and (g;8,, x) lie in 2, and such that
ex = x forall x € X.

Two partial actions (A4, 2,), (45, 2,) are called (locally) equivalent if there
is a domain 2 C 9, C 2,, containing e X X, such that 4,|2, = 4,|2,. A
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local action, { A}, is defined as the equivalence class of a partial action 4 of G
on X. Every global action A defines an obvious local action A4,.. A local
action which can be obtained in this way is called complete.

Remark 1.1. An elementary connectedness argument shows that A4, . de-
termines 4 uniquely, in case G is connected.

In the smooth case, the category of local actions is equivalent to the category
of infinitesimal actions: these are continuous homomorphisms of the Lie
algebra of G to the Lie algebra of vector fields on X. For example, if G = R,
then a local action is given by a vector field on X, and completeness amounts
to the integrability of the field.

From now on, we assume that G is connected.

A subset X, C X is called (locally) { A }-invariant if for some representative
(A, 2)e {A}, one has ga € X, for all (g,a) € 2. Since the intersection of
{ A}-invariant sets is { A }-invariant, it follows that each point x € X is
contained in a unique minimal { A4 }-invariant subset called the orbit 0 = 0, C
X, and that the orbits partition the space X. Moreover, if 4, is complete, the
orbits of 4. and A coincide.

A local action, { 4}, on X can be restricted to any open subset, U C X, by
taking an open subset @' C G X X, which contains e X U and such that
gx € U for all (g,x)€ 2’ with x € U. Furthermore, if ¥ —» X is a local
homeomorphism, then { A} pulls back to a local action, f*{ A}, on Y, in a
similar way.

Now consider a sheaf, g, of connected topological groups over X. Let g(U)
denote the group of sections over U. An action of g on X is given by a local
action of the group g(U) on U for every connected open set U C X, such that
the structure homomorphisms ¢(U) — ¢(U’) (for U’ C U) agree with the
restrictions of the local actions from U to U’.

A set S is called invariant if for all open sets U, the intersection S N U 1s
invariant for ¢(U). Again, X is partitioned into minimal invariant sets called
orbits. A set which is the disjoint union of orbits is called saturated.

Example 1.1. In the smooth case, an action of g on X amounts to a
homomorphism of the Lie algebra sheaf associated to g into the sheaf of germs
of vector fields on X. As a specific example, let X be an affine flat manifold,
infinitesimally (and hence locally) acted on by the Lie algebra sheaf of parallel
vector fields.

Let G, denote the stalk of g at x. If f: ¥ — X is a locally homeomorphic
map, let f *(#) denote the pullback sheaf.

The following is a significant generalization of the concept of completeness
introduced previously.
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Definition 1.1. An action of a sheaf g of connected groups on X is called
complete if for all x € X, there exists an open neighborhood V(x) and a
locally homeomorphic map 7: ¥(x) = V(x) (¥(x) Hausdorff) such that

(i) If #(%)= x, then for any open neighborhood W C V(x) of %, the
structure homomorphism 7*( 2)(W) — G; « G, is an isomorphism.

(ii) The local action of 7*( #) on V(x)is complete.

Example 1.1 (continued). For affine flat manifolds, this agrees with the
usual definition of completeness.

Note that the orbits of 7*(#) on V(x) project to orbits of # on V(x).

Suppose 7: V(x) - V(x) is a normal covering. Then the group, T, of
covering transformations of «: ¥(x) — V(x) has a natural (holonomy) action
on 7*( ). It follows that there is a sheaf .% on 7(x) such that the stalk of
7*(&)at j € P(x)is the image of the structure homomorphism 7 *( 2N V(x))
and by Remark 1.1,fory €T, g € w'(y)(f/(x)), ye I7(x), we have

(1.1) (&) = v(g)v(5).

Definition 1.2. A g-structure, ¢, on X is a sheaf, 4, of connected topologi-
cal groups on X and a complete local action of 4 on X such that the sets V(x)
can be chosen to satisfy the following conditions.

(i) 72 ¥(x) > V(x)is a normal covering.

(ii) For all x, V(x) is saturated.

(iii) For all 0, if x, y € 0, then V(x) = V(»).

It follows from (iii) that y|0_ is a locally constant sheaf, i.e. y|0_ is locally
isomorphic to the sheaf of locally constant maps of @ to the group G,. Put
otherwise, y@ is a flat bundle such that each fiber is a group and the
holonomy acts by automorphisms of the fiber. However, it need not be the case
that g is locally constant on some neighborhood of 0, since the structure
homomorphisms need not be injective; see Example 1.4 and Remark 1.2.

Definition 1.3. If g is locally constant on V(x) for all x, then ¢ is called
pure.

Suppose ¢ is pure. Let x € X, and fix ¥ € V(x) with 7(%) = x. Since
y(f/(x)) = G,, it follows that IN/(x)—T» VE(x) = V(x), where VE(x) is the
holonomy covering of g|V(x) (with base point 1(%)). As a consequence of (1.1),
the action of G, descends to ¥#(x) and (1.1) continues to hold there.

For x € X, let (X%, %) denote the holonomy covering of the locally constant
sheaf ¢ with canonical basepoint. Let 71 X% — X be the projection. Given
y € X and a curve, ¢, from x to y, the space (V£( ), ) is naturally identified
with a component of 7 }(V(»)) € (VE, x). Also parallel translation along ¢
includes an isomorphism G, = G,. Thus, the action of G, on VE(»), $)
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induces an action of G, on the corresponding component of = *(V(y)) and it
is immediate from (1.1) and the definition of (X%, %) that these actions give
rise to a global action of G, on (X%, %). Thus,

Proposition 1.1.  If a g-structure is pure, then the local action of j()? E x)is
complete. ‘

Example 1.2 (Flat bundles). A basic example of a pure g-structure is the
following. Let E be the total space of a locally constant sheaf, #, of connected
groups, and p: E — x the projection. Then for x € X and y € p~'(x), there is
an obvious action of the stalk G, of p*(g) on p™}(U), provided U is chosen so
that g|U is trivial. In particular there is a pure g-structure on E, where the
sheaf which acts is p*( ).

.Definition 1.4. A g-structure is called an F-structure if for all x, the group
G, is isomorphic to a torus, and the sets V(x) (of Definition 1.2) can be chosen
so that the coverings V(x) are finite.

Definition 1.5. If one can always choose V(x) = V(x), then the F-structure
is called a T-structure.

Example 1.3 (Example 0.3 reformulated). Let X" be a compact flat
riemannian manifold. By the Bieberbach Theorem, for each x & X the holon-
omy covering ( X", %) has the natural structure of a torus, T,". The torus T."
acts on itself by the left translation. Hence, it acts canonically on any ( X*, 7)
as well. The holonomy transformations act on 7' by conjugation. The set
U, T has the natural structure of a locally constant sheaf g (with stalk T,")
and the action of 7" on any fixed ( X", %,) induces the local action of 4 on X.

Example 1.4 (Structure homomorphisms not injective). Let X be the space
formed as follows. Take S X [0, 1] and attach S X 1 to S X 0 by a covering
map of degree 2. The image of S X [1 — ¢ 1] in X is a M&bius band B,. The
image S! X [0,¢] in X is a half open cylinder, C.. Moreover, C, N B, = S,
where S is the central circle in B, (and C, is the closure of C,).

The orbits, @, in X will be the images of circles, S! X 4. For each
connected open set U C X, put

(1.2) T(U)= {UO)10N U< &}.

Let g be the sheaf associated to the presheaf which assigns to each U the
identity component of the isometry group of T(U). By definition, there is a
complete action of ¢ on X, which defines a T-structure.

Note that for all T(U) # X, g(U) is isomorphic to a circle. However, if, for
example, T(U;) = B, U C, and T(U,) = C,, then the restriction map ¢(U;) =
#(U,) is a 2-fold covering. As a consequence the total space of g is not
Hausdorff at points lying over S, and the local action of g is not locally
isomorphic to a pure structure in a neighborhood of S.
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Remark 1.2. Observe that since a nontrivial local isometry defined on a
connected subset of a riemannian manifold is not equal to the identity on any
nonempty open subset, examples like the one above do not occur for effective
local actions of compact groups in the smooth category. From now on, we will
restrict attention to g-structures of this type. For such structures, the restriction
maps g(U,) = g(U,) are injective.

If the action of ¢ on X defines a g-structure, ¢, and 4’ C ¢ is a subsheaf,
then g’ defines a g-structure, ¢, called a substructure. We write ¥’ C 4. Note
that the stalks of ¥’ are not required to be closed subgroups. The subsheaf
whose stalks are the closures of those of ¢’ is written &', the closure of ¥’

For a g-structure as in Remark 1.2 above, for each x € X the neighborhood
F(x) of Definition 1.2 can be chosen such that there is a (unique) pure
substructure, 9,, of ¢|V(x), with stalk G, , = G,.

The rank of ¢ at x is defined as dim @,. We say that & has positive rank if
the rank is positive for all x € X.

Let ' C @ (with ¢ as above). Let X = UU, be a locally finite covering by
connected open sets U,. For each a, let ¢/ C ¢’ be a pure substructure with
stalk 4. C 9! at x € U,

Definition 1.6. The collection {(U,, %,)} is called an atlas for " if
(i) Each U, is saturated for the orbits of &',
(ii) For each x, there exists U, 3 x, such that G; , = G,.

Definition 1.7. A substructure £ C ¢ is called a polarization if it has an
atlas, &7, such that for all «, the rank of ¢, is the same positive number at all
x € ¢ (although rank ¢; might depend on a).

A polarization is called pure if ¥’ is a pure substructure (in which case it
suffices to take a single U, = X). The notions of atlas and polarization play an
important role in the collapsing constructions of §§2, 3, and 4.

If ¢ has positive rank, one way to find a substructure, ¥’ C ¢, of positive
rank which possesses an atlas is the following. Take a locally finite open
covering by sets U, = ¥(x,) and pure a substructure 4, on each U,, such that
G, .= G, and the rank of &, is positive. Enlarge this covering by adding all
nonempty intersections, U, = U, N -+ NU, and assign to U, the pure
substructure whose stalk at x € U, is the smallest subgroup G,,, containing
Uk G,\.‘a,_. Then {(U,,, G(@))} is an atlas for the substructure ¢’, determined by
the condition G/ = G, ,, where U,, is the intersection of all those U,
containing x. The rank of ¥’ is positive and it is easy to see that in fact we can
choose &’ such that rank ¢’ = rank 9.

The following lemma is convenient for the constructions of §5 and provides
a simple picture of structures which possess an atlas.
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Lemma 1.2. Let {(U,, 9,)} be an atlas for % on (a possibly open) manifold
X. Then there is an atlas {(U,,%,)} for G with the following properties:
(1) the sets U, have compact closure.

@ Ifxe U, Nn---NU,, then (for some ordering) G, , € G - C

X, 0y =

Groay
(3) For all U, and all x € U,, there is at most one Uy (B # a) with x € U
and G, , = G, p.

Proof. (1) Clearly, we can assume { U, } itself has this property.

(2) Let U, U, satisfy x € UB N U, but neither G, , € G,  nor G, ,C G,

Take saturated open sets Ub, U wrth U/, N U = @ and UB\ U C UB C UB,
U\ UB C U C U,. Since, clearly, G.p* G, ¢ G, it follows that UB’ Uy
together w1th the remaining {U,} cover X. We can now construct a covering
{U,} by induction, such that U, < U,, and if we put ¢, = % |U,, then
{U,. %,) satisfies (1) and (2).
(3) Let U,, U,,, ... be a maximal subcollection of {U,} such that UU, is
connected and G, = G, ,, whenever x € U, N U, . Put Ual =U,. Let, say,
U, - —l——]-“k be those U, " whose intersection with U, is nonempty. Let
Uaz, ..U, "be the connected components of U, U - U U,, - By proceeding
in this way and repeating the process for all subcollectrons as above we obtain
the required covering.

An atlas satisfying the properties of Lemma 1.2 is called regular.

Remark 1.3. Let .7 be a regular atlas for %. Let {U,'} be an open covering
by saturated subsets, U; € U,. Then by restricting 4, to U, we obtain a
regular atlas, &', for a substructure ¥’ C 9. We write &/’ C &7

Remark 14. If the atlas {(U,, 9,)} in Lemma 1.2 is a polarization, then the
regular atlas {(U,, %,)} is a polarization as well.

Remark 1.5. By dropping (1) in Lemma 1.2, we can also drop (3) and
strengthen (2) toread G, , € G, o, € G, o,

A riemannian metric g is called invariant for 9 if the local action of the
sheaf g is isometric.

Lemma 13. Ler /= {(U,, 9,)} be a regular atlas for 4 and let o' =
(UL, %)}, where U} c U, Suppose @ has the property that all coverings
V(x) = V(x) (in Definition 1.2) can be chosen finite. Then there is an invariant
metric for G’.

Proof. The relation of Lemma 1.2(2) induces a natural partial ordering on
the {U,}. Start with some maximal U, and take a finite covering of U, by sets
of the form V(x,)--- V(x,) with V{ xji C U,. Take any metric g, on V(x,),
pull it back to V(x,), and average over the action of G, and over the finite
group of covering transformations. Extend the resulting metric to any smooth

metric g; on V;(x) U V,(x). Repeat the process for g;|V(x,). By continuing in
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this way we get a metric on UU, with U] maximal and in the same way we get
the required invariant metric for ¢’. _

By using (invariant smoothings of) distance functions for an invariant
metric, we can construct invariant smooth functions, say f,: U/ — [1/2,1],
with U _f;1(1/2) = X. Then a standard application of Sard’s Theorem gives

Lemma 1.4. For almost all ¢, € (1/2,1) the sets {7 *(c,) are smooth closed
codimension 1 submanifolds which intersect transversally (and define an atlas
A" C ).

We can now verify the result on the vanishing of the Euler characteristic
mentioned

Proposition 1.5. Let X be a compact manifold which carries an F-structure of
positive rank, then x(X) = 0.

Proof. Let o be an atlas for a substructure of positive rank with U, =
V(x,). Let &/” Cco/ be as in Lemma 1.4. Then for every intersection
U, N --- NU, thereis a finite covering, say U(a) C I;'(xa‘), on which a torus
G, . acts with no common fixed points. By a well-known argument almost all
elements of G, are fixed point free. Thus, by the Lefschetz fixed point
theorem, x(f],l))1 = X(Uy) = 0. Then x(X) = 0 as well.

Remark 1.6. In Proposition 1.5 it is not essential that X is a manifold.

Here are some further examples of F-structures.

Example 1.5 (S? and R*). View R* as C? = (z,, z,). There is an obvious
T2-action (T2 = (8,, 6,)) given by

(1.3) (61,6,) *(21,2,) = (ewlzl’ewzzz)’
with orbits of dimensions 0, 1, 2. Since there exist orbits of dimension 0, the
corresponding 7-structure admits no polarization.

There is also an induced T-structure on the unit sphere, S°. All orbits are of
dimension 2, with the exception of the circles S* N {(z;,0)} and S> N {(0, z,)}-
Any choice of 1-parameter subgroup, Syl, with 0 < 8,/8, = vy < oo, gives rise
to a pure polarization, 2., for which all orbits are 1-dimensional.

We can define another 7-structure on S> which is not pure by picking 7,
with1/V2 < n < 1, and setting

(1.4) U=1{(z1,2,) € Sz <n}, j=1.2.

For x € U\ U, (U,\ Uy) welet G, = S} (G, = S} )and V(x) = U; (F(x) =
U,).Forx € Uy N U, G,=T?and V(x)= U, N U,.

Note that for y # 1, the orbits S N {(z;,0)} and S3 N {(0, z,)} are never
principle orbits of Sj, i.e., their isotropy groups, while discrete, are not
minimal.

Finally, observe that this example generalizes to higher dimensions.
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Example 1.2 (continued, solvemanifolds). Let A € SI(2, Z) be an automor-
phism of the torus 72 with two real distinct eigenvalues. Thus, if

(1.5) A= (Z 2)

then |a + d| > 2. The mapping torus, M3, of 4, is by definition the affine flat
bundle 72 - M?® — S!, with holonomy A (as is well known, M? is a
solvemanifold).

As above, there is a pure T-structure on M3 whose orbits are the fibers. This
T-structure has a natural pure polarization (of rank 2). It also admits exactly
two pure polarizations of rank 1, the orbits of which correspond to the
eigen-directions of 4 (and are not closed).

Example 1.6 (The flat bundle &7). Let R? —» &7 — S! denote the trivial
R? bundle over S!, equipped with the connection whose holonomy is given by
rotation through an angle 276. A point in & is denoted by (¢,w) where
t € R/Z (= S') and w € R? Then parallel translation v units along the base
is given by
(1.6)v P(o)(t,w) = (t+ v, R(v8)w),
where R(v#) denotes rotation through an angle 27v8.

Observe that & carries the structure of a complete flat riemannian mani-
fold whose isometry group I(&}) is the torus, S* X S?, generated by
(1.7) T(u)(t,w) = (t + u,w), R(v)(z,w) = (7, R(v)w).

The full group 1(&}) defines a pure T-structure which is of rank 2 everywhere
except along the zero section of &7. Any 1l-parameter subgroup other than
R(v) defines a pure polarization of rank 1.

Example 1.7 (The space #*=U,;&7). Consider the family [0,1] X &
consisting of pairs (8, &7). The spaces &; and &} are abstractly isometric.
Their parallel translations are given by

[t +v),w), 6 =0,
(18) Plo)t.w) = {(z+v,R(v)w), 6=1.
The map
(1.9) f(0,6,w) = (1,¢, R(t)w)

provides an isometry between &; and &7. It induces the isomorphism of
isometry groups given by the matrix

(1.10) (% (1’)

The space formed from [0,1] X &} by identifying (0, E¢) with (1, E7) via f
will be denoted by .#*. The flat T>-bundle (locally constant sheaf) over S*
with holonomy given by (1.10) is a nilmanifold. Its pullback to .#* defines a
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pure T-structure on . As above, this structure has rank 2 everywhere except
along the zero sections of the various &, where it has rank 1. Moreover, unlike
the matrix A4 in (1.5), the matrix in (1.10) has only a single eigenvector. It
corresponds to the circle R(v), the action of which fixes the zero sections of
the &;. From this it is clear that the pure T-structure on #* has positive rank
but admits no polarization. In fact, it is the most basic example of an
F-structure with this property. There are no such examples in dimension 3 and
any example in dimension 4 contains an orbit, a neighborhood of which looks
like (perhaps a finite covering of) this example.

Example 1.8 (A nonpolarizable structure on T? X R*). The space .#* in
Example 1.7 can be regarded as the total space of the complex line bundle with
first Chern number 1, over T2 If we take the Whitney sum of this bundle with
the bundle of Chern number -1, we obtain the trivial bundle with total space
T2 X R* Now, by a simple modification of the previous example, we find a
pure T-structure on 72 X R* which is of rank 2 except at T* X 0 where it is of
rank 1. Moreover, this structure admits no polarization.

Example 1.9 (Pure T-structure on M} with o(M}')=2). The previous
example of a pure T-structure of positive rank which admits no polarizations
can be sharpened. There exist closed manifolds which carry a pure T-structure
of positive rank, but which have nonzero signature. Hence, as noted in §0, they
admit no polarized T-structure whatsoever.

The following particularly nice family of such examples is due, essentially, to
T. Januszkiewicz. To describe them. Let

(111) T+ = (em\,...’eiolln), D= (eio,...,efo)
and let S; denote the image of
(1.12) (1,-+-,e1--)
in T%*1/D._Then T**1/D acts on
2

(1.13) CP(21) = (21, ", 23141) /D, )y lz,|" =1,
with 2/ + 1 fixed points, '

J
(1.14) Pj=(0""71a05"')-
If we use the product structure
(1.15) SUX o X8 X e X8y,

on T?*!/D and identify the tangent space to CP(2/) at p,, with
(1.16) (215"'72j7"'az2[+1)’
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then T?*!/D acts by the standard representation of 7. Let D; denote the
diagonal of T?'*!/D with respect to the product structure in (1.15). Then the
action of §; on the tangent space at p, is given by

(1-17) Sj(zl” Y TR 22/+1) = Dk(z—'la‘ T gt 2_2/+1)-

Now choose normal coordinate systems at the points p; and from each of
these delete a ball, B*, about the origin. Take two copies 2}, 25’ of the
resulting manifold with boundary and form a closed manifold, Mp', as follows.
Let

(1.18) fi{l--20+ 1) > (0,1}

be any function which takes the value 1 an odd number of times, j=1,---,
2{ + 1. Put

(1.19) F={(f s fas1)

To obtain M}, glue corresponding boundary components of =’ and =5 by
the identifications
(1.20)

(2 s 8y e ey 2y00) ~ (21,' S RS '9Zj>”'7zi,(j)(j)7'"a22/+1)a

where i;(j),- - -, i, (/) are the integers at which f; takes the value of 1. The
torus action on =}, 2% gives rise to a pure T-structure on M}/, To describe
the holonomy of the corresponding flat bundle, E, it suffices to consider loops
ly,-++, 1y, where I, passes from 2}/ to =3 through 3B/, and returns to =%
through 9B;*. Then using (1.12)~(1.17), it follows that the holonomy around /;
is given by the matrix

(D 4

. : 0
(121) - (_1)'1,(1) ’

0 o

a, (1) (—l)ff(’)

where
(1.22) 7(i) = f;(k) + fara(k),
and for k # J,
(1.23) a,(k) = 0, fk)+£(20+1)=0 mod2,

2, f(k)+f(2l+1)=1 mod2,



COLLAPSING RIEMANNIAN MANIFOLDS 323

Finally, since the identifications on the boundary components are orienta-
tion reversing, if 2}, =5 are both given the orientation induced from CP(2/),
then M} also acquires an orientation. Moreover, the signature, o(M2'), is
given by
(1.24)  o(M}) = 20(=%) = 2{a(CP(21)) — (21 + 1)a(B*)}

= 20(CP(21)) = 2.

2. Pure polarized collapses with bounded diameter
In this section, we discuss the collapse associated to a pure polarization, 2,
of an F-structure, %, on a manifold Y,,. Let
(2.1) g=g +h
be a metric which is invariant for %#; see Lemma 1.2. Here h vanishes on

vectors tangent to the orbits of 2, and g’ vanishes on vectors normal to these
orbits. Put

(2.2) gs=08% +h.
Theorem 2.1. As § — 0, the family (Y, g5) collapses. Moreover,
(2.3) dists (p,q) < dists,(p,q), 8, <8,
and for each compact set U, there is a constant ¢(U)' such that
(2.4) sup |Ky| < c(O).
T.8>1

Proof. Observe that (2.3) is obvious and the main point is, of course, (2.4).
We claim that when the appropriate coordinates are introduced, (2.4) is
obvious as well.

Let p € Y. Take a basis of Killing fields, { X}, tangent to the orbits of # in
a neighborhood of p.

Let N"~% be a local transversal to the orbits { ¢} with p € N*~k. Choose
local coordinates, (y;,- -, ¥,~x) on N" % with p at the origin. Since [ X;, X
= 0, there is a unique coordinate system (x,,---, x,) on each orbit @, with
ON N"%=(0,---,0) and X, =93/0x, By projecting onto N" % ie.
0 — 0 N N"% we obtain coordinates (xy,- - -, X4, J1,* * *» Ya_z) N @ neighbor-
hood B,(0) X B,(0) of p with, say, =x? < r?, £y? < s2.

In terms of these coordinates, the matrix (g(x, y, 8)), representing the metric
g5, can be calculated as follows. Note that translation in the direction of x;
preserves (coordinate fields and) inner products, since 8 /9x; is a Killing field.

! The notation ¢(-) will always mean a constant which depends only on the quantities within the
parentheses.
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Thus, if we put
0

(2.5) ay, = ‘X'I + I/i’

where X, is tangent to orbits and V; is normal to orbits,

(2.6) (X)), =

and the following matrices are independent of X150y Xge
d d

(2-7) A(yla"'ayn—k)= (< ax ax >]))

(2.8) B(yl""ayn—k)= (<8y’ > )

(2‘9) C(yl"”’yn k)_(< > )

(210) D(yl,“ s Yoo k) = (< i j> )

Here { , )s denotes the inner product for g;. It follows that

9 9 9 3
dx;” dx; . ax;” Ay, [,

KR 4 3
ax;” Ay s dy,” P

8%4(y) | 8°B(y)
82B(y) | 82c(y) +D(»))

As 8 — 0, the matrix in (2.11) becomes singular. But if we make the change of
coordinates

(2.12) u, = 8x;, du;,=d8dx,

(g(x,.8))

(2.11)

then

(g(u,y,8))

(2.13)
A(y) | 8B(y)

8B(y) | 8°C(») +D(y)|
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The family (g(u, y, 8)) can be regarded as being defined on all of RX X B,(0).
As 8 — 0, it converges smoothly to the generalized warped product metric

(214) (5(u, 7.0)) = (A(Oy) D(Oy))

on R% X B,(0) € RY X R, where for each fixed y, the induced metric on
R% is flar: compare Example 0.5. Since

(2.15) (g(x,7,8))|B,(0) x B,(0) € R% X Ry*
1s 1sometric to
(2.16) (g(u, y,8))|B5,(0) X B,(0) c R X R} X,

it is clear that | K| is uniformly bounded independent of § on compact subsets.
This gives (2.4).

To see that (Y, g;) collapses, consider the closure 2 of 2. The orbits {7}
of # are compact flat manifolds. Since g; restricted to the normal space of
any O is independent of §, it follows easily that the distance between any two
such orbits is bounded below independent of 8. If Y, is not complete, the same
holds for inf,dist(d,, Y"\ Y,) = d, (where Y" is the completion of Y,). In
particular, the closed tubular neighborhood 7,(¢,) is compact, independent of
8, for r < d . If B,(q, gs) denotes the ball of radius r about g, with respect to
85, clearly

(2.17) B.(q.85) c T,(7,),

and by (2.2),

(2.18) lim Vol,(B,(q, 8,)) = lim Vols(T,(0,)) = 0.
-0 —

Let V(c, s) denote the volume of the ball of radius s on the sphere of curvature
¢ = c(T,(@q)), the constant in (2.4). It follows that for any s < r, we have

(2.19) i(gs) <s,

if 8 is so small that

(2.20) Vol(B,(q, g5)) < Vol( B,(¢, 85)) < V(c,s).
Thus, (Y,, g5) collapses.

A metric space X is said to be the Hausdorff limit (as 8§ — 0) of the family
of metric spaces Xj, if for all ¢,¢, there exists 8(e,e,) such that for
8 < 8(ey, ;) there are g dense sets { p,(g;,¢,,8)} in X; and { p,(¢},¢,)} in X
with

1+ 52)_11’:'(51,52),1’;(51,52) < p,(&,¢,,8), pj(£1’£2’8)

(2.21)
< (1 + 82)H£1,£2)’ pj(£1’£2) 5
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see [9] for further discussion. Clearly, the Hausdorff limit of the family
g(x, y,8) on B,(0) X B,(0)c R% X R""* is B,(0), equipped with the metric
corresponding to (D(y)). By definition, this is the metric on N"~* for which
the length of a vector is the length with respect to g of its projection
orthogonal to @. Up to isometry, it is independent of the choice of transversal,
and is the unique metric on the local quotient space defined by (pieces of) the
orbits of #, for which the projection is a riemannian submersion.

If the orbits {@} are not closed, the global quotient spaces X/% is not
Hausdorff. But we can still look at the quotient space, X/2, for the orbits of
2. Since 0 is dense in 0 it follows from (2.2) that
(2.22) lim diam,(,) = 0.

Thus, the Hausdorff limit of a compact subset U of Y, which is saturated for
2. is U/P, with the obvious quotient metric. Of course, this is not a smooth
manifold near exceptional orbits.

Example 1.4 (continued). The polarization &, defined by the subgroup S,
is closed if and only if vy is rational. If 1 # y = p/g is rational, the Hausdorff
limit §°/2, is the surface of revolution, obtained by revolving the curve

(2'23) y= % Sin X COS X

RSz
(p*cos’x + ¢2sin’x)"

0 < x < m/2, about the x-axis. Thus it is a topological $? with two non-
smooth points.

For y irrational, $°/#, is the interval [0, 7 /2].

Example 2.1 (Tori). The pure polarizations Z(E*) of the canonical T-

structure on the standard torus, 7", are parametrized by subspaces, E*, of R"
which pass through the origin. When 7" is collapsed along E*, of course
(2.24) Vol (T") = 8% Vol,(T").
But if one looks at (T, g5) up to homothety (i.e. isometry and scaling) it is a
classical fact that the family (7", g;) corresponds to the image in the moduli
space SO(n, R)\ SL(n, R)/Sl(n, Z) of a geodesic which goes to infinity in
SO(n, R)\ SL(n, R).

For example, if n = 2 and (2, E,) corresponds to a line of slope y = p/q,
then (T2, g;s) goes to infinity in H?/SL(2, Z). However, if y is irrational, the
(T?, gs) makes an infinite sequence of excursions which carry it successively
further towards infinity, followed by returns to a fixed compact set. The
precise behavior is determined by the continued fraction expansion of y. Thus,
for y rational, up to scaling, (T2, g;) becomes arbitrarily thin as § — 0. For vy
irrational, there exist § for which (72, g5) is arbitrarily thin. But there are also
arbitrarily small & for which it is fat.
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Example 2.2 (Almost flat manifolds; see [6]). The simplest (but quite
typical) almost flat manifolds arise very naturally in our context. Let S* — N3
— T2 be a circle bundle with connection over 72. If this bundle is topologi-
cally nontrivial, then N3 does not have the fundamental group of a flat
manifold. In fact, N3 is a quotient of the Heisenberg group, and as such, is a
nilmanifold (the fiber S corresponds to the center). If 72 is given a metric, the
connection induces a metric on N3, for which rotation through the angle 6 in
the fibers is an isometry. Choose the metric on 7' to be flat and note that all
fibers have the same length. Then by (2.13) and (2.14), for the collapse
(N3, g5) along the fibers, g; converges locally to a flat metric. In fact, for the
sequence (N3, 8%gs:a+0) (Where ¢ > 0), both the curvature and the diameter
approach zero, so that the limit of this collapse is a point.

Remark 2.1. 1t is easy to see that the calculation of Theorem 2.1 can be
generalized to the case in which the abelian Lie algebra of Killing fields is
replaced by a nilpotent Lie algebra. The latter is collapsed as in Example 2.2,
rather than by scaling.

3. Polarized volume collapses

For collapses associated to a polarization for which all orbits are not of the
same dimension, we will need a slight generalization of the calculation of
Theorem 2.1. Suppose that in (2.2) we replace § by a function p which is
constant on orbits;

(31) P=P(y1,"',yn—k)>0-

We fix attention on the origin (0,0) in (x, y)-space and-make the change of
coordinates,

(32) i=p(0)x;.

Now we obtain

(o) A() | 2(0) B(»)
22(0) 0

63 (glur.on=| 20 O
2(0) 50

P (¥)C(») + D(y)

2(0)

It follows that for, say, |p| < 1,
(3.4) |K,| < ¢(4, B,C,D,|0/pl, Io"/pl),
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where p’ and p” denote typical first and second partials of p with respect to
Vot s Yook

Theorem 3.1. Let Y" be compact, let P be a polarization of an F-structure,
%, on Y" and let g be an invariant metric. Then there exists a family of metrics,
g5, Which are invariant for the F-structure defined by P, such that for § < 1/2,

(1) (Y", gs) is cb-collapsed,

(2) diam(Y™, g,) < cllog 3},

(3) Vol(Y™", g5) < c8*{log 8]",

@ |Ks] < c.

Proof. Let {U,} be as in Definition 1.7 and let f;: U, — [1/2,1] be smooth
functions such that f, = 1 near U, and

(3.5) Usas2) =y

As in Lemma 1.4, we can assume that f, is constant on every orbit @ of 2. Set
(3.6) p, = Sloee/1oel/2,

The metric gz will depend on a choice of ordering, U, U, - - - of the {U,}
(although its essential properties are independent of this choice). We start with
the metric log?8 - g and put

(3.7) log?6 - g=g] + hy
on U, where the decomposition is as in (2.2) and h, vanishes on the orbits of
.. We then define g; by

lgl+hy, U,
(3.8) & = plgzl ' 1
log Sg, Y\ Ula
where p; is as in (3.6). Proceeding by induction, we put
(3.9) gjzg_;+l+hj+l’

where k., vanishes on the orbits of ¥, | and define g;,, by

(3.10) gy = {P}+1gj+1 + hj+15 Uit
. J+

Y\ Ui

j y
We claim that

(3.11) 8s = 8n

has the required properties. Note that (2) and (3) are obvious, and that (1)
follows as in the proof of Theorem 2.1.

To see (4), let p € Y"and G,.= G, the stalk of 2. Let (x; --- xp, y1 -
Yu—1) (I = k = rank ) be coordinates as in (2.11) above, for the metric g such
that p = (0, 0). Thus, the x-coordinates are constant along some transversal to
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the orbit @ through p (! = dim @) and the y-coordinates are constant along
the orbits of g(U,) = G,. We will keep track of the effect at p of the changes
of metric corresponding to j = 1,---, N in coordinate systems derived from
(x. )

Observe that for j=1,---, N the functions p; depend only on y (and )
since they are constant on orbits, Moreover, in the coordinate system

(3.12) x;=x; logd, y =y, logs,

the matrix representing the metric log2é - g has bounded partial derivatives (of
all orders) and the functions |0}/p}, 1p/’/p| (j =1,---, N) are bounded inde-
pendent of & (as is immediate from (3.7)).

Finally, we need only consider the effect at p of the changes of metric
corresponding to those j for which p € U. For such j, the orbits of &, are
contained in those of &, on U, N U,.

Let B be the first value of j for which p € U,. By making a linear change of
coordinates we can suppose that the orbits of &, are given by x,,; =
const,- - -, x, = const, y, = const,- - -, y,_, = const, near p. We then introduce
new coordinates (uy, -+, %, X, 15" " "5 X, Y1,* * *» Vp—y) @8 in (3.3). Since the p;
depend only on y, --- y,_, they have the same expressions as before. Thus, (4)
follows by proceeding by induction.

Remark 3.1. The initial step in Theorem 3.1 in which distances are ex-
panded in a/l directions by a factor [log 8| is not optional, i.e. Vol(Y,, g5) does
not always approach zero as rapidly as possible as § — 0. This loss of
sharpness is not very serious in the present context since at best one could
replace Vol(Y,,8) ~ 8*log 8" by Vol(Y,,8) ~ 8% compare Example 0.2 (con-
tinued). However, in Example 4.2 and in §5 we proceed more carefully.

4. Nonpolarized collapses

(a) Introduction. To be able to collapse when no polarization exists, we must:

(i) Describe a structure (referred to, somewhat informally, as a slice polariza-
tion) which replaces that of a polarization and which exists in general.

(ii) Check that there is a collapsing procedure based on this structure.

We begin by illustrating (i) and (ii) in an example which was considered in
§1. Then we do the calculation behind (ii). Next we explain how the structure
of (i) is constructed in general. Finally, we describe the collapse.

Example 1.7 (continued). Let Z?> C #* denote the union of the zero
sections of the flat bundles &7, i.e. the 2-torus on which the dimension of the
orbits drops from 2 to 1. The T-structure has nilpotent holonomy (given by the



330 JEFF CHEEGER & MIKHAEL GROMOV

matrix (1.10)) in the direction of the 6-circle in Z? (the circle transverse to the
orbits). As a consequence, the sub-bundle defined by the isotropy subgroups
H, peZ 2, has no complementary flat sub-bundle. Equivalently there is no
1-dimensional polarization near Z>.

However, for each fixed 8, the restriction of our structure to a 3-dimensional
slice, & < A *, has no holonomy, and hence admits a 1-dimensional polariza-
tion. For example, on each slice we can choose the 1-parameter subgroup of
the isometry group of &; induced by parallel translation of &; (see (1.6)).
This family of “slice polarizations” varies continuously with § (the correspond-
ing family of infinitesimal generators gives rise to a vector field ¥ on #*,
which is tangent to & for each fixed 6, and such that V| is a Killing field).

If the metric is collapsed in the direction of V, the curvature does not
remain bounded, because V deviates from being a Killing field through its
dependence on #. To obtain a collapse with bounded curvature, we must
simultaneously expand the metric in the @ direction (at an equal rate). This has
the effect of making the above deviation negligible.

(b) Main computation. The essential quantitative features of nonpolarized
collapse are captured by the following 3-dimensional situation. To 51mp11fy
notation, we will only write the computation explicitly in this case.

Let R®> = R? X R, where the third coordinate is denoted by z. Let g be a
riemannian metric on R3 and let ¥ be a nonvanishing vector field such that

(1) V is tangent to the slices, z = const.

(2) The restriction of ¥ to any slice is a Killing field.

(3) There is an abelian Lie algebra, #, of Killing fields such that if X € %,
then X is tangent to every slice, z = z,. Moreover, for each z,, there exists
X, € F with X, |,_. =V],_,.

It sufflces to con51der, say, z,= 0. Choose a local coordinate system
(x, y,z)withd/9x = X,,.

To begin with we observe that

d _
(4.1) [a V] ~ 0,
where [ , ]is the Lie bracket. In fact, for each fixed z,,

3 _
(4.2) | [5; xzo] =0,
since 9/0x = X, € %.But 9/0x, V, X, are all tangent to the slice z = z,. So
for z = z,, the brackets in (4.1) and (4.2) can be computed in this slice, and
there V' = X, .
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Let

d
(4.3) 5 =U+N

be the decomposition of 3/9z into components tangent and normal to z = z,
respectively. Since 9 /9x is a Killing field tangent to z = z, we have

(44) Oz[ax az] [a ] OE[:‘x’N}

Now let (b%, b8) denote the components of 9/dx with respect to an
orthonormal basis adapted to the decomposition {V'}, {V'}+ N {9/9x,3/3y},
(3/9x,3/dy}*. Let (bS, bB), (b, bE, b)) be the corresponding component
functions for 9/dy, 9/0z. Notice, that all seven of these functions do not
depend on x. This follows from (4.1), (4.4) and the fact that 9 /9x is a Killing
field. For example,

Dy O (UVHY_/[3 1 I
(4.5) ax(b3)_ ax(<V,V>)_<[ax’U]’V> Vv * =0.
Finally, observe that by (3),
(4.6) b8(y,0) =0,

since 9/9x|,_¢ = V|,_o-

Let g,;(y, z,8) denote the metric obtained by the following operations (as
above the subscripts i, j = 1,2,3 correspond to the variables x, y, z respec-
tively).

(*) Multiply the metric g,;(y,z) by the factor 872 in the direction
{9/0x,9/3y}*, while leaving it unchanged on {3,/dx,3/dy}.

(* *) Multiply the metric obtained in (*) by a factor 82 in the direction of
{V }, while leaving it unchanged on {V'}*.

We have
2
(4.7) gu()’»z 8) =82 ba) +(b ) ’
(4.8) g12(y,2,8) = 82b3bs +(bfbf),
a 2 2
(4.9) gzz(y,z,8) =82(b2) +( ) >
4.10 g213(,2,8) = 82bsb% + bPDE,
813
4.11 2,3(y, 2,8) = 82b2bs + bEbE
23 3,

2 1
(412) 8(7:2.8) = 85" + (b8)" + - (81"
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Make the change of variables u = 8x, w = z/8. In terms of these new
coordinates

1 2
(413) u(r.8w.8) = (b5)" +( 55¢ .
1
(4.14) ial 3,90, 8) = abivg + (3¢ )ot,
(4.15) g2y, 8w, 8) = 82(b3)" +(b£),
(4.16) g13(y,8w,8) = 82b%bs + 8bEbE,
(4.17) 225(y,8w,8) = 83b2bs + 5bEbE,
(4.18) g5y, 8w,8) = 84(bg)" + 82(bf)" +(b7)"
In view of (4.6),
(4.19) l1m b B(y,ow) = ibﬂ(y 0)w.
Moreover
()" 0 0
‘ 0 o (8])°

which is positive definite. Thus, it is clear that the curvature stays bounded as
8§ - 0.

The calculation just given can be generalized. Since the details are straight-
forward, we will merely state the results.

(A) First of all, instead of the coordinates x, y, z we can as well have several

coordinates X1t s Xy Y1o' "% Yupp 215" " " 2y (where xl, --, X, correspond
to V},- - -, ¥, ). Moreover, we can collapse only, say, V1,- - -, V,, (and make the
changes of coordinates U =0xy -+ =8,X,, W = 21/8 W, =2,/8).

Finally, we can artificially treat a subset of y, ---y,, as z-coordinates, even
though this is not required in order to keep the curvature bounded.

(B) As in (3.1)-(3.4), & can be replaced by a function p(y;, -+, ¥,
)", 2,,8). The curvature of the collapsed metric depends on |p’/p}, [p”/pl;
compare (3.4).

(c) Construction of slice polarizations. We now explain how the “slice
polarizations” which are described in the continuation of Example 1.7 (at the
beginning of this section) are obtained in general, starting with the case of a
pure structure, % . For this we must consider the orbit stratification associated
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to % and construct an invariant metric on Y, and inner products in the stalks,
G, which are suitably compatible with this stratification.

Let # be a pure F-structure of positive rank on Y, and let g be an invariant
metric. There is a natural stratification of Y, into maximal strata, Z,, such that
rank # =i for p € 2. Since the groups G, are abelian, it follows that the
identity components, H, 0 , of isotropy groups, H,, are invariant under parallel
translation along any curve in 2;. (Recall that the structure sheaf of % can be
regarded as a flat bundle.) Each 2, is totally geodesic for the metric g, since
locally it can be viewed as the set of common zeros of a collection of Killing
fields.

Let g € 2, and let (£,), denote the tangent plane to 2, at g. Let p € X,
and consider the collection of subspaces of Y, of the form lim_, ,(2,), = O,
(k > i). Since all groups G, are abelian, it follows that the Q, are coordinate
hyperplanes relative to some fixed orthogonal basis of Y,. Moreover, {Q,} is
invariant under parallel translation in the normal bundle »(Z,).

Let =, denote the set of points of 2, at distance > ¢; from 9Z,. Let exp be
the exponential map of the normal bundle »(2, ). For r; sufficiently small, exp
restricted to the subset S, . = {v € »(2)I|lv]| < r;} is a diffeomorphism onto
aset2 . Lets:2,  — 2 _denote the correspondlng projection map.

Lemma 4.1 The invariant metric g and numbers ¢,, r; can be chosen such that

MUE, , =

(2) If iy < iy, then m, = mm, on Efn"'; nZ, ..

Proof. Start with any invariant metric g,. Choose & = 0 and r; so small
that exp|S, , is a diffeomorphism onto =, . There is a natural metric on
S.,.,, which is flat on the fibers, for which the subspace orthogonal to the fibers
is given by the connection on »(Z;) and for which projection onto the zero
section is a riemannain submersion. Push this metric down to a metric g, on
pX via exp. Note that g, is compatible with F#|2, , and hence that

2, lm 2, ., is totally geodesic for g;. 1

It follows easily from the construction that (2) is satisfied on Z, . More-
over (using (2)) it follows that near 2, N 2, ,, the pullback of g, via the
exponential map of 3(Z,), actually coincides with the natural metric of »(Z)).

Now we can proceed by induction. Extend g, to an invariant metric for #
on all of Y,, choose r, < &, < r;, and replace the metric g;|2_ , with the
push down of the natural metricon S, , . Let g, be themetricon 2, , UZ,_
so obtained. By what was noted above, g, coincides with g, on X By
proceeding in this way, we obtain the required metric.

Put U, = Z_ ,.Let g € U, and let v be the unique minimal geodesic from ¢
to 7,(q). Parallel translation along y induces an isomorphism G, = G, ),
which we will also denote by =,.

&.7"
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Note that at each point p, the metric g of Lemma 4.1 induces a natural
inner product on the Lie algebra, g,, of G,. For this, we identify a Killing field
X with (X(p),vX(p)) (we assume G, acts effectively; see Remark 1.2). The
resulting inner product is invariant under the local action of G, but not under
the maps =;: G, = G, (-

Lemma 4.2. There exists an inner product { , ), on g, which is invariant
under the local action of G, and under the projection m; ( for g € U)).

Proof. On Z, define { , ), to be the inner product above. Extend { , ), to
U, by making it invariant under #,. In view of 2) of Lemma 4.1, {, ), is
invariant under the local action of G, and under #; on U; U U,. Clearly, we can
extend (, ) |U; N 2, to an inner product on g, for all g € =, which is
invariant under the local action G,. Then extend to U, by composing with m,.
This is consistent with ( , ), as defined previously on U; N U,. By proceeding
in this way, we construct { , ), on all of Y with the desired properties.

For pe S, ,, welet K, denote the connected (but not necessarily closed)
subgroup whose Lie algebra is the orthogonal complement of that of the
isotropy group, H,. For g € U, we put

(4.21) K= ﬂfl(Kn.-<q))~

It follows from Lemmas 4.1 and 4.2 that the assignment ¢ = K ; is invariant
under the local action of G,. Moreover,if g€ U N U, i <, then

(4.22) K;c K.

Finally, if q,, ¢, € U, N U, i <, and m,(q,) = m(q,), then K] = K} .

(d) Collapse. We can now collapse Y, by a straightforward variant of the
procedure of §3. Choose functions f,, p, on U, as in (3.5) and (3.6). Fix ¢ and
let Uy,- -, U, i, < -++ <i; denote the U, withge U,. Let Z, C --- C Z,

!

denote the subspaces of Y, tangent to the orbits of X! --- K and W, c -
C W, the tangent spaces to wl‘l(@”il(q)),- -+, 1740, (¢)). Then

(4.23) Z,c--CZ CW,C- CW,.

Let g be as in Lemma 4.1 and put

(4.24) log26g = gi + h, + ky,

where the decomposition (4.24) corresponds to Z;, Z,* N W, , W,* . Set

_ pigl + h + 0%y, U,

4.25 =
(4.25) 817\ log28g, Y\ U,.



COLLAPSING RIEMANNIAN MANIFOLDS 335
Define g, by induction:

2,1 -
Pi+18j+1 T hjq + Pj+21kj+1’ Uit
gj’ . Y\ U'+17

where the decomposition corresponds to Z,, 4, +1 N Wi, W;H

We claim that g, (n = dimY') collapses w1th bounded curvature as § — 0
(where p; depends on § as in (3.6)). :

To see that the curvature remains bounded, let U, --- U, be those U; with
g € U, and choose local coordinates near g as follows. Let

(4.27) m; = dims, - i.

Choose local coordinates functions sy, -, s, on Z,, which are constant on
- 1 - .

the orbits. Extend these to U; N --- N U, by composing with . Next choose

Sp+17" "5 Sy, ON Xy so that s,,---,s, ~are coordinates transverse to the

orbits on X,. Extend these to U, N U, hy composing with o, (recall m
mm,). By proceedmg in this way, we obtaln Sttty Extend 51,7, 8, to

a complete system of local coordinates transverse to the orblt of Ky through q,
by choosing additional functions, #;,---,1,_ im; which are constant on the
orbits of K (for p near g). Finally, choose x;,- -+, x; , i = 1,- -+, m, such that
for fixed #;,---,s,, ; the fields 9/0x,,---,0 /E)x,k are Killing f1e1ds generated

by the action of K ; i

(4.26) 8jv1 7=

7, =58
(4.28) :
z m; =S m;
V1= Smy 41
(4.29)
ym,- —mj, = m;.
/
Ym —my +1 t
(4.30)
yn—z tn i it
4
The effect of the change of metric corresponding to U, in this coordinate
system is to collapse only x,,- - -, x; while expanding all directions orthogonal
to z, = comst,---,z, = const. The change corresponding to U, collapses
all x1 X, directions while expanding directions normal to » =
const,- -, y,,. e const, as well as z; = const,- -+, z, = const (compare
. i

(A) which follows (4.20) above). The change correspondmg tolU,,1<k<}j,
has an effect intermediate between the two above. Thus, by successively
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changing coordinates as in (B) above and observing, as in §3, that |p} /p; |,
|07./p;,| remain bounded in the new coordinate systems, we see that the
curvature of g, is bounded independent of 8.

To see that g, collapses as § — 0, for each p € Y choose r = r(0,) such
that the exponential map of the normal bundle to &, is a diffeomorphism
when restricted to vectors of length r. Take a finite covering of Y" by tubular
open neighborhoods 7, ,,(0, ). For q € T, /%8,) it follows that dist(q, 97, (¥, )
> ¢(i) > 0 for some c(i) independent of 8. But through every such g passes a
curve of length ¢, (i), which is not contractiblein 7, (&, ). For ¢;(i)8 < c(i)/2,
this implies that there is a closed noncontractible geodesic loop on ¢ of
length < ¢,(i)8. Hence i(g) < ¢;(i)8.

Finally, we note that if m;, is as in (4.27) and we put

4.31 = i i —m. ) 4+ o+ (i —m.
( 3 ) K u,n “njll(?U,j*@ (11 mll) (lj mlj)7
then

(4.32) Vol(Y", g,(8)) < c8"|log8|".

In particular, for this method of collapsing (which we indicate how to sharpen
in §5) the volume goes either to infinity or to zero. In fact,

(4.33) lim Vol(Y", g,(8)) = 0

if and only if for all 7,

(4.34) i—m;>0.
or equivalently,

(4.35) i>4dimZ,.

The procedure just described has a straightforward generalization to struc-
tures which are not pure. For this, we choose a regular atlas, {U,}, for a
substructure of positive rank. Over each U, we have a pure substructure, G,
(see Remark 1.2), and as in Lemma 1.3 there is a natural partial ordering
among the U,. Note that if G, ; C G, ,, then the orbit stratification for the
local action of G, , refines that for G, ;. From this we easily obtain the
existence of a metric g and inner product ¢ , ), on g, with properties which
generalize in the obvious way those of LLemmas 4.1 and 4.2.

Now on each U, we collapse as above, except that we modify the cut off
functions, p?, in such a way that p¥ = 1 in a small neighborhood of 9U,. By
performing these collapses successively, we collapse Y" with bounded curva-
ture. Thus, we have the following result.



COLLAPSING RIEMANNIAN MANIFOLDS 337

Let Y" admit an F-structure of positive rank. Let {U,} be a covering as
above. Let m$ = dim 22, where Z¢ is defined by the action of G, and put
(4.36) k = inf k,
where «, is defined as in (4.31).

Theorem 4.1.  There exists a family of invariant metrics, g5, on Y" such that
for 6 <1/2.

(1) (Y™, gg) is c8-collapsed.

(2) diam(Y”, g5) < cllogd|.

(3) Vol(Y", g5) < c8*[log 8|".

@) [Ky) < c. ]

Example 4.1 (Nonpolarized volume collapse). Let R* — .#*— S' X S, be
the space of flat bundles considered in Example 1.7, where S denotes the zero
section of &3(8) and S the circle which parametrizes the w’(8). If #,, #,
are 2-copies of .#, we can form

m KT
R > My X My > S'XSh xS xS}
Let
3 1 1 1
(4.37) T° = {(x,.6,x,,8)} € ST x §§ x 8" x 8§

and let #°7 = (7, X m,)"}(T?). The T-structure on .# gives rise to an obvious
nonpolarizable T-structure on /'’ with orbits of dimension 2, 3, 4. The
corresponding strata satisfy dim 2, = 3, dim2; = 5, dim 2, = 7. Thus, (4.35)
holds. By regarding R* - 4”7 - T and letting Y’ denote the double of the
corresponding disc bundle, we obtain a specific example of a compact mani-
fold which can be volume collapsed by means of a nonpolarizable T-structure.

Remark 4.1. The above Y actually does admit a polarized T-structure. But
probably there exist manifolds which can be volume collapsed although they
admit no such structure.

The following example indicates how the construction of Theorem 4.1 can
be sharpened. »

Example 4.2 (Collapsing M} with bounded volume). The manifolds M} of
Example 1.9 have F-structures which are of rank 2, except on X,, which is the
union of three connected codimension 2 submanifolds. These are either tori or
Klein bottles depending on the particular choice of F. It will suffice to collapse
tubular neighborhoods of the components of 2, such that the volume stays
finite and near the boundary the collapse agrees with the standard collapse of a
pure rank 2 structure.
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Let M? be a component of ¥,. We start with a metric on the normal
bundle, »( M ?), which is cylindrical on the fibers. That is, on each fiber, R?, it
is of the form dr? + f2(r)d#?, where f(r)=1for r > 1.

Given 8§ > 0, we can construct a §-collapsed metric on the disk-bundle,
0 < r < 1, by means of a slice polarization. Thus, we multiply the metric by §
on the subspace, X, tangent to the 1-dimensional orbits of the slice polariza-
tion and multiply the metric by 6~2 on the subspace W, orthogonal to the
slices.

Let V' be the orthogonal complement of X in the tangent space to the orbit.
We extend the collapse to the annular region 1 < r < |log 8] by multiplying the
metric in the direction of ¥ by a factor p*(r), where |p’/p|, |0”/p| are
bounded, p =1 near r =1 and p =8 near r = [log8]. Observe that the
volume of this region is bounded independent of 8. Moreover, near r = {log §|
we have the standard collapse of a pure structure. However, the metric is still
expanded by a factor p*(r — [log 8| + 1) on the subspace W and for different
components M7, M3 the subspaces W,;, W, do not correspond. Thus, we
extend the collapse to the region [logd} < r < 2|log §{ — 1 by multiplying the
metric by a factor 82(r — [log 8| + 1) on the subspace W. It is easy to see that
the curvature remains bounded independent of § as does the volume.

By gluing the metrics just constructed onto the standard §-collapsed metric
for the rank 2 polarization on the remaining piece of M7, we obtain the
required §-collapsed metric on M}, with curvature and volume bounded
independent of 4.

5. F-structures and complete metrics ¢n open manifolds

(a) Introduction. In this section, we consider an open manifold, Y”, which
carries an F-structure, &, or polarization, 2, on the complement of some
compact subset. We treat in detail the case of a polarization, showing that Y™
admits a complete metric, g, such that |K, | <1, Vol(Y", g,,) < co. The
analogous result for F-structures is the existence of a complete metric, g,
such that |K, | <1 and the injectivity radius goes uniformly to zero as
p — o; ie. the family Y”\ Bg(g) collapses as R — oo. The proof of this
latter result will be omitted since the ingredients which are required (beyond
those of §4) will be presented in proving the existence of metrics of finite
volume.

It is necessary to refine the constructions of the previous sections at two
points.
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Point 1. The invariant metric constructed in Lemma 1.3 is not guaranteed
to have additional nice properties such as completeness, bounded curvature,
etc. in case the manifold is open. Thus, we must begin by showing the existence
of such an invariant metric, g,, for a subpolarization #’ C #. Moreover, this
g, can be chosen such that #’, when measured with respect to g,, has
essentially the same kind of uniform local behavior as in the compact case.
This is achieved by making the metric grow sufficiently fast at infinity, and
there is no attempt to control the volume at this stage.

Point 2. Rather than passing from g, to log?8 - g, (as in (3.27) and (4.24))
we will make a sequence of changes which expand g, by a factor log?§, in a
single (radial) direction near the boundary of each U,. The construction is such
that the numbers [log 8| can be selected independently. If ¢, = Vol(U,, g,), we
choose {jlog §,|} so small that

o]

(5.1) Y c8, llogd,| < 0.

a=1

Then, by proceeding as in §3, we obtain

o0
(5.2) Vol(Y", g,.) <c Y ¢, |logd,],
a=1
where g is the required metric.

(b) Construction of a complete metric g,. We can assume that the polariza-
tion £ is regular and that the boundaries {9U,} are smooth and interest
transversally. Moreover, after modifying the invariant metric, we can assume
that g is such that

(1) The exponential map on the normal bundle, »(3U,), is a diffeomorphism
when restricted to vectors of length < 2e¢,.

(2) Let r, denote the distance function from dU,. Then on T, (3U,) N
T, (3Up)

(5.3) <gradg_ra,gradg_r>g = 0.

(3) The sets {U,\ T,,(3U,)} cover a neighborhood of infinity.

Let 2’ C # denote the polarization defined by (U}, where U =
U\ T, (3U,).

The construction of the metric g, is based on the following lemma which is
essentially a restatement of Lemma 5.4 and Theorem 5.5 of [3]. Unfortunately,
the presentation of these results in [3] was somewhat garbled due to a
confusion between the functions k and 1/k below. For this reason, we will
repeat some of the details here.
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Lemma 5.1. Ler k(p) be a locally bounded nonnegative function on a
riemannian manifold, Y", with possibly incomplete metric g. Then there exists a
smooth function, k*, such that

(1) k < 3k

(2) If go = (k*)’g = e¥8 g then g, is complete with curvature |K(g,)| < 1
and injectivity radius i,(g,) > 1 for all p. Moreover,

(5.4) ”gradgologk*ngn < c(n),
(5.5) HHessgologk*Hg0 < c(n).

(3) If Y" carries regular polarizations ' C P and the metric g as above, then
8, can be chosen invariant for P'.
Proof. By increasing the function k if necessary, we can assume

(5.6) k(p)> s |K, (1],
TEAXTY,)

(5.7) k(p)=1/i,(g)-

(5.8) k(p)>1/p, o0,

(5.9) k#0,

where p, co denotes the supremum of the radii of open metric balls at p whose
closure is compact.
Put

(5.10) ﬁ(p)=inf{% sup k(q)sl/R}.

q€ Bp(p)

It follows directly from (5.10) that if A > 0 and p, g < A/k(p), then

(5.11) lixﬁ(p)<7<(q)-

Moreover, if A < 1,

(5.12) k(g) < T2<k(p)

((5.11) and (5.12) replace Lemma 5.4 of [3]). The construction of k* now

proceeds as in the proof of Theorem 5.5 of [3], but with the following proviso:

k is to be replaced by 1/k, except in the expression k %g. This gives (1) and (2).
(3) If 22’ © 2 as above, the function k( p) need not be invariant for & at

points p € U, with

(5.13) k(p) < 1/dist ( p,dU,).
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However, if we put

(5.14) n(p) = sup e,

PEL;
(where U] = U\ Ts,j dU,)) and require in addition to (5.9)—(5.12) that, say,
(5.15) k(p) = 109(p).

then k( p) is invariant for 2’. If we now combine the argument of [3] with a
standard averaging argument, (3) follows.

Let p € Y”" and let (z;,---, z,,) be a local coordinate system with p at the
origin. Suppose that on the z-coordinate ball, B,(p), the matrix (g,;(z)) for
the metric g satisfies, say

(5.16) 7 < det gij(é) <2,

(5.17) lg:,-(;)l <9

(5.18) |8i5(2)] <

We choose k* > max(1l /g, ) and make the change of variables
(5.19) z; = k*(0)z,.

Then the metric g, = (k*)zg satisfies

(5.20) < det(gy),;(2) < 12

(521) I(go ij ‘ < C(n

(5.22) l(go ij(z)] < c¢(n)

on the z-coordinate ball B,(0) (see (5.4), (5.5), (5.11), (5.12) and (1) above).

Remark 5.1. By making the function k& grow sufficiently rapidly we can
find at each point a coordinate system satisfyiing (5.20)~(5.22) in which the
basic computation, (2.11)-(2.14), will apply.

(c) Expansion of g,. Let %’ be as above and put I, = U/ N TJ au/),
where as in (5.3), the tubular neighborhood is with respect to the metric g. If
p € I, N --- NI, we can introduce a local coordinate system, (x, y, r), near p,
as follows. As usual, the fields 9 /9x,,- - -, 9 /9x, are Killing fields spanning the
orbit ¢, (with respect to #"). The functions ry,- - -, 1, are as in (5.3). In view of
(5.3) we can find additional coordinates y;,- - -, y,, such that the matrix of g
for these coordinates is of the form

(5.23) (A(l(’)") 2)
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where I is the identity matrix and A(x, y, r) represents the inner product on
the subspace spanned by {d/dx,,---,8/dy,}. As in Remark 5.1, we can
assume that for the coordinate system

(5.24) x;=k*(p)x;, yi=k*(p)y, rn=k*(pr,

the matrix

(k*(y,r))z(A 0)

(5.25) (8o(x,¥,7)) = (k) \0 1

satisfies (5.20)—(5.22). Here
(5.26) A= A(y/k*(p),r/k*(p))

and the r, take values which include the interval (0, 1).

In order to expand g, we choose functions %, [0,1] — [1, ), each

d € R™, such that
(i) 2, = 1 on fixed intervals [0, €], [1 — &, 1].

() fo hy=d.

(iii) The derivatives of the function 1/k, are uniformly bounded indepen-
dent of d.

Now on each subset I, multiply the metric in the direction of grad r, by the
function h} (r,), while leaving it unchanged in the orthogonal directions. Call
the new metric g,.. The constant d, will be specified below.

To see the effect of this change of metric on I; N --- NI, we make the
change of variables

(5.27) [T ha(0ydo =5, hy(r)dr=ds,
| ,

13 _ 3

h,(r) 9r; ds;”

i

(5.28)

Then using (iii) and (5.28) it follows that

(k*(y,r))z(A 0)
(k=(p))* \0 1

satisfies (5.20)—(5.22) (for some c(n) independent of d,,- - -, d,). Moreover, the
functions, s;, take values which include the interval (0, d,).

(d) Collapse of the expanded metric. Now choose nonincreasing functions
p,: [0,d] — [0,1] such that p, = 1 on [0, ¢,] and p, = e~ near d. These can be
chosen such that |p)/p,l, |p)//p, are bounded independent of d (compare

(5.29) (go(x.3,5)) =
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(3.4)). Finally, by choosing & < & (where ¢ is as in (i)) we can arrange that

(5.30) lhy(r(x)) - pu(s)] <1,

where r and s are related as in (5.27).

The function p, (s,), defined near dU, has an obvious extension to all of
Y. Start with the metric g,, and successively multiply the inner product on
the subspace tangent to the orbits of each ¥, by the function pf,a. Call the
resulting metric g. In view of (5.30), the volume form of g is pointwise
smaller than that of g,. Now choose d, = |logd,|, where §, is as in (5.1). Then
it follows from (3) of the subsection above that Vol(Y", g ) < c0.

Finally, since £’ is regular, each point is contained in at most »n different
sets U,. So by Remark 5.1 and the bounds for (5.29) it is clear that (K, |is
uniformly bounded. Thus, we have

Theorem 5.2. (1) If Y" admits a polarization P on the complement of a
compact subset, C, then Y" admits a complete metric, g, invariant for some
P P, with K, | <land Vo(Y", g,) < .

(2) If C is empty, Y" admits a family, g, 5, of such complete metrics, with
|K,_ | <1and lims_ oVol(Y", g, 5) = 0.

In the same way we have

Theorem 53. (1) If Y”" admits an F-structure, F, of positive rank of the
complement of a compact subset, C, then Y" admits a complete metric g,
invariant for some F' CF, such that |K, | <1 and i, = 0 uniformly as
p — oo.

) If C is empty, Y" admits a family, g, s, of such metrics, such that
|K,, | <1land (Y", g, s) collapses.

Remark 5.2. Clearly, a sharper statement of Theorem 5.2 is possible; see
Theorem 4.1 and Example 4.2.

Appendix: Pure polarized structures on essential manifolds

Let X" be a closed oriented manifold and let f: X — K(w,1) be the
classifying map, where & = 7;( X"). We call X" essential if the fundamental
class, [ X"] € H (X", R), satisfies f ([ X"}) # O (compare [6], [7]).

Theorem A.1. Let F be a pure F-structure on an essential manifold X", such
that the group which acts locally is isomorphic to a k-torus, T*. Then dim O,p=k
for all p € X". Moreover, there exists a free normal abelian subgroup, A* C
7 (V) of rank k, whose action on the higher homotopy groups m,(X") (i = 2) is
trivial.
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Corollary A.2. The connected sum X"H#M", where M" is an arbitrary
n-dimensional manifold which is not a homology sphere, admits no pure F-
structure of rank = 1.

Example A.1. If n =2/ + 1 is odd, and M" admits a (possibly nonpure)
T-structure which is of rank / on some open set, then T"#M" also admits a
(nonpure) T-structure. In fact, let p € T", g € M" lie on principal orbits &,,
0, of rank /. Let T(0,), T,(0,) denote the small (saturated) tubular neighbor-
hoods of p, g. If we form T"#M" by removing balls of radius £/2 about p
and g, we can regard T"\ 7(0,) and M"\ T(0,) as contained in T #M".
On these sets, the T-structure on T"#M" can be taken to coincide with the
restrictions of the given structures on 7" and M” (compare [12]).

Proof of Theorem A.l. By Proposition 1.1, #*(X) = T* acts on XF, the
holonomy covering. Let ¥ € X% and consider the orbit map T* x % = 0,_. We
claim that it suffices to show that the induced homomorphism

(A1) 7% = 2 (T*) 3 m(XE, %) € m (X, x)

is injective. To see this, note that if dim &, < k for some x, then ker i, contains
the image in m(7T%) of m,(H,), where H_denotes the isotropy group of x. For
the second assertion, we observe that it is well known and easy to see that
iy(m(T*)) C 7,(X, x) is central and acts trivially on 7,( X, x), i > 2.

Let T} c T* denote the unique sub-torus commensurable with ker i,. Then
T, defines a substructure, & *, with the following property. for each orbit, oy,
of #* there is a finite covering @0F — OF such that the induced map
7(0¥) - 7,(X) is the zero map (see below for further details).

Suppose first that §* = 0* for all x, and so m,(0F) > m(X) is the zero
map. Then if X/#* denotes the orbit space, it follows that the induced map
Pxt m(X) = m(X/F *) is an isomorphism. In fact, since the inverse image,
w¥, of each point in X/# * is connected, p, is surjective. Moreover, ker p, is
spanned by the normal subgroup generated by U [ Im(m (0F)) C m(X)] = 0.

Since homotopy classes of maps f: X — K(m;) are in 1-1 correspondence
with (conjugacy classes of) homomorphisms, f,: m(X) — 7 (K(m)) = 7, it
follows that f is homotopic to f o p for some f: X/% * — K(x,1). Since X is
essential, we can assume that (fo p), is not the zero map. But then
H,(X"/%*)# 0, which is possible only if dim 7} = 0. Thus keri, = 0 and
the theorem follows in this case.

If 0%+ &, for some x, the idea is similar but requires some further
technical elaboration. Let U(x) be a small equivariant tubular neighborhood
of x. By passing to a finite covering, U/ — U,, we can assume that the lifted
orbit, @*, is induced by the action of T} (see Definition 1.2). Note that T} is
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only commensurable with ker i, and that @*' might be a multiple orbit in its
stratum. Thus, =,(G*) — 771(@* ) need not be the zero map. But after passing
to a finite covering, 0* — 0*’ we can assume that is the case for 771(0*) -

7,(0*). Moreover, if U, - U, denotes the corresponding covermg of U,, then
the same holds for any 0* c U, since the inclusion, @* — U, is a homotopy
equivalence.

In order to make use of the covering spaces, U, — U,, we need the following
lemma.

Lemma A3. Let Y" be a closed manifold which is the union of open
submanifolds Uy" - - - U, whose (smooth) boundaries {8U,'} intersect transver-
sally. Let m: U — U, be finite coverings. Then there exists an n-dimensional
polyhedron Y" and a continuous map g: Y" — Y", such that

(1) ge: HAY",0) > H(Y", Q) is surjective.

(2) If C,c U/ is closed, the map g|g™(C;) C© Y™ factors through a map h:

“I(C ) - U

Proof Let Z be an arbitrary topological space, U C Z an open subset and

: U — U a finite covering map. Denoteby Z = X ~ U the set (Z\ U) U U,
and by #: Z — Z the obvious map. Define the topology in W by the
condition that 4 < Z is closed if and only if #(A4) C Z is closed. It is easy to
see that 7 is surjective on rational homology and that the covering # factors
through a unique map U - Z.

Now specialize to the case of a closed manifold Z = Y = Ul ; as above.
Put Y=Y+ 0, U =a7'(U), j=2,---,m, and let =/ U.’—>U’ be the
covering maps induced by 7; from ;. Then take Y = Y’ F Uz, Y o Y”
+ U,”, etc. After m steps, we reach the required polyhedron Y ) = Y.

To complete the proof of Theorem A.l, we consider some sufficiently fine
open covering, {U;}, of Y by saturated open subsets with smooth boundary
such that {9U,} intersect transversally; compare Lemma 1.4. The local actions
on U. induce correspondmg actions on Y. As in the special case considered
above, we want to show that if f: X — K(=,1), then up to homotopy, f° g:
X ~K(m, 1) lifts to f o p o g. But it follows as above, that if (p © g),: m(X) —
m (X/F*)and (f o g)y: m(X) = m(K(7,1)), thenker(f o g)x C ker(p o g)s.
This implies that the desired lift exists and suffices to complete the proof.
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COLLAPSING RIEMANNIAN MANIFOLDS WHILE
KEEPING THEIR CURVATURE BOUNDED. II

JEFF CHEEGER & MIKHAEL GROMOV

0. Introduction

This is the second of two papers concerned with the situation in which
the injectivity radius at certain points of a riemannian manifold is “small”
compared to the curvature.

In Part I [3], we introduced the concept of an F-structure of positive
rank. This generalizes the notion of a torus action, for which all orbits
have positive dimension. We showed that if a compact manifold, Y",
admits an F-structure of positive rank, then it also admits a family of rie-
mannian metrics, g;, whose sectional curvatures are uniformly bounded
independent of J and for which the injectivity radius, i,(g;) goes uni-
formly to zero at all points y € Y", as d — 0. Such a sequence is said to
collapse with bounded curvature (see Part I for variants and refinements of
the above result).

In the present paper, we prove a kind of strengthened converse to the
collapsing theorem. If y € Y", let |K(y)| denote the maximum of the
absolute value of the sectional curvature over 7 € Az(Ty(Y")) .

Theorem 0.1. There exist constants c,(n), ¢,(n) > 0 such that if Y"
is a complete riemannian manifold, then Y" = Y; U Y[, where

(1) Y is an open set which admits an F-structure of positive rank,
whose orbits, g, have diameter satisfying diam(&)) < ¢,(n)i,,
(2) forall y € Y, there exists w in the ball B, . . (v) with
1/2.
(0.2) | K (w)] i, 2 c,(n).

Remark 0.3. For the F-structure we construct, the local actions almost
preserve the metric. By applying Lemma 1.3 of [3], we can replace the
metric on Y" by a nearby metric which is invariant for the F-structure

n
on Y.
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Remark 0.4. The set YF" can be taken to be the interior of a subman-
ifold with boundary.

Remark 0.5. The constants ¢ (n) and c,(n) can be estimated explic-
itly, although we do not do this here. But there is one point in our construc-
tion, Proposition 3.4, which is considerably easier to treat by a noneffective
argument based on the compactness theorem in riemannian geometry [2],
[13], [11], [17]. For completeness, we indicate a second proof of Proposi-
tion 3.4, which yields explicit constants.

Remark 0.6. If |K(y)| is uniformly bounded, say |K(y)| < 1, then
the set Yg has bounded geometry. In this case, roughly speaking, by the
compactness theorem, all geometrical and topological measurements of
Yé’ can be estimated in terms of its size. Thus, the thrust of Theorem 0.1
for the case of bounded curvature is that Y" admits a decomposition into
two pieces, on each of which there is a certain kind of control. Earlier
versions of this decomposition were known to Margulis (unpublished) for
manifolds of negative curvature, in which case they can be obtained much
more directly by special arguments; see [18] for an exposition in the case
of 3-manifolds of constant negative curvature.

Remark 0.7. The hypothesis of completeness in Theorem 0.1 is just
a convenience since, for an arbitrary manifold, the same decomposition
holds sufficiently far from Y \Y" (here Y is the completion of Y").

Remark 0.8. Although there is an essentially canonical set of choices
for the F-structure on M, (which are dictated by the local geometry)
there is a certain ambiguity in the construction which cannot be entirely
removed. In fact, if the F-structure were uniquely determined, it would
vary continuously with the local geometry. Then, of necessity, it would
always be pure (see Part I, §1). But this would contradict the results of
Part I (see Theorems 4.1 and A.1).

By combining Theorem 0.1 with the main results of Part I [3] we obtain
corollaries such as the following.

Corollary 0.9. (Critical radius) If a compact manifold Y" admits a

metric which is sufficiently collapsed at all points (say |K(y)| <1, i, <

¢,(n)), then Y" admits a family of metrics which collapses with bounded
curvature.

The proof of Theorem 0.1 will be given in the remaining sections.

F-structures are discussed in §1.

An F-structure, & ,on U consists of a sheaf, / ,on U whose stalk,
/; , at each point x € U, is isomorphic to some torus and a local action,
u,of / on U, for which certain additional conditions are satisfied.
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Suppose we are given a finite normal covering U of U and a represen-
tation p: I" — Sl(k, Z) of the covering group I". Then p determines a
flat T bundle, /, over U. Given an action of the semidirect product,
I' x , T* , on U, which extends the action of I', we obtain a local ac-
tion u of / on U. The pair (/, u) determines a so-called elementary
F-structure, & .

Typically, an F-structure is specified by a locally finite collection of
open sets, {V }, each of which carries an elementary F-structure, & .
On nonempty intersections, V. NV, we require that /; agrees with a
sub-bundle of /}, , or vice versa, that the corresponding local actions agree,
and that ¥, N V;, is saturated for the local action of the larger of / , /;9 .
In this situation, / =, /2 .

There is a stability result for elementary structures which follows from
a simple generalization of the stability theorem for compact group actions.
As a consequence, a collection, {(V,, %)} as above, for which the cor-
responding local actions on intersections only agree to a high degree of
approximation, can be perturbed to one which determines an F-structure.
This observation (see Lemma 1.5) provides the framework for the proof
of Theorem 0.1. (Actually, Lemma 1.5 will be formulated in terms of the
concept of weak F-structure, since this turns out to be more convenient
for the application to the proof of Theorem 0.1; see §1 for details.)

In proving Theorem 0.1, first we find a covering of the sufficiently col-
lapsed part of Y" by a collection of sets which are the homeomorphic im-
ages of certain subsets of complete flat manifolds. The homeomorphisms
are almost isometries. Then, we transfer to Y”, certain elementary F-
structures which are defined over these subsets. Finally, we fit together the
transferred elementary F-structures, using Lemma 1.5.

The relevant discussion of elementary F-structures on complete flat
manifolds is given in §2. First we describe a class of elementary F-
structures of positive rank, which are carried by a noncontractible flat
manifold, X" ; for these manifolds |K (x)|1/ 2. i, = 0. Each such structure
is determined by a union of conjugacy classes, {y;}, of geodesic loops ;.
The y f lie in the canonical normal abelian subgroup, 4 C 7 (X "), whose
existence follows from the Bieberbach Theorem (and the Soul Theorem).
In particular, a loop y lies in A if the rotational angles of its holonomy
are not too big.

Next we describe the elementary F-structures which are utilized in the
proof of Theorem 0.1. Each of these is specified by a collection of loops
at x which lie in 4, with the following property. A loop y is in the
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collection if and only if every loop at x with the same length and iso-
morphic holonomy transformation is also included. These collections are
not necessarily invariant under conjugation by elements of 7, (X ") and, in
general, the corresponding elementary F-structures are only defined over
proper open subsets, V' c X" .

In §3, we show that if |K (w)ll/ 2. i is sufficiently small for w near
y € Y", then we can find an open neighborhood U of y, a complete flat
manifold Y" and a quasi-isometry f: U — T,(S™). Here T,(S™) is the
u-tubular neighborhood of a soul, $” c Y. The quasi-isometry, f, is
almost an isometry if |K (w)|l/ 2. i, is sufficiently small.

In §4, this approximation is regularized so that holonomies P, and P,
of corresponding loops y and y in U and Tu(S"’) are close if the loops
are not too long.

With the results of §§3 and 4, we can transfer an elementary F-structure
from a subset of Tu(S'") to a subset of U. Moreover, a structure so
obtained has an approximate description in terms of geodesic loops of
Y".

The proof of Theorem 0.1 is carried out in §5, by implementing Lemma
L.5.

If y € Y”" is a point such that |K(w)|1/2 i is small for w near y, then
there exist various local flat approximations to (Y", y) as in §§3 and 4.
To each such point y, we assign a flat approximation f,: U, — T, (S,),
a thin subset Vy , with y € Vy C Uy , and an elementary F-structure, <7y ,
as above, over Vy .

The main point is to make these choices such that on all intersections,
Vy. , either / / or vice versa. This condition is called property
(F)); compare the dlSCUSSlOl’l above, of the contents of §1.

Since the corresponding local actions for both /;l and /;2 have an
approximate description in terms of geodesic loops of Y, these actions
will be close if the maps fy, and fy2 are sufficiently close to being isome-
tries. In fact, were it not for the fact that {Vy} has infinite multiplicity,
{( )} would actually satisfy the hypothesis of Lemma 1.5.

Thus if we choose a locally finite subcollection, {V, }, with suitably
bounded multiplicity, then the full hypothesis of Lemma 1.5 is satisfied for
the collection {(V b Z.)} and we obtain a weak F-structure (of positive
rank). Our particdiar method of selecting {(V, 9; )} (which guarantees
that property (F,) holds) will also enable us to conclude that our weak
F-structure is actually an F-structure.



COLLAPSING RIEMANNIAN MANIFOLDS 273

A more detailed outline of the argument is given at the beginning of §5.

In the Appendix to §2 we give some examples which show that the
elementary F-structures discussed in §2 which are defined over all of X"
do not satisfy the hypothesis of §1, since the size of their orbits grows too
rapidly at infinity.

Let us mention that by replacing the compactness theorem used in §3 by
one proved recently by M. Anderson (see his preprint “Convergence and
Rigidity of Manifolds under Ricci Curvature Bounds”) the hypothesis of
Theorem 0.1 can be replaced by the following assumptions: In (0.2), one
can substitute “Ricci curvature” for “sectional curvature,” provided one
also assumes that for some sufficiently small constant, c,(n),

(0.10) IR"? < cy(n).
B jeym®)

Finally, we point out that K. Fukaya has obtained a number of remark-
able results on collapsing in the case of bounded curvature and diameter;
see [7]-[10]. His techniques are rather different from those employed here
and in [4]. In recent joint work with Fukaya, a common generalization of a

portion of his work and ours is obtained by combining the two approaches.

1. F-structures and their stability

Before beginning we recall an elementary fact which is used (sometimes
without further mention) in this section and the next.

Let G be a connected topological group which acts on a space Z . Then
this action lifts (necessarily uniquely) to the action of a covering group,
G, on a covering space, (Z, 2), if and only if

(¢z)*(7zl(G’ é)) Cc 71'1(2, Z) - nl(Z ’ Z)a
where ¢_(g) < g(z2).

Equivalently, let G, the universal covering of G, act on Z, the uni-
versal covering of Z. If G =G/H and Z = Z/T then the action of G
on Z descends to an action of G on Z if and only if the action of G
normalizes that of I' and H cT.

For the convenience of the reader, we begin by reviewing some defini-
tions from [3] (to which we refer for further details).

A partial action, A, of a topological group, G, on a Hausdorff space,
X, is given by
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(1) aneighborhood & C G x X of e x X, where e is the identity of
G, and a continuous map A: Z — X, also written (g, x) — gx,
such that

(2) (g,8,)x = g,(g,x) whenever (g,g,, x) and (g,, &x) liein &,
and such that ex = x for all x.

Two partial actions (4,,Z,) and (4,,Y,) are called equivalent if
there is a neighborhood & C &, , &, containing exX , such that 4,|Z =
A,|Z . A local action, {4}, is an equivalence class of partial actions.

Assume G is connected.

A subset X, C X iscalled {4}-invariant if for some (equivalently, any)
representative we have gx € X, for all x € X, with (g, x) € Z. Itis
easy to see that the X is partitioned into minimal invariant sets called
orbits. Let &, denote the orbit of X .

A local action can be restricted to any open set U C X by restricting the
domain, 2 , of some representativeto 2’ D ex X, such that gx € U for
(g,x)€2'. Similarly a local action can be pulled back under a locally
homeomorphic map.

Now consider a sheaf, ¢, of connected topological groups over X .
Let £(U) denote the group of sections over U. An action of z on X
is a local action of £(U) on U, for every connected open set U C X,
such that the structure homomorphisms #(U) — £(U') (for U' c U)
commute with the restriction of local actions.

A set is invariant if its intersection with U is invariant for all U.
Again, X is partitioned into minimal invariant subsets called orbits. A
set is called saturated if it is a union of orbits. The rank of the action at
x € X is the dimension of the orbit, &, . The action has positive rank if
dim&, >0, forall xe X.

An action of g is called complete if for all x € X there is an open
neighborhood, V(x), of x and a locally homeomorphic map, ¥V (x) —
V(x) (V(x) Hausdorff), such that:

(1) If n(%) = x, then for any open neighborhood W C V(x) of
def

X, the structure homomorphism, n”(gz)(W) — #z = #, 1san
isomorphism.
(2) The local action of #n°(g) comes from a global action of
() V(%) = g5
Definition 1.1. A Z-structure on X is given by the complete action of
a sheaf of connected topological groups, ¢, on X, such that the neigh-
borhood, ¥ (x), can be chosen to satisfy:

(1) m:V(x) — V(x) is a normal covering.
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(2) Forall x, V(x) is saturated.
(3) For an orbit, @, if x,ye€ @, then V(x)=V(p).
Definition 1.2. A Z-structure is called an F-structure if

(1) Forall x, the stalk, £ _, is isomorphic to a torus.
(2) For all x, the normal covering, ¥ (x) — V(x), can be chosen to
be finite.

A structure satisfying (1) and (3) of Definition 1.2 (but not necessarily
(2)) is called a weak Z-structure. A weak Z-structure which satisfies the
additional conditions of Definition 1.2 is called a weak F-structure.

We emphasize that the existence of a weak F-structure of positive rank
does not guarantee that we can perform the collapsing constructions of [3].
However, we will formulate Lemma 1.5 in terms of this concept, since this
turns out to be convenient for the application to the proof of Theorem 0.1.

For the remainder of this section we restrict attention to F-structures
(although everything we say generalizes to Z-structures).

Definition 1.3. An F-structure is called elementary if V(x) — V(x)
can be chosen independent of x .

Note that in Definition 1.3, necessarily, we have V(x) = X. Also, as
indicated in the introduction, the concept of elementary F-structure can
be reformulated as follows.

Suppose we are given

(1) a (possibly disconnected) finite normal covering, X — X, with
covering group I,
(2) arepresentation, p: I“—»Aut(t ), for some torus T*
(3) an action of the semidirect product, I’ X, T* , extendmg the action
of ycTI'x » T*.
The above data determines an elementary F-structure, ¥ on X, for
which the sheaf, /, is the associated flat bundle on X, with fiber iso-
morphic to T* and holonomy representation isomorphicto p. The action
of T c T x p T on X determines an obvious action of »z on X .

For & as above, let / "¢ # be a sub-bundle with fiber ™ c 7.
Then the action of / restricts to an action of /’. Moreover, the re-
striction of /' to any set U’ which is saturated by the orbits of /’
determines an elementary F-structure over U’ .

Typically, an F-structure is determined by specifying the following
data.

Let {V,} be a locally finite collection of open subsets of X and, for
each a,let & = ( /; , 4,) be an elementary F-structure over V. Assume
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that
(F,) forall &, B, either /|V, NV}, isa sub-bundle of /;3|VQ NV or
vice versa;
(F,) in the former case, u_ is obtained restricting u g and V. N Vs is
saturated for I -

y Note that in (F,) above, we allow /£ |V, NV} to coincide with /|V, N
-
Obviously, a collection, {V, , & }, satisfying (F|) and (F,) determines

an F-structure, # , over |J, V., for which the associated sheaf, /, is

Ua/;'

If we replace condition (F,) by

(FZ)W in the former case, x4 is obtained by restricting u g and ¥V, N Vs
is saturated for u_,
then a collection satisfying (F,) and (F,)" determines a weak F-structure.
In the proof of Theorem 0.1, we will apply Lemma 1.5 to obtain a col-
lection satisfying (F,) and (F,)" . But, it will turn out that two additional
conditions ((F;) and (F,)) are satisfied. These guarantee that the weak
F-structure is actually an F-structure.
(Fy) If Vao’ e, Va’ is any sequence such that, for i =0, --- , /-1,
V.nv, l # @ and / is properly contained in £ _on V.nv, o
then / , extends over Uf) V.
(F,) If Vﬁ0 R Vﬂ, is a second such sequence and Va, N Vﬂl' # O
4
then the extensions of / . /;30 to Va/ , Vﬂ,, satisfy / . C //}io or
vice versa on Va, N Vﬂ, .
1

Note that the extension of /; , assumed to exist in (F;), is necessarily
0

unique.

Let s(a) denote those B for which there exists a sequence as in (F;)
with @ = oy and B = o;. Put W = Uﬁes(a) V. Then if (F;) and
(F,) hold, we claim that {(W,, £ )} satisfies (F,) and (F,). Hence
{(W,, £)}, or, equivalently, {(V,,Z)}, determines an F-structure.

Observe that the part of condition (F,) which relates to the actions is
automatic. Also, Wao N Wﬂ0 is a union of sets, V;I N Vﬂ/' asin (F,), and
we can assume that /;I = /Q,/, . For if, say, / / is properly contained in
/;;I, , then VB,/ C Wa0 and we can replace the sequence V(IO s Va, by
Upyr " Va/ , Vﬂ// . Thus, V;/ N Vﬂ,/ is saturated for / = /;,[, and hence

for /{10 and /;30. Therefore, (F,) holds. (F)) is obvious from (F,).
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The main result of this section, Lemma 1.5, says essentially that if (F))
is satisfied and (Fz)W holds to a high degree of approximation, then the
collection can be perturbed to one for which both (F,) and (F2)w hold.
This is a consequence of the stability theorem for compact group actions,
in the form given in [14] (compare also [16]).

We begin by adapting their theorem to our context.

Let VJ C X beopensets, j=1,2. Let (Vj, /j, ,uj) be an elementary

F-structure such that x; is induced by an action of I'; x , T* on a normal
J

covering space, f/j A VJ We suppose that /] |V, NV, agrees with a sub-
bundle, /,,of AV, nV,.

Let TF = S' x .- x S' and let d(g) denote the distance of g € T*
from the identity element, under the metric obtained by averaging the
product metric under the holonomy of ]|V, NV, . Assume that V; has a
metric ( , ) ;» Which is invariant for x; and let Vj" C V; denote the set of
points at distance > p from 9V, for the metric ( , ). Assume that the
injectivity radius for ( , ) ; is bounded below by 1 and that the sectional
curvature is bounded by 1 in absolute value. Finally, assume there is a
%-quasi-isometry between (, ), and (, ), (see (3.3).

Let x, € ¥V, NV, and let u,, u, be representative partial actions for
U, , 4, on some contractible neighborhood W of x,. If d(g) is suffi-
ciently small, we define n(g): W — X by n(g) = ,uz(g_l);tl(g) . We say
that (u,, 4) (4,, 4,) are 5% C'-close) on V,nV,, if for all such x,, g
the map 7n(g) is d(g)d (C 1-close) to the inclusion, W — §.

Let ¢: V/ — V, be an imbedding which is ¢ (C l-close) (in the sense
of [14]) to the inclusion, with & < . Since the injectivity radius of the
metric ( , ), is > 1, there is a natural identification of RN AV
with /| |¢>(le ). This identification is understood implicitly in (2) and (4)
of Lemma 1.4 below.

Lemma 14. Forall 1 > p > 2¢ >0, there exists 6 =d(p,e, N)>0
such that if (u,, /) and (u,, /) are 6 (C'-close), and the coverings
V. — V. have order, N ;< N, then there exists an embedding, ¢: le -V,
with the following properties:

(1) ¢ is ¢ (Cl-close) to the inclusion V" — V| and ¢(x) = x for
xeV \ V.

(2) (A4, du,¢™") agrees with (£, 1,) on $(V,)NV;.

(3) If for some x € (V') and all g with d(g) sufficiently small, we
have n(g)(x) = x, then x €V and ¢(x)=x.
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@) V), 4. ¢u1¢_1) and (VY , /4, u,) determine an F-struc-
ture over ¢(V/)U VY.

Proof. Consider the subset u l(nl"(Vl” *n vy /") c ¥, the saturation

of a7 (V?/* nV*) by the action of T* which lifts g, . By writing an

arbitrary element g € T" as g€ h™, where h is sufficiently close to the

identity, and then comparing with the local action of the lift of u,, we
easily find that for § sufficiently small,

-1 4 4 -1
ma v a0y,
We also obtain the corresponding statement with the roles of x;, and u,
reversed (for the action of .
( g /v‘z(/{z)) . »

Let V,nV, — ¥V, NV, be a common covering of no(Vinv,). We
can assume ¥, NV, is normal and of order N < N’. Put N/N; = lj .
The action of T* = Rk/Zk on ,uj.(7zj_1(Vl”/4 N I/;Z”/")) lifts to an action
of Rk/ljZk on the inverse images of ;tj(nj'l(Vl”/4 NV in v nv,.
By composing with the homomorphisms 7% = R¥/ I, 122k — R/ jZk , We

obtain actions f, and j, of the same torus on these inverse images (in
general, these actions are noneffective). Let T i and I" denote the cover-

. -1 o . .
ing groups of 7 ; (VynV,) and ¥V, NV,. By using the homomorphisms
pj:T' =T ; /R Sl(k, Z), we extend j ; to an action of the semidirect
product T x; T,

J

Since the order of the covering 7% = T* is bounded (by Nz) it is
clear that if x4, and u, are C !_close, then A, and f, are C'-close.on
the intersection of their domains (write g = 4™ as above).

If ¢ is sufficiently small, we can restrict the domains of the j ; to obtain
domains W; for fi; such that

Vv W, c Wy, (7P a v
and the boundaries of these sets are at mutual distance at least p/24 for

(, ), Again, for ¢ sufficiently small, the argument of [14] gives an em-

bedding, ¥: W, —» W,,as C !_close as we like to the inclusion, satisfying
Wi, = ji,7 . Moreover,  is the identity at points at which i, and j,
agree locally.

Put n(Wj) =W,. The embedding ¥ induces y: W, — W, satisfying

Wi, = pyw with y as C'-close to the inclusion as we like. Let U, be
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invariant for u, and satisfy Vl” N Vz” C U, C W, with the boundaries of
these sets at mutual distance at least p/100 for the metric (, ), . By using
the Isotopy Extension Theorem, we can find an embedding ¢: W, — W,
as C'-close to y as we like, such that @¢|U, = y|U,, ¢ is the identity
near W, , and ¢(x) = x if y(x) = x. Then we can extend ¢ to all of
¥, by making it the identity off W, . Finally, we can assume that ¢ is
close enough to the inclusion so that ¢(Vl” )N Vzp C ¢(U,) . The resulting
map satisfies (1)-(4). q.e.d.

Let {V,} be a covering. Assume there are at most N, of those sets
whose intersection with any fixed V% is nonempty. Let Z = {/ , u.}
be a collection of elementary F-structures over the sets {V} such that
condition (F,) above holds. Assume that the orders of the coverings f/; —
v areall <N, and that the fibers of the /; all have dimension < N;.
Finally, assume that each V. carries an invariant metric for u_, with
injectivity radius > § and curvature <1 in absolute value and that these
metrics are %-quasi-isometric on intersections.

In the following lemma we identify (4. ')*(/|V/) with Z|¢ (V") as
in (2) and (4) of Lemma 1.4.

Lemma 1.5. For all 1 > p > 2¢ > 0, there exists 6 = NlZN' .
o(p,e, Ny, Ny) > 0 such that if for all o, p (say) AV, N Vs agrees
with /;’[,|VaﬂVﬂ ( where /;,ﬂ C/}i), and (£, u,) and (/;,ﬂ, 1g) are
0 (C'-close), then there are embeddings ¢ : Va” — V., with p < p,such
that the following holds:

(1) For all o, the embedding ¢, is ¢ (C 1-close) to the inclusion
V=V,
(2) Thecollection {(¢, (V" ), /., b 1,0, )} satisfies (F,) and (F,)",

and hence determines a weak F-structure over \J, ¢, (V' ).

Proof. Consider the collections a = (o, -+ , « j) of indices such that
V. n---nV,_ is maximal with respect to the property of having nonempty
0 i .
intersection. Choose an enumeration, «,, c,, ..., of these. For each

a;, we can reorder the subscripts, o, € a; such that on V;O n-—--nv, ,
- J

J
we have /jl]g/jlzg---g/;’.

Now we go through the « ; in order and for each one we do the follow-

ing. Order the pairs (o, /) with k < k" by (e, ayr) < (o, ap) if
k' <I' or k" =1 and k < [. Then run through these pairs in descend-
ing order. At each stage apply Lemma 1.4, with p/(NIZN') , s/(NlZN')



280 JEFF CHEEGER & MIKHAEL GROMOV

in place of p, & to the subsets V V;, of V., V  , which have pro-

duced possible previous apphcatlons of Lemma l 4, at earlier stages of the
process.

We claim that the above process produces a collection for which (1) and
(2) hold.

To see this let x €, ¢, ( V” ,) and let a(x) be the set of those o with
x €V, . Let a; <a; <-- where j, < j, < , be those a; which
contain a(x) and put a(x) =a; . By referrlng to (3) of Lemma 1.4 we

see that if the actions on those V; with a € a(x) agree at the point x,
after the stage of the process corresponding to a(x) has been concluded,
then they do not change during the remainder of the process.

It suffices to check that after this stage has been concluded, all of these
actions agree at x. Recall that Lemma 1.4 is applied for each pair of
subscripts « , o, € a(x), with k < k' . Moreover, these pairs are con-
sidered in descending order and the action is changed only on a subset
of V;k . Thus, we can assume that for some «; with / > k', the actions
for the pairs (o, , ;) and (o, a;) are compatible before the step corre-
sponding to (a, , o) but the actions corresponding to («, , ;) are not
compatible after this step. However, by (3) of Lemma 1.4 (and induction)
this does not happen. q.e.d.

2. Elementary F-structures on complete flat manifolds

(a) Preliminaries; short loops. Let M" be a complete riemannian man-
ifold. For ¢ a curve in M" , let L[c] denote the length of c.

Given curves ¢, and ¢, with the same end points, we say that ¢, and
c, are short homotopic, if they are homotopic keeping end points fixed,
through curves of length at most max ; Llc;].

Let me M". Let R, be the largest number such that exp,, lBRm(O) C

M,','l is nonsingular. If ¢ is closed with ¢(0) = m, L[c] < R, , then
¢ is short homotopic to a unique geodesic loop y on m. Suppose, in
particular, that ¢ = y and that 7 is a curve with 7(0) = m. Let 7’
denote 7|[0, s]. As long as the closed curve T UyU—1', on 7(s), is
homotopic to a geodesic loop y, on t(s), with L[y] < R, 5> then y, is
unique. We say that y_ is obtained from y, =y by sliding along 7. The
map, y, — 7, , is compatible with the isomorphism between 7, (X ", 17(0))

and 7 (X", 7(s)) induced by 7°.
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If 7, and y, are geodesic loops on m with L[y,]+ L[y,] < R,,, then
7, U7, is short homotopic to a unique geodesic loop, 7, *7, . In particular,
if R, = oo, then =, (M ", m) is isomorphic to the group of geodesic
loops on m with the product *. In this case, a loop at m gives rise to
a collection of loops {y}m1 at each point m, € M", each of which is
free homotopic to y. The collection {y}ml represents a conjugacy class
in n,(M", m)).

Let i, denote the injectivity radius at m.

Lemma 2.1. There is a constant c(n) such that if the sectional curvature
of M" satisfies |K| <1 and Ai, <n/2 (A>0), then there are at most
c(n)A" geodesic loops on m of length < Ai,_ .

Proof. Each loop y lifts to a segment of a ray, $, through the origin
in M;- Clearly, there exists c(n) such that if there are more than A"
geodesics of length at most A- i, then endpoints of some pair 7, , , are
at distance less than 2i, (Ai,/sinhAi, ). It follows that the loop which
is short homotopic to y, *y, ' has length < 2/, . This is a contradiction.

(b) Geometry of complete flat manifolds. Let X" be a complete flat
manifold. Write X" = 7Y_[ x R* , isometrically, where Y’ has no Eu-
clidean factor. Then X' contains a unique compact flat totally geodesic
submanifold, S™, the soul, such that 71 is isometric to the total space
of the normal bundle v(S™) (see [3; 19, Theorem 3.3]). There the metric
on v(S™) is induced by its natural flat connection.

Note that any tubular neighborhood Tu(Sm) (u > 0) is totally convex,
1.e., any geodesic with endpoints in Tu(S'") lies in Tu(S'").

From now on we assume k < n, or, equivalently, m > 0.

Let S be a soul of X" ard let $” 5 S™ denote the holonomy
covering of the compact flat manifold $” . By Bieberbach’s theorem, $™
is isometric to a flat torus and §™ — S™ has order at most A(n), for
some constant A(n) depending only on n (> m). Since S — X" is
a homotopy equivalence, we can regard ZF~ 4 = 7:1(5"") as a normal
subgroup of # (X "). Clearly, A is independent of the particular choice
N

Let y be a geodesic loop with orientation preserving holonomy, having
all its rotational angles < 7/A(n) in absolute value. We write rot(P,) <
n/A(n). In this case y € A. In fact, let T be a minimal geodesic with
7(l) = y(0) and 7(0) the point on S™ closest to y(0). By sliding y along
7 we obtain a geodesic loop y, C TS(S'”) at 7(s). In particular, Py0 ~P
(since X" is flat), Py0 c 8™, and the claim follows from Bieberbach’s
theorem.
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Note that L[y] is given by the increasing function

(2.2) Lly,] = (L[] + (2sin 6/2)°s%) 2,

where P, rotates 7'(0) through an angle 6. This follows by an elemen-
tary argument after one lifts y, to the universal covering space of X ",

If y, € 4, then y, is automatically smooth closed since it lifts to a loop
J, contained in the torus S™.

(c) Elementary F-structures. We will explain how a finite subset of A4
which is invariant under conjugation by elements of =, (X ") and for which
the corresponding holonomy transformations are orientation preserving,
gives rise to an elementary F-structure. This construction depends on a
suitable set of choices of logarithms for the holonomy transformations.

Let (w, e? ) represent an isometry of R”", with translational part w .
Put w =w' + w”, where e®(w’) = w’ and w” is orthogonal to the +1-
eigenspace of e”. Let (1 —e®)™'w” denote the unique inverse image of
w" orthogonal to ker(l — e’ ). Then the curve
(2.3) t— (' +(1-e")(1-e") ", ™)
is a l-parameter subgroup passing through (w, eB) at ¢t = 1. The orbit,
@ , of the origin, is the curve ¢ — 1w’ + (1 —e®)(1 - €®)™'w” . Let L be
the length of the restriction of this curve to the interval 0 <7< 1. An
elementary computation shows that

1,2 A 1121/2
24) ol <2< 101+ (5573 ) 1]

where A is the largest eigenvalue of B which is not an integral multiple
of 2ni.

Let {(w I e’ )} be a collection of mutually commuting isometries, such
that the {B j} are mutually commuting skew symmetric transformations
with no eigenvalue of the form 2nik, for k # 0. By a trivial calculation,
for all j, k, we have

(2.5) (1=e™w, =(1-e")w,,

(2.6) (1-e™w) = (1-e™)w, =0.
It follows easily that the subgroups given by (2.4) are mutually commuting.
Conversely, let {g;} be mutually commuting elements of SO(n). Then

we can find skew symmetric transformations, {B j} , such that €% = ¥
the {B;} are mutually commuting, and each B; has no eigenvalue of
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the form 2zik for k # 0. In particular, if rot(g;) < m, then the B,
are uniquely determined if we require ||B)|| < 7. In any case, given a
mutually commuting set {(w ID gj)} , we can obtain mutually commuting
1-parameter subgroups as above.

Now assume that the {(w D er)} form a group A ~ zF of covering

transformations of R”. Given a finite subset {(wj , eBJ)} ,j=1,---, N,
we obtain an action of the Cartesian product of the corresponding 1-
parameter subgroups on R", which descends to a TV action on R" /A
(see the discussion at the beginning of §1). This action need not be effec-
ti\llf, but an effective action can be obtained by passing to a quotient of
T .

Example 2.7. Let (w, eB(g)) denote the isometry of R? such that w
is a translation in the direction of a unit vector along the x-axis and B(0)
is given by the matrix

(2.8) B(6) = (g ‘09)

B(o)) B(ze))

in the y, z-plane. The isometries (w, e and 2w, e generate
agroup A =A~7 (weassume 6, 20 # 0 mod 2n). The construction
above gives a noneffective T2 actionon R’ /A, inducing an effective action
of T'. If we use B(260 — 27) in place of B(26), we obtain an effective
T? action. Note for 0 < 6 < m/2, |26| < n while for n/2 < 6 < =,
|(260 —2m)| < m.

Now suppose that 7, is a group of covering transformations and that
A~ 7ZF isanormal subgroup of finite index < A(n). Suppose {(w It e’ )},
Jj=1,---, N, is invariant under conjugation by elements of n, . Then
there is an induced representation p: 7, /A — Auy(T N ), which together
with the action of 7" on R"/A determines an elementary F-structure on
R'/m,.

The F-structure just constructed can also be described in terms of geo-
desic loops on X" = R"/z, . Identify X[ ~ R" with the universal cover-
ing space of X" . Then the group of isometric covering transformations
is isomorphic to the group of geodesic loops at x. The element corre-
sponding to a loop, 7y, can be recovered as (Vy, P_y) ; where V, denotes
translation by L[y]-y'(0) and —y denotes y transversed in the opposite
sense.

A collection {yj}x , j=1,---, N, of conjugacy class of loops, Y, €4,
determines an elementary F-structure, ¥ , on X" . In the sequel we are
always concerned with the case rot(Pyj) < m/A(n). Note that for any
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y; € 4, the conjugacy class {y,}, contains at most A(n) loops. The fiber,

/;I , at an arbitrary point x, € X" of the sheaf (flat T" bundle) /s
associated to .# , can be identified with the Cartesian product of loops in
{j}x, -

We now describe a class of elementary F-structures which, in general,
are defined only over proper subsets of X" . These will be used in the
construction of the F-structure of Theorem 0.1.

Let [P,] denote the isomorphism class of P,.

Let y,, -, 7y beloops at x € X" which lie in 4. Fix ¢ > 0.
Assume that if y € 4 and y # y, for any i, then for all i, at least one
of the following holds:

(29) Ly - LIyl 2 &
or
(2.10) [P1#1P,]

Let #' be any elementary F-structure as above on X" and let T,(&))
denote the open tubular neighborhood of the orbit, @’; , of radius &.

Lemma 2.11. (1) Ateach x, €T, ,(&,) there are exactly N loops, 7,
which, for some i, satisfy

(2.12) |L[P1 - L[y,]1 < ¢/2, (B]=1(P,]
(2) The collection 9, --- , 9y of such loops is the collection obtained
from y,,---, yy under homotopy in T£/4(é’;) ; L.e., sliding a loop, y;, from

x to x, along any curve ¢ C T, /4(@2) gives a loop, P for some j.
Proof. Note first that sliding a loop, 7, does not change [Py]. Then,
by an obvious continuity argument, (2) implies (1).
Since 4 C 7, (X") is normal, the collection of loops at x lying in A4
can be obtained by sliding the collection of loops lying in A4 at x along
any curve c. If x, € T, /4(@;) , there is a minimal geodesic o of length

§ < ¢/4 connecting x; to a point on @’; . Since sliding a loop along o
changes its length by at most 2s < /2, it suffices to assume x, € é’; and
to show that for some curve ¢, from x; to x,, sliding loops of 4 along
¢ leaves their lengths unchanged.

Let X € X bealift of x,let # bealoopat % lifting y € 4, and let T
be the torus corresponding to F " which acts on X". We can find a curve
g(t) C T with g(0) the identity element and g(1)X = X, a lift of Xx, .
The curve g(f) projects to a curve ¢ from x to x, and by an obvious
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continuity argument, g(1)(7) projects to the loop obtained by sliding 7
along c. Since g(1) is an isometry, our claim follows. q.e.d.

Let y,, -, Vx> Pns1> " » Py bE acollection of loops at x which lie
in 4 and let ' be the elementary F-structure determined by the union
of conjugacy classes, {yj}x , 1 <j < N'. Assume that Yisor, ¥y satisfy
(2.9) and (2.10) above. Then Lemma 2.11 implies

Corollary 2.13. The set y,, --- , yy Is invariant under conjugation in
n, (T, /4(@;)) and hence defines an elementary F-structure, & , over

/
T,,(@)).

Let y € A be aloop at x, with lift 7 at %. For the circle action on
X" corresponding to 7, the orbit of % (counted with multiplicities) is
homotopic to § (see (2.3)). Since L[§] > O is of shortest length in its
homotopy class, the orbit of X has positive length. Thus, the elementary
F-structures constructed above all have positive rank.

Clearly, an orbit of any elementary structure as above lies at constant
distance from any soul, $” . The maximum size of an orbit is controlled

by the upper bound in (2.4). If ||B;|| < = for all j, then the orbit in X"

corresponding to the jth circle in TV =8'x... xS , has length at most
5L[y).

Remark 2.14. The injectivity radius need not be constant on orbits.
However, in view of the obvious relation

(2.15) i <i, <An)i,

the ratio of the maximum value of the injectivity radius to the minimum
value, on an orbit, is bounded by A(n).

Appendix to §2: Growth of the injectivity radius

We claim that it is not possible to assign to each complete flat manifold,
X", an elementary F-structure, % (X"), of the type considered in §2,
in such a way the ratio of the diameter of the orbit, diam(&,), to the
injectivity radius, i, , remains uniformly bounded as x and X " vary.

Suppose first that the rotational angles of Pyo are all rational multiples

of 2=, for some loop y, on z € S™. Then

N
—"— def
Yo ¥ ¥ Y = Ny,
has trivial holonomy, for some smallest integer N. Let 7 be a geodesic
normal to $” with 7(0) = z. Let Ny, be the geodesic at 7(s) obtained

by sliding Ny, along 7. Then L[Ny ]= L[Ngy].
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On the other hand, if g, is any loop on z with <I(Py(‘tl(0)) , T(0)) =
6 >0 then L[o,] grows linearly along 7 (see (2.1)).

It follows that those elementary F-structures constructed in §2, for
which the diameter of the orbits does not grow linearly in almost all di-
rections, are precisely the ones generated by loops with trivial holonomy.

The following example is typical.

Example A.1. Let X ;’ be the total space of the flat 2-plane bundle
over S' with holonomy 6. For each 6 = 57: (with g < 1 in lowest
terms) there is an elementary F-structure with sublinear (actually con-
stant) asymptotic growth with orbits, @’T(S) , of length gL[S l] = 2ir(s) , for
s large. Then however,

(A.2) LI, y)/1 5 ~ 29
for s small. Here g can be taken arbitrarily large.

If X" is such that there exists no geodesic loop with rational holonomy,
then for all y, the function L[y ] grows linearly in almost all directions.
Hence, the same holds for the orbits of any elementary F-structure arising
from the construction of §2. But the injectivity radius itself always satisfies
the following estimate (put i, = Ls) )

Lemma A.3. Forsay s> i,

(A.4) i, < c(n)[Vol(§™)]/ o5,
where
(A.5) c=[(n—m)/2].

Proof. We can assume i, = 1. There are at least ¢, (n)r™ [ Vol(S™)
geodesic loops in S™ on 7(0) of length < r, where r > L) - At least

0
one of these, g, has rot(P)) <e¢- =, if
m

r —-c

(A.6) cl(n)—\—,m =¢
Then, by (2.2),

2 e \2\'?
(A7) Lio,] < <r n (2s sin 57[) ) .
Given s, choose r and ¢, which satisfy (A.6) and
(A.8) r =és.
Then
(A.9) Llo,] < (© + (es)")"* < V2r

= c(n)(Vol(§™))" /™5™ qeed.
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Let X" = X' x R"™'. The isometry group of X’ is generated by a
collection of circle actions, one for each set of generators for 7, ($") ~ Z"
and the orthogonal transformations of the normal bundle v(S™) (leaving
S™ pointwise fixed) which centralize the holonomy group. The function
fx is constant on orbits and the isometry group is transitive on fibers of
v(§™.

Lemma A.10. Let o(s) be a normal geodesic in X" and put i
Then for all s

(A.11) i <o +2s,

and for say s > i,

a(s) = is *

(A.12) i, < e(n)ig s = e(n)ig(s/ig) T

Proof. The estimate in (A.12) is clear. The proof of (A.13) is com-
pletely analogous to that of (A.4). We just restrict attention to multiples
of a fixed loop.

3. Local approximation by complete noncontractible flat manifolds

Let Y" be a complete riemannian manifold and let y € Y" . Set

(3.1) v, Y sup |Kw)|"%i,.
Bg.i,(¥)
By Theorem 4.3 of [5] (see also [6]) it follows that
(3.2) Iy 21, min(z/v(y, R), c(n))e—(n—l)R-v(y,R).

If U, and U, are riemannian manifolds and f: U, — U, isa C L
smooth quasi-isometry, let M{f) denote the infimum of those & such
that if V(y,d87') <4,

(3.3) e g <f(g)<eg.

The following proposition will allow us to transfer the elementary F-
structures on complete noncontractible flat manifolds which were dis-
cussed in §2 to more general manifolds.

Proposition 3.4. Given a continuous decreasing function h: (0, co) —
(0, ) and k > 0, there exist 6 = d(h, k,n), R(h, k, n), such that if
v(y, 6_1) < J, then there exists

(i) a complete flat manifold Y" and a soul S CY",
(ii) a quasi-isometry, f: U — Tu(S”'), with u < R(h, k, n)iy, and U
an open neighborhood of y , such that
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(iii) M(f) < h(u/i,),

(iv) max(i,, f(»), S, diam(S)) < u/k,
(V) i, =g

Proof. Assume the contrary. Then (after possible rescaling) there are
sequences (Yj" , yj) such that iyj =1 /v(yj, Jj) £ 1/j and either there ex-
istsno f as above satisfying (iii) and (iv) or the smallest # for which there
exists such an f is > j. By the compactness theorem in riemannian ge-
ometry, there is a pointed C™ manifold (Y",y) witha C'*® riemannian
metric (for all > 1) such that for some infinite subsequence (Y, ,y,),
and any r, the sequence of balls B,(y j:) converges in the Lipschitzsmetsric
to B (y). Clearly, Y" is complete flat and noncontractible (4, =1). In
particular its metric is C*. Since i, = 1, y, §" < 00, diam(§") < oo
for some soul S C Y", we obtain a contradiction.

Remark 3.5. Although the fact that 4 can be chosen to be an arbitrary
decreasing function of r is of interest in describing the local geometry of
the manifolds considered in Proposition 3.4, for the application to the
proof of Theorem 0.1 it will suffice to choose ~ to be a sufficiently small
constant.

Remark 3.6. Lipschitz convergence (i.e., (iii) above) is actually not
strong enough for our purposes since we will want to compare holonomies
around corresponding loops in Y, Y" and not just their lengths. In fact
the versions of the compactness theorem proved in [11] or [17] show that
in harmonic coordinates the convergence of metric tensors actually takes
place in the C b topology. The compactness theorem as stated in [13]
would also suffice. However, in order to emphasize the elementary nature
of our result, we show in the next section, by a simple direct argument,
that Lipschitz convergence implies C : convergence, in case the limit is
flat. For this result we do not require a special coordinate system.

Example 3.7. Fix 6 > 0 and let E;’ denote the complete flat mani-
fold obtained by dividing R by the group of isometries generated by the
isometry (w, e’ (0)) of Example 2.7. Let S be the soul of E; . We will
show directly that Proposition 3.4 holds for the family (E;' , V), where y
is a variable point in E; .

Observe that if 7y is a shortest geodesic loop at y, then the holonomy,
P, , converges to the identity transformation as y,S — oo. This is an
immediate consequence of the discussion of the Appendix to §2.
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Let S,l denote the circle of length /. Then 0 x S[1 is a soul of the

riemannian product R*x S,1 . Fix k > 0. It follows easily from the obser-
vation above that for y, S sufficiently large there exists a neighborhood Uy
of y and a quasi-isometry fy: U, = Ty, (0x Szli,) , with f(y) € 0 x Szli_ .
Moreover, M(f,) =0 as y, S —oo. I “ A‘
Given a function # as in Proposition 3.4, choose A such that M( fy) <

h(2k),if y, S > A. For such points, the quasi-isometry, fy , satisfies the
conditions of Proposition 3.4 (with u = 2kiy, ulk = 2iy). Moreover,

we can take R(k, h, 3) = 2k for the subfamily consisting of the (E; ,¥)
with y, S > A.

The set of points for which ¥, S < A is compact. Thus, for all these
points, we can take fy to be the identity map on a sufficiently large tubu-
lar neighborhood of S. Then we take R(k, h, 3) for the whole family
(E; ,y) to be the larger of 2k and the radius of this tube.

In order to estimate explicitly the constants ¢,(n) and c,(n) in Theo-
rem 0.1, it is necessary to give a proof of Proposition 3.4 which does not
depend on an argument by contradiction. We now briefly outline such an
argument; details will appear elsewhere.

(1) Rescale the metric on Y such that i, =1 and view Bg(g) as the
quotient of a ball on the tangent space by an isometric pseudo-group, I".
In the spirit of [12] (see also [1]), we can imitate the proof of the Soul
Theorem for flat manifolds, given in [19, Theorems 3.2.8 and 3.3.3]. In
this way we obtain a group, I', which acts isometrically in R” and freely
on a large ball about the origin. Moreover, I' has an abelian subgroup,
A~7F , of index < A(n). Finally, I" is isomorphic to a subpseudogroup
of I'.

(2) By deforming the action of I' slightly if necessary, we can assume
that T acts freely on R”.

(3) By a generalization of the argument of Example 3.7, after making
a second small deformation of the action of I', we can assume that the
bounds of (iv) of Proposition 3.4 hold for R"/T".

(4) Finally we construct a quasi-isometry f between a slightly smaller
ball By (y) C Bp(y) and a ball in R"/I". Here we use the result of [15]
to take care of the finite group I'/A4.

4. Regularization of the approximation

Let ye Y" and let f: U — T,(S™) be as in Proposition 3.4. Let H,
denote the Hessian of f.
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Proposition 4.1.  The constants 6(h, k, n) and R(h, k, n) can be cho-
sen such that there exists f satisfying (1)-(iv) of Proposition 3.4 and the
additional estimate

(4.2) H | < h(u/i).

The idea of the proof is to regularize f by convolving with a suitable
smoothing kernel. For an arbitrary map, this would only have the effect
of making the Hessian bounded. But by using the fact that f maps U
to a flat space with M (f) small, it will follow that the Hessian of the
regularized map is actually small.

Proof of Proposition 4.1. We can assume i,=1.

Let w(s): [0, 1] — [0, 1] be a C* function such that % = 1 near
s=0and ¥ =0 near s = 1. Put y,(s) = w(s/2). Let w,, w, € Y"
and denote the distance from w, to w, by w,, w,. Finally, let w denote
the volume form on Y". Put

(4.3) y,(w,, w,) = f sz(
By

b

, W)
-1, w,)w

where the integration is with respect to w, .
Choose d = d(h,, 2k, n) where h; < {; is to be determined later (see

Proposition 3.5). If v(y, 6~ ') <4, standard estimates give

(4.4) ldw,ll < c(8)A™",
(4.5) I1H,, || < (@72,
on B ,(y).

Let f: U —T, (S™) be the map provided by Proposition 3.4. Lemma
A.3 and Remark A.10 give a lower bound, i, for i, on T, u(S'") . If we
choose

(4.6) A< 5 10,

then for all y, € U, the range of f|B,(y,) is contained in a convex subset
of a flat space. Hence,

(4.7) A=/mwp%vwmv

is well defined.
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Let 1 be a real valued, affine linear function, with ||l <1 on B,(y) C
T,(S™) where r < 1i,. Then

(4.8) ”Hfz | = ”}I(]of)lll‘

Up to a constant, any 1 as above can be written in the form

2 2 2

Py, — P, —d
4, 1=-4% %
(4.9) =
where p, is the distance function from a; € T,(S"),andd=3a;a,=3.
J

Let f(y ;)=a; and consider the function

2 2 2
_ pyl _ pyz —d
(4.10) B

Then by (4.4)(and (4.5)) / has differential everywhere close to 1, small
Hessian and is uniformly close to 1o f. The explicit bounds depend on
h, . Tt suffices to estimate H(lo I, - Since lo f —1 is arbitrarily small for
suitably small 4, , it is clear that given #, we can choose 4, such that f;
will satisfy (3.2). q.e.d.

Let /- U — Tu(S'”) be as in Propositions 3.4 and 4.1. Let y C U
be a geodesic loop on y with L[y] < R, where exp, B (0) C Yy" is
nonsingular. Let y ¢ Y" be the unique geodesic loop which is short
homotopic to f(y).

Corollary 4.11. Put h = h(u/iy). Then

(4.12) e "Lyl = LIyl < "Ly,

(4.13) < (0), df ' (¥'(0)) <

b

cn) - Liyl-h
i

y

(4.14) 1P, —df P df]l < ﬁi’)l"i—h
y
Proof. Relation (4.12) follows from the minimizing properties of y,
y and (iii) Proposition 3.4. By using, in addition, (4.2), relations (4.13)
and (4.14) also follow by straightforward arguments.
Suppose that for y as above, NL[y] <R, . Let Ny denote the unique
geodesic loop which is short homotopic to the N-fold iterate of y. Then
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we have
Corollary 4.15.

N-c(n)-L[y]-h
ly
Proof. This follows immediately from Corollary 4.11 and the fact that
the holonomy of a curve depends only on its homotopy class in the flat

casc.

(4.16) 1Py, — (P)"] <

5. Construction of the F-structure

(a) Outline of the construction. In this section we prove our main result,
Theorem 0.1, by using the results of §§2, 3, and 4 to implement Lemma
1.5.

Our basic strategy was sketched in §0. Given a complete riemannian
manifold Y", let ¥;' denote the set of points at which v(y,d”') < J
(see (3.1)). To each y € Y,/ (J sufficiently small) we assign a set, Vs
containing y, and an elementary F-structure, Fy ,over V. This is done
in such a way that {(V, 5‘;)} satisfies all the conditions of Lemma 1.5,
apart from the bound, N, , on the multiplicity. Then we extract a suitable
locally finite subcover {V }. The collection {(V, , 7 )} satisfies the
hypothesis of Lemma 1.5 and leads to the desired F -structure

In this subsection, we outline the steps involved in selecting {(V, ?y)}
and {(Vy" , 7yu)} . Further details are given in subsections (b)-(g) (which
correspond to Steps 1-6 below).

Step 1. To each point y € Ya" we assign a set of short geodesic loops
[7,1,, with rot(Pyl) < m/3A(n) (A(n) as in §2). Our choice depends only
on the lengths of the short loops at y and on the isomorphism classes
of their holonomy transformations. Moreover, the following precursor of
property (F,) holds. If y,, y, are sufficiently close, then [Vj]y, contains
or is contained in [y j]y2 . (As usual we identify loops at y, with loops at
Y, by sliding them along the unique minimal geodesic from y, to y,.)

Step 2. Let fy: Uy — Tur (Sy) be any map as provided by Proposition
3.4. The set of loops of Tuv (S,) corresponding to [y;], determines an

elementary F-structure, & y’, over a neighborhood, Vy of fy(y) , as in
Corollary 2.13. The fiber of the corresponding elementary F-structure,
3‘; , over V, = fy"(V ) can be identified with the Cartesian product of
the loops in [y, 1, It follows that the collection {(V F )} satisfies a
weak version of property (F)): If y, and y, are sufﬁcwntly close, either
/;2 >, /;I , OT vice versa, on V.V. nv, .
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Step 3. Clearly, V;l and V ), can have nonempty intersection even if
y, and y, are not close. But by using Lemma 2.9 and Remark 2.14, we

find that property (F;) holds for {(V V2, F)}.
Step 4. On a set V N V the closeness of corresponding local actions
for /;I and / is determmed by the deviation from isometry (in the

C? -topology) of the maps fy. and fy2 . This is an immediate consequence
of the description of elementary F-structures in terms of geodesic loops,
for the flat case discussed in §2.

To apply Lemma 1.5 to a subcollection, {(V, )} these deviations
must be small relative to the size of the V and the multlphclty, N, , of
v, .

Step 5. By a simple variant of a standard packing construction, we select
a subcover, {Vy“} , with {J, Vy - Y , whose multiplicity, N, is bounded
by c(n).

Step 6. By the results of §4, the deviation from isometry (in the c’-
topology) of a map fy is controlled by the function # of Proposition
3.4. In view of the bound of Step 5, it suffices to take h(r) = &(n),
for ¢(n) > O sufficiently small. Then the covering {V) } satisfies the
hypothesis of Lemma 1.5. The weak F-structure obtained by applying
Lemma 1.5 is easily seen to have properties (F;) and (F,) of §1. Hence
it is an F-structure.

(b) Assigning short loops to points. Our procedure for choosing the
collections [y j]y is based on some trivial observations about sequences.

Let bl < b1 <...<b » be a nondecreasing sequence such that for some
¢ <c,and N<M

(5.1 b, <c; <c; <by,,-
Clearly, there exists at least one index, J < N, such that
¢, —cC
(52) b+ 255 < by
¢, +c¢
(5.3) b, <A,

Remark 5.4. The collection of all such J depends only on the subse-
quence, b, < b, <--- < by

The following lemma is obvious.

Lemma 5.5. Let b, < b, < --- < by, be a second sequence and let n

be a permutation of {1, --- , M} such that for j < M,
, ¢, = ¢
(5.6) 16 = byl < a3
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Then if J satisfies (5.2), m preserves the sets {0,---,J} and {J +
l ’Cho;gil.nondecreasing function ¢: [0, ] — [0, o0), With

(5.7) #|[0, m/6A(n)] =1

and

(5.8) #l[7/34(n), n] = 6(64(n))".

Define a function a(y) on loops at y by

(5.9) a(y) = ¢(rot(P)) - L[7].

Clearly, we have L[y] <a(y).
Lemma 5.10. For 0 <9, sufficiently small,

(5.11) mina(y) < 2(6A(m)"? i .

The inequality

(5.12) L[y] < a(y) < 6(6a(m)™™ - i,

holds for at most N = N(n) loops. For all such loops
T

(5.13) l'Ot(Py) < m

Proof. Let y be a shortest loop at y. Thus, L[y] = 2iy ,. By Corollary
4.15 and the standard packing argument, if J, is sufficiently small, there
exists k such that

(5.14) L{ky] < 2ki, < 2(6A(n)"?,

(5.15) rot(P, ) < =———
’ ky/ = 3)(n)

Lemma 2.1 implies (5.12), and (5.13) is clear from (5.8) and (5.9). q.e.d.
From now on, we assume § < d, as above.

Let y € Y(," and let y,, »,, ... be an ordering of the loops at y such
that
(516) a(yl) S a(yz) S Tt

It follows from Lemma 5.5 that there exists a smallest index, J < N =
N(n), such that

Cc,—C
(5.17) : a(y) + Lt <alyy,),

with ¢, = 2(6A(n))"? and ¢, = 2¢, .
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Define [7;], to be the set {»1» -+, 7,}. Note that the ordering 7, , 7,,
... need not be uniquely determined if the numbers {a(y j)} are not all
distinct. However, the set [y 1, is independent of the choice of ordering.
Also, by (5.13), for v, €],

T
5.18 t(P,) < =——.
(5-18) oUP) < T

Lemma 5.19. There exists 0 < &(n) < 1 such thatif y,,y, € YJ" and
V7, < .s'(n)iyI , then either [yj]yI ) [yj]y2 or vice versa.

Proof. Let y,y, < 8in. Let {J’f"'?’}k} = .S”k, k =1,2, be the
loops at y, , with h(yf) <--- < h(y’}k) < ¢,. By Remark 5.4, the sets
[y j]yk are determined by {a(y{‘ RN a(y'}k)} or by any larger subsets of

k
{a(v;), ...}

If ¢ < e(n), it is clear that by using (4.14), we can find subsets 7 5
Fk , which are identified with each other under the correspondence be-
tween loops at y, and y,, and such that for y;.‘ e ,

(5.20) a(y}) < 3¢, = 6(6A(n)"".

Let by <---<b,, (M < N) be the sequence obtained by arranging the
numbers {a(y})} , y} € #', in ascending order. Let b < --- < b}, be
obtained similarly from Z* . Let 7 be the permutation of {1, ---, M}
induced by the correspondence between &' and #. Our claim now is
a direct consequence of Lemma 5.10.

(c) Assigning elementary F-structures to points. A map f: U —
Tu(Sm) as in Proposition 3.4 is determined by a number k¥ > 0 and a
decreasing function A(r). In what follows, it will suffice to choose # to
be a sufficiently small constant, and to take

(5.21) k = 18(6A(n))"?

Foreach y € Y(;" (0 < 4, sufficiently small) we can, by Proposition 3.4,
find a map f,: U, — T, (S,). Note that by our choice of k, each loop
of [7,], is contained in U. Let [y], denote the collection of loops
at f (y) which are homotopic to the images of [v,],. By Corollary 2.13
[yj]v' determines an elementary F-structure, .9' .» over a neighborhood
v, def Tr,. (é’f.‘(. ,)) - Here we take

(5.22) = £(63n) " mina(y).,
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where the minimum is over all loops y at y. The number ¢ < 1 will be
specified below. Note that r, < %iy.

Let 3‘; be the elementary F-structure over V, = fy_'(Vy). The fiber
(4), of /£, aty can be identified with the Cartesian product of the loops
in [7;],. Thus, it follows from Lemma 5.19 that if 3,7y, < 2(ryl + ryz)
and ¢ < ¢(n) for e(n) > 0 sufficiently small, then /;] C /;2 on Vy. n V;Z
or vice versa. This is the precursor of property (F;) of §1.

(d) Property (F)) for {(V,,#)}. By Lemma 2.9, the set of values
which the function a(y) takes on loops of 4 C &, (Tuv (S,)) is constant on

orbits of the elementary F-structure & ,- Let N= N(n) and let ¢ be as
in parts (b) and (c). For each point y, € V,, consider the set consisting
of the N smallest values (counted with multiplicities) of the function a.
Then if e(n) is sufficiently small, ¢ < ¢(n), and ]; is sufficiently C’-close
to being an isometry, the above set of values is as close as we like to being
independent of the point y, . Now, the argument of part (c) shows that
{(V,, %)} has property (F)).

(e) Closeness of local actions. The fiber of /; at y can be identified
with the Cartesian product of at most N(n) loops (see (5.17)) of length
bounded by (5.12). By (2.3), (2.4), Corollary 4.11, and (4.16) we can
insure that the local actions of /;I and /;2 are as C'-close as we like on
Vyl n Vy2 , provided that % of Proposition 3.4 and 4, above are sufficiently
small. (In measuring the closeness of local actions we rescale the metric
so that, say, iyl =1, to conform to the context of Lemma 1.5.)

The degree of closeness required in Lemma 1.5 depends on the max-
imum fiber dimension, N, on the maximum order, N,, of a covering
space associated to the elementary F-structure and on the multiplicity,
N, of the covering. In our situation N; < N(n) and N, < A(n). In part
(f) below, we will extract a subcovering, {Vy"} of {V,}, with bounded
multiplicity.

(f) The subcover {vy"} . Let g(y) denote the number of loops in [y 1,
and let Y§' C Y;' be the set of points, y, with g(y) =¢.

Let g, be the largest value of g for which YJ”, g is nonempty. Choose

a maximal set of points from Y;.lqo such that
— .
(5.23) é; , é’yﬁ >3 mm(ry” R ryﬂ) ,

where r, and r,, areas in (c) above. Then choose a maximal set of
points from Ya"’ -1 such that (5.24) continues to hold for all points (in
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Yy oY Yy ¢-1) Selected so far. By proceeding in this way, we obtain a
set of points {y }. Clearly, for every point y € YJ" there exist y  with
q(v,) 2 q(y) and

(5.24) G,,0, < fmin(r ,r, ).

VY,

Since ¢(y,) > q(y), it is clear that for J sufficiently small, say

(5.25) v, ﬁ < 3mln(y, y")

(and the same holds for all points of & ) . Thus, {Vy } covers YJ" and in
fact, {f' (T. 3 /4(ﬁf . )))} still covers.

Yoo

Now, by using the standard packing argument as in [13, Theorem 5.3],
the multiplicity of {V } can now be bounded by some N, (n).

(g) Fitting together local F-structures. The collection {(V, , %, Z )} con-
structed in (f) above satisfies the hypothesis of Lemma 1.3. Thus, we
obtain a weak F-structure, % , on a set containing Y, , for & < 6,(n)
sufficiently small. Since the elementary F-structures, 9 have positive
rank, so does .# . The bound on the diameter of orbits (see (1) of Theo-
rem 0.1) is also satisfied.

To see that the structure we have constructed is actually an F-structure,
we observe that property (F;) of §1 holds if ¢ of (5.22) is sufficiently small.
Note that the maximal length of a chain Vao RN Va; , as in (Fy) is, of
course, bounded by N(n), the maximal dimension of the fiber. Now it
is clear from Corollary 2.13 that if ¢ in (5.22) is taken to be 1/4N(n)
times the value dictated by our previous considerations, then (F;) and
(F,) hold.

As mentioned in §2, the local actions might be noneffective for the struc-
ture just constructed, but this can be remedied by passing to a quotient.
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THE EXISTENCE OF POLARIZED F-STRUCTURES
ON VOLUME COLLAPSED 4-MANIFOLDS

X. Rong

Abstract

By the work of [CG2] and [CG3], the Riemannian manifolds whose
injectivity radii are small everywhere relative to the bound on sectional
curvature admit positive rank F-structures. We will prove, in dimension
four, that if the volumes of the manifolds are also smaller than a positive
constant, then the manifolds actually admit polarized F-structures. In
particular, this result implies an affirmative answer to the Gromov’s Gap
conjecture on vanishing minimal volume in dimension four.

0. Introduction

Let M be a manifold. The minimal volume of M, MinVol(M), is defined
to be the infimum of the volumes of all the complete Riemannian metrics
on M with sectional curvature |K| < 1. The work about this invariant
can be found in [Gr2], [Fu4] and [BCG]. Motivated by Thurston’s result in
[Th] on the volumes of all 3-dimensional hyperbolic manifolds, M. Gromov
conjectured ([Gr2]):

Gap CONJECTURE FOR VOLUME 0.1. There exists a real number v, > 0

depending only on n such that if an n-dimensional manifold M satisfies
MinVol(M) < v,, then MinVol(M) = 0.

The Gromov’s Gap Conjecture for volume is one of several Gap con-
jectures concerning collapsing Riemannian manifolds. From now on, unless
specified elsewhere, all Riemannian manifolds will be assumed to be com-
plete and have bounded sectional curvature, say || < 1 after normalizing
the metrics. Let a(g) denote one of the following geometric measures of a
Riemannian metric g: the diameter D(g), the supremum I(g) of injectiv-
ity radii at all points, or the volume V(g). We consider the Riemannian
manifolds whose a(g) are sufficiently collapsed, i.e., a(g) is smaller than a
small constant depending only on the dimension of M. We say M admits
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an afg)-collapse if there exists a family of metrics {gs} on M, 0 < 6 < 1,
such that the sequence {a(gs)} converges to zero as 6 — 0.

The Gap conjecture for sufficiently a(g)-collapsed Riemannian mani-
folds is

GAP CONJECTURE 0.2. There exists a constant «,,, depending only on n,
such that if a complete n-manifold M has o(g) < an, then M admits a
a-collapse.

The affirmative answers are known for a(g) = D(g), I(g). Gromov’s
work [Grl] showed that a sufficiently diameter collapsed closed manifold is
an infro-nilmanifold. Note that an infro-nilmanifold does admit a diameter
collapse. The result in [CG3| asserts that a sufficiently injectivity radius
collapsed manifold admits a kind of topological structure, F, called a posi-
tive rank F-structure associated to g (compare with [CFG]). Further, using
such a positive rank F-structure one is able to construct an injectivity ra-
dius collapse ([CG2]). Roughly speaking, an F-structure on a manifold M
can be thought of as a family of local torus actions on M satisfying certain
consistency conditions on overlaps so that M is partitioned into orbits of
the actions (see §1). An F-structure is said to have positive rank if every
orbit has positive dimension. A pure F-structure means that its local torus
groups all have the same dimension.

An F-structure is said to be polarized if all isotropy groups of the local
torl actions are of finite order. Assuming a polarized F-structure, one is
able to construct an invariant volume collapse ([CG2], [Fu2]). Since on
a 3-manifold, any positive rank F-structure has a polarized substructure
([Ro1]), the Gromov’s Gap conjecture for n = 3 is a consequence of the main
results in [CG2] and [CG3). In [Fu3], Fukaya partially verified Gromov’s Gap
Conjecture for volume for aspherical manifolds under the strong assumption
that the constant v,, also depends on the diameter of the manifold. Recently,
Buyalo ([Bul], [Bu2]) verified the Gromov’s Gap Conjecture for volume for
non-positively curved 4-manifolds. Essentially, the main approach taken
by both [Bul], [Bu2] and [Fu] is to show that an associated F-structure is
actually polarized in those special circumstances.

The main result of this paper is given by the following theorem.

THEOREM 0.3. There exists a real number v > 0 such that if M is any a
4-manifold with MinVol(M) < v, then M admits a polarized F-structure.!

Combining Theorem 0.3 with a result in [CG2] (see Theorem 1.3),

' In [Ro2], it will be shown that the polarized F-structure can actually be chosen
as a substructure of the associated F-structure constructed in [CG3].
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Theorem 0.3 has as a corollary the Gromov’s Gap conjecture for volume in
dimension four.

COROLLARY 0.4. There exists a real number v > 0 such that if a 4-manifold
M satisfies MinVol(M) < v, then MinVol(M) = 0.

Remark 0.5: In contrast to the special situations considered by [Bul], [Bu2]
and [Fu3], if no additional restrictions on the metric, g, are assumed, the
associated F-structure may not be polarized no matter how small the volume
of (M, g) (see Example 1.4). This implies that our polarization in Theorem
0.3 may not be achieved solely through the geometrical constructions given
in [CG3], [CFG] and [Fu]. In particular, the arguments used by [Bul], [Bu2]
and [Fu] cannot apply in our situation.

Our approach to Theorem 0.3 is to study in detail the singularities of
an associated F-structure F on a manifold with small volume. The singular
set Z(F) of an F-structure F is by definition the union of all singular orbits
of local torus actions. If Z(F) = @ (i.e., F is polarized), then a result in
[CG2) implies Gromov’s Gap conjecture. In general, a component of Z(F)
is a union of compact totally geodesic submanifolds (with respect to any
invariant metric). In our four dimensional case, each component is either
a two torus, a Klein bottle or a cylinder. If the manifold is compact, then
the closure of a cylinder component is a compact cylinder with boundary.
We emphasize that there are infinitely many possibilities for the topological
structure in a tubular neighborhood of a singular component (see §2).

Roughly speaking, we find that if a complete 4-manifold has sufficiently
small volume, then it turns out that the singular structure of an associated
F-structure is very special so that one can modify F, in a saturated neigh-
borhood U (# M) of Z(F), to obtain a new polarized F-structure which
coincides with F on M — U. (Note that it does not follow a priori, that if
such a neighborhood exists, it can always be chosen to be a tubular neigh-
borhood T(Z(F)).) We emphasize that in dimension four most singular
structures do not have such a property although they are compatible with
metrics which are arbitrarily injectivity radius collapsed.

To explain the above, we first consider an arbitrary positive rank F-
structure F (on a 4-manifold). Clearly, we can assume that each component
Zy of Z(F) is irremovable, that is, the restriction of F to T.(Zy) of Zy,
F|T(Zo), has no polarized substructure. A non-singular S!'-orbit of F is
called exceptional if, the isotropy group of the local S!-action around the or-
bit is non-trivial. Consider the closure of union of all exceptional S!-orbits.
Let E(F) denote the union of those components of all exceptional S*-orbits
which have non-empty intersection with Z(F). Let W(F) = Z(F)U E(F),
and let Wy denote a component of W. We will classify all possibilities for
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the restriction F|T.(Wy). For each Wy with compact closure, the structure
in T¢(Wy) can be characterized by an integer-valued invariant, k(Wp). As
a result, we are able to conclude that for Wy with compact closure, one
can modify F in T.(Wp) to obtain a polarized F-structure if and only if
k(Wy) = 0. Moreover, it turns out that if the closure of Wy is not compact,
then one can always modify F in T, (W) to obtain a polarized F-structure.

Now suppose that F is the F-structure associated to a sufficiently injec-
tivity radius collapsed metric. The integer invariant k(Wy) does not directly
relate to the volume of the metric. As one consequence of the compatibility
of the metric and the structure ([CG3]), there is a second topological invari-
ant, the residue, which will relate the structure of F|T.(Wp) to the volume
([Ya]). The residue of a singular component, Res(Z;), is a topological in-
variant of the structure, F|Te(Zy). The residue of a saturated open subset
U is defined by the sum of the residues of the singularities contained in L.
We will show that the residue of T,(Wp) determines the previous invariant
of Wy, and Res(Wy) € 1/2Z. In particular, we can modify F in T,(Wp) to
obtain a polarized structure if and only if | Res(T.(Wp))| < 1/2 (in which
case Res(Wy) = 0). Here the fact that the set we consider is of form T.(Wp)
is crucial since there are examples of saturated subsets whose residues can
be arbitrarily small (or even zero) in absolute value but the structures on
them cannot be modified to obtain a polarized structure (see Example 3.4}.

Next, we will show that if a saturated compact manifold U with bound-
ary satisfies the conditions: the second fundamental form of U and the
second fundamental form of F-orbits are bound by a constant, each orbit
of the restriction F|OU has normal injectivity radius (see f in §4) lower
bounded by a universal constant, and the volume of U is smaller than a
constant depending on C and p, then |Res(U)| < 1/2. In the proof of
this inequality, we will use the Atiyah-Patodi-Singer theorem and results
in [CG2] and [Rol] on limiting eta-invariants. The recent results in [CFG]
and [CG4] enter to guarantee the existence of such neighborhood around
each Wy.

By way of further explanation as to why we consider the sets Wy,
we mention the following. We first point out that if a component Zg is
removable, then Res(Zy) = 0. However, the converse, while it is true, cannot
be seen directly; it requires additional work which is based on the main
result of this paper. In any case, since | Res(Zy)| can take arbitrarily small
non-zero values, we cannot restrict attention to such individual singular
component in proving Gromov’s Gap conjecture.

This paper is organized as follows: In §1, we will recall some necessary
notation about F-structures and the main results in [CG2} and [CG3].

In §2, we will prove a classification result for components of T (W (F)).
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As a result, we obtain a criterion for F to be modified in T (W (F)) to
obtain a polarized structure.

In §3, we will briefly recall the residue theory associated to F-structure
in [Ya]. From the residue formula in [Rol] we then obtain the explicit
residue for T.(Wp), and restate the criterion of §2 in terms of the residue.

Finally, in §4, we will establish an inequality in which the absolute
value of the residue bounds from below the volume of an invariant metric
on M. This easily suffices to complete the proof of Theorem 0.3.

Acknowledgment. The author is deeply indebted to Jeff Cheeger for his
many very valuable suggestions and many helpful conversations concerning
this paper.

1. Preliminaries

In this section, we will recall the notion of F-structure and the main results
in [CG2], [CG3] (compare with [CFG]) which will be used in this paper.

a. F-structures on collapsed Riemannian manifolds.

Given a small number € > 0. For any Riemannian manifold M, there
is a natural way to decompose M into the so-called e-thin part M, and
e-thick part M (€), where M, consists of all the points of M whose injective
radius are smaller than € and M(e) = M — M,. The basic problem about
the thin-part of Riemannian manifolds is to understand the interplay of
the collapsing geometry and topology of underlying manifolds. This study
was begun in [Grl], and it has attracted much attention since then. Some
fundamental results were obtained in [CG2], [CG3], [CFG] and [Ful]-[Fu4].
There, it is found that the topological aspects of a sufficiently injectivity
radius collapsed metric are, to a large extent, captured by the local isometric
structure of a nearby metric. This structure is called an F-structure by
Cheeger and Gromov ([CG2], [CG3]).

On a (complete) flat manifold, one can always obtain a collapse by scal-
ing the metric by small positive numbers 6, 0 < § < 1. An F-structure F
on a manifold M is a kind of combination of local flat structures. More pre-
cisely, an F-structure on a manifold is a collection of triples, F =
{(Uq, Us, T*=)}, where {Ua} is a local finite cover (each U, is also called a
chart of F) of M and 7o : U, — Ul is a finite normal covering on which T*=
acts which extends the deck transformations on U, (thus, the T*=-orbits
is invariant under the deck transformation). The local torus actions satisfy
the followmg consistency condition: if Uq NUg # 0, then n;* (U, NUp) and
Ty '(Us N Ug) have a common covering space on which the lifting of T*= is

a subgroup of the lifting of T*# or vice versa.
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The consistency condition implies that M is partitioned into orbits.
F is said to have positive rank if every orbit of F has positive dimension.
The singularity Z(F) of F is the union of all singular orbits of local torus
actions. In particular, if every isotropy subgroup of the local action is finite,
F is said to be polarized. If the local tori act (almost) as isometries, we say
F is (almost) compatible with the metric, or equivalently, that the metric is
(almost) invariant with respect to F. An F-structure is said to be pure if
the local torus groups have the same dimension. A polarization of a positive
rank F-structure is a collection of connected subgroups of the local torus
groups such that the dimension of each subgroup is equal to the dimension
of its orbits. If all the subgroups are compact, we call this polarization a
polarized substructure.

There is another equivalent definition for F-structures which is useful
in residue theory ([Ya]). If M is equipped with an invariant metric, the
Lie algebra of the local torus group determines the local Killing vector
fields on each chart U of F. The consistency condition means these local
Killing fields commute on overlaps (see [CG3], [Ya]). The fundamental result
concerning the existence of a sufficiently injective radius collapsed metric is
the following.

THEOREM 1.1 ([CG2], [CG3], [CFG]). There exists a constant i, > 0
depending only on n such that for all 0 < € < i, if a complete n-manifold
M with sectional curvature |K| < 1 has injectivity radii smaller than € at
all points, then M admits a positive rank F-structure F. and an invariant
metric g, such that
(1.1.1) There exist a constant r, > 0 and a positive integer k, depending
only on n such that for all p € M there is a chart ((71-, Ui, T®, ¢;),
such that B,(r,) C U;, diam(O,) < € and U; — U is at most a
k,-fold cover.
(1.1.2) e~%gc < g < €96, ||V = V¥|| < ¢ ||VFR|| < C(n, k,€), where V
and V¢ are the Levi-Civita connections of g and g respectively.
Conversely, suppose a manifold admits a positive rank F-structure.
Then it admits an invariant injectivity radius collapse.

We will call the constant 7,, the critical injectivity radius of dimension n,

and the positive rank F-structure corresponding to € = i,, F,, an associated
F-structure.

Remark 1.2: The first part of Theorem 1.1 was generalized considerably in
[CFG] recently. There, an associated F-structure is realized as a substruc-
ture of some so-called N-structure. Basically, an orbit of a N-structure is an
infro-nilmanifold whose center forms the orbit of the associated F-structure.
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The basic difference between these two structures is that the orbits of the
N-structure absorb all collapsed directions of the metric while the orbits
of F-structure only point the most collapsed directions proportional to the
injectivity radius (see §4 and [CFG] for more explanation).

We emphasize that the invariant injectivity radius collapse as in the
second part of Theorem 1.1 may not be a volume collapse (see §0) or may
not even have finite volume. In order to obtain an invariant volume collapse,
certain properties of the F-structure are required.

THEOREM 1.3 ([CG2]). Let M be a manifold. Suppose M admits a po-
larized F-structure. Then M admits an invariant volume collapse.

Note that in [CG2|, a condition on an F-structure weaker than the
existence of a polarized F-structure was found which also yields a volume
collapse. However, it seems very hard to find the assumptions on a collapsed
metric which will guarantee that the associated F-structure satisfies this
condition.

Because of Theorem 1.3, it is natural to ask whether for a collapsed
metric with sufficiently small volume, an associated F-structure is actually
polarized (compare [Bul], [Bu2] and [Fu4]). The following simple example
shows the answer is negative.

EXAMPLE 1.4: Take a one-sphere S and a two sphere 5%, and set M =
52 x S1. We will construct a volume collapse on M, gs,6 — 0, such that

for any small 8, the associated F-structure on M has singularity.
Let H be the S! subgroup of SO(3) defined by

cost —sint 0
H= sint cost O 0<t<2n
0 0 1

Equipped with the product metric of the standard metrics on $% and §7,
T? = H x S! acts as isometries on M by H acting on the first factor and
by multiplication on the second factor. Take a dense R!-subgroup Ry of
T? and split the metric into g = go @ g, where go is the restriction of g
to the orbits of R} and g; is its orthogonal component. We then construct
a continuous collapse: g5 = 6go @ g1. Clearly, Vol(M, gs) — 0 as 6 — 0,
and the limiting space is a closed interval because of the density of R} in
T2, Consequently, for all sufficiently small 6, the associated F-structures
Fs to gs is of pure T?-structure with singular set Z(F;) consisting of the
S1-factors at the two poles of S2.

Finally, we point out that in Example 1.4, F5s actually contains many
obvious polarized substructures.
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2. The Singularities of Positive Rank F-structures In Dimension
Four

From now on, unless specified otherwise, M will be a 4-manifold and F will
be an arbitrary positive rank F-structure on M with singularity Z(F).

For a S'-action on an open subset of M, a S!-orbit is called ezceptional
if its isotropy group is finite non-trivial. Consider a non-singular S Lorbit
O, of F. Let wy : Uy — Uy, z € U, be any rank-one chart containing O,
(the rank of a chart is defined to be the dimension of the torus group). We
call O, an exceptional orbit of F if O, is the projection of an exceptional
orbit of the Sl-action on U,. It is easy to check that this definition is
independent of the choice of charts involved. As before, E(F) will denote
the union of the components of all exceptional orbits which have non-empty
intersection with the closure of Z(F), and W(F) = Z(F) U E(F). The
explanation for introducing W(F) was given in §0. Further explanation
will be given at the end of b.

In this section, we will study W(F) and classify all possible structures
on T.(Wy), where Wy represents a component of W(F) (Theorem 2.7). As
a result, we will obtain a necessary and sufficient condition for modifying
F in T(W(F)) to obtain a polarized structure (Corollary 2.10).

a. The removable singularities.

We will first rule out a kind of trivial singularity. A component Z; of
Z(F) is said to be removable if F|T(Zy) contains a polarized substructure.
Otherwise, we call Zy irremovable. Clearly, if all components of Z(F) are
removable, then F contains a polarized substructure. In this part, we will
first show that an irremovable singularity is contained in charts of rank two.
Then, we will describe the possible structures of removable singularities.

First, we observe a simple fact.

LEMMA 2.1. Assume M admits an effective T®-action without fixed points.
Then a singular orbit (if any) is an isolated two torus whose tubular neigh-
borhood is homeomorphic to D? x T?.

Proof: Assume O, is a singular orbit through z € M. We can choose a slice
S; of O, at z such that S, is homeomorphic to a unit ball in R*, where
k=4 - dim(0,), dim(O,) = 1 or 2 (see [Br]). We first rule out the case
dim(O,) = 1. In this case, the identity component of the isotropy group at
x is a two torus which acts effectively on S, (a ball in R®); this is impossible.
Further, for dim(0,) = 2, because G, ~ S! has only single fixed point in
S. ~ D?, O, is some isolated singular orbit. o

CoroLLARY 2.2. For ¢ € M, let O, be a singular orbit of . If O,
is contained in a chart of rank three (Uy,U,,T?), then O, is isolated and
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removable. In particular, any positive rank pure T>-structure on M contains
a polarized substructure.

Proof: Assume O, is in a chart, (ﬁa, U,.T?). By Lemma 2.1, O, is some
isolated singular orbit and is either a two torus T? or a Klein bottle K?. In
either case, let O; be the singular orbit of the T®-action in Uy, 7(0z) = O,.
From Lemma 2.1, T.(Oz) ~ D? x O; for small e. Clearly, we can remove
the singularity O, by replacing T3 by a T?-subgroup which acts freely on
U, and is preserved by the deck transformations acting on U,. o

We now consider a removable singular component Z; which is contained
in some rank-two charts. Clearly, Z; is either a two torus (or a Klein hottle)
or a cylinder. An embedded cylinder is called finite if its closure is a compact
subset. Otherwise, we call it an infinite cylinder.

If Zy is a two torus, Te(Zp) is homeomorphic to a bundle over a circle
with fiber a solid torus. Since Z; is removable, we then conclude that the
fiber bundle structure is trivial (compare with Structure I below).

Similarly, if Zg is an infinite cylinder, then 7,.(Zp) is homeomorphic to
a bundle over a line or semi-line with fiber a solid torus.

If Z, is a finite cylinder, the boundary of T,.(Z,) is actually a lens space.
on which the restriction F|U is a mixed F-structure. This mixed structure
on 8T(Zp) can be expressed by {(D? x S1,S1), (I xT?,T?),(D?* x §*, S1)}.
where 0T.(Zy) = D? xS'UD? x St and I xT? = D*x S'ND? x S!. Clearly,
F|T(Zy) has a polarized substructure if and only if the two S!-actions agree
on I x T?.

b. The three models of singularities.

In view of the preceding discussion, we will assume F has only irremov-
able singularities, and thus each singular component is either a two torus
(or a Klein bottle) or a (finite or infinite) cylinder which is contained in
rank-two charts. Note that, if necessary, we can always replace F by a sub-
structure all of whose singular components are irremovable. This reduction
is necessary to achieve a classification result for T.(W(F)) (see Remark 2.6).

We will first describe three different models of singularities. Then, we
will look at all possible substructures of the three models. It turns out that
these singular structures actually cover all the possibilities in dimension
four.

STRUCTURE I. This singular structure appeared in Example 1.9 of
[CG2].

Take D? x S' with multi-polar coordinates (r,8;,6,), and form the
product (D? x $1) x [0, 1]. Then, identify the two ends, (D x S') x {0} with
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(D X Sl) X {1}’ by the map (Ta 91392) - (/,-’ ¢k(01’02))’ where

i = ((1) ’f) (8D x S1) x {0} — (@D x SV x {1},  (2.3)
and k is an integer. We use Uj ;. to denote the resulting compact manifold
with boundary. From the construction, we see that U; j is actually the total
space of a bundle over S! with fiber a solid torus. Thus, the boundary oU; 4
is a 3-nilpotent manifold with characteristic matrix ¢x. Note that U; j has
a pure T2-structure Fj s which is given by the obvious local T2 action on
fibers. -The singular set Z(Fj ) is a two torus which is the union of the
singular orbit of T?-action on fibers.

To see that F; x (k # 0) cannot be modified in Te(Z(Fy )) to obtain
a polarization, we will recall Example 1.9 in [CG2]. There, for each k #
0, a closed orientable 4-manifold, M}, with non-zero signature was found
which admits a positive rank F-structure F such that F|T.(Zp) is isomorphic
to (U k, F1.k), where Zy is a component of Z(F). By Theorem 1.3 and
Hirzebruch’s signature theorem, we then conclude that M) does not admit
any polarized F-structure. This implies that one cannot modify F; in
T(Z(Fix)) to obtain a polarization for £ # 0. On the other hand, it is
obvious that F; ¢ contains polarized substructures.

STRUCTURE II. This model is similar to Structure I except the singu-
larity is a finite cylinder.

To begin with, we take two copies, Y; and Y,, of N x S!, where N ~
D? x §! is a solid torus. We will glue ¥; and Y, together in the following
way: First, fix any p; € ON;, and let Te(p; x S') denote the e-tubular
neighborhood of p; x S in A(Y; x S!), Te(p; x S') = D? x S'. Then,
we take D? x S x [0,1], and identify its one end, (D? x S!) x {0}, with
T.(p1 x S') and glue the other end, D? x S* x {1}, with T(p2 x S) via the
map ¢y as in (2.3). Clearly, the result carries an obvious mixed F-structure,
F3.k, which is the S'-rotation on Y;, and the pure T? elsewhere. Note that
the singular set, Z(F2 ), is a finite cylinder. We will use Us x to denote a
tubular neighborhood Z(F5 ).

It turns out that if F5 ) can be modified in T.(Z(Fzx)) to obtain a
polarization, then the same conclusion holds for Fi k. Therefore, F3 4 can
be modified in Te(Z(F2)) to a polarized structure if and only if k = 0.
Remark 2.4: Note that in the construction of Structure II, the choice for Y;
does not play any significant role. In fact, the same construction works if N
1s replaced by any compact 3-manifold whose boundary is a closed surface
of genus > 1.

STRUCTURE III. Let Us ~ (D? x S') x J, where J is an interval,
J ~{0,1) or J ~ (0,1). Let F3 be the pure T?-structure on Us given by
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the obvious T?-action of D? x S'. The singular set Z3 ~ S! x J. Clearly,
Z3 is a removable singularity.
Next, we will describe substructures of F; ; (¢ = 1,2) and F3.

EXAMPLE 2.5: Let (U, F) represent (U, x, Fix) or (Us, F3). Consider the
natural projection onto the orbit space, 7 : U — X ~ U/F. Thus, the sub-
set Z/F ~ S1,[0,1] and J corresponding to Structures I, IT and III respec-
tively. Given any locally finite open cover {V;} for Z/F and any family of
St-actions {S*,¢;} on D% x S without fixed points, {(7~1(V;), S, v;)} de-
termines a mixed substructure F' of F|r~!(Z/F) with T?-orbits on
VinV; # 0. Note that F' is actually a substructure of F for U = U
or Us. As for U = Us, {(77*(V}), S*, %)} together with the S'-rotations
on Y; and Y3, determine a substructure of F3 on Us . Clearly, in each
case, Z(F') is a disjoint union of several finite cylinders embedded in Z(F).

It is easy to see that any substructures of F; (¢ = 1,2) and F3 can
be constructed as in the above because any S!-action on D? x §* x I, I an
interval, is actually a S'-action on D? x S!.

We now further explain the motivation for introducing W(F) (compare
80). Let (U, F) represent one of the models of Structure I, IT and III. As
seen earlier, we are able to modify F to obtain a polarization if and only
if it is Structure III, or it is Structure I or II and ¥ = 0. Clearly, the
same is true for any substructure F’ of F in Example 2.5. To be precise,
we will replace F/|Te(W (F")) (not F'|T(Z(F')) !) by a S'-action without
fixed points and keep F’ elsewhere. Note that for F = F3 g, the S'-action
is actually uniquely determined. We emphasize that the conclusion that
F’ can be modified in a neighborhood to obtain a polarization cannot be
achieved if the relation that ' is a substructure of F is not being explored.

We now consider an arbitrary positive rank F-structure F. In view
of the above, in order to obtain a necessary and sufficient condition for
modifying F, we have to divide the components of Z(F) into groups in such
a way that each group is embedded in the singularity of some model, as was
done in Example 2.5. Thus, starting with a single singular component, we
must be able to determine the whole collection of the singular components
in the same group. In fact, two components, Z;, Z2, of Z(F) are in the same
group if and only if T.(Z;) and Te(Z2) lie in a component of T.(W(F)). For
instance, as in Example 2.5, if all components of Z(F’) are irremovable,

then W (F') = Z(F) (k # 0).

Remark 2.6: As in the above, if we allow Z(F') to have removable com-
ponents, then W(F’) C Z(F).
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c. The singular structures in dimension four.
In this part, we will prove the following classification result.

THEOREM 2.7. Let M be a 4-manifold (without boundary), and let F be
a positive rank F-structure on M. Then for every component Wy of W (F),
F|T(W,) is isomorphic to a substructure of some (U; i, Fi x) (i = 1,2) or
( 737 f)

Theorem 2.7 allows us to associate to each component Wy of W(F) an
integer-valued invariant, s(W,), called the s-invariant of Wy: if T.(W)) is
homeomorphic to U; , then s(Wy) = k, otherwise s(Wy) = 0. A component
Wy is called essential if s(Wy) # 0, and all other components of W(F) are
inessential.

We will first show that each component of E(F) is either a two torus
(or a Klein bottle) or a cylinder. This is actually a consequence of a result

of [Fil] and [Fi2].

LEMMA 2.8 ([Fil], [Fi2]). Let M be a 4-manifold on which S! acts without
fixed points. Then, the orbit space M/S! is 3-manifold, and
(2.8.1) If M is closed, then each component of E is an embedding two
torus on which the exceptional invariants are the same.
(2.8.2) If M is compact with OM = N, then a component of E is either
an embedded two torus or a cylinder whose boundary is in N.

LeMMA 2.9. Let M be a 4-manifold, let F be a positive rank F-structure
on M. Then,
(2.9.1) A component of E(F) is homeomorphic to one of the following: a
two torus (or Klein bottle), a finite cylinder or an infinite cylinder.
(2.9.2) If a component of E(F) is a finite cylinder, then it has non-empty
intersection with the closure of Z(F).
(2.9.3) Let Zy be any irremovable singular component which is a finite
cylinder. If Zy has empty intersection with E(F), then T.(Zy) is
homeomorphic to Uy for some k # 0.

Proof: 1t is easy to see that (2.9.1) follows from Lemma 2.8.

Let Ey be an exceptional component which is a finite cylinder, and let
So denote a boundary circle. Take any rank-one chart, U, which contains
So. Let E} be the exceptional component in U which contains Sp. Clearly,
Ey C Ej. Take any exceptional orbit, Sj, in Ej — Eo (note that we may take
Sy to be one end of the finite cylinder EY). If (2.9.2) is false, then S} is in
a T%-orbit of F, say O, such that F|T(O) is polarized pure T2. Since S}, is
in O and since S}, is exceptional, we then conclude that O is an exceptional
T?-orbit. Since in dimension four any exceptional T?-orbit is isolated, we
then conclude that S} is an isolated exceptional S!-orbit; a contradiction.
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Consider Te(Zp), where Zy is a finite cylinder. Clearly, Te(Z)) is formed
by gluing two solid tori along their boundaries. Take two rank-one charts,
U; (i = 1,2) which contain the boundary circles of Zy respectively. By the
assumption in (2.9.3), the S'-actions on T.(Z,) have no exceptional orbits
around the boundary circles of Zy, and this implies the gluing map is defined
in (2.3). Since Zj is irremovable, we then conclude k # 0. Finally, we can
find an embedded Y; in U; (compare with Remark 2.4). o

Proof of Theorem 2.7: Let W, be a component of W(F). Since each
singular component is either a two torus (or a Klein bottle) or a cylinder,
from (2.9.1), we immediately see that W, is homeomorphic to either a two
torus (or a Klein bottle), a finite cylinder or an infinite cylinder.

First, if Wy is a two torus or an infinite cylinder, then clearly T.(Wy)
is homeomorphic to a model of Structure I or III. Assume Wy is an finite
cylinder. We observe that (2.9.2) implies that the boundary circles of Wy
are not exceptional S!'-orbits. Thus, replacing F|T.(Ws) by the obvious
pure T?-structure, we then reduce to the situation as in (2.9.3). Therefore,
we can conclude that T.(Wj) is homeomorphic to Uy for some k. o

Theorem 2.7 has the following important consequence.

COROLLARY 2.10. Let M be a 4-manifold, and let F be a positive rank F-
structure on M. Then, F can be modified in T.(W (F)) to obtain a polarized
structure if and only if all components of W(F) are inessential.

3. A Residue Criterion

The purpose of this section is to restate Corollary 2.10 in terms of the
residue of T(Wp); which will be used in §4 to prove Theorem 0.3. In the
following, we will first briefly review the residue theory in [Ya]. Then, we
will compute the residue of T(Wp).

d. The residue theory associated to F-structures.

Let M be a compact orientable 2n-manifold with boundary N. A given
metric g on N and a 2n-characteristic form P(Q2) determine a geometric
invariant of N, the so-called secondary geometric invariant, defined by

SP(N,g) = / P@)  modZ
(M.,g)

where § is any extension of g to M which is the product metric near N.
The secondary geometric P-invariant SP(N, g) depends only on the metric

of N and P. This invariant were studied in [CS], [ChS], [APS1] and [APS2]
etc.
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Assume M admits a Killing vector field X without zero points in N.
Then SP(N, g) can be made into a topological invariant as follows: First, by
the standard transgression formula in [Bo] and [BC], there is (2n — 1)-form
£x defined on M — |, Z; such that P(ﬁ) = dfx, where Z; are components
of zeros of X. Then, by applying the Stokes theorem, we obtain

\/M—Ut T((z.)P(ﬁ) - /NEX N ;/W((Z”gx : (3.1)

Taking limit in (3.1) as € — 0, the integrals on the left side of

/M P(Q) - /fo = ; (}%A,F((Zl)éx) - ;Resmzn . (39

becomes a topological invariant depending only on P, N and X. called a
secondary topological invariant. The chain of differential forms, P(Q) — € x.
is known as the Boti-form.

Formula (3.2) was generalized in [Ya] to the situation where a single
Killing vector field on M is replaced by an F-structure on M such that
F|N is polarized. If M is equipped with an invariant metric, then the local
Killing vector fields over charts of F, which are generated by the Lie algebras
of local tori actions, forms a sheaf of the local Killing vector fields over M
(see [CG2], [CG3] and [Ya]). First, associated to an arbitrary F-structure F
on M, M has a natural stratified decomposition into compact submanifolds
with corners, {My}, such that each M, is contained in a chart of F (this
stratification is called subordinate to F). Using any invariant metric g.
[Ya] constructed the generalized Bott-form, f’(ﬂ) which is a chain in the
de Rham complex of the stratification subordinate to F (see [FGG]), and
showed that the value of P(€2) on the complex, M = Uy M, is a topological
invariant of M depending only on F|N and P. We will denote this invariant
by P[M, F]. Moreover, there is also a transgression formula, P(Q) = dfr,
on M — Z(F), Z(F) = U, Z;. Therefore, by the generalized Stokes theorem
for de Rham complex,

P[M,F]= - Resp(ér, Z:) , (3.3)

where Resp(£r, Z;) is the residue of {5 at Z;.

We now explain how to use the collapsing technique in [CG2] to express
P[M, F] as an integral (see [Ya]). First, put Moo = M U (N x [0,00)), and
parallel extend F|N to a polarized F-structure on N X [0,00). Then, using
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the collapsing technique in [CG2] one can construct an invariant metric g
on M, with finite volume satisfying

(3.4.1) |K4 | < Ay for some constant A,

(3.4.2) Vol(0M;) — 0 as i — oo, where M; = M U (N x [0,1]);

(3.4.3) ||II(OM;)|| < Ag, where II(OM;) is the second fundamental form

of OM;.

It turns out that conditions (3.4.1)-(3.4.3) imply lim;_ faM,- &r =0 as
i — oo (see [Ya]). Thus, by taking the limit, i — oo, to the equation
P[M, F] = PM;, Fi] = [y P() = [5, §7, We then obtain

PM, F] = /M P) . (3.5)

Formula (3.5) has the following consequence: If F’ is a substructure of F
such that 7' = F on N, then P[M,F] = P[M,F']. Combining with (3.3),
this yields,
Y Resp(Z)= Y  Resp(Z;) (3.6)
)

ZiCZ(F) Z,CZ(F

Note that equation (3.6), in turn, implies that the requirement F'|N =
F|N is superfluous, that is, P{M,F] = P[M,F’] holds even F'|N is a
substructure of F|N.

Finally, we define the residue of an arbitrary saturated subset U with
OU N Z(F) =0 by Resp(U) =3 ;. Resp(Zs).

e. A residue criterion.

Based on the result in §2, we will compute the explicit value for the
residue, Res(T(W;)), where W,y is a component of W(F) with compact
closure.

LEMMA 3.7. (3.7.1) IfT.(W,) is homeomorphic to Uy x, then Res(T (W) =
k.

(3.7.2) If a double cover of T.(W,) is homeomorphic to Uj k, then
Res(T,(Wo)) = k/2

(3.7.3) If T{(Wy) ~ Ua k, then Res(Te(Wy)) = k.

Proof: In this proof, all Riemannian metrics are assumed to be invariant.
We claim it suffices to compute Res(Z(F; )), ¢ = 1,2. By Theorem 2.7, the
restriction F|T,(Wp) is isomorphic to a substructure of F; x on U, (up to
a double cover). According to the discussion in d, we then conclude that if
T (Wy) ~ U, i, then Res(Te(Wy)) = Res(Z(Fi x))-

We first compute Res(Z(F; k)). Let X be the Killing vector field gen-
erated by the (unique) S*-action on U; j which is a pure S!-substructure
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Fix of Fik. Note that the set of zeros of X coincides with Z(Fi k).
Applying the standard transgression formula in [Bo] and [BC], we can
write Pi(Q) = —d€x, on Uy, — Te(Z(F1k)), and derive, Res(Z(Fy ) =
lime—o faT<(Z(f1,k)) &x = k. This is because the Euler number of U i, which
is a D?-bundle over T2, is k with suitable orientation.

Assume a double cover of T,(Wy) is homeomorphic to Uy . Let 7 :
Uix — Vi denote the covering map, Vi = T(Wy). Put Uik =
Uik U QUi % [0,00)) and Vi koo = Vi U (OVik % [0,00)), and extend
T to a covering map T : Uy koo — Vik,oo- As seen in d, we then obtain
an invariant metric goo on Vj ko satisfying (3.4.1)-(3.4.3). Clearly, the
pullback metric 7*(go) shares the same properties. From (3.3), we then
derive Res(Z(Fix)) = fULk‘w P(Q) = 2fV1,k,m P () = 2Res(Te(W1))-
Therefore, Res(Te(W1 k) = 1/2 Res(Z(F1x)) = k/2.

Finally, we will compute Res(Z(F,)). Note that Fs ; does not have
any pure S!-polarization if £ # 0. The computation will follow the process
in [Ya]; and the reader is referred to [Ya] for more detail.

We first choose a stratification of Uz subordinated to Fi i as
{Ml,MQ,M12}, where M1 == Yl, M2 = (Dg x St x [0, 1]) U¢k Y2 and
My = My N My ~ D? x §* x {0}. Note that each M; is an open manifold
and M, is the compact manifold with corners. Let X, be the Killing vector
fields on Y; generated by S!-rotation, and let X, be the Killing vector field
on M, which extends the S'-rotation on Y5. The singular set of X; and
X2, Zy2, consists of the points at which X; and X, are linearly dependent.
Clearly, Z15 coincides with Z(F3 ).

Since X; has no zeros in M;, P(2) = —d§ on M;, i = 1,2. By
employing a generalized transgress formula in [Ya], we can write § — & =
~d &3 on My —T.(Z;2), where &4 is 2-form on M;3 —T(Z;12). The residue
Res(Z(F2)) is defined to be lims_g faTé(Zw) &12. To evaluate this limit,
we choose a multipolar coordinate, (r,8;,8,) for D? x S', and write X; =
0/064, Xy = 8/80y + kO/86,. A straightforward computation shows that

Res(Z(Fak)) = lim o1y )512 =k/1-0/1=k.
& 12

Using Lemma 3.1, we are able to restate Corollary 2.10 as

PROPOSITION 3.8. Under the same assumption as in Theorem 2.8, we can
modify F on T,(W(F)) to obtain a polarized structure if and only if for
every finite component Wy of W(F), Res(Te(Wy)) < 1/2 (in which case,
Res(Z(Wo)) = 0).
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Finally, we will give an example showing that Proposition 3.2 fails when
applied to an arbitrary saturated subset.

EXAMPLE 3.9: (i) Let N be a solid torus, and let U = N x (0,1). Given
two S'-actions, (N, S1),(N,S1) on N, we define a mixed F-structure F
on U, F = {(N x (0,2/3),8"),(N x (1/3,1),5})}. Fix an orientation for
N, any S! on N is determined by the so-called Seifert invariant, (p,q),
0 < g < p, up to an isomorphism (see [Or]). Assume the Seifert invariants
of the two S'-actions are (p;,q;), ¢ = 1,2. Then, by the same process as in
the proof of (3.7.3) we then find that Res(U) = ¢1/p1 — q2/p2. (Note that
the orientation on U is the product of the orientation of N and the standard
orientation of [0, 1].)

(ii) Let M be the closed orientable 4-manifold which is the double of
Uik (k#0), M = Uy y UU, &, and let F be the pure T-structure on M.
Note that Res(M) = Res(U; ) — Res(Uy k) = 0. However, as seen earlier.
F cannot be modified around Z(F) to obtain a polarized substructure.

4. The Residues and Volume

In this section, we will relate the residue to the volume. More precisely, we
will show that if a complete 4-manifold M with [K| < 1 has volume smaller
than a constant v > 0, then all components of W(F,) are inessential, where
F. is the associated F-structure (see §1). By Corollary 2.9, this implies
Theorem 0.3.

We will first prove an inequality concerning complete 4n-manifolds
which admit compatible F-structures. This inequality asserts that if a sat-
urated subset U satisfies certain geometrical conditions, then |Resp(U)|
bounds from below the volume of U.

Secondly, we will show that in dimension four, one can always find a
tubular neighborhood around each component Wy of W(F) which meets
these conditions. We emphasize that the Atiyah-Patodi-Singer index for-
mula ([APS1], [APS2]) and the recent results in [CG1], [CFG] and [CG4]
play a crucial role in the proof.

f. A basic inequality.

Let M be a complete manifold with |K| < 1. Assume M admits a
compatible F-structure F. Let O be an F-orbit. For z € O, let T,(O)
denote the tangent space of O and T3 (O) be the orthogonal complement
of T,(O) in T,(M). The normal injectivity radius of O, denoted by p(QO),
is the largest 7 such that the exponential map, exp, : T, L(O) - M is
an embedding into M when restricted in an open ball of radius r. (Note
that since the metric is invariant, the normal injectivity radius of O is
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independent of z € O). The normal injectivity radius of F, p(F), is defined
to be the infimum of the normal injectivity radii of all orbits of F.

We now assume dim(M) = 4n, and let Pr(Q2) be the Hirzebruch L-
polynomial in the curvature form. In this following discussion, C;, A and p
denote constants, and C;( ) means the constant depends on numbers in the
parentheses.

THEOREM 4.1. Let M*" F and P(Q0) be as the above, let U*™ be a
compact saturated 4n-submanifold with smooth boundary such that Z(F)N
OU*" is empty. Assume the following conditions:

111U < A s (4.1.1)
IO € A, for all z € BU* ; (4.1.2)
p(F)>p>0. (4.1.3)

Then, there is a constant C(n, A, p) > 0 such that
[Res(U*)] < C(n, A, p)(Vol(U*"™) + Vol(8U*™)) , (4.1.4)

where the residue is with respect to Hirzebruch’s L-class.

We first prove a lemma. Let M be a compact manifold with boundary
N, let F be an F-structure on M which is polarized on N. Put M, =
MU(N7xR*), and parallel extend the polarized F-structure F|N to N xR*.

LEMMA 4.2. Let M, N and F be as in the above. Given any invariant
metric g on N which satisfies |K| < 1. (4.1.2) and (4.1.3), there exists a
complete metric on My, g such that:

(4.2.1) the restriction of go, to N coincides with g;

(4.2.2) Vol(N x R*) < C; Vol(N),

(42.3) |K,_| < C'(n.A, p);

(4.2.4) [II(N)| < 1.

Proof: We shall first construct a metric ¢’ on N x R*. Then we shall obtain
9o by extending ¢’ to M.

From the proof of Theorem 1.3 in [CG2], we see that using the polarized
F-structure F on N one is able to construct a continuous invariant volume
collapse {gs}o<s<1 on N, with g; = g, which satisfies

(42.5) |K,,] < Calg)

(4.2.6) Vol(N, gs) < C3 Vol(N)ek!» ¢|In §|*
where k is the rank of F (the rank of F is defined to be the smallest
dimension of all orbits.) We define a Riemannian metric on N x R* by
9" = ge-~@®dr?. Then we extend ¢’ to M such that |K| < 1 and |[[I(N)| < 1.
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We now inspect (4.2.2) and (4.2.3). Let V. denote the volume of
N x {r}. From (4.2.6), we then derive (4.2.2) by

Vol(N x Rt) =/ V,.dr 5/ Cy Vol(N)e Frp3dr
0 0

< nlCq Vol(IN) = C; Vol(N) .

Note that by our definition for ¢, it is easy to see that (4.2.3) is equiv-
alent to |Ky| < Cq(n, A, p). However, as indicated by (4.2.5), the bound
on |I{,, | may depend on the initial metric (also see Example 4.4). We shall
show that conditions (4.1.2) and (4.1.3) enter to guarantee a bound as in
(4.2.3). This can be seen by carefully inspecting the proof of Theorem 1.3
in {CG2]. We now explain this in more detail.

Recall the construction of gs in [CG2]. The idea is to construct collapse
on each chart, and match them up properly on overlaps of the charts. We
first check the collapsed sequence on a chart.

For any z € N, choose a chart of F|N. (U,, Ua,Tka). First, by (1.1.1)
in Theorem 1.1, we can assume B,(p) C U,, where p is given by (4.1.3).
Since F is polarized and compatible with the metric, by passing to a finite
cover, we may assume that Tke acts freely on U, as isometries. Thus.
the orbit space X, = U,/T** is a Riemannian manifold with the quotient
metric, and the projection 7, : ﬁa — X, is a Riemannian submersion.
The collapse formed on U,, ¢s, is multiplying the metric on the vertical
component by 62 while keeping the metric on the horizontal space (see
[CG3)).

From the computation in [Gro], the bound on Iy, depends on the
bound in (4.1.2) and bounds on Ky and I{,. By O’Neil’s formula [O], the
sectional curvature on X, is always greater than the sectional curvature of
the horizontal space in U,. Here the problem is to bound K, from above.
By O’Neil’s formula for horizontal section, it suffices to show that O’Neil’s
tensor, A, has a bound depending on (4.1.2) and (4.1.3) (see [O]).

Now given any unit horizontal vector fields Y; and Y, such that g(Y7, Y2)
= 0 and given any unit vertical vector field T. Since g([Y;,T],Y2) = 0, we
then derive

9(T, Ay, Y2) = g(T,1/2[V1, Vo)) = g(T. V1, Y2) = —g(Vy, T, Y2).

By the above, the proof reduces to bound ||Vy,T|| in terms of A and p.
We first fix a point p and let 4 : [0,r] — M be the minimal geodesic

tangent to Y = Y, at p, where r = p/2. Assume the parameter is the arc

length. We can assume that there is a S!-subgroup of T« such that T is
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the velocity vector field. Note that in the above set up, we have [Y,T] = 0.
By the compatibility with the metric, the S'-action on v generates a family
of geodesics. Hence, T is actually a Jacobi field on 7. Put Vy, T = T'(0).

We first observe that the bound in (4.1.2) implies that e~2A||T(0)]|| <
1T < e2A)T(0))|. This can be seen by integrate g(T,T) /g(T,T) =
29(VyT.T)/g(T,T) = -29(VrY,T)/g(T,T) = 29(Y,V1T)/g(T,T) =
2II(T,T) on [0,t]. In particular, ||T(r)|| < e?A".

Let T} be a Jacobi field on 7 such that T3(0) = T(0) and Ti(r) = 0.
Then, the Rauch-estimate implies that the norm of dexp,rT(0) = T7(0)
is bounded. Put T, = T — T}, a Jacobi field on . Since T5(0) = 0 and
Ty(r) = T(r), we then have that dexp, rT;(0) = T(r). Hence,

T(r) + dexp, T{(0)

dexp, T'(0) = . .

By the above discussion, the right-hand side of the above equation is bounded
by a constant depending on A and p. By the Rauch-estimate, we then con-
clude that |T7(0)|| < C(A, p).

We now explain how the above analysis goes through the situation
where U, has non-empty overlap with charts of different ranks. From the
proof of Theorem 1.3 in [CG3], we see, in this case, that the collapse on the
overlap is modified by expanding the metric properly at a rate |Iné|. Since
(4.1.2) and (4.1.3) remain for all é, we then conclude (4.2.3). o

COROLLARY 4.3. Under the same assumption as in Lemma 4.2, assume M
is also an orientable 4n-manifold. Then,

| Res (M)] < o(M) = ()| + Ca(n, A, p) Vol(N) . (43.1)

Proof: Put M, = M U (N x R") and let go be as Lemma 4.2. From
(4.2.3), we have |PL(Q)]| < C3(A, p). By (3.5) and (3.6), we derive

| Res(M)] = | /M PL(Q)] (43.2)

<t P+ [ iPe)

<1 [ PUOI+Caln A, ) V()

By (4.2.4), we can write |II,(N)| < C3 Vol(N). Thus, applying the Atiyah-
Patodi-Singer index formula to the first term, we obtain

| / PL(Q)] < |o(M) — 5(N)| + [T, (N)| (4.3.3)
M

< Jo(M) = n(N)| + C Vol(N) .
Combining (4.3.2) and (4.3.3) we then see (4.3.1). o
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Proof of Theorem 4.1: Let U%" be as in Theorem 4.1. For the sake of
distinction, we use gp to denote the original metric on U*", and use g;
to denote the metric on Uy, as in Lemma 4.2 constructed from go|0U*™.
Clearly, go = g1 on dU*". By Corollary 4.3, conditions (4.1.2) and (4.1.3)
yield

|Resy (U] < |o(U*") = n(U*", g1)| + C3(A, p) Vol (U™, g1)  (4.4.1)

Applying the Atiyah-Patodi-Singer index formula to ;.. PL(S0), we see
AU = n(OU" ) = [ P(O0) - LU q0) . (442)
U4n
Since go = g; on AU*™, plugging (4.4.2) into (4.4.1) yields

+|I1,(dU*", go)| + C3(A, p) Vol(8U*", go) -

(4.4.3)

Since |K| < 1, we see ||[P(Q)]| < C and thus | [,.. Pr(f)] <
C Vol(U*", go). By (4.1.1), we can have |I1,(0U*", go)| < C(A) Vol(8U*", go).

Finally, substituting these two inequalities into (4.4.3) we then obtain (4.1.4).

o

Ress @< | [ Pucaw)

Next, we give an example showing that condition (4.1.3) is necessary.

EXAMPLE 4.4: Let Ny = S§? x §%, and let F be the T?-action on N;. Let
{gs} be the invariant volume collapse on N; as in Example 1.4. For each
6 > 0, let gs be the product metric of gs and the unit circle.

Choose any S!'-subgroup, T!, of F which has no fixed-points on Nj.
Clearly, for all § > 0, the second fundamental form of T -orbits is indepen-
dent of & (this can be seen by lifting the T -orbits to the universal covering
space of N1). For each fixed 6, we use g5, to denote the invariant volume
collapse formed by multiplying the metric on the subspace tangent to the
T'-orbit by €? while keeping the metric gs on its orthogonal complement.
The limit space is a product of the metric space, X;, with the unit circle,
where X is a rugby ball with singularity at two poles. Clearly, X; is get-
ting thinner and thinner as 6 — 0, and therefore the absolute value of the
sectional curvature goes to infinity as 6 — 0.

Note that p(T?, gs) — 0 as 6 — 0.
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g. The proof of Theorem 0.3.

In this part, M* will be a sufficiently injectivity radius collapsed 4-
manifold, F, will be an associated F-structure on M*. By Theorem 1.1, we
can choose the collapsed metric compatible with F,.

THEOREM 4.5. Let M* and F, be as the above. Then there exist con-
stants A > 0 and p > 0, such that each component Wy of W(F,) has a
neighborhood Uy, Uy N W(F,) = Wy, which satisfies (4.1.1)-(4.1.3) and
Vol(9Uy) < C(p) Vol(Uy).

We will first give a proof for Theorem 0.3 by assuming Theorem 4.5;
the proof of Theorem 4.5 will occupy the rest of this paper.

Proof of Theorem 0.3: The constant v is determined as follows: Let vq >
0 be a sufficiently small number so that Vol(M*) < vy implies that for
all z € M*, the injectivity radius of M* is smaller than i4, the critical
injectivity radius in dimension four (see §1). Choose U as in Theorem
4.5, and let A > 0, p > 0 and C(p) be the constants in Theorem 4.5.
From Theorem 4.1, we obtain (4.1.4) with a constant C(A, p). Put v =
(1/2) minos. 1/[C(A. p)(1 + C(p)]}-

Assume Vol(M*) < v. Since v < vy, we can assume the associated F-
structure F, on M. By Corollary 2.10, it suffices to show each component
with compact closure Wy of W{F) is inessential.

From (4.1.4) and the choice for v, we then derive

| Res (U)| < C(A, p)(Vol(Up) + Vol(8Up))
< C(A, p)(Vol(Us) + C(p) Vol(Us))
< C(A, p)(1 4 C(p)) Vol(M*) < 1/2 .

Since UgNW (F) = Wy (Theorem 4.5), | Res(Te(Wo))| = |Res(Up)| < 1/2.
Finally, by Proposition 3.8 we then conclude that W, is inessential. o

h. F-structures and N-structures in dimension four.

We observe the assertion in Theorem 4.5 that p(F,l0Us) > p > 0
amounts to saying that the F,-orbits absorb all collapsed directions of the
metric; roughly speaking, this means that for all x € M, the homotopy
classes of all short geodesic loops at z are contained in 71 (O,, z). According
to {CG3], the orbit O, points to the most collapsed directions at z, that is,
the directions in which the geodesic loops have length proportional to the
Injectivity radius at by a constant ([CG3]). A priori, the normal injectivity
radius of an associated F-structure may not have a uniform lower bound.

In [CFG], the theory of F-structure was generalized to N-structure
(compare Remark 1.2). The definition for N-structure is similar to the
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definition of F-structure (see §1) except in a chart (Ug, Uy, N*), N*e is a
nilpotent group of dimension k, and 7, : U, — U is allowed to be an infi-
nite cover. In [CFG], it was showed that on a sufficiently injectivity radius
collapsed manifold, given all small € > 0, one can construct a N-structure,
Ne, which actually absorb all collapsed directions (compare with Theorem
1.1). In particular, the F-structure F, is a (commutative) substructure of
N.. We denote by N, an associated N-structure with € = i,,. the critical
injectivity radius in dimension n.

The reason we use F-structure instead of N-structure in this paper is
that we can apply the residue theory in [Ya] while a N-structure is not suit-
able for this purpose. The following lemma is crucial to prove Theorem 4.1.

LEMMA 4.6. Let M* be as in Theorem 4.5, let N and F be the associated
N-structure and F-structure on M respectively. Then there is a constant
r > 0 such that the restriction N'|T.(Wy) = F|T.(Wp).

Remark 4.7: By Lemma 4.6, we can assume the F,-orbits in T,.(Wy) absorb
all collapsed directions. Since F, is constructed with a fixed collapsing
scale, from [CFG] (see page 365) we have the following easy consequences:
(i) there exists a constant pp > 0 such that each S-orbit in T}.(W;) has
normal injectivity radius > po. In particular, T,(Wy) ~ U, or Us; (ii) the
second fundamental forms of all F-orbits in T,.(Wy) — T, (Wp) are bounded
by A(po); (iii) p(F|0T po(Ws)) > p(pe) > 0 for some constant p depending
on pg.

The proof of Lemma 4.6 requires certain preparation, and we will first
give a proof for Theorem 4.5 by assuming Lemma 4.6. In the proof of
Theorem 4.5, we also need a result in [CG4].

THEOREM 4.8 ([CG4]). Let M™ be a complete n-manifold with bounded
sectional curvature |K| < 1. Assume M™ admits an F-structure compatible
with the metric. Then, given a saturated subset X C M™, and a real number
0 < € < 1, there is a saturated submanifold U™ with smooth boundary 8U"
such that for some constant C,, depending on n,

X cU"CT(X), (4.8.1)
Vol(dU™) < C,, Vol(T,.(X))e™! (4.8.2)
1LI(BU™)|| < Cpe™t (4.8.3)

Proof of Theorem 4.5: Let N, and F, denote the associated N-structure
and the associated F-structure on M* respectively. By Lemma 4.6, there
is a constant r > 0 such that N, = F, on T,.(W;). From Remark 4.7,
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we then obtain a constant, pg, such that T,(Wy) is homeomorphic to U;
or Us. Without loss of generality, we can assume r/2 > po. Clearly,
Tpo (Wo)NW(F) = 0. Finally, applying Theorem 4.8 to Wy with € = po/2 we
then obtain the desired neighborhood Uy. (Note that in our circumstances,
it is not hard to see that Uy is homeomorphic to T,,Wy.) Finally, we see
that (4.1.1) is from (4.8.3), and (4.1.2) and (4.1.3) are from Remark 4.7. o

i. The limiting #-invariants associated to volume collapses.

As a preparation for the proof of Lemma 4.6, we will briefly recall the
two different kinds of the limiting eta-invariants in [CG2]. Note that the
inequality (4.10) and residue formula (4.11.2) below will be used in the proof
of Lemma 4.6.

Let N be a (4n — 1)-dimensional closed orientable manifold. Assume
N admits a volume collapse, {g;}. Let (NN, g;) denote the eta-invariant of
Atiyah-Patodi-Singer (see [APS1], [APS2]). In [CG1], it was found that if
{gi} satisfies certain conditions, then the limit, lim;_, . (N, g;). exists and
has topological significance.

Let 7 : N — N be the universal covering. A metric g on N is said to
have bounded covering geometry (briefly, BCG) if the pullback metric on N
has injectivity radius > 1. A volume collapse {g;} is said to have BCG if
7*(g;) has BCG for all i.

THEOREM 4.9 ([CG1]). Let N be an orientable closed (4n — 1)-manifold.
Assume N admits a volume collapse {g;} with BCG. Then, the limit.
n*(N) = lim;_, o n(N, g:), exists and is independent of the volume collapse.

A topological interpretation of n*(N) in 3-dimensional case can be
found in [Rol]. The proof of Theorem 4.8 in [CG1] is to show that for
any metric on N with BCG

[n*(N) = n(N,g)| < Cr Vol(N,g) . (4.10)

We now consider the other limiting eta-invariant. Assume N admits
a polarized F-structure, /. By Theorem 1.3, N admits invariant volume
collapses.

THEOREM 4.11 ([CG1]). Let N and F be as above. Then, for any in-
variant volume collapse as constructed in Theorem 1.3, then the limit,
lim; o, n(N, g;), exists, and is independent of the invariant volume collapse.

We will call the limiting eta-invariants as in Theorem 4.11 the limst-
ing eta-invariant associated to F, and denoted it by n(V, F). Notice that
n(N, F) does depend on F, that is, N may admit two different polarized
F-structures, F), F», such that n(N, Fy) # n(N, F2) (see [Rol]).
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Next, we will derive a residue formula for (N, F). For this purpose,
we assume there is a compact orientable 4n-manifold M, 0M = N and F
extends to an F-structure on M (note that the extension may have singu-
larity).

As in §3, we form M, = M U(N x R*), and parallel extend F to M,
and then construct an invariant metric on Moo, goo, Which satisfies (4.2.1)-
(4.2.3). Let Pr(Q2) be the Hirzebruch’s signature form in the L-polynomial,
Py. Combining (3.5) and (3.6), we see [}, Pr(Q) =3, Resr(Z;).

From our construction for g, it is easy to see that M; = MU(N x[0,1])
forms an invariant good chopping. Thus, we apply the Atiyah-Patodi-Singer
index formula to M;, and obtain

/M. PL(Q) = o(M;) — n(0M;, g;) — I1,(3M;) . (4.11.1)

Moreover, o(M;) = a(M), lim; o n(OM;) = n(N, F) and lim; _, o [1,(OM;)
= 0; the second equation follows from Theorem 4.11, and the third equation
is due to the fact M; is a good chopping. Finally, ta.king the limit to (4.11.1)
as 1 — 00, combining with (3.3) we then conclude

o(M)—n(N,F)= ZReSL(Z (4.11.2)

The above two limiting eta-invariants coincides if N admits an injective
F-structure. A polarized F-structure is said to be injective if the fundamen-
tal group of F-orbit injects into the fundamental group of the manifold. In
[Ro1], we showed that if F is injective, then the invariant volume collapse
in Theorem 1.3 has BCG. In this case, (N, F) = n*(N).

LEMMA 4.12. (4.12.1) OU, i admits an invariant volume {gs} collapse with
BCG and p(Fik,9i) > 1.

(4.12.2) o(Ur k) — n2)(0ULk) = K/3.

Proof: Note that F; |0U x is injective. By Theorem 2.5 in [Rol] we then
conclude (4.12.1).

By Theorem 4.8 and Theorem 4.10, from (4.12.1) we have n*(N) =
lim; o0 D(IN, g)=0(N, Fir). So, 0(Us k) —1(2)(0U1 k)=0 (U1 &) —n(8U1 , F1 )
By Lemma 3.7, (Uy k) —7(OU1 &y F1 k)= Res (Z(Fi x))=1/3Res(Z(F1 )=
k/3 because P = 1/3P;. o
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Proof of Lemma 4.6: First, as seen in g, we obtain two compatible struc-
tures on M, the associated N-structure A, and its a substructure, the as-
sociated F-structure F,.

We will proceed by contradiction. Assume there is a component Wy
of W(F,) such that Te(W,) contains nil-orbits for some sufficiently small
€ > 0. In this case, it is not hard to see that T.(Wy) ~ U; for some
k # 0, and thus Wy actually is an isolated singular orbit. By Theorem 1.7
in [CFG], we can choose a chart of N, (U,U, N3), such that T,,(W,) C U
for some universal constant ro > 0. (Note that W, is an (singular) orbit
of N.) Also, since Wy is an isolated singular orbit, the normal injectivity
radius of Wy satisfies p(Wy) > p; > 0, where p; is a constant (compare
Remark 4.7). Without losing generality, we assume ro > p;. Moreover, the
second fundamental form of 9T,,(Wy) is bounded by a number C(py).

We now apply the Atiyah-Patodi-Singer index formula to T}, (W), and
derive

|o(T,, (Wo)) = n(8T,,(Wo))| <

/ PLm)] L (9T, (W)
9T, , (Wy)

(4.13.1)
We claim that the right hand side can be made arbitrarily small, pro-
vided the metric is sufficiently injectivity radius collapsed. This is clear
for the integral term because |K| < 1 and the volume Vol(T,, (Wy)) =~
diam(Wp)p; can be made arbitrarily small. Since |II(9T,,(0))] < C(p1)
and Vol(9T),, (Wy)) is as small as we like, provided diam(9T,, (Wy)) is suf-
ficiently small, I1,(9T,,(Ws)) can be make sufficiently small.
On the other hand, since T, (Wy) ~ U, i for some k # 0, by Lemma
4.12 and Theorem 4.10 we derive

Bl 1o, (W) = nia @, (o)) (413.2)

< 1o (T, (Wo)) — 08T, (Wo))| + In(2)(8T,, (Wo)) — n(0T,, (Wo))| -

From (4.13.1) and the discussion, the first term on the right-hand side of
(4.13.2) is sufficiently small, provided the metric is sufficiently collapsed.
We will derive a contradiction by showing the second term on the right-
hand side of (4.13.2) is also small. From (4.9), it suffices to check that the
induced metric on 87,,(W,) has bounded covering geometry by a universal
constant. This condition is satisfied because 9T,,(Wy) is a single N -orbit
which is injective. o
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EXISTENCE OF POLARIZED F-STRUCTURES
ON COLLAPSED MANIFOLDS
WITH BOUNDED CURVATURE AND DIAMETER

J. CHEEGER AND X. RONG

Abstract

We study the class of collapsed Riemannian n-manifolds with bounded sec-
tional curvature and diameter. Our main result asserts that there is a con-
stant, §(n,d) > 0, such that if a compact n-manifold has bounded curvature,
|Kpn| < 1, bounded diameter, diam(M™) < d and sufficiently small volume,
Vol(M™) < §(n,d), then it admits a mixed polarized F-structure. As a con-
sequence, inf, Vol(M™, g) = 0, where the infimum is taken over all metrics
with [K(pn g)] < 1. This assertion can be viewed as a weakened version of
Gromov’s “critical volume” conjecture.

0. Introduction

We will begin by briefly recalling the notion of F-structure and some relevant
related concepts; for further details, see [CG1], [CG2], [CR] and sections 1-3
below.

An F-structure, J, on a manifold, M", is a kind of generalized torus
action. Specifically, it is a sheaf of Lie algebras, together with a homomor-
phism of this sheaf onto a sheaf of abelian Lie algebras of vector fields, er,
for which a certain additional condition is satisfied. In the sequel, only the
image sheaf ez plays a role.

Let f denote a subsheaf of ex and f, its stalk at . The additional
condition on ex is the following. For all x € M™", there exists an open
neighborhood, U(x), and a subsheaf, f(z), of ex|U(x), such that f(x), =
{ex). and such that for some finite normal covering space, 7 : U(z) — U{(z),
the lifted Lie algebra sheaf, f(z), is a constant sheaf, which is isomorphic to
the infinitesimal generators of the effective action of a torus, T5®) on U(z).

If all stalks, (ex)q, of the sheaf, ex, have the same dimension, k(z) = k,
the structure is called pure. Otherwise, it is called mized.

If for all 2, one can choose U(z) and U(z), such that U(z) = U(z), then
the F-structure is called a T-structure. In this case, er is actually the Lie
algebra sheaf of a sheaf of tori, Ex. If in addition, F is a pure structure,

_ The first author is partially supported by NSF Grant DMS 9303999, and the second author
Is partially supported by NSF Grant DMS 9204095.
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then the sheaf, £, can be described alternatively as a flat torus bundle
with holonomy in SL(k,Z).

If M™ is simply connected, a pure F-structure is actually a T-structure
for which the bundle, £, has trivial holonomy. Thus, in the simply con-
nected case, modulo a choice of isomorphism of some fiber with the standard
torus, a pure F-structure is just an ordinary torus action.

A substructure is defined by a subsheaf of e, for which the action gen-
erated by each f(z) is isomorphic to a torus action, i.e. the orbits are closed.

The action on each U (m) of its covering group, preserves the orbits of
the action generated by f(z). Hence, the open set, U(x), is partitioned
into the projections of these orbits. Clearly, the projected orbit through a
point, z, is independent of the choice of neighborhood, U(z). It is denoted,
O, the orbit of z. It follows that M™ is the disjoint union of orbits, O,.
Every such orbit is diffeomorphic to a compact flat Riemannian manifold,
by a diffeomorphism which is unique up to affine equivalence of the flat
manifold.

The rank of the structure is the dimension of the orbit, O,, of smallest
dimension. An orbit, O, is called singular if dim O, < k(z). The singular
set S, is by definition, the union of the singular orbits. As with a group
action the set S, has a canonical “coarse” stratification into strata, S;. By
definition, S; consists of all orbits of dimension 3. Note that S; may contain
exceptional orbits which are multiply covered.

If S is empty, the structure is said to be polarized.

A Riemannian metric, g, on M™ is called invariant for F, if e is actually
a sheaf of Killing fields of g. Every F-structure admits invariant metrics
whose sectional curvatures satisfy the normalization, |K| < 1.

For additional background on the relation between F-structures and col-
lapsed Riemannian manifolds with bounded curvature, see [CG1,2], [CR],
[F1-4], [G1,2], [R1-3].

We now specialize to the situation which is the focus of this paper.

Let M™ be a compact Riemannian manifold, with bounded sectional cur-
vature, say | K| < 1. By [CFG], [F1-4], there exists a constant e(n,d) > 0,
such that if in addition, diam(M™) < d and Vol(M") < €(n,d), then M"
admits a pure F-structure, F, of positive rank, for which a metric, ¢, close
to the given one is invariant. After multiplying ¢’ by a suitable constant
(close to 1) we can assume that ¢’ satisfies

|Kpngyl <1, diam(M™,¢') <d', Vol(M",g") <e(n,d) .

Moreover, we can assume that for the metric, g’, there are definite bounds
on the higher covariant derivatives of the curvature tensor.
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Our main result, Theorem 0.1, asserts that pure F-structures which
arise in this way enjoy a significant property which is not shared by pure
F-structures in general. Such an F-structure will be called a sufficiently
collapsible pure F-shucture.

Theorem 0.1. There exists §(n,d) > 0, such that if M,, satisfies |[Kpm| <
1, diam(M™) < d and Vol(M™) < §(n,d), then the associated sufficiently
collapsible F-structure F admits a polarized substructure.

For M™ simply connected, a pure F-structure is (up to choice of isomor-
phism) a torus action. If such a structure has positive rank, it follows that
any 1-dimensional subgroup {with closed orbits) which does not intersect
any nontrivial isotropy group defines a polarized substructure. Thus, in
Theorem 0.1, implicitly our concern is with the nonsimply connected case.

Typically, the polarized substructure constructed in Theorem 0.1 will be
mixed. In this connection, note that by Example 6.4 of [CR], there exist
pure structures satisfying the assumptions of Theorem 0.1 (for fixed d and
arbitrarily small §) which admit no pure polarized substructure.

Gromov defined the Minimal Volume of a compact manifold by

Min Vol(M"™) = inf Vol(M™", g) ,
9

where the infimum is taken over all metrics, with bounded sectional curva-
ture, |K(pm gy < 1; see [G2]. He conjectured the existence of a “gap” or
“critical volume”, i.e. there exists §(n) > 0 such that Min Vol(M™) < é§(n)
implies Min Vol(M™) = 0.

By the collapsing construction of {CG1], the existence of a polarized F-
structure on M"™ implies Min Vol(M™) = 0. Thus, Theorem 0.1 implies the
following weakened version of Gromov’s conjecture.

Theorem 0.2. There exists §(n,d) > 0 such that if M™ admits a metric
with
[Kpn] <1, diam(M™) <d, Vol(M")<é(n,d),

then Min Vol (M™) = 0.

It might seem natural o try to replace the conclusion, Min Vol(M™) = 0,
in Theorem 0.2, with the stronger assertion that M™ collapses with bounded
curvature and diameter. However, Example 6.4 of [CR] indicates that this
could well be false in general.

By the finiteness theorem of [C], for all v > 0, there are only finitely many
diffeomorphism types of manifolds satisfying |Km-| < 1, diam(M™) < d,
for which in addition, Vol(M™) > v; see also {Pe]. Hence, we obtain



414 J. CHEEGER AND X. RONG GAFA

COROLLARY 0.3. For all n,d > 0, there are only a finite number of dif-
feomorphism classes of manifolds of nonvanishing minimal volume, which
admit a metric with |Kpm| <1, diam(M"™) < d.

Corollary 0.3 implies that there is a sense in which “most” manifolds
with |K -] < 1 have minimal volume zero. Indeed, according to [G1] for all
n > 3, d > 0, there exist infinitely many manifolds admitting a metric with
|Kamn| <1 and diam(M™) < d. Moreover, it follows from the construction
of [CR], Example 6.4, that given n > 4, there exists an increasing sequence,
d; — 00, such that for all ¢, there are infinitely many manifolds admitting
a metric with |Kp-| < 1, diam(M™) < d;;1, which admit no metric with

If M2 has some real characteristic number nonzero, then by Chern-
Weil theory, there is a definite positive lower bound on Min Vol(M?¥); [C]. In
[CG1], examples of pure positive rank F-structures on compact 4k-manifolds
with nonvanishing Pontrjagin numbers are given (the first such example was
due to T. Janusziewcz). These examples show that in order to obtain the
existence of a polarized substructure, some additional geometric hypothesis
on the pure F-structure is required.

It is possible however, that the bound on the diameter assumed in The-
orem 0.1 is actually unnecessary and that a polarized substructure exists
whenever |K| < 1, Vol(M™) < é(n), a sufficiently small positive constant.
Presently, this is known to hold for n = 2 ([C]), n = 3 (|CG1,2]) and n =4
([(Bul,2], [R1,2]); but compare Example 4.1 of [CG1]. If indeed, the bound
on diameter is unnecessary, then by the collapsing construction of [CG1],
the “critical volume” conjecture holds; in particular, it holds for n < 4.

We now briefly describe the contents of the remaining 5 sections of the
paper.

As is explained in section 1, the proof of Theorem 0.1 will be carried out
by working on the frame bundle, FA/™. In section 1, we also introduce a
property of arbitrary pure F-structures and a property of pure F-structures
which satisfy the geometric assumptions of Theorem 0.1. These two prop-
erties play a crucial role in the proof.

In section 2, we prove Theorem 0.1 modulo the above mentioned two
properties.

In section 3, we establish the property of arbitrary pure F-structures; see
Theorem 3.2. It concerns a certain canonical (mixed) substructure defined in
a neighborhood of the singular set, S. This substructure, which is generated
by the kernels of the local torus actions, turns out to be an F-structure of
an extremely special type.

In section 4, we establish the property of pure F-structures which are
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compatible with sufficiently collapsed metrics; see Theorem 4.1. Namely,
over each stratum, S;, there exists a pure polarized substructure, P;.

In section 5, we give a generalization of Theorem 0.1 to the case in which
only a bound on the diameter of each component, S;;, of S is assumed
(rather than on the diameter of M™ itself).

1. Outline of The Proof

In this section we give an indication of the proof of Theorem 0.1. Thus,
unless we make explicit mention to the contrary, we will assume here that
our structure, F, is a sufficiently collapsible pure F-structure, equipped with
an invariant metric.

Our discussion is simplified considerably by working on the frame bundle,
FM™, rather than on M™ itself; compare [F1-4]. Although this necessitates
our making all constructions O(n)-equivariant, in practice, for natural con-
structions, O(n)-equivariance turns out to be automatic. For instance, a
pure substructure defined over an O(n)-invariant subset of FM™ is always
O(n)-equivariant; see [CR, Remark 0.1].

The advantage of working on FM™ lies in the fact that the canonical
lift to FM™ of an F-structure is actually a T-structure, 7, of a particularly
simple type — namely, one for which the local actions are free. (The lift is
defined via the differentials of the local torus actions.) In particular, given
a pure F-structure on M™, we can regard FM™ as the total space of an
O(n)-invariant torus bundle, whose structural group lies in the group of
affine automorphisms of the torus, T%. Note that this group satisfies the
exact sequence,

e —TF = Aff(T*) — SL(k,Z) — e .

Before proceeding, we point out that the existence of pure F-structures
of positive rank on sufficiently collapsed manifolds with bounded curvature
and diameter was actually proved by working on the frame bundle; see
[F1-4] and [CFG]; see also [CR] for further discussion.

In constructing a polarized substructure, it is clear that we can restrict
attention to a neighborhood of the singular set, S; outside such a neighbor-
hood, our polarized structure will be chosen to coincide with F itself.

Let D denote the inverse image of S in FM™. Observe that D consists of
those points for which the corresponding torus-fibre and O(n)-fibre intersect
in a subset of positive dimension. We denote by D;, the inverse image of S;
in FM™,

On each stratum, D;, we define the isotropy substructure, Z;, to be the
unique maximal substructure, whose projection to M™ has rank zero. The
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orbits of this structure are just the components of the intersections of torus-
fibres and O(n)-fibres.

An O(n)-equivariant substructure, T, on FM™, descends to a polarized
substructure on M™, if and only if on each Dy, it is transversal to I, i.e.
on each D;, the intersection of an orbit of 7 and an orbit of Z, consists
of a finite set of points. Equivalently, £5 N &, = &, where & denotes
the trivial subsheaf whose stalk at any point is the subgroup consisting of
the identity element. A substructure of 7 with this property will be called
nondegenerate.

Let 1>>7m1 >»re>--->0. Let n>0.

Put Hi(n) = T (D:) \ Ui T%n(Dg), where T,.( ) denotes the r-
tubular neighborhood. We can assume that the sequence, {r;}, decreases
so rapidly that if n < 3, then for every point, p, of H;(n), there is a unique
point of S; closest to p. Note that for i # j, the intersection, H;(n) N H;(n),
can be nonempty and might not be connected.

We also put H] = Hi(1) \ U5, Hi(2) and note that H; C H;(1) and
H{N H} = 0, for all distinct i, j.

Our O(n)-equivariant nondegenerate substructure of 7" will be construc-
ted on | J;, Hi(1). A priori, it is not clear why there should exist such a sub-
structure over even a single H;(1). However, using our geometric hypothesis,
we will show the following; see Theorem 4.1.

Property of sufficiently collapsible pure F-structures. On each
H;(1), there exists a pure nondegenerate substructure, P;, of F.

The existence of a pure nondegenerate substructure on each set, H;(1),
is the only consequence of our geometric assumptions which is used in the
proof. Indeed, we have the following refinement of Theorem 0.1.

Theorem 0.1’. Let F be an arbitrary pure F-structure on M™. If for all i,
there is a pure nondegenerate substructure, P;, on H;(1), then there exists
a canonical mixed polarized substructure, whose lift to the frame bundle,

P, satisfies P|H] = P;.

The sense in which the substructure, P, is canonical will be made clear
in the proof of Theorem 0.1’.

To construct an O(n)-equivariant nondegenerate substructure on
|J; Hi(1), whose restriction to each H] coincides with P;, we will introduce
a certain auxiliary substructure, Z, defined on | J; H;(2).

Since D; N H;(2) is a deformation retract of H;(2), it follows that Z;|D; N
H;(2) extends naturally to a pure substructure, Z;, on H;(2). The collection
{(H;(2),T;)} determines a mixed structure, Z, on | J; H;(2), whose orbit at a
point, z, is the orbit of Z;,, where 4 is the maximal i, for which z € H,(2).
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Clearly, on HY, a pure substructure TcTis nondegenerate if and only
if it is transversal to Z|H]. On the other hand, we claim that Z|({J, Hi(1)\
U, H!) has a canonical mized nondegenerate substructure, C. As will be
explained in section 2, the nondegenerate substructure, on |J; H,(1) which
we are seeking, is obtained by suitably combining a portion of C with a
collection of substructures derived from the nondegenerate substructures,
{P:|Hi(1)}.

The existence of C is a direct consequence of the following property of
arbitrary pure F-structures; see Theorem 3.2.

Property of arbitrary pure F-structures. There exists a canonical
inner product on the Lie algebra, {(ez),, of each stalk of the sheaf, ez, such
that the pointwise inner product of two local sections of the sheaf, ez, is
a constant function. Moreover, if a subspace of (er), exponentiates to a
closed subgroup, then so does its orthogonal complement.

We close this section by mentioning that the arguments used in estab-
lishing the above mentioned property of sufficiently collapsible pure F-
structures are related to those of [CR], where collapsed manifolds with
bounded diameter and bounded covering geometry are studied. Here in-
stead, we exploit local bounded covering geometry; see [CFG, Theorem 1.7]
and section 4.

2. Proof of Theorem 0.1 Modulo Two Properties of Pure F-
structures

Let F denote a pure F-structure on M™ with invariant metric and let 7
denote the lifted T-structure on FM™.

In the proofs of Theorems 0.1, 0.1, we will use the following procedure
for constructing equivariant mixed substructures of 7.

Let {Z,} be a covering of FM™ by O(n)-invariant sets. Assume that over
each Z,, we are given a pure substructure, £,. Clearly, there is a unique
smallest mixed substructure, £, such that for all «, £, is a substructure

of L|Z,. Moreover, for any {a} = {0, --+,a;} the restriction of £ to
Zoy NN Za, \Ua,¢(a} Za, , is the smallest pure structure containing the
restrictions of Lg,,---, Lq,, to this set.

Now assume that F has nonempty singular set, S, with coarse stratifi-
cation, S1,...,8k. Put D; = 7~ (S;). Let Hi(n),...,Hi(n) be defined as
in section 1.

The proof of Theorem 0.1 consists of three steps: First, we construct
a special invariant open cover for |J; H;(1). Then (as above) we assign to
each open set of this cover, a pure substructure of 7. Finally, we verify that
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on every nonempty multiple intersection, the assigned pure substructures
generate a nondegenerate pure substructure (i.e. one which is transversal to
the isotropy substructure on the intersection).

a. An invariant open cover. For 1 < <k, put

A= B\ He (%) .

i>£
For any 1 < j < i <k, define

Bi; = (Hi(l)\iLeJ .Hz (g) ) N H;{2) .

Note that since H,(n) is invariant, so are 4, and B, ;. Formally, A; behaves
like B; _, although for this to be correct, we must define, H_;(2) = M™.

LEMMA 2.1.

(2.1.1) H;CA; Cc Hi(1).

(2.1.2) Hi(1) = (U;»¢ Big) VA .

(2.1.3) If B;; By jo #0andi>i thenj>1 .
(2.1.4) If B;;NAy#0, thens =iorj>i.
(2.1.5) AiNAy =0, fori#id .

Proof. Since (2.1.1), (2.1.3), (2.1.4) and (2.1.5) can be seen directly from
the definition, we will only check (2.1.2). Put A;; = Hi(1)\U;5; He(3)-
Then A; = A;y, where £ is the smallest index such that D, is nonempty.
It is easily checked that for ¢ — 1 > j, one has B;; U A;; = A; ;11 and
Bii-1UA; ;-1 = H;(1). By an obvious inductive argument, the claim
follows. =
As a consequence of Lemma 2.1, every nonempty intersection of a sub-
collection of {B; ;} U {A;} can be written in one of the following forms:
(2.1.6) X = Bj, j, N+~ N Bi, j,, N Bigy, N...0Biyp, N+ OBy m, Mo
Bi, my,, where ip > 1 > -2 > g, 202>l > o>l 2000 2
i >g >0 > My,
{2.1.7) X N A;, where X is as in (2.1.6) and either ¢ = ¢, or my, > i.
(2.1.8) A, for some <.

b. Assignment of pure structures. Assume that on each H;(1), there
is a pure nondegenerate substructure, P;, of T|H;(1); compare Theorem 4.1.

On each nonempty intersection, H;(1) N H;(1), where ¢ > j, there is
a canonical substructure, Z; ; C T;, such that Z; ; is transversal to Z;. By
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definition, the Lie algebra of a stalk of Z; ; is the orthogonal complement

of the Lie algebra of Z; in the Lie algebra of T;, with respect to the inner

product described in the property of arbitrary pure F-structures stated in
section 1; see Theorem 3.2. Thus, if H;(1) N (ﬂ£:1 H; (1)) # 0 (where
i>j1 > jp > > jg) then on this set, Z; ;, C--- C I, ,,.

We now assign to each element of the collection {B;;} U {4}, a pure
nondegenerate substructure as follows.

(2.2.1) To each A;, assign the nondegenerate substructure P;|A; (note that
A, CH 1(1))

(2.2.2) To each B, ;, assign a pure substructure, P;;, where P,; = P; N
Z;, provided this substructure is nontrivial, and P;; = Z; ;| B;;
otherwise.

Observe that a pure substructure on B; ; is nondegenerate if and only if
it is transversal to Z;|B; ;. From the above definition, it is clear that P, ; is
nondegenerate.

As explained at the beginning of this section, the collection, {(A4;, P;|4:)}
U {(Bi,;, Pij)}, generates a substructure, P, of T|(J, H1(1). Clearly,
P|H/(1) = P;. In the next subsection we will show that the substructure,
P, is nondegenerate.

c. Nondegeneracy on multiple intersections. The remainder of the
proof of Theorem 0.1 uses only elementary linear algebra.

LEMMA 2.3. Assume B;; N---N B, ;, is nonempty, where j, > --- > jy.
Then on this subset the pure substructure generated by P ;,,...,P;;, is
nondegenerate. If in addition, B; ;, N---N B; ;, N Ay is nonempty, where
i =i or jr > 4, then on this subset, the pure substructure generated by
Pijise s Pijer Py is nondegenerate.

Proof. Since I;, C --- C Iy, either P;NZ;, # 0 or for some j;, we have
P.NZ; =@, for s = 41,..., 7, where j; is the last such index. We will
assume that the latter alternative holds, since the argument in the former
case is entirely similar to the one that follows. For the same reason, we can
assume j; < j.

The substructures assigned to B; ;,,..., B, , are I; ;,...,Z; ;,, respec-
tively. The substructures assigned to B; j,+1,.-.,Bij,, are PiNTj41,...,
Pi N Zj,, respectively. Thus, on B; ;, N --- N B;;, the pure substructure
generated by P; ..., P ,, is actually generated by Z;;, and P; N I;,.
Moreover, T; ;, is transversal to Z;, T; ;, C Z;,, and P; NZ;, is transversal to
Z;,. To verify the first assertion of Lemma 2.3, it suffices to check that the
substructure generated by Z; ;, and P; NZ;, is transversal to Z;. In view of
the above, this (pointwise) condition follows by elementary linear algebra.
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We now verify the second assertion. If ¢ = ¢, our substructure is gen-
erated by Z; ;, and P;, where P; is transversal to Z;, O Z; ;,. On the other
hand, if 75, > ', our substructure is generated by Z; ;,, P;"Z;, and P;:, where
Py is transversal to Z;,. As above, in either case, the assertion follows. o

Proof of Theorem 0.1'. Given the characterization of the substructure, C,
generated by a collection, {(Za, £,)}, which was stated at the beginning of
this section, it suffices to check that over each nonempty intersection of sets
taken from a subcollection of {B;;} U {A;}, the substructure generated by
the relevant subset of {P; ;} U {P;} is nondegenerate. But in view of the
description of the possible nonempty intersections given in (2.1.6)—(2.1.8),
the nondegeneracy follows by repeated application of Lemma 2.3 (and the
elementary linear algebra facts, employed in its proof). o

Proof of Theorem 0.1. As explained in section 1, Theorem 0.1 follows
directly from Theorem 0.1’ and the property of sufficiently collapsible F-
structures stated in that section (i.e. Theorem 4.1). o

REMARK 2.4: Consider the lifted 7-structure associated to an arbitrary
F-structure. As above, it follows that the collection, {(B; ;,Z; ;)} generates
a canonical nondegenerate substructure, {C}, over |JB; ;. Moreover, it is
easy to check that |J B, ; = \J, H:(1)\ U, H..

3. A Property of Arbitrary Pure F-structures

In this section we prove the property of arbitrary pure F-structures stated in
section 1. Thus, throughout this section, we will consider an arbitrary pure
F-structure, F, on M™, with nonempty singular set. We assume that the
Riemannian metric on M™ is invariant, so that F lifts to an O(n)-invariant
pure polarized T-structure, 7, on the frame bundle, = : FM™ — M™.

The inner products on stalks, (er):, arise from the isotropy represen-
tations of the local actions of the stalks of £7 on finite covering spaces of
neighborhoods in the base. For completeness, we will describe these lo-
cal actions, in the process supplying further details of the description of
F-structures given at the beginning of the introduction.

Let F denote the torus fibre of the T-structure, 7, and let Af fo(F) de-
note the identity component of the group of affine automorphisms, Af f(F'),
of F. Recall that a choice of affine isomorphism, F ~ T*, induces an iso-
morphism, Af fo(F) ~ T*, where k is the rank of F.

Let G(F) C O(n) denote the subgroup which preserves F under the
natural action of O(n) on FM™. Thus, G(F) = {e}, the trivial subgroup,
unless F' C D. In particular there is a faithful representation, 7 : G(F) —
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Aff(F). Let Go(F) C G(F) denote the identity component. Then 7 :
GolF) = Af fo(F).

Fix €1 > 0 such that for every point y € T, (F), the e;-tubular neigh-
borhood of F', there is a unique point, x € F, closest to y. Fix €2,6 > 0, so
small that every component of Ts(G(F')) intersects a unique component of
G(F), in addition, g(T,,(F)) C T¢, (F) and finally, if (T, (F))NT.,(F) # 9,
then g € Ts(G(F)).

The action of Af fo(F) extends canonically to a torus-fibre preserving
action on T, (F); see [CR, Section 2]. Moreover, for g € Ts(Go(F)), the au-
tomorphism in Af f(F) defined by, A — g~!Ag, is continuously deformable
to the identity and hence is trivial. In particular the action of elements of
Ts(Go(F)) commutes with the action of Af fo(F) on T, (F).

Put W = T,,(F). Then W is a disjoint union of equivalence classes,
where y; ~ yo if and only if yo = gy1, with g € Ts(G(F)). Moreover, m(W)
can be identified with the corresponding quotient space with its natural
topology. Similarly, the equivalence relation y; ~ y if and only if yo = gy,
with g € T5(Go(F)), can be identified with a finite normal covering space,
7 m(W) — «(W), with covering group, the group of components of G(F).

Since the action of each element of Af fo(F') commutes with that of each
element of Ts(Go(F')), it follows that there is a canonical action of Af fo(F")
on w(W).

Note the action of an element of Af fo(F') need not commute with that
of an element of Ts(G(F)). Thus, Af fo(F) need not act naturally on m{W)
itself. Equivalently, an F-structure need not be a T-structure (nor in par-
ticular, is a flat manifold necessarily a torus).

Clearly, the isotropy group of any point of # = (7 (F)} C #(W) is 7(G(F))
CAfF(F).

If x € F, then by definition, the stalk of £ at z is Af fo(F). We have
x € D;, for some 1, if and only if dim G(F) > 0. Let £ € D. By definition,
T(Go(F)) is the stalk of the subsheaf, £, of £&r. Thus, there is a natural
(faithful) isotropy representation of (£7,), on the tangent space, Wz, for
any x € F. The lifted isotropy representation, p, acts on the quotient of
the tangent space, W, by the tangent space to the O(n)-orbit, O(n),. Let
xp — x, where {x4} C D;, x € D; and ¢ > j. Then the limit of the isotropy
representations, limy—. p(€1,)x,, is the restriction of the representation,
p((€z,),), to the limit subgroup, lim o0 (€1, )z, C (€7, )a-

Let p. denote the representation of Lie algebras induced by p. Since a
torus is compact, the symmetric bilinear form,

((A, B)) = —3tr(p(A)ps(B)) ,
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defines a canonical inner product on the Lie algebra, (er),, of the stalk,

(ez)z, of ez at © € D. Recall that up to isomorphism, representations of a

compact Lie group are isolated. Moreover, the bilinear form,

—L1tr(p.(A)p«(B)) is invariant under isomorphism. Thus, it follows that

the inner product of two local sections of the sheaf, ez, is a constant func-

tion. Note that local sections of the sheaf, ez, can be described equivalently
as local sections of the corresponding vector bundles which are parallel with
respect to the canonical flat connection.

Observe that by the above discussion, if o — «, where z, € D;, x € D;
and ¢ > j, then:

(3.1) The sequence of canonical inner products on Lie algebras, (ez, ),, con-
verges to an inner product on the limit Lie algebra, limg_. (ez,), , C
(e;r])z. Moreover, the limiting inner product, coincides with the re-
striction to lim¢ (ez,),,, of the canonical inner product on (ez, ).

Recall that 7 is the substructure of 7 defined on | J; H;(2) by the collec-

tion, { (H:(2),Z)}.

Now we can state the main result of this section.

Theorem 3.2. For all i, there is a canonical pointwise inner product on

stalks of ez, such that the inner product of two local sections is a constant

function. Moreover, if H;(2) N H;(2) # 0, where i > j, then:

(3.2.1) The canonical inner product on ez,|H;(2) N H;(2) coincides with
the restriction of the canonical inner product on ez, |H;(2) N H;(2).
In particular, the collection of inner products on the various er,,
1 =1,2,..., defines an inner product on ez.

(3.2.2) There is a pure substructure, Z; ;, of T;|H;(2) N H;(2) such that each
stalk (ez, , )« is the orthogonal complement of (ez, ), in (ez,)s-

Proof. Clearly, the inner product on Lie algebras of stalks of 7, initially,
defined over D;, extends naturally over H;(2). As a consequence of the
consistency condition implied by (3.1), it follows that if x € H;(2) N H;(2),
where ¢ > j, then the inner product on (ez,),, obtained by restricting
the canonical inner product on {ez,) , coincides with the canonical inner
product on (ez,),. This gives (3.2.1).

To verify (3.2.2), it suffices to consider an orthogonal representation of
the standard k-torus, T® = S! x ... x §. Let e; denote the vector in the Lie
algebra of T* such that the i-th circle factor is the 1-parameter subgroup
generated by e;, and exp 2me; is the identity element. Subtori of T* are in
1-1 correspondence with subspaces of R*, which admit a basis, v,...,v;,
where v; = Y, a; je;, and a; ; is rational, for all 4,5. Thus, by elementary
linear algebra, an inner product, {, ) satisfies that (e;,e,) is rational, for
all i, ¢, if and only if it has the property that the orthogonal complement

z?
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of a subspace which exponentiates to a subtorus always exponentiates to a
subtorus.

For any representation, p, of T*, there is a decomposition,
RTIZLI@"'GBLT@K 3

into p-invariant subspaces, where each L; is 2-dimensional and p(T*) acts
trivially on K. On L;, we have p(expte/|exp2ne;]) = R, ¢, Where m; ¢ €
Z and R, denotes rotation by s. From this, it follows immediately that
the inner product, ({4, B)) = —3tr(p.(A)p.(B)), has the above mentioned
rationality property. o

4. A Property of Sufficiently Collapsible Pure F-structures

In this section, we will prove the property of sufficiently collapsible pure
F-structures which was stated in section 1.

Theorem 4.1. Let the assumptions be as in Theorem 0.1. If F is a suffi-
ciently collapsible pure F-structure, with lifted structure, T, then for all i,
T|D; has a pure nondegenerate substructure.

First we will recall from [CR], geometric conditions which guarantee the
existence of a nondegenerate pure substructure on the frame bundle over a
subset of M™. In [CR], the assumptions were such that this subset could be
taken to be M™ itself. Here, we will show that these conditions are actually
satisfied when restricted to each set, D;.

a. A criterion for the existence of transversal substructures. Let
p: E — B be a fiber bundle with fiber a torus, T%, and structural group
Aff(T*). Assume that E is equipped with an invariant metric, for the local
action described in section 3. In particular, the projection, p, is a Riemann
submersion.

Recall that a subfibration of p: E — B is a fibration, p; : E — By, such
that each fiber of p; is a totally geodesic submanifold of a fiber of p. Let p;
be another subfibration of p. We say that ps is transversal to p; if the fiber
of the latter is tranversal to that of the former at each point (cf. [CR}).

Theorem 4.2 [CR]. There exists a constant, e(n,d, A, p) > 0, such that the
following conditions imply the existence of a subfibration of p transversal
to P1,

(4.2.1) diam(E) < d,

(4.2.2) the second fundamental form of each p-fiber satisfies ||[II{F)| < A,
(4.2.3) the injectivity radius of each pi-fiber is greater than p,

(4.2.4) the diameter of every p-fiber satisfies, diam(F) < €(n,d, A, p).
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Now let M™ be as in Theorem 4.1, with the lifted T-structure, 7, on
FM™ and a degenerate set D. Let f : FM™ — Bf~ be the projection
to the orbit space of the bundle, F — FM"™ — B 7 defined by 7. Then
fi : D; — B, the restriction of f to D;, is also an O(n)-invariant torus
bundle. Moreover, the substructure, Z;, of D; gives rise to an O(n)-invariant
subfibration, p; : D; — By, .

In view of Theorem 4.2, the following proposition implies Theorem 4.1.

PROPOSITION 4.3. Let the assumptions be as in Theorem 4.1. Then, there

exist constants, h(n,d), A(n) and p(n), such that for all i, the following hold.

(4.3.1) The second fundamental form of each f;-fiber satisfies [I1(f!(z))|
<A(n),

(4.3.2) diam(D;) < h(n,d),

(4.3.3) the injectivity radius of each p;-fiber is greater than pg(n).

b. Proof of (4.3.1). By [CFG], there exists a constant, A(n), such
that the O(n)-invariant fibration, f : FM™ — Bj satisfies (4.3.1). Hence,

fi : D; — B satisfies (4.3.1).

¢. Proof of (4.3.2). As in section 1, we have S; = n(D;), where §; is a
singular stratum of S = 7 (D). There is a universal constant, C, such that

C™! - diam(S;) < diam(D;) < C - diam(S;) .

By the above discussion, (4.3.2) is equivalent to

LEMMA 4.4. Let the assumptions be as in Proposition 4.3. There exists
a constant, h{n,d) > 0, depending on n and d such that each singular
stratum, S;, has diameter < h(n,d).

Proof. We argue by contradiction. Assume that there is a sequence of n-
manifolds, {M 7}, which satisfy the assumptions of Theorem 4.1 and such
that the invariant pure structure on M} has a singular stratum, S;, (MJ"),
with diam(S;, (M})) > j.

As mentioned in the introduction, we can assume that the metric on
FM? has a uniform bound on the covariant derivative of the curvature ten-
sor (see section 0 and [CFG]). Then, by Gromov’s precompactness theorem,
after passing to a subsequence, we can assume that {M]'} converges to a

metric space, B, and the sequence of the frame bundles, { FM'}, converges

to a Riemannian manifold B (of lower dimension) such that for j sufficiently
large the following diagram commutes {compare {F2]).
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m ~
FM} —— B

jrw Jv?r
A
M} — B
Here 7j; : FM] — B is an O(n)-invariant fibration with fiber affine isomor-
phic to a nilmanifold, and affine structural group; see [CFG] and compare
section 1. In the language of [CFG], 7; defines a nilpotent Killing structure
on M?. The O(n)-invariance implies that B admits an isometric O(n)-
action such that B = B/O(n) and the fibration 7; descends to a singular
fibration projection, n; : M — B. It follows from Proposition A1.14 of
[CFG] that the O(n)-action on B is effective. The centers of the nilpotent
fibers form an O(n)-invariant torus bundle. This is the structure which was
described in section 1 (see [CR]).

Note that the singular set of the nilpotent Killing structure coincides
with that of the canonical F-structure; see [CR].

Let {Z;} denote the collection of all singular strata of the O(n)-action
on B. Then the above commutative diagram implies that {#(Z;)} is the
collection of images under the projection, n;, of all singular strata of the
nilpotent Killing structure on M. Thus, { f]-*l(ﬁ'(Zi))} is the collection
of all singular strata of the nilpotent Killing structure on M. By the
above discussion, { f;l(ﬁ'(Zi))} is the collection of all singular strata of the
canonical pure F-structure on M}

Since 7(Z;) has a definite diameter, the diameter of fj~1 (7(Z,)) is bound-
ed for all j. Since there are only finitely many singular strata for the O(n)-
action on B (see [B]), we conclude that the diameters of all fj‘l(ﬁ'(Zi)) are
uniformly bounded; a contradiction. o

d. Proof of (4.3.3). Let M™ be as in Proposition 4.1 and let F be a
sufficiently collapsible pure F-structure on M™.

LEMmMA 4.5. There exists e(n,r) > 0, such that for all p € M™, there
exists ¢ € B,.(p) \ S, such that the second fundamental form of O, satisfies
IO < e(n, 7).

Proof . 1t follows from Theorem 1.7 of [CFG] (local bounded covering geom-
etry) that the norm of the second fundamental form of a nonsingular orbit
of F can be bounded above in terms of its distance from the singular set S.
Thus, it suffices to show that each ball of radius r contains a nonsingu-
lar orbit lying at a definite distance (depending only on n and r) from S.
This can be seen by an argument by contradiction analogous to the proof of
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Lemma 4.4. In this connection, recall that the O(n)-action on B is effective.
Thus, the set of nonsingular orbits is dense. o

For a subset U of M™, we use 7y : U — U to denote the universal
covering space of U equipped with the pullback metric.

LEMMA 4.6 [CFG]. There exists a constant, p(n) > 0, such that for any
p € M™, there is an invariant open subset, U, containing the ball, By,(n)(p),
and each point in ﬂ‘al(Bp(n) (p)) has injectivity radius > p(n).

" Note that Lemma 4.6 is a version of local bounded covering geometry
which suffices for our present purposes (for the full statement, see [CFG,
Theorem 1.7]).

Proof of (4.3.8). Let x € D;. Put n(z) = p. For p(n) as in Lemma 4.6,
and r = p(n), let ¢ be as in Lemma 4.5. Clearly, there exists y € 77 1(g) and
a minimal geodesic, vy, with v(0) = z, ¥(1) = y, such that 7(y) C B,m)(p).

By light abuse of notation, let (’)f( £ denote the orbit through (), of the

parallel translate along ~, of the stalk, (£7,),. Here the parallel translation
is with respect to the canonical connection on £, viewed as a flat bundle.
By Lemma 4.6, W(Of El)) = 71'((951) has second fundamental form bounded in

norm by ¢(n,r). Moreover, for U as in Lemma 4.6, the family, w(sz t)), pro-
vides a contraction in U, of 7r((9,fi) to point z. Let § € myy~!(y) and let @g'
denote the component of WEI(W(OLI,I)) through §. Then nulég’ is a home-
omorphism. Thus, for the pull back metric, inj rad(@y?l) = inj rad(w(Ogi)).
Since also ||II(@LI,)|| = [1I(x(O%)]| < e(n, p(n)), it follows from Lemma
4.6 that inj rad(@gl) > po(n). The fact that 7 : FM™ — M" is a Rieman-
nian submersion, easily implies inj rad((’)gi) > po(n) as well.

By (4.3.1) and (4.3.2) metrics on orbits of Z; are quasi-isometric, with

the constant depending on n and d. Hence, it follows from the above that
injrad(O%:) has a lower bound depending only on n and d. o

5. A Generalization of Theorem 0.1

In this section, we will give a generalization of Theorem 0.1; see Theo-
rem 5.2.

DEFINITION 5.1: Let F be a (possibly mixed) F-structure. A singular
component, S;, of F is called essential if F has no polarized substructure
in any neighborhood of S;.
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By definition, an F-structure has a polarized substructure if and only
all singular components are nonessential. Examples of positive rank F-
structures with essential singularities were mentioned in the introduction.

Let M™ be a complete manifold with |Kam| < 1. Recall that for all
sufficiently small € > 0, there is a natural decomposition, M"™ = B(e) UC(e),
where B(¢€) consists of points at which the injectivity radii are not less than
e and C(e) is the complement. If M™ = C(e), then M™ is called e-collapsed.

The main result in [CFG] asserts that there is a constant, €(n) > 0, such
that (after a slight adjustment of its boundary) C(e(n)) admits a (possibly
mixed) positive rank F-structure, F, which is almost compatible with the
metric. We will also call F the associated F-structure.

The following result can be viewed as a generalization of Theorem 0.1.

Theorem 5.2. For all d > 0, there exists a constant, 0 < e(n,d) < e(n),
such that the following holds. If M™ is an e(n, d)-collapsed complete mani-
fold with | K| < 1 such that the associated F-structure on M™ has essen-
tial singular components, then all such components have diameter > d.

Note that the injectivity radius collapsed metric in Theorem 5.2 need
not be wvolume collapsed, i.e. the volume need not be small and could be
infinite.

COROLLARY 5.3. Let M™ be a complete manifold with |K|<1 and Vol(M™)
< 0o. Suppose that for the associated F-structure, F, on C(e(n)), all singu-
lar components have diameter < d. Then, there is a constant, 0 < ¢(n,d) <
€(n), such that F|C(e(n,d)) has a polarized substructure.

Note that Corollary 5.3 means that F has a polarized substructure near
infinity.

REMARK 5.4: Theorem 5.2 provides a geometric constraint on essential
singular components. Nonessential singular components can have arbitrarily
small diameter; see Example 5.7.

REMARK 5.5: Recall that given a positive rank F-structure, F, there exists
a family of invariant metrics with |[K| < 1 and injectivity radii uniformly
converging to zero ([CG1]). An F-structure associated to each sufficiently
collapsed metric is actually a substructure of F. If, in addition, one as-
sumes that F has essential singularities, then such an F-structure will have
an essential singular component ([CG1]). (Note that by definition, any
substructure of an F-structure with essential singularities has essential sin-
gularities).

Assume that M™ is e-collapsed with 0 < € < €(n). Consider an associ-
ated F-structure, 7, on M™. Note that F need not be a pure F-structure
(see Example 0.1 of [CFG]). However, we have
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LEMMA 5.6. For all d > 0, there is a constant, 0 < e(n,d) < e(n), such that
if M™ = C(e(n,d)), then for all x € M™, the restriction of F to a subset
containing By(x) has a pure positive rank substructure.

Proof. The proof is based on an observation concerning the construction of
sufficiently collapsible F-structures in [CFG].

Fix any d > 0. It follows from section 5 of [CFG], there is a constant,
0 < e(n,d) < €(n), depending only on n and d such that if M™ = C(e),
€ < €(n,d), then for all z € M™, a subset containing By4(z) admits a pure
positive rank F-structure, say F; 4, such that all orbits have diameter less
than e.

If, in addition, we choose e(n,d) < e(n), then F, 4 is actually a pure
substructure of the associated F-structure, F, on M™. This can be seen
from the construction of F in [CFG]. o

Now the proof of Theorem 5.2 follows easily from Lemma 5.6 and The-
orem 0.1.
We conclude this paper with an example mentioned in Remark 5.4.

EXAMPLE 5.7: Consider the standard TZ?-action on §? x S'. Using a
standard method (see [CG1]), we will construct a (continuous) sequence of
invariant metrics, g, with K, | < 1 such that (52 x S, g.) converges to
a closed interval (¢ — 0) in the Gromov-Hausdorff topology (see |{GLP]).
Clearly, the F-structure associated to any sufficiently collapsed metric coin-
cides with the T2-action. Observe that the length of each of the two singular
circle orbits (each one is a non-essential singular component) goes to zero
as e — 0.

Take a one parameter subgroup, R, of T? such that the closure of R
is T2 and take a TZ2-invariant metric, g, on §% x S!. At each point, write
g = gr®D gﬁ, where gp is the restriction of ¢ to the subspace tangent to
the R-orbit and g§ is the orthogonal compliment. Then g = €29r ® g%,
0<e<l.
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0. Introduction

In [12], Gromov introduced a metric (Hausdorff distance) on the class of all
metric spaces. There, he proved the precompactness of the set consisting of
the isometry classes of Riemannian manifolds with bounded curvatures and
diameters. In this paper we shall study the structure of the closure of this
set.

Definition 0.1. For a natural number n and D € (0, 00|, we let .# (n, D)
denote the set consisting of all isometry classes of compact Riemannian mani-
folds M such that

(0.2.1) the dimension of M is equal to n,

(0.2.2) the diameter of M is smaller than D,

(0.2.3) the sectional curvature of M is smaller than 1 and greater than —1.

The following problem is fundamental in the study of the Hausdorff distance
on .# (n, D).

Problem 0.3. (A) Determine the closure of .# (n, D) with respect to
the Hausdorff distance. (Hereafter &# (n, D) denotes the closure.)

(B) Let X; (1 =1,2,---) be a sequence of elements of &# (n, D). Suppose
X, converges to a metric space X with respect to the Hausdorff distance.
Then, describe the relation between the topological structures of X; and X.

Our main result on Problem 0.3(A) is Theorem 0.5 and those on Problem
0.3(B) are Theorems 0.12 and 10.1.

First we deal with Problem 0.3(A). Let %4, denote the set of all pointed
compact Riemannian manifolds (M,p) satisfying (0.2.1) and (0.2.3), and
BFPM,, the closure of FH, with respect to the pointed Hausdorff distance
(see 1.6). If M € E# (n,D) then (M,p) € EL#H, for each p € M. We let
M (n,D, u) denote the set of the elements of .# (n, D) whose injectivity radii

Received November 4, 1985 and, in revised form, November 12, 1986.
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are greater than u. Put

Int(# (n, D)) = | ] &4 (n, D, p),
©>0

0M (n,D) = €# (n,D) — Int(H (n,D)).

Int(F#,,) and 0F#,, are defined similarly.

Gromov, in [12], proved that the elements of Int(##;) are manifolds. In
general, elements of .24, have singularities. Several examples of elements
of %4, can be constructed with help from torus actions and more generally
from F-structures (see [3], [18]). One of the main theorems of this paper
asserts that every element of %4, is locally of this type. To state it, we
need a definition.

Definition 0.4. We say elements (X,pp) and X of &%#, and
@M (n,00) are smooth if they satisfy the following:

For each point p of X, there exist a neighborhood U of p in X, a compact Lie
group G, and a faithful representation of G, into the orthogonal group, O(n),
such that the identity component of G, is isomorphic to a torus and that U is
homeomorphic to V//G, for some neighborhood V' of 0 in R™. Furthermore
there exists a Gp-invariant smooth Riemannian metric g on V such that U is
isometric to (V//Gp, g), where g denotes the quotient metric.

Theorem 0.5. Smooth elements are dense in EPH,, with respect to the
pointed Lipschitz distance. In particular, every element of F#H, is homeo-
morphic to a smooth one.

Theorem 0.5 gives us complete information on the local topological struc-
ture of the elements of €%##,. Our result on global structure is not yet
complete.

Theorem 0.6. Let X € ERPH,,. Then there exists a Riemannian mani-
fold M on which O(n) acts as isometries such that the following holds.

(0.7.1) X is isometric to M/O(n). (Let P: M — X be the projection.)

(0.7.2) For each point p of X the group {g € O(n) | g(p) = p} is isomorphic
to Gp, where G, is as in Definition 0.4.

By virtue of Theorem 0.5, the Hausdorff dimension of each element of
G FPH,, is an integer. Inspecting this fact, we define stratifications on Z%#,
and &4 (n, D) as follows.

Definition 0.8.

EM(n,D) = {X € E# (n,D) | (Hausdorff dimension of X) < n — k},
EPM, = {(X,p) € EFH,, | (Hausdorff dimension of X) < n — k}.

(12, 8.39] implies E.#(n, D) = 8.# (n, D).
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Our next result concerns the metric structure of the smooth elements of
EPM,. Let (X,po) be a smooth element of ERA,, x—EFPHy, r+1. Then X has
a stratification X = Sp(X) D S1(X) D -+ D Sk(X) such that S;(X)—S;+1(X)
is a (k — 7)-dimensional smooth Riemannian manifold. In the case when X is
not necessarily smooth, we define a stratification on X using that of a smooth
one and the Lipschitz homeomorphism given by Theorem 0.5. [7, Example
1.13] or [16] shows that we cannot obtain an upper bound of the sectional
curvatures of S;(X) — S;+1(X) while X moves on £%#,,. But we have the
following.

Theorem 0.9. Let (X;,p;) be a sequence of smooth elements of
ESPMy, —EFMy k+1 and (X, pg) a pointed metric space. Assume that (X;,p;)
converges to (X, pg) in the sense of the pointed Hausdorff distance. Then X
s contained in EPM, k+1 if one of the following two conditions is satisfied.

(0.10.1) There exist a positive ¢ and a positive integer j such that

(0.10.1.a) p; € S;(X;) and d(p;, Sj+1(X;)) > ¢, and

(0.10.1.b) the sectional curvatures of S;(X;) — S;j+1(X;) at p; are un-
bounded.

(0.10.2.a) p; satisfies (0.10.1.a) and

(0.10.2.b) the injectivity radius of S;(X;) — S;4+1(S;) at p; converges to 0
when © tends to infinity.

Furthermore, in the case when (0.10.1) holds, we have pg € S1(X).

Theorems 0.5 and 0.9, combined with [9], [19] or [12, 8.28], imply the
following.

Corollary 0.11. Let (X,pg) be a (not necessarily smooth) element of
EPM,. Then Sk(X) — Sk+1(X) is a Riemannian manifold with continuous
metric tensor and C1*-distance function, where o is an arbitrary number
contained in [0,1).

Next, we shall describe our results from Problem 0.3(B). In the case when
X; € Int(# (n, D)) we have the following:

Theorem 0.12. Let M; € Int(# (n,D)) and X € E# (n,D). Suppose
lim; oo dg(M;, X) = 0. Then, for each sufficiently large ¢, there exists a
differentiable map f: M; — X satisfying the following.

(0.13.1) For each j, the restriction of f to f~1(S;(X)—S;j+1(X)) is a fiber
bundle whose fiber is diffeomorphic to an infranilmanifold.

(0.13.2) Letpp € X — S1(X), p€ X, F = f~}(p—0) and G, be the group
given in Definition 0.4. Then G, acts freely on F and f~1(p) is diffeomorphic
to the quotient space F[Gp.

More precise informations on the map f and on its relation to the metric
structures of X and M; are in §10. In the case when X; € 0.4 (n, D), we can
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prove a similar result. But, since the result is a bit complicated, we do not
state it here (see §10), and restrict ourselves to the following simple case.

Theorem 0.14. EZH,  — EPMy k+1 15 complete with respect to the
pointed Lipschitz distance. The pointed Hausdorff distance and the pointed
Lipschitz distance define the same topology on it.

In the case when k = 0, Theorem 0.14 follows from the results of [12].

In the course of the proof of Theorem 0.12, we shall prove the following
finiteness theorem.

Theorem 0.15. For each n and D < oo, there exists a finite set ¥ of
manifolds whose dimensions are not greater than n + (n — 1)(n — 2)/2 and
which satisfy the following. For each element M of M(n, D), there ezists a
smooth map f from the bundle of orthonormal frames of M to an element of
¥, such that f is a fiber bundle with an infranilmanifold fiber.

The following result is a direct consequence of Theorem 0.15.

Corollary 0.16. sup{)_,rank(H;(M;K)) | M € M(n,D),K: field} s
finite for each D < oo and n.

By a different method, M. Gromov proved in [11] the same conclusion
without assuming that sectional curvature is less than or equal to 1.

The organization of this paper is as follows. In Chapter I, we shall prove
Theorem 0.5. In §2, we take an element (X, pg) of %4, and prove that, to
verify Theorem 0.5, it suffices to show that X is smooth if (X, pg) is a limit of
pointed Riemannian manifolds (M;,p;), the derivatives of whose curvatures
are uniformly bounded. In §3, we shall represent a neighborhood of each point
of X as the quotient B/G of a Riemannian manifold B by a smooth action
of a Lie group germ G. For this purpose, we shall pull back the metrics of
M; to their tangent spaces Tp, (M;), following [12, 8.33-8.36], and represent
neighborhoods of p; as the quotient spaces B/T';. Taking the limit, we obtain
B and G. In §4, we shall prove that G is nilpotent. The proof of Theorem
0.5 is completed in §5.

Chapter II is devoted to the study of Problem 0.3(B). In §6, we shall
introduce the set #%#, consisting of the frame bundles of the elements of
PH,,, and shall prove that the smooth elements of the closure EF#%#,, are
Riemannian manifolds. In §7, we shall give an estimate on the sectional
curvatures of the smooth elements of Z%%#,,. In §8, we shall prove Theorem
0.15. In §9, we shall prove an equivariant version of the result of [6], which is
used in §10 to prove our results on Problem 0.3(B). The proof of Theorems
0.6 and 0.9 is also in §10.

In §1, we gather several notations used in this paper. The reader can skip
this section and return there when §1 is explicitly quoted.
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Some of the results of this paper were announced without proof in [7].
There we also gave several examples and open problems. See also (3], [4], (5],
(6], and (18] for related results, and [8] for an application.

The author would like to thank the referee who pointed out an error in the
first version of this paper.

1. Notation and preliminary considerations

In this section, X and Y denote metric spaces, pg € X, gqo € Y, and M
denotes a Riemannian manifold.

Notation 1.1. We put

Bp(po,X) = {p € X | d(po,p) < D},
B(D) = Bp(0,R"),  B=B(1).

Notation 1.2. Let C(X,Y) denote the set of continuous maps from X
to Y. We define a metric d on C(X,Y) by

d(f,g) = sup{d(f(z),9(z)) | z € X}.
Notation 1.3. Set

FM ={(Vy, -+ ,Vn) | (V1,---,Vy) is an orthonormal base of
the tangent space of a point of M}.

We define a metric on F'M as follows. Let 7: FM — M be the natural projec-
tion. The fiber of 7 is identified with the orthogonal group O(n). Fix a canon-
ical metric on O(n). For each ¢ € FM, using the Levi-Civita connection, the
tangent space T,(F M) is decomposed into the vertical subspace T, (7~ (q)),
and the horizontal subspace H,. We define a metric on Ty(r~'7(q)) using
the canonical metric on O(n) and on Hy so that dn: Hy — Ty(q)(M) is an
isometry. Also, we let the horizontal and the vertical subspaces be orthogonal.
Thus we obtain a metric on FM. The group O(n) acts as isometries on F M,
and the quotient space FM/O(n) with the quotient metric is isometric to M.

Notation 1.4. Let v be a selfisometry of M. Assume that p € M
and that d(p,~(p)) is smaller than the injectivity radius of M at p. Let
l: [0,tp) — M denote the minimal geodesic connecting p with ~(p). (We
assume that [ has unit speed.) Let P: T (,)(M) — T,(M) denote the parallel
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transformation along [. We set

tp(7) = to - i(0),
rp(7): Tp(M) — Tp(M): V — P(dy(V)),
my(7): Tp(M) — Tp(M): V = P(dy(V)) +tp(7),
lrp ()|l = the supremum of the angles between V' and r,(7)(V),
Ime (NI = llre (DI + g (M-
Notation 1.5. We put

M (n,D | C)={M | M satisfies (0.2.1),(0.2.2) and the sectional
curvature of M is smaller than C and greater than — C}.
G, (C) ={(M,p) | M € #(n,00| C)}.

(We do not assume that the elements of ##,,(C) are compact.)

Definition 1.6. We recall the definition of the e-Hausdorff approxima-
tion and its pointed version. A (not necessarily continuous) map f: X - Y
[resp. (X,po) — (Y,qo)] is said to be an e-Hausdorff approzimation [resp.
e-pointed Hausdorff approzimation] if

(1.7.1) The e-neighborhood of f(X) contains Y [resp. B;/c(qo,Y)].

(1.7.2) For each two elements z,y of X [resp. B¢ (po, X)] we have

ld(z,y) - d(f(2), f(¥))] <e.

We define the Hausdorff distance [resp. pointed Hausdorff distance] du(X,Y)
[resp. du((X,po), (Y,qo0))] to be the infimum of the positive numbers ¢ such
that there exist e-Hausdorff approximations [resp. e-pointed Hausdorff ap-
proximations] from X to Y and from Y to X [resp. from (X, po) to (Y,qo)
and from (Y, go) to (X, po)].

Notation 1.8. We let d,(X,Y) and dr((X,po), (Y, qo0)) denote the Lip-
schitz distance and the equivariant Lipschitz distance, which is defined in {12,
Chapitre 3A].

Definition 1.9. Next, we need equivariant versions of the notion of the
Hausdorff distance. Let G and H be groups acting as isometries on X and Y
respectively. A pair of maps (f, ), f: (X,po) — (Y,q), ¢: G — H, is said
to be an e-pointed equivariant Hausdorff approzimation if the following hold.

(1.10.1) f is an e-pointed Hausdorff approximation.

(1.10.2) For each g € G and z € X, we have

d(p(9)(f(2)), f(9(2))) <e

if z and g(z) are contained in By /¢ (po, X), and if f(z), f(g(z)) and ©(g)(f(z))
are contained in By/¢(qo,Y).
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Let the pointed equivariant Hausdorff distance, deu.((X,G,po),
(Y,H,qo)), denote the infimum of the numbers € such that there exist e-
pointed equivariant Hausdorff approximations from (X,G,po) to (Y, H,qo)
and from (Y, H, qo) to (X, G, po). The nonpointed version is defined similarly.
The equivariant Hausdorff distance defined here is equivalent to that of [5].
Therefore, [5, Theorem 2.1] implies the following:

Lemma 1.11. If

11_1’120 de.H.((Xa GvPO)a (Yv H, QO)) =0,
then
ZEI& dH((X/GaﬁO)’ (Y/H7 qO)) =0.

Definition 1.12. Suppose that a group G acts on X and Y as isome-
tries. We say a map f from X to Y is an e-G-Hausdorff approximation if
(f,identity): (X,G) — (Y,G) is an e-equivariant Hausdorff approximation.
We define the G-Hausdorff distance, dg.g(X,Y), to be the infimum of the
positive numbers ¢ such that there exist e- G-Hausdorff approximations from
X toY and from Y to X.

Lemma 1.13. Let # (n,D;G) denote the set of pairs (M, x) of Rieman-
nian manifolds M contained in .# (n,D) and an isometric action x of G on
M. If D < oo, then # (n, D; G) s precompact with respect to the G-Hausdorff
distance.

We omit the proof, which is an easier half of the argument presented in [5,

§3].

CHAPTER 1
SINGULARITIES OF THE ELEMENTS OF THE BOUNDARY

2. Reduction to the case when the differentials
of the curvatures are bounded

First we recall the following result. (The symbol dy, is as in 1.8.)

Theorem 2.1 (Bemelmans, Min-Oo & Ruh [1]). For each positive
number € and Riemannian manifold M € M (n,00), there exists a Rieman-
nian manifold M' € # (n,0) such that

(2.2.1) du(M, M') <,
(2.2.2) IVER(M")|| < C(n,k,é).
Here the symbol R(M') denotes the curvature tensor, || || the C°-norm, and

C(n,k,e) a positive number depending only on n,k and €.
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Secondly we need the following. (The symbol dy is defined in 1.6.)
Lemma 2.3. Let X;,Y;, X,Y be metric spaces, all of whose bounded sub-
sets are relatively compact. Suppose that

lim dg(X;,X) =0, lim dg(¥;,Y) =0,
11— 00 1—00

and that di(X,;,Y;) < €. Then we have d,(X,Y) <e.

Proof. We may assume dy(X;,X) < 1/7 and du(Y;,Y) < 1/7. Then
there exist (1/7)-Hausdorff approximations ¢;: X — X;, ¥;: ¥; = Y. On the
other hand, since dp,(X;,Y;) < g, there exist homeomorphisms f;: X; — Y;
satisfying
(2.4) e™® < d(fi(z), fi(y))/d(z,y) < €
for each z, y € X;.

Next, take a dense countable subset Xy of X. By a standard diagonal pro-
cedure, we may assume, by taking a subsequence if necessary, that v¥; f;p;(z)
converges for each € Xy. Let f'(z) be the limit. Then formulas (1.7.2) and
(2.4) imply
(2.5) e <d(f'(z), f'(y)/d(z,y) < €
for each z, y € Xo. Therefore f' can be extended to a homeomorphism
f: X — Y satisfying (2.5). The required inequality d(X,Y) < ¢ follows.
q.e.d.

Now we start the proof of Theorem 0.5. Let (X,pg) be an arbitrary ele-
ment of %4#,. Then there exists a sequence (M, p}) of elements of F4,
such that lim; o du((X,po0), (M/,pi)) = 0. Hence, Theorem 2.1 implies
that, for each positive number &, there exists (M;(e),p;(¢)) € Pk, such
that du((My(e), ps(e)), (MY, })) < & and

(2.6) IVER(M;(e))|| < C(n, k,e).

Since %4, is compact [12, 5.3], we may assume, by taking a subsequence if
necessary, that (M;(e),p;(€)) converges to a metric space (X(g),po(¢)) with
respect to the Hausdorff distance. Then Lemma 2.3 implies d,(X, X (g)) < e.
Thus, we see that to prove Theorem 0.5 it suffices to show that X(¢) is a
smooth element of G%#,. The proof of this fact occupies the rest of this
chapter. Hereafter we shall write (M;, p;) and (X, po) instead of (M; (), p;(¢))
and (X (e),po(€)), for simplicity.

3. Construction of the Lie group germ

Some part of the argument of this and the next sections overlaps with that
of {12, 8.30-8.36 and 8.48-8.51]. But, since the argument here is a bit delicate
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and since the author cannot understand some part of the argument there, he
will not omit the overlapped part.

By changing a base point, we see that it suffices to show that a neighbor-
hood of p is smooth. We may assume that du((X,po), (Mi,pi)) < 1/i. Let
it (X,p0) — (M;,p;) denote a (1/7)-Hausdorff approximation and f;: R® —
M; the composition of a linear isometry R™ — Tj, (M;) and the exponential
map Ty, (M;) — M;. By Rauch’s comparison theorem (see [15, Chapter VIII,
Theorem 4.1]), the map f; is of maximal rank on the unit ball B (see 1.1).
Let g; (= gisje): B — R™ be the Riemannian metric tensor induced by f;
from that of M;. Formula (2.6) implies that

< Cj.

0'gij k
0%, 0Ty, - 0T,

It follows that we may assume, by taking a subsequence if necessary, that
g; converges to a C°°-metric tensor go. Hereafter we let d; (+ = 0,1,2,--)
denote the distance function associated to g; and d the ordinary Euclidean
distance.

First, we shall construct a local group G of isometries such that a neigh-
borhood of pg in X is isometric to U/G for a neighborhood U of 0 in B. The
fundamental definitions on local groups are presented in (20, §23D,--- NJ.
There the notion of an action of a local group on a pointed topological space
is not defined. But we omit the definition, since it can be defined in an obvious
way.

Now, we define the local group G; as

Gi={y€C(B(1/2),B) | fin= fi},
where C(A, B) is as in 1.2. The local group structure on G; is defined as
follows: for ~1,72,73 € G;, we put 7172 = 73 if the composition ;72 is well

defined and coincides with ~3 in a neighborhood of 0. Next, for p € B(1/2)
and € > 0, we put

Gi(p,e) = {f € Gi | d(f(p),p) < €}.
Second, we shall take the limit of G;. Put
L={feC(B(1/2),B) |1/2 < do(f(z), f(y))/do(z,y) <2
for each z,y € B(1/2)}.
Ascoli-Arzela’s theorem implies that L is compact. It is well known that the
set of closed subsets of a given compact set is compact with respect to the
(usual) Hausdorff distance. Therefore, by taking a subsequence if necessary,

we may assume that G; converges to a closed subset G of L. We can define a
local group structure on G by a method similar to that for G;.
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Remark that when a local group H acts as isometries on a pointed met-
ric space (Y,p), the isometry type of a neighborhood of (pmod H) in the
quotient space Y/H is well defined (see [20, §23J]). We shall let this “lo-
cal metric space” be denoted by (Y,p)/H. In our case, (B(1/2,0),0)/G; is
isometric to By/9(pi, M;). (Furthermore, in our case, the 1/2-neighborhood
of (0mod G;) is well defined.) This fact, combined with Lemma 1.11, im-
plies that (B(1/2,0),0)/G is isometric to By/2(po,X). Let m: B(1/2) —
B1/2(po, X) and ;: B(1/2) — By/2(pi, M;) denote the natural projections.

Third, we shall prove that our local group G is a Lie group germ. This fact
follows from the following:

Lemma 3.1. Suppose a local group G acts effectively on a pointed
Riemannian manifold (M,p) as isometries. Assume that G is closed in
C(Bp,2(p, M), Bp(p,M)). Then G is locally isomorphic to a Lie group and
its action on (M,p) is smooth.

Proof. This lemma seems to be known by the experts. But, since it seems
that this fact is not proved in the literature, the proof will be given below.
Let g’ be the set of all vector fields ¢ such that the following condition holds.

Condition 3.2. There exists a smooth map ¢: (—¢,€) — G satisfying
the following. (Since G is contained in a Frechet manifold C(Bp/;(p, M),
Bp(p, M)), the smoothness of a map from (—¢,¢) to G is well defined.)

(3.2.1) ©(0) = identity,
(3.2.2) DeOR)| - _ gy,
t=0
Now since
D1 (t)p2(t) _ Doi(t) + Do (t)
dt o At o dt |,

and since

D 1 - _ [Dea(t) Do, (t)

Feomeer et =[50 220 |

it follows that g’ is a Lie algebra. Let G’ be the local set consisting of all
one-parameter groups of transformations associated with the elements of g'.
Using the fact that g’ is a Lie algebra, we can prove easily that G’ is a Lie
~ group germ.

Sublemma 3.3. G’ is a sub-local group of G.

Proof.  Suppose that € € g’ and that ¢: (—¢,e) — G satisfies Condition
3.2. Let &, denote the one-parameter group of transformations associated
with . We shall prove that ®;, € G for small ¢y. Put v, = (©(to/n))".
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Using (3.2.2), we can prove limy,_,o0 Yn = ®¢,. On the other hand, since G is
closed, it follows that ®;, € G. q.e.d.

Now, to prove Lemma 3.1, it suffices to show the following:

Sublemma 3.4. G’ contains a neighborhood of the identity of G.

Proof. Suppose that the sublemma is false. Then there exists a sequence
of elements ~; of G — G’ which converges to the identity. Here we need a
simple trick to make the action of G free. Let FM be as in 1.3. The action of
G can be lifted to a free isometric action on FFM. Take an element q of FM.
Now, by replacing elements ~; if necessary, we may assume the following:

(3.5) The minimal geodesic /; connecting ¢ with ~;(q) is perpendicular to
the orbit G’'(q).

Now, since ~; converges to the identity map, we may assume, by taking
a subsequence if necessary, that there exists a strictly increasing sequence n;
of positive integers such that ~;'* converges to a nontrivial element ~. Then,
fact (3.5) implies that v ¢ G. On the other hand we have

Assertion 3.6. Y€ G'.

Proof. For t € [0,1], we put ¢ = lim;_00 Al where [c] denotes the
maximum integer not greater than c. It is easy to see that ¢, is well defined
and is a one-parameter group of transformations. It is also easy to see that
©1 =7 and p; € G. Therefore v € G’ as desired. q.e.d.

This is a contradiction. The proof of Sublemma 3.4 is now complete.

4. Nilpotency of the local group G

Lemma 4.1. The Lie algebra g of G is nilpotent.

Proof. Take a small neighborhood W of the identity in L such that
lmp(7)|l < 0.49 holds for each element v of W NG and p € B(1/2) (see
1.4 and 1.1). Now Lemma 4.1 follows from the following:

Lemma 4.1. There exists a neighborhood W' of the identity in W such
that the n-hold commutators of the elements of G; NW' are well defined in G
and vanish.

Remark 4.3. This corresponds to [12, 8.50]. In order to prove this
lemma, following the line described there, we have to overcome the difficulty
pointed out in [2, Remark 3.1.6]. But the author cannot do this directly.
Instead, we shall use the result of [6], and proceed as follows.

Proof of Lemma 4.2. By the result of §3, we see that there exists a point
p in each neighborhood of 0 in B such that {v € g | v(p) = p} = {1}. Hence, a
neighborhood V of 7(p) in By/2(po, X) is a Riemannian manifold. Therefore,
by the main theorem of [6], we conclude that, for each sufficiently large 7, there
exists a fiber bundle f;: U; — V from a neighborhood U; of 7;(p) in M; to V,
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such that the fiber of f; is an infranilmanifold. Furthermore, §5 of [6] implies
that there exists a positive number ¢ independent of ¢ such that G;(p,€) is
a sub-local group of the fundamental group of the fiber of f;. (Remark that
G;(p,€) coincides with what is called a local fundamental pseudogroup at the
beginning of [6, §5].) Moreover, by virtue of the inequality ||m,(7)|| < 0.49, we
see that the fundamental group of the fiber of f; itself is nilpotent, without
taking a finite covering (see the argument in [2, Chapter 3]). Hence every
n-hold commutator of elements of G;(p, €) vanishes.
On the other hand, it is easy to see that there exists W’ such that

Gi(p,e) DW'n G;

for every 7. This completes the proof.

5. The proof of Theorem 0.5
Let g denote the Lie algebra of G and, for p € B(1/2), put

by ={€ €g] &(p) =0}

Lemma 5.1. b, s contained in the center of g.

Proof. (The following argument was suggested to the author by Hisayosi
Matumoto.) Let £ € h,. Since the closure of the one-parameter group of
transformations associated with ¢ is compact, it follows that the adjoint rep-
resentation g — g, n — [, £] is semisimple. Therefore, if £ is not contained in
the center, there exists n € g® C such that [, {] = an and « # 0. But, then
the Lie subalgebra C¢ @ Cn is not nilpotent. This is a contradiction. q.e.d.

The function which carries p to dimb, is uppersemicontinuous. Hence,
there exists a positive number C such that, for each element p of B(C),

(5.2) dim b, < dim bo.

Lemma 5.3. b, C ho for each element p of B(C/6).

Proof.  The proof is by contradiction. Take £ € b, — ho. Let o, be the
one-parameter group of transformations associated with £. Since the closure
{p: | t € R} is compact, we may assume, by replacing ¢ if necessary, that ¢,
is the identity. Put

A= {qe B(1/2) | n(q) = 0 for each n € ho}.

A is totally geodesic because all elements of g are Killing vector fields. Since
p € B(C/6) and since p;(p) = p, it follows that

(5.4) d(p:(0),0) < C/3.
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On the other hand, since by is contained in the center, we have ;(0) € A.
Now, define a @;-invariant function f on B(C)N A by

flg)= /O d(+(0), q) dt.

Since A is totally geodesic and since C' < 1, it follows that f is a strictly
convex function. On the other hand, formula (5.4) implies that

flg)22C/3 forqedB(C),  f(0)<C/3.

Therefore, f has a unique minimum go on A N B(C). Then ¢:(q0) = qo-
It follows that £ € bg,. On the other hand, hy, D ho. Thus, we conclude
dim by, > dimbhg. This contradicts (5.2). q.e.d.

For a point p of B(1/2), we put

H, = {y€G|~(p) =p}

and let Hj, denote the component of the identity of Hp.

Lemma 5.5. There exists a positive number C' such that H, € Hy for
each point p of B(C'/8).

Proof.  For a point p of A, put x(p) = #(Hp/H,). It is easy to see that
X(p) is uppersemicontinuous on A. Then there exists a positive number C’
such that for each element p of B(C') N A, we have x(p) < x(0). Now, we
shall prove by contradiction that this number C’ has the required property.
Suppose that p € B(C’'/6) and v € H, — Hyp. Lemma 5.4 and the compactness
of H, imply that there exists a positive integer m such that y™ is contained
in Hy. Put

A" ={pe B(C") | 7(p) = p for each v € Hyp}.

Define f': A’ —» R by
f'(z) =) d(+'(z),2).
i=1

f' is y-invariant, since 4™ (z) = z. Hence, as in the proof of Lemma 5.4, we
can find ¢ € B(C’) N A’ such that v(q) = ¢q. Therefore H, D Ho U {7}. It
follows that x(¢) > x(0). This is a contradiction. q.e.d.

Lemma 5.1 implies that H{ is a torus. Hence (B(C'/6),0)/H{ is smooth.
Since Hy is compact, Ho/H} is a finite group. Therefore, (B(C’/6),0)/Ho
is also smooth. Furthermore, using Lemma 5.5, we can prove that Hy is
normalized by Gg. Therefore, GoHo/Hp acts on (B(C'/6),0)/Hy. Then
Lemma 5.5 immediately implies that the action of Go-Ho/Ho on B(C'/6)/Hp
is free. It follows that (B(C’/6),0)/HoGp is smooth. Next, we need the
following:

Lemma 5.6. There exists D such that G(0, D) 1s contained in HyGj.
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Proof. Suppose that there exists a sequence ; of elements of G such that
~i € G(0,1/7) — HyGop. By taking a subsequence if necessary, we may assume
that ~; converges to an element 4. Then ~(0) = 0. Therefore vy € H. On
the other hand, lim;_.o, ¥~ 'v; = 1. Hence y~1; € Gy for sufficiently large 1.
Therefore, v; € HyGo. This is a contradiction. q.e.d.

Lemma 5.6 implies that Bp(p, X) is isometic to (B(D),0)/HoGo. This
completes the proof of Theorem 0.5.

CHAPTER 2

GENERALIZED FIBER BUNDLE THEOREM

6. A compactification of the set of frame bundles

In this chapter, we deal with Problem 0.3(B). One of the difficulties of this
problem lies in the fact that the metric space X there is not necessarily a
manifold. To avoid this difficulty, we consider the frame bundles. We put

FH (n,D) = {FM | M € # (n, D)},
FGMy, = {(FM,p) | M € M(n,0)}.

(The Riemannian manifold FM is defined in 1.3.) Let &%# (n,D) and
CFFPH, denote the closures of Z# (n,D) and FPH, with respect to the
Hausdorff distance and the pointed Hausdorff distance respectively. By virtue
of the results presented in [17], there exist positive numbers C;(n) and Cz(n)
depending only on n such that

FM (n,D) C A (n+(n—1)(n-2)/2,D+ Ci(n) | C2(n))

and FFH, C FH,(Cz(n)) (see 1-5). It follows that BF# (n,D) and
EF M, are compact. Now, the main result of this and the next sections
is the following:
Theorem 6.1. There ezists a positive constant C3(n) depending only-on
n such that the intersection of EFFH,, with
n+(n—1)(n—2)/2
U  2#acm)
k=0

is dense in EFFPH, with respect to the pointed Lipschitz distance.

Proof. Let (X, qo) be an arbitrary element of %%#,,. Take a sequence
of elements (F M, q;) of FPR#, such that lim, o da((FM;,q;), (X, q0)) = 0.
Let m;: FM; — M; denote the natural projection. Put p; = m;(¢q;). By an
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argument similar to one in §2, we may assume, by taking a subsequence if
necessary, that

IV*R(M;)|| < Ck.

In this section, we shall prove that, in that case, X is a Riemannian man-
ifold. And, in the next section, we shall give an estimate on the sectional
curvature of X. It suffices to show this in a neighborhood of ¢q.

First remark that we may assume, by taking a subsequence if necessary,
that (M;, p;) converges to a pointed metric space (Y, pg) with respect to the
pointed Hausdorff distance. We may assume that du((Mi,pi), (Y,p0)) <
1/i and dg((FM;,q;), (X,q90)) < 1/i. Let 9;: (X,90) — (FM;,¢) and
it (Y,po) — (M;,p;) be (1/7)-pointed Hausdorff approximations.

Next, we recall the argument of §3. There we defined pairs ((B(1/2), ¢:), G:)
and ((B(1/2),90),G) such that B(1/2)/G; and B(1/2)/G are isometric to
B /2(pi, M;) and By /2(po, X) respectively and that G is locally isomorphic to
a Lie group.

Now, we can lift the isometric actions of G; and G on (B(1/2),¢;) and
(B(1/2), go) to those on (FB(1/2), ;) and (FB(1/2), go) respectively, where
g; and go denote the Riemannian metric defined in 1.3. Since the action of
G on B(1/2) is isometric, it follows that the action of G on FB(1/2) is free.
Hence F'B(1/2)/G is a Riemannian manifold.

On the other hand, it is easy to see that

il_iglo den.(((FB(1/2),:),Gi,0), (FB(1/2), §o), G,0)) = 0.
(The symbol de g is defined in 1.9.) Hence, Lemma 1.11 implies that
lim dy(FB(1/2)/G;, FB(1/2)/G) = 0.
1—00

On the other hand, it is easy to see that FB(1/2)/G; is isometric to a neigh-
borhood of g; in FM,. Therefore FB(1/2)/G is isometric to a neighborhood
of go in X. Thus X is a Riemannian manifold, as required:

7. An estimate on sectional curvatures

We begin by proving a lemma.
Notation 7.1. Let G be a local group of isometries acting freely on a
pointed Riemannian manifold (M, p). We put

(r/t)p(G) = sup{lIrp(9)ll/d(9(p),p) | g E G,g # 1, 1p(g) is well deﬁned}.
(The symbol rp(g) is defined in 1.4.)
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Lemma 7.2. Suppose that the sectional curvature of M s not greater
than a and not smaller than b. Then the sectional curvature of M/G at
P(p) is not greater than a + 6((r/t)p(G))? and not smaller than b, where
P: M — M/G denotes the natural projection.

Proof. Put ¢ = P(p). Let X be an arbitrary plane contained in Tog(M/G).
Take the plane A in Tp(M) such that dP(A) = m and A is perpendicular to
the orbit G(p). Let K and K denote the sectional curvatures. For £ € A
and t € R, we see easily that

(7.3) P(exp(t€)) = exp(t(dP(¢)))-
Now, let :: S' — A be the isometry onto the unit sphere. Recall the
following formula.

(7.4) /Ot I(exp(s - 7)) ds = mt? — 1K t*/12 + O(t°),

where I(exp(t - 7)) denotes the length of the loop, 6 — exp(t - 7(#)). Similarly,
using (7.3), we see that

(7.5) /Ot [(P(exp(s -1))) ds = mt? — 7Kt*/12 + O(t%).

Now, let ©(fp,t) denote the angle between

Dexp(t -i(9))
dé =0,

Then, it is easy to see that

and  Texp(z-i(90)) (G(exp(t - i(60))))-

W(P(exp(t-1))) o . .
(7'6) 1 Z —W 2 1nf{s1n(<p(0,t)) I 0 € Sl}.

On the other hand, by the definition of (r/!),(G), we have

(7.7) lim sup 12[1 — inf{sinp(6,t) | 6 € S'}] < _______((T/l),,(G)){
t—0 o 2

Now, by (7.4), (7.6) and (7.7), we have
mt? — mt*Kp /12 + O(t°)

> | (P(exp(s - ) ds
0
> mt? — it Ky /12 — 7t ((r/1),(G))? /2 — O(t9).

From this formula and formula (7.5), the lemma follows immediately. q.e.d.
Next we shall prove the following:
Lemma 7.8. Let (M;,p;) be a sequence of elements of &PH, converging
to a smooth element (X,po) of EF#,,. Suppose that the sectional curvatures
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of M; at p; are unbounded. Then the dimension of the group Gp, in Definition
0.4 s positive.
Proof.  Let (M; ;,p; ;) be elements of %24, such that

du((Mi 5, Pig)s (Mi, pi)) < 1/5.

As in §2, we may assume ||[V¥R(M, ;)| < Ck. Hence, by the method of
§3, we can construct metrics g;;, gi, go on B and local groups G; ;, Gi,
G consisting of isometries of (B(1/2),gi,;), (B(1/2),:), (B(1/2),g0), such
that the quotient spaces B(1/2)/G; j, B(1/2)/G;, B(1/2)/G are isometric
to neighborhoods of p; j, pi, po, respectively. Then, Lemma 7.2 implies
that the sectional curvatures of M; at p; are not smaller than —1 and not
greater than 1+ 6 - ((r/t)o(G;))?. Therefore, by assumption, we see that
the numbers (r/t)o(G;) are unbounded. Hence, by taking a subsequence if
necessary, we may assume that there exists a sequence ~; € G; such that
lim; o0 |ITo(7:)]l/d(0, %:(0)) = oo. It follows that we can find a sequence
of integers n; such that lim,; o d(+"*(0),0) = 0, lim; 70(7;"*) = A, and
that lim; .o, n; = 0o, where A € O(n) is a nontrivial element. Now for
each number ¢ contained in [0,1], we put 7; = lim;_, qgt"‘]. Then, n; € G,
Ne,NMt, = Me+t,» M # 1 and 7¢(0) = 0. Therefore, the dimension of G,
(= {9 € G| g(0) =0}) is positive. gq.e.d.

Now, Theorem 6.1 follows immediately from Lemma 7.8 and the fact that
the elements of P F#,, are manifolds, which was proved in §6.

8. The proof of Theorem 0.15

We begin by proving a lemma. Put

EFM(n,D) ={M € €F# (n,D) |dmM <n+ (n—1)(n—-2)/2 -k},

CIFPMn k. = {(M,po) € EFPH, | dimM <n+ (n—1)(n—2)/2 —k}.

Lemma 8.1. For each € there exists a positive number u(e,n) such that if
a smooth pointed Riemannian manifold (M,py) € EFPH, ) satisfies
du((M,po), EFPHy k+1) > €, then the injectivity radius of M at po s
greater than p.

Proof.  The proof is by contradiction. Assume that a sequence of
pointed Riemannian manifolds (M;,p;) € BEFFPM, . satisfies dy((M;,p;),
GF P My k+1) > € and that the injectivity radius of M; at p; is smaller than
1/:. By virtue of the compactness of EF%##,, we may assume, by tak-
ing a subsequence if necessary, that (M;,p;) converges to an element (X, po)
of EFPH,. Then, since the absolute values of sectional curvatures of M;
are bounded, [12, 8.39] implies that the Hausdorff dimension of X is strictly
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smaller than that of M;. But, since du((M;, p;i), EFFPH,, k+1) > €, it follows
that X ¢ BFP#H,, k+1- This is a contradiction.

Proposition 8.2. There exist positive numbers €1,¢2,- - ,&, depending
only on n such that the following holds.

Suppose

X € €Fl(n,D),Y € EFH (n, D) — EF#i(n, D),

and

dH(X, gy—/[]ﬂ_l(n, D)) > €k41-

Assume, furthermore, that du(X,Y) < e.

Then, there exists a map f: X — Y satisfying the following:

(8.3.1) f is a fiber bundle with an infranilmanifold fiber.

(8.3.2) f is an almost Riemannian submersion. Namely, if £ € Tp(M) is
perpendicular to a fiber of f, then we have

e TN < Ydf ()Nl < e XT,

where 7(c) 1s a positive number depending only on c,n and D and satisfying
lim.o7(c) = 0.

Proof.  This is an easy consequence of Theorem 6.1, Lemma 8.1 and the
main theorem of [6].

Proof of Theorem 0.15. Define the subsets %} of &FF M. (n,D) by a
downward induction on k as follows.

Unt(n—-1)(n-2)/2 = CFMp 1 (n—1)(n-2)/2(n, D),
U = €FMi(n, D) — | J{X € €®FM(n, D) | du(X, %) < &:}.

>k
(Remark that €F# (n, D) is empty for k > n+(n—1)(n—2)/2.) Then Lemma
8.1 implies that there exists a positive number y such that the injectivity radii
of the elements of | J %}, are greater than u. This fact, combined with Theorem
6.1, the compactness of %} and [12, 8.25], implies that there exists a finite set
¥ of manifolds such that every element of | % is diffeomorphic to an element
of ¥.

Now, let M be an arbitrary element of FM(n, D). Then, by the definition
of %, we see that either FM is contained in %j or there exist k¥ and X €
G F#;. such that dy (FM, X) < & and dy (X, EF M k+1) > €k+1. In the former
case, FM is diffeomorphic to an element of ¥. In the later case, Proposition
8.2 implies that there exists a map f: FM — X satisfying conditions (8.3.1)
and (8.3.2), and that X is diffeomorphic to an element of X. The proof of
Theorem 0.15 is now complete.
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9. Equivariant fiber bundle theorem

To deduce Theorem 0.12 from Theorem 6.1, we need the following equi-
variant version of the result of [6]. (The symbol dg.g is defined in 1.12.)

Theorem 9.1. Let G be a locally compact group and let n,u be positive
numbers. Then there exists a positive number €(n, 1) depending only on n and
u and satisfying the following.

Suppose M, N are Riemannian manifolds on which G acts as isometries.
Assume dg.u(M,N) < e, M € # (n1,00), N € # (ng,00,u), n1, nag < n.
Then there exists a G-map f: M — N satisfying (8.3.1) and (8.3.2).

Proof. There are two methods to prove this result. The first one is to
construct f using the result of [6] and to make it a G-map using the center of
mass technique (see [13]). The second one is the combination of the methods
of [6] and [5, §7]. Here we shall give a proof following the second line. By
assumption, we have an e-G-Hausdorff approximation ¢': M — N (see 1.6).
We can modify this map and we can assume that ¢ is a measurable map.

Secondly we use a Hilbert space version of the technique of [12], [14] or
[6, §1]. Let h: R — [0,1] be a function satisfying {6, Condition (1.3)]. And
let L2(N) denote the Hilbert space consisting of all L2-functions on N. The
group G acts on L?(N) in an obvious way. Define fxy: N — L%(N) and
fig: M = LX(N), fas: M — L(N), by

(/n(p))(q) = h(d(p,9)),
(fu(p))(g) =h (/GB oD d(p, z) dx/Vol(Be(SO(Q),M))) ;

fm(p)(9) = fm(9(P)(9(@)rc(9),

9€G

where pg denotes the Haar measure. Then, by a method similar to [6], we
can prove the following.

(9.2.1) fn is an embedding.

(9.2.2) Put

Be(Nfn(N)) = {(p,u) € the normal bundle of fn(N)||u|]| < C}.

Then the restriction of the exponential map to Bo(N fy(N)) is a diffeomor-
phism, where C is a positive number depending only on n and .

(9.2.3) far is of C'-class.

(9.2.4) The image of fp is contained in the 6e-neighborhood of fx(N).

(9.2.5) fa is transversal to the fibers of the normal bundle of fy (V). (Here
we identify the tubular neighborhood to the normal bundle.)

(9.2.6) fam and fy are G-maps.
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Now, we put f = fy' omoExp~!ofa. Facts (9.2.2) and (9.2.4) imply
that f is well defined. Fact (9.2.3) implies that f is of C-class. Fact (9.2.6)
implies that f is a G-map. Fact (9.2.5) implies that f is a fiber bundle. The
rest of the proof is similar to [6, §§4 and 5], and hence is omitted. The proof
of Theorem 9.1 is now complete.

10. The proof of Theorem 0.12

Our result from Problem 0.3(B) in the case when X is general is the fol-
lowing.

Theorem 10.1. Let X; be a sequence of elements of &# (n, D). Suppose
X; converges to a metric space X with respect to the Hausdor[f distance. Then,
for sufficiently large 1, there exist a map f: X; — X, metric spacesY; and Y
on which O(n) acts as isometries and an O(n)-map f: Y; — Y, such that the
following holds.

(10.2.1) X; and X are isometric to Y;/O(n) and Y/O(n), respectively. (We
let mi: Y; = X;, m: Y — X denote natural projections.)

(10.2.2) Y; and Y are Riemannian manifolds with continuous metric ten-
sors and C1*-distance function.

(10.2.3) f satisfies conditions (8.3.1) and (8.3.2).

(10.2.4) Let p; € Y;, p€ Y. Then {g € O(n) | g(p) = p} is isomorphic to
Gr(p) (which is defined in 0.4), and similarly for p;.

(10.2.5) fom;=mo f.

Theorems 0.12 and 0.14 are direct consequences of Theorem 10.1. Theorem
0.7 follows immediately from Theorem 10.1, Lemma 7.8 and [12, 8.39].

Proof of Theorem 10.1.  Take .#; ; € # (n, D) satisfying du(M, ;, X;) <
1/4. Lemma 1.13 implies that, by taking a subsequence if necessary, we may
assume that

dO(n)-H(FMi,ja FM,",]") < l/min(j, ]'/) + 1/ min(i, 'i/).

Therefore, there exist Y;,Y € &# (n,D) on which O(n) acts as isometries
such that

(10.3) do(n)-u(FM;;,Y:) <1/j,  dom)-u(Yi,Y) <1/7

Theorem 6.1, combined with [9], implies that ¥; and Y satisfy (10.2.2). In-
equality (10.3), combined with Lemma 1.11, implies (10.2.1). Theorem 9.1
implies that there exists an O(n)-map f:Y; > Y satisfying (10.2.3). Hence,
there exists f: X; — X satisfying (10.2.5). It is easy to verify (10.2.4). The
proof of Theorem 10.1 is now complete.
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I. INTRODUCTION

0. BACKGROUND

Let M" be a complete Riemannian manifold of bounded curvature, say
|K| < 1. Given a small number, ¢ > 0, we put M" = B"(¢) UZ"(e), where
B" () consists of those points at which the injectivity radius of the exponential
map is > ¢. The complementary set, " (¢) is called the e-collapsed part of
M".

If x € Z"(¢), r < &, then the metric ball B (r) is quasi-isometric, with
small distortion, to the flat ball B,(r) in the Euclidean space, R" . After slightly

Received by the editors May 15, 1991.
1991 Mathematics Subject Classification. Primary 53C20.
The first author was partially supported by NSF Grant DMS 840 596.

©1992 American Mathematical Society
0894-0347/92 $1.00 + $.25 per page

327



328 JEFF CHEEGER, KENJI FUKAYA, AND MIKHAEL GROMOV

adjusting the boundary of Z"(¢), we obtain a set whose quasi-isometry type
is determined up to a finite number of possibilities by the ratio, dia(%"(¢))/e,
where dia(%"(¢)) denotes the diameter of %" (¢). (Compare [C, GLP, GW,
P)).

In this paper, we are concerned with what can be said about the e-collapsed
part, €"(¢), for ¢ = ¢(n) a suitably small constant depending only on 7.
Roughly speaking, our main results show that the essential features of the local
geometry are encoded in the symmetry structure of a nearby metric. More
precisely, any metric of bounded curvature on M" can be closely approximated
by one that admits a sheaf of nilpotent Lie algebras of local Killing vector fields
that point in all sufficiently collapsed directions of C”(¢). This sheaf is called
the nilpotent Killing structure.

A second sheaf of nilpotent Lie algebras of vector fields, called the nilpo-
tent collapsing structure will be discussed elsewhere. It plays a crucial role in
constructions, which collapse away all sufficiently collapsed directions in the
manifold (while keeping its curvature bounded). The fact that two different
sheaves arise simply reflects the distinction between right and left invariant vec-
tor fields on a nilpotent Lie group (compare Example 1.6 and the discussion
preceding it).

The first nontrivial example of a collapsing sequence of Riemannian man-
ifolds was pointed out by Marcel Berger in about 1962. Berger started with
the Hopf fibration, S' — $* — §2 , where S? carries its standard metric. He
observed that if one multiplies the lengths of the fibres by &, while leaving
the metric in the orthogonal directions unchanged, then the sectional curvature
stays bounded independent of ¢,as ¢ = 0. Butas ¢ — 0, S more and more
closely resembles s? (equipped with a metric of constant curvature 4). In the
process, the injectivity radius converges to zero everywhere.

The first theorem on collapse characterizes “almost flat manifolds” [G1].
These manifolds, X", have bounded curvature, say |K| <1, and are collapsed
in the strongest sense possible. Namely, the diameter satisfies, dia (X") < &(n).
The theorem asserts that a finite normal covering space, X", is diffeomorphic
to a nilmanifold, A\N .

Subsequently, by employing additional analytic arguments, Ruh proved that
X" itself is infranil [R]. This means that the covering group of X” — X acts by
affine transformations with respect to the canonical flat affine connection on the
tangent bundle of X" . Otherwise, put X" is diffeomorphic to A\N , where the
covering group, A, acts by affine transformations, with respect to the canonical
connection on N and the image of the holonomy homomorphism is finite. By
the canonical connection, we mean the one for which all left invariant vector
fields are parallel. An important by-product of Ruh’s proof is the statement that
the diffeomorphism between X" and A\ N can be chosen canonically, given
the geometry of X" and a choice of base point, x € X". Moreover, in this
case, a canonical left invariant metric on N that is actually invariant under A
can also be chosen.

It is easy to see that although most infranil manifolds admit no flat metric,
any such manifold admits a sequence of metrics with |K| < 1, for which the
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diameter becomes arbitrarily small; see [G1]. Thus, the above-mentioned results
imply the existence of a critical diameter, if X" admits a metric with |K| <1
and dia(X") < &(n), then it admits a sequence of metrics with |[K| < 1 and
dia(X") — 0.

The case of infranil manifolds illustrates a basic point. Collapse can take
place simultaneously on several different length scales and not just on the scale
of the injectivity radius. Indeed, the simplest nonflat nilmanifolds (with almost
flat metrics) can be viewed as the total spaces of a nontrivial circle bundles,
whose base spaces are isometric products of two circles of length ¢ and whose
fibres have length ¢”. This kind of inhomogeneous scaling is actually essential,
in order for the curvature to remain bounded as ¢ — 0.

The ideas on almost flat manifolds were extended along two rather different
lines, in order to study the collapsing phenomenon in greater generality. The
goal of the present paper is to combine these two approaches.

In [CG3, CG4], generalizing the concept of a group action, the notion of
an action of a sheaf of groups was introduced. An F-structure is an action of
a sheaf of tori for which certain additional regularity conditions hold (“ F”
stands for “flat”). As in the case of a group action, an action of a sheaf of
groups induces a partition of the underlying space into orbits. The main result
of [CG4] asserts the existence of an F-structure of positive rank (i.e., all orbits
have positive dimension) on the sufficiently collapsed part of a manifold with
|K| < 1. Here, no assumption is made concerning the size of the manifold,
which might even be infinite. In this generality, the dimension of the stalk of
the F-structure is not always locally constant. If not, the structure is called
mixed; if so it is called pure.

The infinitesimal generator of the local action of an F-structure is a sheaf of
abelian Lie algebras of vector fields, which can be regarded as Killing fields for
some Riemannian metric. For the F-structure constructed in [CG4], this metric
can actually be chosen close to the original one. The Killing fields themselves
point only in the “shortest” collapsed directions. As a consequence, this F-
structure describes the local geometry of the collapsed region only on its smallest
length scale, that of the injectivity radius. This accounts for the abelian (as
opposed to nilpotent) character of the structure.

The existence of an F-structure of positive rank does impose a global con-
straint on the topology of the underlying space. For example, it implies that the
Euler characteristic vanishes [CG3].

Example 0.1. The need to consider mixed F-structures in cases where diameter
is not bounded is illustrated by the metric

ar’ + e_(m')dtﬁ?l2 + e_(R_')d(); ,

on the set (—R, R) xS 'x s, (R >> 0). By counting the number of collapsed
directions, it becomes clear that in this example, the tori that act locally near
the ends are one-dimensional, while near the middle, a two-dimensional torus
acts. Note however, that there is no completely canonical way of choosing the
precise set of points at which the transition takes place.

There is also a converse to the existence theorem for the F-structure. Namely,
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associated to every F-structure of positive rank are sequences of metrics with
|K| < 1, containing ones that are arbitrarily collapsed, for which the action of
the structure is isometric (see [CG3]). This leads to the existence of a “critical
injectivity radius,” which is analogous to the notion of “critical diameter” as
mentioned above.

In the approach due to the second author, the starting point is to consider a
manifold, M", with |K| < 1, which, as in the Berger example above, “to the
naked eye,” closely resembles a lower-dimensional manifold Y” . Technically
speaking, one requires that M" is sufficiently close to Y™ in the Hausdorff
distance (see [GLP]). The manifold Y™ is assumed to have bounded geometry
but its diameter need not be finite. The conclusion is that there is a fibration
Z"™™ - M" — Y™ whose fibre, Z"™™, is an infranil manifold. In case Y"
is a point, the assertion reduces to the theorem on almost flat manifolds (see
[F1] and §2 of the present paper for details).

Although the context of this fibration theorem might at first seem rather
special, it turns out that its equivariant generalization gives strong information
on the structure of arbitrary collapsed regions of bounded diameter. The reason
is as follows. Suppose that for a given manifold, both the curvature tensor and
its covariant derivative are bounded (the assumption concerning the covariant
derivative is actually not a serious one, since by results of [BMR], [Shi], and [A],
an arbitrary metric can be approximated by one for which this holds). Then the
frame bundle, FM" , equipped with its natural metric, has bounded curvature
as well. If U" is a region that is sufficiently collapsed relative to the size of its
diameter, one can show that there exists Y™ as in the fibration theorem, such
that the frame bundle, FU", is sufficiently Hausdorff close to Y . Moreover,
in this case, the fibre, Z, of the fibration, Z — FU" — Y™, is actually a
nilmanifold (and not just infranil). (Ultimately, both assertions can be traced
to the fact that an isometry of the base space, which fixes a point of the frame

bundle, is the identity map.) The fibration, zHrnem gy, oy , can
be chosen to be equivariant with respect to the action of O(n) on FU". As a
consequence, a partition into infranilmanifolds, in general not all of the same
dimension, is induced on U". These “orbits” contain all collapsed directions,
and so determine all possible length scales on which collapse takes place. The flat
orbits of the F-structure can be thought of as lying inside these nilpotent ones
(in fact, they lie inside the pieces corresponding to the center of the nilpotent
group); see [F3].

The fibration theorem is sharpened in another direction in [F2]. There, Ruh’s
theorem is used to obtain a smooth family of affine flat structures on the fibres.
In fact, by Malcev’s rigidity theorem, these are all affine equivalent to some fixed
A\N; see Theorem 3.7 and Proposition 3.8. As a consequence, the structural
group of the fibration reduces to the group of affine automorphisms of A\ N .
The existence of such a reduction is a necessary and sufficient condition for the
total space of a fibration with fibre diffeomorphic to A\N to collapse to the base
space keeping curvature bounded. Thus the theorem on the “critical diameter”
generalizes to the fibration setting.

We point out that the result of [F2] is obtained without removing the de-
pendence on the base point in Ruh’s construction. As a consequence, the con-
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struction of [F2] is not G-equivariant. This point, which is important for the
present paper, is dealt with in §3.
We refer to [CG3, CG4, F1-F3] for further background and examples.

1. STATEMENT OF MAIN RESULTS AND OUTLINE OF THEIR PROOF

As already mentioned, the goal of the present paper is to synthesize the two
approaches to collapse that were described in the previous section. Thus, with-
out assuming a bound on diameter, we will construct a nilpotent structure, in
general of mixed type, which is nontrivial on sufficiently collapsed regions. The
structure incorporates a description of the local geometry on a fixed scale and
not just on the scale of the injectivity radius. It is called the nilpotent Killing
structure. We will show that its action is isometric for a metric close to the
original one.

As mentioned earlier, there is also a second structure, called the nilpotent
collapsing structure. Although its orbits are the same as those of the nilpotent
Killing structure, its construction requires a small amount of additional work.
This, together with a description of its role in collapsing will be provided else-
where; see, however, Example 1.6 and compare [F2].

The existence of a metric whose symmetry structure encodes the essential
features of the geometry can be made precise without reference to sheaves.
However, the compatibility between this metric and the sheaf structure imposes
a consistency condition on the local symmetries at neighboring points, which
captures the purely topological aspect of the discussion. _

Let (M, g) be a Riemannian manifold. Let ¥ C M be open and #n: V —
V , a normal covering with covering group, A.

(1.1.1) Assume that there exists a Lie group, H D A, with finitely many com-
ponents, and an isometric action of H on 17, extending that of A,
such that

(1.1.2) H is generated by A and its identity component, N,

(1.1.3) N is nilpotent.

A Riemannian manifold (M, g) is called (p, k)-round at p € M, if there
exist V, V, H satisfying (1.1.1)—(1.1.3) and the following additional condi-
tions:

(1.1.4) V contains the metric ball, B (p), of radius p centered at p.

(1.1.5) The injectivity radius at all points of Vis >p.
(1.1.6) §(H/N) =H#(A/ANN)<k.

A metric, g, is called (p, k)-round if it is (p, k)-round at p, forall p.

Modulo the choice of (p, k), V has a normal covering space with bounded
geometry and a covering group that is almost nilpotent. By (1.1.5), if the injec-
tivity radius at p is < p/k, then the metric, g, has nontrivial local symmetries
near p; i.e., the orbit, H(p), of p € n_l(p), under H , has positive dimension.

If (M,g) is (p, k)-round, it follows that the projected orbit, n(H(p)),
contains those sufficiently collapsed directions corresponding to short geodesic
loops that are homotopically nontrivial in V. The (p, k)-round metrics con-
structed in this paper actually have a stronger property. Namely, the orbits
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(have small diameter and) actually contain all sufficiently collapsed directions
(again modulo the choice of k). One way of formulating this more precisely
is to say that the orbit space has (p, k)-bounded geometry in a suitable sense.
(See Definition 8.4 for the concept of (p, k)-bounded geometry of the orbit
space and Remark 8.10; see also Appendix 1.)

Example 1.2. Let G be a connected Lie group and g be a left invariant metric.
Then, for each discrete subgroup A of G, the quotient metric, g, on the
quotient space M = A\G is (p, l1)-round, where p depends on g but is
independent of A. This is a restatement of Zassenhaus’s theorem, which asserts
that every discrete subgroup of G generated by small elements is contained in
a nilpotent subgroup of G. (See [GLP, 8.44].) More generally, put M = G/K,
for some compact subgroup K of G. Let g be a G-invariant metric on M.
Take a discrete subgroup A of G acting freely on M . Then, by Zassenhaus’s
theorem, we conclude that the quotient metric g on M = A\M is (p, k)-
round, where p, k are independent of A.

Let V¢ denote the Levi Civita connection of g .
Our first main result is

Theorem 1.3 (Symmetrization). Forall ¢ >0 and n € Z_, there exists p >0

and k € Z_ such that if (M", g) is a complete Riemannian manifold with
|K| < 1, then there is a (p, k)-round metric, g,, with

(13.1) e’g<g, <e’g,
(1.3.2) |VE-V¥| <e,
(1.3.3) |[(VE)R,|<c(n,i,¢).

One might ask whether Theorem 1.3 can be strengthened to the assertion
that in all instances there exists a (p, k)-round metric, g, , such that either
p>pn,e), k<k(n) or p>p(n), k <k(n,e). However, this turns out to
be false; see Examples 8.11, 8.12.

Now let M be a smooth manifold and let g be a sheaf of connected Lie
groups on M . Let g be the associated sheaf of Lie algebras.

Definition 1.4. An action of g is a (Lie algebra) homomorphism, #, of g into
the sheaf of smooth vector fields on M .

A metric, g, is called invariant for g if h(g) is a sheaf of local Killing fields
for g.

Note that if #: M — M is a local homeomorphism, then there is an induced
action, n*(h), of the pullback sheaf, n*(g).

Acurve c: (a, b) — M iscalled an integral curve if ¢ C V' for some open set,
V', and c is everywhere tangent to the image, A(X), of some section X € g(V')
(i.e,. c'(s) = h(X)(c(s))). Aset Z C M is called invariant if ¢ C Z , for all
such ¢ with ¢NZ # @. The unique minimal invariant set containing p is
called the orbit, ﬁ; ,of p. Clearly, M is the union of its orbits.

Let 2 be an action of a sheaf, n, of simply connected nilpotent Lie groups.
Let g bea (p, k)-round metric and let N, V', etc,, be as in (1.1.1)=(1.1.6).
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Definition 1.5. (n, /) dejines a nilpotent Killing structure, for g, if for all p,
we can choose H, V', V as follows. There is an invariant neighborhood U
and normal covering, U C V', such that:

(1.5.1) =n*(h) is the infinitesimal generator of a (necessarily unique) action of
the group, 7*(n)(U), whose kernel, K , is discrete. N, = n"(n)(U)/K
and the action of N,|U is the quotient action.

(1.5.2) For all W C U such that W n n_l(p) # &, the structure homomor-
phism, 7*(n)(U) — n*(n)(W) is an isomorphism.

(1.5.3) The neighborhood U and covering U can be chosen independent of
p, for all peﬁp.

Clearly, the metric g in Definition 1.5 is an invariant metric for (n, h).

A structure is called pure if the dimension of the stalk is locally constant.

Before going to the next example, we will recall some elementary (but con-
fusing) facts.

Let H be a Lie group. The diffeomorphisms of H obtained by integrating
right invariant vector fields are left translations. Conversely, integrating left
invariant vector fields yields right translations.

In particular, given a left invariant metric on H , the right invariant fields are
Killing fields but left invariant fields need not be.

Example 1.6. Let N be a simply connected Lie group and A C N a discrete
subgroup. The quotient sheaf, n, of the constant sheaf, N x N — N, by
the action, A: (n,, n) — (Anol_l , An) has an action on A\ N induced by
left multiplication on N . The image sheaf, h(n), is the sheaf of locally defined
right invariant vector fields. Any left invariant metric on N induces an invariant
metric on A\ N for the action of this sheaf. It follows that (n, &) defines a
nilpotent Killing structure.

Note, however, that the standard collapsing construction for A\N involves
inhomogeneous scaling of the left invariant metric and hence of the lengths of
the left invariant vector fields (see [BK]). The right action of N generates the
left invariant fields and gives rise to the nilpotent collapsing structure in this
case. As indicated above, typically, the right action of N on A\ N does not
give rise to a nilpotent Killing structure, because there is no metric that it leaves
invariant.

Let M, g, g, be asin Theorem 1.3. Our second main result is

Theorem 1.7. The (p, k)-round metric, g,, can be chosen such that there is a
nilpotent Killing structure, N, for g, whose orbits are all compact with diameter
<e.

Remark 1.8. The structure described in Theorem 1.7 can be viewed as gener-
alizing the system of fibrations with nilpotent fibre and locally symmetric base
that is known to exist near infinity on a noncompact locally symmetric space of
finite volume.

Remark 1.9. Theorem 1.7 also provides an alternative means of obtaining an
F-structure of positive rank on the collapsed part of M . In fact, replacing each
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Lie algebra of local sections, n(U), by its center leads to the existence of an
F-structure.

Open Problem 1.10. Suppose that the original metric, g, in Theorems 1.3 and
1.7 is Kihler, Einstein, etc. Can one take g, within the same category?

In spirit, our construction of the nilpotent Killing structure is similar to the
construction of the F-structure in [CG4]. But in carrying out the details, we
use the framework of [F1-F3].

As in [CG4], we will fit together a collection of locally defined pure structures.
Initially, the collection is organized in such a way that on nonempty intersections
of their domains, the structures fit approximately, one inside another. Then
using a suitable stability property they are perturbed so as to fit together exactly.

In [CG4] the locally defined pure structures are constructed on the scale of the
injectivity radius, with the help of a result on local approximation by complete
flat manifolds; see [CG4, §3]. The stability property is a consequence of the
stability of compact group actions (in particular of torus actions); see [CG4,
§1]. Here, we work on length scales that, though small, may be arbitrarily large
compared to the injectivity radius. We also work with nilpotent groups, which
typically have no compact quotient groups. As a consequence, neither of the
above-mentioned basic tools is available.

Following the approach of [F1-F3], we will construct an O(n)-equivariant
nilpotent Killing structure on the frame bundle. This structure induces the
desired nilpotent structure on the base. The requirement of maintaining O(n)-
equivariance at all stages of the construction introduces some technical prob-
lems; see in particular §3. They are handled by averaging arguments, some of
which are very similar to those used to prove the stability of compact group
actions. In addition, we use Malcev’s rigidity theorem for discrete cocompact
subgroups of nilpotent groups, which serves as a partial replacement for the
stability of torus actions.

The preliminaries on which our construction is based are given in §§2—-4. The
construction is carried out in §§5-8 and is organized as follows.

In §§5-6 we manufacture an O(n)-equivariant collection of local fibrations
of the frame bundle such that if a pair of fibres from two of these fibrations
intersect, then one fibre contains (or is equal to) the other.

In §7 flat affine structures are introduced on the fibres. Then, the fibrations
are readjusted so that for a pair of fibres as above, the smaller is totally geodesic
in the larger, with respect to these affine structures. The affine structures give
rise to a nilpotent Killing structure on the frame bundle. Those fibres that are
not contained in any other are the orbits of this structure. Their images in the
base are the orbits of the structures we are seeking. A

In §8 we check that the nilpotent structure and metric on the frame bundle
do indeed induce the desired objects on the base.

Before giving a more detailed summary of the contents of the paper, we
explain the following basic point that was alluded to in the previous section.

A manifold is called A4-regular if for some nonnegative sequence 4 = {4},
we have

(1.11.1 V'R < 4, .
1
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By the following result of Abresch [A] (see also [Ba, BMR, Shi]), we will ulti-
mately (in §8) be able to replace the given metric in Theorems 1.3 and 1.7 by
one that is A4-regular, where

(1.11.2) A, =A4,(n,¢)

and ¢ is as in Theorems 1.3 and 1.7. Thus, prior to §8 we will always work
with manifolds that are A-regular with 4, =1.

Theorem 1.12 (Abresch). On the set of complete Riemannian manifolds,
(M", g), with |K| < 1, there exists for all ¢ > 0, a smoothing operator,
g — S,(g) =&, such that

(1.12.1) e ‘g< g <e’g,

(1.122) |[V-V|<e,

(1.12.3) [V'R| < 4,(n, ¢).

Moreover, at p € M", the value of & depends only on g|Bp(§). Finally, any
isometry of g is also an isometry of g .

Note that since 2(p) depends only on g|Bp(%) , the completeness assumption

can be removed, provided one stays away from M \ M (where the bar denotes
metric space completion).

In §2 we give a new proof of the fibration theorem of [F1], in the local
equivariant form that we need. The projection map of the fibration is obtained
by regularizing a Hausdorff approximation. Although there is some freedom in
choosing the scale on which the regularization is performed, for the application
in §§5-8, it is important that the scale is chosen to be that of the injectivity
radius of the base space.

In §3 we remove the dependence on the base point in Ruh’s theorem by
averaging the base point dependent choices of the flat connection that occur
in the initial step of the proof. Since this procedure and the remainder of
Ruh’s arguments are both canonical, we immediately obtain an equivariant and
parameterized version of his theorem.

In §4 we observe that the affine structures on the fibres introduced in §3 allow
us to define in a canonical way, a pure nilpotent Killing structure on the total
space of the fibration (we also construct a canonical metric that is invariant for
the structure). Clearly, on a given fibre we can speak of the local right invariant
fields. But the issue is to define these fields (locally) on the total space itself.
For this, we note that the affine equivalence that identifies neighboring fibres is
unique up to elements of the identity component, AR (A\N), of Aff(A\N).

One sees easily that Af° (A\N) C Ng, the subgroup of Aff(N) consisting of
right translations. Since N, acts trivially on right invariant fields, it follows
that there is a canonical 1-1 correspondence between local right invariant fields
(at nearby points) of neighboring fibres.

In §5 (using the results of §2) we select a system of O(n)-equivariant, lo-
cal fibrations of the frame bundle with almost flat fibres. On the intersections
of their domains, these fit approximately, one inside another. To achieve this
requires a suitable mechanism for picking out which directions are to be consid-
ered collapsed in cases which might otherwise appear to be ambiguous. Lacking
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such a mechanism, we could wind up with fibrations whose domains intersect,
but whose fibres do not satisfy the above relation of approximate containment.
Essentially the same point had to be dealt with in [CG4, see §5-b]. Here we
employ what amounts to a standard device from stratification theory.

In §6, by employing an inductive argument that depends on the result of
Appendix 2, the local fibrations are modified O(n)-equivariantly, so that they
fit, one inside another, on the intersections of their domains.

In §7 we complete the construction of the nilpotent Killing structure and
invariant metric on the frame bundle, using an inductive argument like that of
§6. For the construction of the Killing structure, the main part of the induction
step can be described as follows. Note that as a consequence of §3, each fibre of a
local fibration in §6 is endowed with a flat affine structure, afﬁnely diffeomorphic
to some A\N. Consider a pair of fibrations, .7, C &, as in §6 (i.e., the fibres
of % are contained in those of ). By §4, the ﬁbres carry affine structures
that determme a local left action. However the inclusion &% C & need not
be compatible with the affine structures. Using Malcev’s r1g1d1ty theorem we
find a unique subfibration, 37 C &, whose fibres are totally geodesic for the
affine structure on the fibres of Z, and such that for each fibre of 7, there
is a small motion carrying it onto some fibre of 9’ Then, as in §6, we find
a small O(n)-equivariant diffeomorphism that matches &, with 9: such that
the affine structure on . is carried into that of & .

The remaining sectlons, §8 and the Appendices, require no further description
at this point.

With minor variations, we will employ the same notation as in [F3, see §1]
and [F4, see §7]. In particular, we use:

(1.13.1) d(-, -): the distance function.

(1.13.2) B,(D)={xeM|d(p, x)<D}.

(1.13.3) TB ,(D) = {veTM||v|<D}

(1.13.4) = (M D; €)= {y TB,(¢) —» TB,(2¢) | exp, oy = exp, } : the pseudo-
fundamental group. 7 (M D; s) has a pseudogroup structure and it
acts on T'B (¢) with TB ,(&)/m (M, p;e)= B, (¢).

(1.13.5) dy(X,Y): the Hausdorff distance between X and Y. When X and
Y have isometric G-action, the G Hausdorff distance is also denoted
by d,(-, ).

(1.13.6) (e |I?1 » b, ...) denotes a positive number depending on the numbers
in the parentheses and satisfying lim t(¢e|la,b,c,...) =0, for
each fixed a, b, c, ... .

(1.13.7) If {4,} is a positive sequence c(-, 4, -) will denote a generic constant
dependmg on finitely many of the A; (and possibly on some other
parameters).

e—0

I1. PRELIMINARIES

2. SMOOTHING HAUSDORFF APPROXIMATIONS

In this section we give a new proof of the fibration theorem of [F1, F3] (see
Theorem 2.6).
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A map h: X — Y of metric spaces will be called an d-Hausdorff approxi-
mation if for all x,, x,

(2.1.1) |d(x,, x,) —d(h(x,), h(x,))| <3
(2.1.2) the range of & is J-dense.

If G is a group acting by isometries on X and Y, then 4 is called a G-4-
Hausdorff approximation if in addition, forall g€ G, x € X,

(2.1.3) d(h(gx), gh(x))<d.
Let V denote the completion of the metric space V', and put
(22) oV =V\V,
(2.3) V,= {veV |dw,dV)>n}.
Now let X", Y/ (j < n) be Riemannian manifolds such that for some
sequence, {4}, with 4, =1,
(2.4.1) X", Y’ are {4,}-regular.
Assume in addition, that forall y € Y and some 1< 1,
(2.4.2) injrad , > min(:~', d(y,8Y)).

Let G acton X", Y’ by isometries. Let distances in X , Yl,j be measured
in X", Y’ respectively. If the G-Hausdorff distance, d,,(X", Y’), satisfies

(2.4.3) dy (X", Y’)<é/10,

with 617! < % , then there is a continuous G-J-Hausdorff approximation,

(2.44) h: X] - Y/,

with A(Xj) D Y3’;5 (see [F4, GLP, GrK]). In what follows it will be convenient
simply to assume the existence of a continuous, G-d-Hausdorff approximation,
h: X" > Y.

A fibration, f: X — Y, of Riemannian manifolds is called a 6-almost Rie-
mannian submersion if forall y e Y, x € f _l(y) ,and V € TX_, normal to

7o),

-0 0
(2.5.1) e |fLMI<IVI<e|lf,(V)].
Let B={B;},i=1,2,.... Amap, f: X — Y, of Riemannian manifolds
is called B-regular if
(2.5.2) IV'fI< B,.

Let 11, denote the second fundamental form of Z C X .
Fix A < A(n) sufficiently small.

Theorem 2.6. Let X", Y’ satisfy (2.4.1), (2.4.2) and let h: X" — Y’ be a con-
tinuous, G-equivariant, J-Hausdorff approximation, with (61”1)'1/ 2 < A. Then
there exists G-equivariant W" > X" and a fibration f: W — Y’ such that

(2.6.1) dia(f~'(v)) <c(n, A)S, forall y € f(W"). In particular, f~'(y) isa
connected manifold.
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(2.6.2) f isa c(n, A)A-almost Riemannian submersion.

(2.6.3) |1 | <c(n, A", forall y € f(W").

(2.6.4) f is {c n, A1+ 22" Y-regular.

(2.6.5) fis Gequzvarmnt

(2.6.6) For ¢ (n, A < &(n), sufficiently small, f_l(y) is an almost flat
manifold, for all y € f(W").

(2.6.7) d(h, f) <c(n)ir.

The proof of Theorem 2.6 will occupy the remainder of this section and will
require a number of lemmas.

Before going through the proof of Theorem 2.6, the reader may wish to glance
at Example 2.29 below.

Proof of Theorem 2.6. Note that (2.6.6) is a direct consequence of (2.6.1),
(2.6.3). Also, given the bound on V* S and (2.6.2), the connectedness of

f _l(y) can be proved by an argument like the one used to prove (A.2.3.2)
of Appendix 2.

As for the remaining statements, we begin by noting that by an obvious
scaling argument, we can assume 1 = 1.

We will construct f by regularizing the map #4.

Given x € X" and f: X — Y, we define

(2.7) B:=Bexp,,
on the ball 7B, (1), of radius 1 in the tangent space, T X .

Let ¢: [0, 1] — [0, 1] be a smooth function such that Cl[O, N=1,¢5,1
, 11<4, |¢"|<12. For x € TB (1), put

(2.8.1) (%) =¢(e”'d(0, %)).

Then

(2.82) Vx| <c(n)e",

(2.8.3) Vx| < c(n)e™?

Let dx denote the volume form for the pullback metric on TB (1). Consider
(for fixed x and small ¢) the function,

(29.1) y— fd (B(x), y) x,(%)dx.

If B(B,(¢)) C Bﬂ(x)(a), for some a < %, then the function in (2.9.1) is a
weighted average of convex functions on the ball, B 5(x)(3a) , and so, is itself
convex on this ball. Clearly, it takes a unique minimum at some Y, € B (2a)

By definition, y, is the center of mass of B, weighted by the function xe
Define the e-regularization of B, by

(2.9.2) B.(x):=y,.

We note that the e-regularization can also be defined for a continuous func-
tion, ¢, on TB, (1), satisfying (TB, (e)) C B, (a), by using the pullback
metric. We continue to denote the e-regularization of such a function by g, -
In particular, for those functions, f, as in (2.7), that are pullbacks we see by in-
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spection that the following crucial relation holds (compare [CG3, Lemma 5.3]).
On TB (1),

(2.9.3) (B), =8,

Now define
(2.10) f:=h,.

Since h is G-equivariant, it follows that f satisfies (2.6.5) and by a standard
argument, (2.6.4), (2.6.7) hold as well. However, (2.6.1)-(2.6.3) are not yet
apparent. 3

In order to prove (2.6.1)-(2.6.3), we will compare /, with an auxiliary func-
tion, k, on TB, (24). (From now on we just write k for k, .) The function k
has regularity properties like those that we are trying to establish for f. How-
ever, k can be constructed directly since it is locally defined, allowed to depend
on x, and not required to be the pullback of a function on B, (24).

The crucial point will be to show that k and / are c(n)ﬂ.z-close (see (2.11.1)).
This degree of closeness will imply that the regularity properties of 711 =f (by
(2.9.3)) are like those of k,. These, in turn, are like those of k, since k is
already regular. Finally (of course) the regularity properties of f and f are
the same. 5

A priori, it is only clear that k and & are c(n)A-close. This does not suffice
for our purposes since it leads only to a bound on V f and not to the assertion
that f is an almost Riemannian submersion. It is in establishing the required
closeness of k and A that the geometry of our setup enters (in essentially the
same way as in [F1, §3]); see Lemmas 2.16 and 2.19.

In the lemmas that follow, V denotes the Levi Civita connection of the
pullback metric on 7B (1).

Lemma 2.11. For all x € X", there is a function, k: TB_(2A) — Y’ , such that

(2.11.1) d(k, k) <c(n, A)A*,
(2.11.2) kisac(n)d '2_almost Riemannian submersion,
(2.11.3) |V?k| < c(n, A).

Lemma 2.12.
(2.12.1) k, is a c(n)A-almost Riemannian submersion.
(2.12.2) |[V?k)| < c(n, A).

Lemma 2.13.
(2.13.1) |Vf—Vk]|<c(n, A)A.
(2.132) |V2f =V’k)| < c(n, A).

Essentially, to get Lemma 2.13, we can estimate the ith derivative of the
regularization of (h—k) by A~' times the quantity in (2.11.1) (see (2.8)). Sim-
ilarly, the properties (2.12.1), (2.12.2) are consequences of the corresponding
properties (2.11.2), (2.11.3).

Indeed, Lemmas 2.12 and 2.13 would be standard in the familiar case X" =
R", Y/ = R’ . In the present context, their proofs are straightforward, if slightly
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tedious, exercises in advanced calculus. Hence, the proofs of these lemmas will
be omitted.

The proof of Lemma 2.11 will be given at the end of this section.

By combining Lemmas 2.12 and 2.13 we see that

(2.14) f is a c¢(n, A)A-almost Riemannian submersion if (2.6.2) and (2.6.3)
holds.

Clearly, we can choose W" > X| such that f ~Y(y) ¢ W is compact for all

yefwr.
We now prove (2.6.1).

Note that by (2.6.3), if some fibre, f _l(yo) , has diameter, ud , then for all
y€B,(3),
(2.15.1) dia (') > ¢ H(n, A)us .
In view of (2.14), it follows that for & < ¢~ '(n), at least
(2.15.2) ¢ (n, Apo™’
balls of radius J are required to cover f _I(By (1).

But from the existence of the d-Hausdorff approximation #, it follows that at
most

(2.15.3) c(n)é™’
such balls are required. Therefore we get
(2.15.4) c(n)e(n, A) > u,
which gives (2.6.1).
In order to prove Lemma 2.11 we will need two auxiliary lemmas (compare
[F1, F3]).

Lemma 2.16. Let X, Y be as in Theorem 2.6 and let o be a geodesic loop of
length | on p € X,. Let y be a minimal geodesic segment with %1 <L[y]<:
and y(0)=p. Then
/ / n -1 -1,1/2

(2.16.1) X(y (0), g (0) — 5 <cmax(lit ", (01 ).
Proof. By scaling, it suffices to consider the case 1 = 1.

The inequality
(2.17) 100, 0'0) 2 5 —cl

is a direct consequence of Toponogov’s theorem applied to the degenerate isoce-
les triangle with sides y, y, o.
On the other hand, put

(2.18.1) h(y(3)) = expy,(u)

and choose p’ such that

(2.18.2) d(h(p) , exp, (1)) <4 .

By Toponogov’s theorem, if ¢ is minimal from p to p’, then
(2.18.3) |2(£'(0), ¥'(0) —m| < 62
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By using (2.17) with { in place of y, we get (2.16.1) (compare [F1, §3]).

Lemma 2.19. Let X", Y’ be as in Theorem 2.6. Let 7y, 7, be minimal
geodesics in X" joining the point z to points q,,9, € X," respectively. Assume
that $1 < L[y,1 < 51 and that d(q,, q,) =1 << 1. Then

-1 —1,1/2
(2.19.1) 271(0), 7(0) < cmax(li™", (817)'"?) .

Proof. By scaling it suffices to consider the case 1= 1.
Write h(q,) = €XDp ;) ¥ and put y = exph(z)(—v) . Using the facts that 4 is

a J-Hausdorff approximation and that Y’ has bounded geometry, we find by
a standard comparison argument that

(220.1) d(h(ay), h(2)) +d(h(z), y) - d(h(4,), ) < ¢,(I + ).

(This quantity is the excess of the triangle with vertices k(q,), h(z),y.) Let
w € X be such that d(h(w), y) <. Then we have

(2.20.2) d(g,, 2) +d(z, w) —d(g,, w) < ,[(I + 8)* + J].

Thus, if 7 is minimal from z to w, Toponogov’s theorem implies
(2.20.3) X(%,(0), 7'(0)) > 7 — c;max(l, ') .

Similarly,

(2.204) d(q,,z)+d(z,w)—-d(q,,w) <36,

and by Toponogov’s theorem,

(2.20.5) X(#(0), 7(0)) > 7 —co'*.

Our claim follows from (2.20.3) and (2.20.5).

Remark 2.21. In the proof of Lemma 2.16 we used only the lower bound on
K ; compare [Y]. But in Lemma 2.19 we also use the two-sided bound on K, .

Proof of Lemma 2.11. Let e, ..., e; be an orthonormal frame at h(x). Pick
XpeX; € X" such that

(2.22) d(h(x,) , exph(x)(%ei)) <4,

Let x; € TX;' , with expxx; = Xx; and ¢ — exp, tx;, t € [0, 1], a minimal
segment from x to x;. For p € B (24), p' € TB,(2A) C TX,, put

(2.23.1) p,(p):=d(p,x) ,

(2.23.2) o, @) =d@p, x]) .

We claim that Lemmas 2.16 and 2.19 imply

(2.24) 16, — Pyl < i’

For the moment, let us grant this. Then if we define k by

1 / ’ . .
(225) d(exph(x)(—ei)’ k(p )) = px"(p ) s 1= 1’ RN

we get (2.11.1). Moreover, (2.11.2), (2.11.3) are direct consequences of the
definition of k.
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To verify (2.24), fix x; as above and let 7, be minimal from x; to x. Take
p' €TB (24) CcTX, and put p =exp, p Let y, be minimal from x; to p.
Let 3, be the lift of 7, running from xl to 0 C TX, . Finally, let 7, be the
lift of p, with initial point x;.

Since by Lemma 2.19,

(2.26.1) X(7,(0), 7,(0)) < ek,

it follows that the end point, p”, of 9, liesin TB (cA). Let ¢ be minimal
from p” to p’. Then we have
(2.26.2) L[6]< cA.

The projection of & is a geodesic loop, ¢, on p, of length L[o] = L[5]. It
follows from Lemma 2.16 that
(2.27)  X(a'(0), =¥, (D)) = X(8"(0), —¥5(]))

<Z+ch.

Using (2.26.2), (2.27), and a standard comparison argument, we get

(2.28.1) d(p', x;) <d®", x)) + (cA)(cA),
=d(p", x)+ 4.

Since
(2282) d(v', x)) = Px;(p') ,
(2283) (", %)) =5, () ,

this suffices to complete the proof.

Example 2.29. For a > 0, consider the annulus, a < r < 2, in R%. Let X
(where d =27 /N ) denote its quotient by the action of ZZ,, ; (r, ) (r, 0 +
27/N). Let Y’ be the open interval, (a, 2). Then the map A((r, 8)):=r isa
Riemannian submersion and a d-Hausdorff approximation. But no matter how
small we take J, the second fundamental form of the fibres has norm 1/r,
which blows up as a — 0. Clearly, no smoothing procedure will improve this
situation. This confirms the necessity of restricting f in Theorem 2.6 to points
that are far from 8X" (e.g.,to X 1) independent of how small we take 4.

The reader may also wish to verify Lemma 2.11 directly in the context of
this example.

For the application in §5, we will need the following sharpening of (2.6.2).

Let f be as in Theorem 2.6 and let v be a tangent vector at x € [~ 1(y) ,
with v orthogonal to f~'(y).

Proposition 2.30. There exists a geodesic y, with y(0) = x, y|[O0, %z] minimal,
and

(2.30.1) 1(/(0),v) <c(n, o172
Let t be the minimal geodesic from f(y(0)) to f(y(%z)). Then

(2.31.2) Y (df ), 70) < c(n, A6 H*.
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Proof. By Lemma 2.13, it suffices to verify the corresponding assertions for the
map k, for which they are clear by inspection.

3. EQUIVARIANT AND PARAMETRIZED VERSION
OF THE THEOREM ON ALMOST FLAT MANIFOLDS

The main result of this section is concerned with fibrations such as those
obtained in Theorem 2.6. To prove it, we show that one can canonically re-
move the dependence on the base point in the initial step of the proof of Ruh’s
theorem [R] (see also [Gh1]). Thus, initially we will be concerned with a single
almost flat manifold.

Let N be a nilpotent Lie group (which need not be simply connected). The
canonical connection, V", on the tangent bundle of N, is, by definition,
the unique connection that makes all the left invariant vector fields parallel.
Let N, « Aut N be the skew product of N, and Aut N (N, denotes an
isomorphic copy of N acting on N by left multiplication). It is easy to see
that this group coincides with the group, Aff(N, V®"), the group of all affine
transformations of (N, V®"). If A c Aff(N, V") is a subgroup whose action
on N is properly discontinuous, we can define the induced connection, V",
on the quotient space A\N .

Remark 3.1. The subgroups, N, and Ng, can be defined intrinsically, just
using the affine structure of (N, V*™"). The group N, is the kernel of the
holonomy homomorphism, i.e., the subgroup that acts trivially on all globally
parallel fields. The group N, is obtained by integrating these fields. On the
other hand, the subgroup, Aut N, can be described as the isotropy group of the
identity element, ¢ € N . Equivalently, it depends on a choice of base point
in the affine homogeneous space (N, V*"). Thus, the specific isomorphism,
Aff(N, V") ~ N, « Aut(N) depends on a choice of base points as well.

Let Z™ be an A-regular Riemannian manifold with A, =1 and diameter,
6 < &(m). In [R] Ruh observed that the results of [G] allow one to associate to
each point, z € Z™, a flat orthogonal connection, V?*, such that:

(3.2.1) For p, g€ Z™, there is a gauge transformation, g°’?, carrying V? to
vP.

(3.2.2) g7'7 can be chosen such that |g’’? — Ident| < c(m)d, |V'gP9| <
c(A4, i)d , where Ident denotes the identity element of the gauge group.

(3.2.3) Forall z, |V/(V*=V?)| < c(m, 4, i)6, where V- denotes the Levi
Civita connection of the underlying metric.

(3.2.4) The connection, V*, depends smoothly on z, (with estimates like those
above on derivatives with respect to z ).

(3.2.5) The holonomy group of V* has order < w,, (see, however, Remark
3.9).

Ruh went on to show that for some simply connected nilpotent Lie group,
N, and discrete subgroup, A C Aff(N, V"), with #(AN N, \ A) equal to the
order of the holonomy group, one can associate to each connection, V*, a gauge
transformation conjugating V* into a connection isomorphic to the connection
V" on A\N. The fact that A\N is actually the same for all z, follows from
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Malcev’s rigidity theorem, (see [Rag, BK] and Theorem 3.7).

We now show that by suitably averaging the family of connections, V7, we
can obtain a canonical gauge equivalent flat connection associated to the Rie-
mannian structure (and not depending on a choice of base point). The connec-
tion isomorphic to V", associated to this one by Ruh’s construction, depends
smoothly on the underlying metric and is automatically invariant under all of
its isometries. From this, the main result of this section follows immediately.

We now explain the averaging procedure. Let # denote the bundle asso-
ciated to the frame bundle, FZ™ , via the adjoint representation. Each fibre
of & has a natural group structure isomorphic to O(m). The gauge group
is the space of sections of #, equipped with the group structure induced by
pointwise multiplication. It has a natural action on FZ™, which commutes
with the action of O(m). Hence it also acts on the space of connections.

A connection, V, on FZ™ induces a connection on & . The group, K (v),
of gauge transformations fixing V is easily seen to be the group of parallel
sections of & with respect to the induced connection. Let .Z (V) C £ be the
bundle whose fibre at z € Z™ is gotten by evaluating at z, the sections of
K 0(V) , the identity component of K(V). Then Z (V) is canonically trivial.

Let g”'% be as in (3.2.1). Put
(3.3.1) g7%z2) =Y 2)kP(2)

= U@V
where V(z) is in the Lie algebra of Z'(V), and for all z,
(3.3.2) (U(2),V(z))=0.

The inner product in (3.3.2) comes from the negative of the Killing form. Since
g”’? is close to the identity, it is uniquely defined up to right multiplication by
an element of K°(V?). It follows that 4”*? is independent of the particular
choice of g”*?. Also, there is a unique choice of g”*? that satisfies

(3.3.3) [mV(z)dz=0,
where dz is the normalized Riemannian volume element, for which
(3.3.4) [mdz=1.
This is an immediate consequence of center of mass construction for the com-
pact Lie group KO(V); see [BK, §8].
Suppose g”?, g?'", g™ are normalized as in (3.3.2), (3.3.3). Put
(3.4.1) g»?=¢Yeh, gl =ele", g’ " =eYeh,
where V, € Z'(V), V,, V; € Z(V"). Assume
(342 UL VIl <n<<1,

Then since the product of elements in a Lie group that are close to the identity
is commutative modulo higher order terms,

(3.4.3) gp’ng’w =eUlgq’w(gq,'w)—leVlgq’w

Here,
(3.4.4) (g9") Mgt ¥ .= W
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Thus, ¥, € Z(V"). It follows that
(3.4.5) (U1 +U,, V,+ V{) =0,
(3.4.6) [,m(V,+V|)dz=0,
which easily implies that
(3.4.7) g% 7" =" +0(n").
For fixed w and variable p in (3.4.1), we write U, = Us(p), V; = V;(p).

Set
(3.5.1) g¥= el U@ dp  J, Vie)dp
By using (3.4.7), we obtain
(3.5.2) g%¢"" =" +0(n).
Hence, if we put
(3.5.3) Vi =g"(V"),
we get
(3.5.4) VI=VvV+0(n).
By iterating the above construction, we obtain convergent sequences, V‘l’ ,
V3, ... such that forall ¢, w
(3.5.6) V¥:=lim,_ V{=lm, V7

J—0o0 J—oo T
is independent of the base point and, in particular, invariant under the isometry
group of Z™.

We now turn to our main result, Proposition 3.6.

Let X", Y’ be A-regular Riemannian manifolds, with 4, = 1, and let
f: X" - Y bea {Cizl_’}-regular, l1-almost Riemannian submersion, where
C; = C,(n, A). (This normalization corresponds to that of Theorem 2.6 but no
assumption on inj rady , ¥ € Y/ is required here.) Assume that G acts on
X", Y’ by isometries and that f is G-equivariant.

Let V”'™C denote the Levi Civita connection for the induced metric on
f'(v). Suppose that dia(f~'(y)) <  and 1] < a”!, with ¢o1”' <
&(n), where ¢ =c(n, A) and &(n) is so small that f_l(y) is almost flat. Let
V”** denote the affine flat connection on f~'(y) obtained by applying the con-
struction of [R] (or [Gh1]) to the connection, V***, associated to V*''€ via
(3.5.6). Thus, (f~'(¥), V”**) is affinely diffeomorphic to some (A\ N, V")
with #(AN N, \ A) < w, (see, however, Remark 3.9).

Let y vary and regard, V” ’L¢ — v v _ " as tensor fields on
X", by putting V)¢ - v, =0, V) Le_ V), =0, for V orthogonal to
).

Proposition 3.6.
(3.6.1) V(v = V") < C,(n, A)61™ .
(3.6.2) |V/(VV® =V <C(n, 4)o1" .
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(3.6.3) If h € G, then h:(f'(¥), V'"*) = (A(f~'(¥)), V') is an affine
diffeomorphism.

Proof. By our previous discussion, Ruh’s method yields a family of affine flat
structures on the fibres and it is straightforward to check that the conditions of
the proposition hold. Each Z, is affine equivalent to some (A, \N,, ven.
Moreover, since affine structures of this type cannot occur in nontr1v1al famrhes
A \ N = A\N is actually independent of y. This is a weak generalization
of the second Bieberbach theorem (the uniqueness of the affine structure on a
compact flat Riemannian manifold; see [Char]). For completeness, we give the
argument (see, however, Remark 3.9).

A local trivialization of our fibration over an open neighborhood, U, of
y € Y, induces isomorphisms, Ay =m(Z,) ~ n,(Z,) ~ A, . The holonomy
homomorphisms vary continuously and, by (3.6.1), have finite image. It follows
that the identifications, A )~ A , respects the kernels, A n N A n N of
the holonomy homomorphlsms These are cocompact subgroups of the groups

N By a theorem of Malcev the isomorphisms A nN )~ A nN extend

umquely to isomorphisms, N )~ Ny .
Theorem 3.7 (Malcev). Let N,, N, be simply connected nilpotent Lie groups
and A C N, a cocompact subgroup Then a homomorphism from A, to N,
extends umquely to N;.

Now the following consequence of the affine center of mass construction for
Lie groups [BK, §8] implies the asserted rigidity of (A, \ N,, V).

Proposition 3.8. Let h,: G, — G, be a continuous family of homomorphisms
of Lie groups such that for some subgroup H c G,, of finite index, h|H is
mdependent of t. Then there is a continuous map, t — k, € G, such that

h, = k,hokt_ .
Proof. It suffices to consider ¢ so small that the affine center of mass, k,, of

the finite set {h, 'h 0(&)|lg € G,} is defined. As in Proposition 8.1.7 of [BK],
this choice of k, has the requrred property.

Remark 3.9. The results of this section and the next will be applied in §7 to
the local fibrations of the frame bundle constructed in §§5, 6. In that case, one
actually has A C N, ; equivalently, the connection V" on A\N is globally flat
(see §7 and Appendix 1). Thus, Proposition 3.8 and the argument given in the
proof of Proposition 3.6 are not needed for the construction of the nilpotent
Killing structure.

4. NILPOTENT KILLING STRUCTURES ON FIBRATIONS

Let Z — XLY be a fibration acted on isometrically by a compact group
G, such that the assumptions of Proposition 3.6 hold. By Proposition 3.6, each
fibre carries a flat affine structure isomorphic to some A\N.

Let N, AfR( N)A and C AfR( N)A denote respectively the normalizer and centralizer

of A in Aff(N). Then
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(4.1.1) Af(A\N) = (NgA)/A
and since A is discrete,
(4.1.2) A(A\N) = (CgmA)/A,

where, Aff° (A\N) C Aff(A\N) denotes the identity component. Also, ANN, C
N, is cocompact. Thus, by Malcev’s theorem (3.7),

(4.1.3) CagnyA € Cageny Ny -

Moreover,
(4.1.4) Np= CAE(N)NL ={(t, Ad-1)}

is just an isomorphic copy of N acting by right translations.
The identification Ny = CAH( N)NL depends only on the affine structure of

the affine homogeneous space, (N, V") ; compare Remark 3.1. However, an
explicit isomorphism, N, ~ N,, or equivalently the representation N, =
(¢, Adt_.) , does depend on a choice of base point (which can then be viewed
as the identity element, e € N ). More generally, corresponding to each normal
subgroup, B, C N, , there is a well-defined isomorphic subgroup, B, C Np.
Again, a specific isomorphism, B, ~ B, depends on a choice of base point.
Now let V' be a locally defined right invariant vector field on a neighborhood
WcZz,. As in §3, we can find a local trivialization ¢ : U x Z — X (over a
small neighborhood U of y ), with respect to which the affine structure on the
fibres is constant. Such a trivialization is unique up to a map U — Aff 0(A\N ).

Since the group Aff 0(A\N ) is contained in Ny, it follows that this group
acts trivially on local right invariant fields. Thus, V' has a canonical extension
to ¢(U x W). In this way, we obtain a sheaf n, of nilpotent Lie algebras of
vector fields on X and an action of the associated sheaf n, of simply connected
nilpotent Lie groups.

The action of G extends in an obvious way to an action on n and the actions
of n and G on X commute in the obvious sense. In general, the action of
a group on a sheaf is called locally trivial if for each open set U, there is a
neighborhood, W, of the identity in G such that forall g e W,

(4.2) Pginu,e)8 = Pgwnu,u -
Here, p, , denotes the restriction map from 4 to B.
Now the same sort of argument as was given above yields

Proposition 4.3. The action of G on 1 is locally trivial.

In case G acts freely, it follows directly from Proposition 4.3 that there is
an induced sheaf, fi, on X/G (see §8 for the detailed discussion).

We now discuss the quantitative behavior of the local right invariant fields
constructed above. This requires a more explicit description of a local trivial-
ization in which the affine structure on the fibres is constant.

Let V' be a tubular neighborhood of a fixed fibre, Zy , such that the nor-
mal exponential map of Z provides a local trivialization ¢ : U x Zy -V
(where (U x Zy) is the union of all fibres contained in V). By the proof
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of Proposition A2.2, the normal injectivity radius of Z is bounded below by
¢(n, A)min(z, d(y 8Y)).

Let p, = o', 2)) € Z, . The universal covering space, v, b)), is fi-
bred by universal covering spaces (Z , p ). The covering groups of all of
these spaces are canonically isomorphic to A Let Aﬁ‘(Z . V) denote a group
of affine automorphlsms of Z . w1th respect to its canonical flat affine con-
nection, V. Let N, ( ) C Aff( ) be the correspondlng canonically de-
fined subgroup Then (up to natural 1somorph1sm) for all y', we can regard
AcC Aﬂ‘(Z V).

By Malcev’s theorem (3.7), there is a unique affine equivalence W, Z —
Z , such that
@a) vy (35,) =5,
and for all 4 € N (Z,) (or equivalently for all € AN N.(Z,)),

(4.4.2) YA = Ay, .

Given that such an affine equivalence exists, it is explicitly determined as
follows.

By integrating the leAft invariant fields (i.e., the parallel fields for V") we
obtain the group NR(Z ), and hence, the right invariant vector fields. By
integrating these, we obtain the group N, (Z ).

Fix Ale ANN ( y) = AN NL(Z ). For each ', there is a unique integral
curve, ¢, ;, of a certain right invariant vector field on Z +, such that ¢, 4(0)=
py: €y () = ¢, () = /1(p '). Here ¢, is 1ndependent of y'. Smce v, is
an afﬁne equlvalence satlsfymg (4 4.1), (4.4. 2) we get

(4.5) dy,(c, ,(0) = ¢y 20) .
Clearly, the collection of vectors, { 1(0 }, spans the tangent space at p,.
Thus, (4.5) determines the linear map, d ¥, . Then w, itself is determmed
by the condition that it map a given right invariant field on Z to the right
invariant field on Zy, to which it corresponds under d v, .

Now for all y we have inj rad > ¢(n) > 0; see [BK, Proposition 4.6.3]. On

the other hand, the points A(y) are c(n, A)o-dense in Z'" Thus, we can find

Ays ..., A, such that

(4.6) ¥(c) 5, (0, ¢, , (0) = 5| <c(n, A)5 .

From the preceding explicit description of v, , together with Proposition 3.6
and standard bounds on the local tnvrahzatron ¢, we readily obtain

Proposition 4.7. Let w be a right invariant field on VB, 5(20), with lw(p)| = 1.
Then _ ‘
(4.7.1) |V'w|<e(n, 4, i)',



NILPOTENT STRUCTURES AND INVARIANT METRICS ON COLLAPSED MANIFOLDS 349

We now construct a canonical (and hence G-invariant) invariant metric for
the action of N, on U, or equivalently for the action of n on X/G (in case G
acts freely). Given such a metric, it is obvious that the action of n determines
a nilpotent Killing structure (see Definition 1.5).

We have #(ANN, \A) < w, . Thus, it is clear that we can reduce to the case
ACN,.

Let v be a tangent vector at p € V and let ( , ) denote the pullback to
V, of the original metricon V. Let h € N, ; and let hv denote the image of
v under the differential of 4. Then, the function, # — (hv, hv), is constant
on the left cosets of A. Since the group N, is nilpotent, it is unimodular.
Therefore, the space A\N inherits a canonical invariant measure du, of total
volume 1. The metric,

(4.8) @, v)= [ tho, hopdp,
N /A
is invariant under N, and pushes down to the required metric on V.
Clearly, our construction is ingependent of the choice of U and of the choice
of base point used to define V. Thus it gives a canonical (and hence G-
invariant) metric on X , which is invariant for the nilpotent Killing structure.

Proposition 4.9. The original metric, { , ), and invariant metric, ( , ), sat-
isfy
(4.9.1) [V'((, )=(, Nl<ecn, 4, oM,

Proof. The estimates on left multiplication that follow immediately from (4.7.1)
yield (4.9.1).

Remark 4.10. Note that the right-hand side of (4.9.1) is small provided ¢ is
small relative to '*!.

Remark 4.11. One can also construct an equivariant right action on X ; it gives
rise to the nilpotent collapsing structure. The construction, which will be carried
out elsewhere, does make use of the invariant metrics on fibres.

III. THE NILPOTENT KILLING STRUCTURE AND INVARIANT ROUND METRIC

5. LOCAL FIBRATION OF THE FRAME BUNDLE

In this section we begin the construction of the nilpotent Killing structure by
constructing local fibrations of the frame bundle.

Let M" be a complete A-regular Riemannian manifold. A standard compu-
tation shows that the frame bundle, F M" , with its natural metric, is B-regular
(for B=B(A)).

For fixed n and A, put
(5.5.1) F={FB,(2)| M" is A-regular} .

Note, on the right-hand side of (5.1.1), M" is not fixed. (Also, we could replace
2 by any fixed R > 0 in (5.1.1)). Let €F denote the closure of § with respect
to the O(n)-Hausdorff distance, d,,. Then by [F3], €F consists of B(n, 4)-

regular manifolds, Y'. It will be convenient to assume that 4 is normalized
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such that 4, By(n, A) < 1. The induced action of O(n) on Y'is D(n, A)-
regular but need not be free.
Put

(5.1.2) €5, :={Y’ € ¢§ |dim ¥’ = j}.
Then €§F =1 ; (1304 i determines a stratification of €F. This fact, although we

do not use it explicitly, puts our constructions in a natural context.
Clearly, €3 ; is empty for j > n+ 1("2—_12 . One can also show that ¢F ; is

empty for j < ﬂ"z;ll = dim O(n); see Appendix 1. Again, we do not use this.
It follows from [GLP, §8] (together with [CGT, Theorem 4.3]) that there is
a positive function, ¢(d, n), with ¢(d, n)/é increasing, such that if

(5.2.1) Y] eeF,,
(5.2.2) inj rad, < min(¢(d, n), d(v, BYlj‘) for some y € Y’I
then there exists Yzj2 € CF i, with
(5.2.3) J, <j.l’ ‘
(5.2.4) dH(YI’l , Y2’2) <d.
From now on we suppress the dependence of ¢ on n.
Put 1, = 1. Let 1, >0 > - >, 00, and 1 > ) > > -+ >
J, )2 be positive sequences, such that for j > 1,
(5.3.1) ¢7'(1)+6;,<6,_,
Relation (5.3.1) can be satisfied by taking
(5.3.2) 1, -¢<;6, D,
(5.3.3) ¢ < 5
In this and subsequent sections it will be necessary to assume that 5 is small
enough relative to 2 such that certain additional conditions are satlsﬁed
Proposition 5.4. Let F Bp(l) € F and let j be the smallest number such that
there exists Y’ € ¢F ; with

(5:4.1) dy(FB,(1),Y) <4,
Then for any such Y’ and yeY
(5.4.2) injrad, > min(1;, d(y, oY’y).

Proof. Note that since d,(FB ,(1), FB ,(1)) = 0, the set of Y’ satisfying
(5.4.1) is nonempty. If (5 4, 2) failed to hold, then by the definition of the
function ¢, we would have

(5.5.1) dy(Y/, ¥/ <is,_,

for some Ylj' with j, < j—1. Then by (5.3.1) and (5.4.1), it follows that
(5.5.2) dy(FB, (1), Y]") < dH(FB ( ) Yj) + dH(Yf, Y/
which is a contradiction.
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Fix A =A4(n) < 1 to be determined in §§6, 7.

Proposition 5.6. Let p. € M", s =1,2, with j, < j,. Let Y satisfy (5.4.1)
with j. minimal for p . Then there exist

(5.6.1) f:FB,(1)— Yk,

(5:6.2) f, ,: ,(FB, (1)NFB, (1)) - Y],

such that

(5.6.3) f, satisfies (2.6.1)—(2.6.6) with 1 = L 0= 51'1 , A=A(n);
5.6.4) f, , satisfies (2.6.1)-(2.6.7) with A =17", 8 =c(n, 4)5,/*;

(
(5.6.5) d(fl,ZfZ’ f) <cen, A)Azjl ;
(5.6.6) |V(fl,2f2) -Vfil<c(n, A)A.

Proof. The existence of the fibrations, f, satisfying (5.6.1), (5.6.3) follows
from (5.4.1), (5.4.2).

Using (2.4.3), (2.4.4), we construct an O(n)-equivariant Hausdorff approxi-
mation, 4, with domain f,(F Bp. (H)NF sz(l)) and range in Ylj !'. By regular-
izing h, we obtain f],z satisfying (5.6.2), (5.6.4), and (5.6.5). Finally, (5.6.6)
follows with the help of Proposition 2.30.

Remark 5.7. Thesets F Bpl (HNF sz (1) are not necessarily of the form fl_l u))

or (f, fz)_l(Uz) and hence, are not unions of compact fibres. To obtain actual
fibrations we must restrict the domain of a map, f,, to the set consisting of all
compact fibres whose intersection with F Bp (%) is nonempty. This is a slightly
smaller set. We will deal with this (minor) E)oint when it arises in the proof of
Proposition 6.1. But in the meantime, to simplify notation, we will continue
to refer to “the fibration f,.” More importantly, the maps, f,, f, are not
necessarily compatible in the sense that the fibres of f, need not be unions
of the fibres of f; . Equivalently, f| 2 f, # f in general. However, by (5.6.5)
and (5.6.6), f,, f, are almost compatible. This together with the results of
Appendix 2, will be used in §6 to construct a collection of local fibrations of
FM" that are compatible in the above sense.

Remark 5.8. The smaller the numbers, J IE the more difficult the condition

(5.8.1) dy(FB,(2),Y) <,

is to satisfy. In particular, the subsets of elements of §, for which there exists
a nontrivial fibration also gets smaller.

Remark 5.9. If we fix ¢ = 1 in Theorems 1.3 and 1.7 then we can work with
a fixed sequence that is small enough for the arguments of subsequent sections
to go through. But if we let ¢ — 0, then necessarily 6j — 0 as well. As a

consequence, for ¢ very small, our structure will be nontrivial only on the part
of M" that is very collapsed.
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6. MAKING THE LOCAL FIBRATIONS COMPATIBLE

Let M" be as in §5.

The fibrations constructed in this section will be obtained by slightly modi-
fying those constructed in §5 and restricting their domains. After this has been
done, to simplify notation, we will continue to denote the modified fibrations
by f,, f, , and their base spaces by Y”

Let A = A(n) < 1 be a sufficiently small constant. The constraints on A(n)
will be determined in the course of the proof of Proposition 6.1. These and
the constraints entailed in the analogous constructions of §7 allow us to fix the
values of A(n). We will assume without further mention at the end of §7 that
this has been done.

Let b:[0, 1] — [0, 1] be an increasing function, with b(u) < u

Proposition 6.1. Given b, there exists a decreasing sequence, ,=1(b,n,4),
such that the following holds. There is a covering, M" =U,B, (£). and O(n)-
equivariant fibrations,

(6.1.1) f:FB,(4)— Y%,

such that for y € Yjs

(6.1.2) injrad, > min(y; , d(y, aY’)).

Moreover, if B, (5) n Bp,(f) # 9, j; < J,, then there is an O(n)-equivariant

fibration,

(6.1.3) f ,: f(FB, (3)NFB,(3)) — f(FB, (})NFB, (3)),

such that

(6.1.4) f .f,=f.

The fibrations, f,, satisfy:

(6.1.5) dia(f'(»)) < b(1,).

(6.1.6) f isa c(n, A)A-almost Riemannian submersion.

(6.1.7)  f, is {C,(n, A)z]l._'}-regular.

(6.1.8)  |I—1,| <c(n, Ay}

(6.1.9)  The maps fs’t satisfy (6.1.5)-(6.1.8).

(6.1.10) The (compact) fibres, fs_l(y), fs_tl (y) are diffeomorphic to nilmani-
folds.

Proof. The fact that the fibres, fs_l(y) s J t(y) are diffeomorphic to nilman-
ifolds (and not just mframlmamfolds) was mentioned in the introduction and
is explained further in §7 and Appendix 1.

Pick a maximal collection of points, P, , such that for all s, ¢,
(6.2.1) d(p,,p)> &
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In particular,
(6.2.2) M" = U, BP:("I%)’
Fix a decreasing sequence,
(6.3.1) 09 >0, > >0, 1uni1yy2>
to be determined later. As in (5.3.2), define
(6.3.2) 1= ¢(%(5j_l).
Relative to the sequence {J j} , choose for each p_, a fibration,
(6.3.3) f,: FB,(1) > Y},
satisfying (5.4.1) with j minimal. Let the corresponding fibrations, fs,t be as
in Proposition 5.6. We can assume that {J ;} 1s such that (6.1.9) holds.

In order to make it clear that when we repeatedly modify our fibrations,
approximately compatible fibrations do not eventually become too far apart,
we use a technical device.

As in Lemma 2.2 of [CG1], we partition the set {p .} into disjoint subsets
Siseens SN(n) , such that if p_, p, € S, , then
(6.4.1) d(p,,p,) > 4.

In particular, those balls, B, (1) whose intersection with a fixed ball, B, (1) ,

is nonempty, all belong to dlﬁ'erent subsets, S, . Thus, there are at most N (n)
such balls.
Put

(6.4.2) S, ={p, €S 1j;=J}-

There are T(n) = N(n)(n + 1 + 2&) of the Sy, » some of which might be
empty. Put

k+N(n)j
(6.4.3) S, ;=8N

Note that if $* = Sk(a) i

(6.4.4) o <a' implies ](a) < j(a).
Also, p € 8%, f: Bps(l) — Y/s, implies

(6.4.5) j, =j(a).

In order to make our fibrations compatible, we now modify them in a total of
T (n)-stages, one for each S”. Each stage, say a, , 1s divided into (2T(")_"°_l)
steps, one for each nonempty subset, (a,, ..., ,), with o5 < a; < --- <
a, < T(n). Thus, there are N'(n) = 2""~' —(T(n) — 1) steps in all. (The
order in which the steps are performed is specified below.)

At a given step we must also decrease the radii of the balls involved by a
definite amount. The notation is simplest if at the end of each step o, we
actually decrease the radii of all balls (i.e., with centers p,, p,, p;, ... ) by an

amount Z_JV}W . Thus, at the beginning of a given step, every ball has radius,

r=1- W}m x the number of steps already peformed.

, then
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Note that since at each stage we decrease the radii of our balls by exactly
517}?7) we certainly want A = A(n) < ﬁ‘rm .
Atstep (o, ... , a,) of stage @, , we modify only the fibrations fi, ,1<I<

m, and fi, i, 1 <, <, < m, over sets of the form FB, (r)n---NFB, (r)
1°°h io im
(respectively fi, (FB, ()n---NFB, (r))) where p; € S™ . Note that for
2 ‘o ‘m

certain (a,, ..., a,) (e.g, unless S, ..., S all belong to distinct S,)
there will be no such nonempty intersections. However, if at any step there are
no nonempty intersections, we simply decrease the radii of all balls by ﬁ‘r(T

)
and proceed to the next step.
Now we can explain the reason for introducing the sets S, . If 15:‘, € S™ and

A

(p,.0 ey ﬁim) is distinct from (pio Y eees pim) then (by construction)
(6.5) (FBp (r) n---NFB, (r))n (FBﬁ (r) n---NFB, (r)=2.
ip im io im

This guarantees that the various modifications performed at step (@, ... ,a,)
of stage a, do not interact with one another (and that a given fibration is
modified at most N'(n) times). As a consequence, fibrations that are initially
almost compatible do not grow uncontrollably further apart as the construction
progresses.

It is important that in carrying out the modifications, the stages are arranged
in descending order; i.e., we start with stage 7'(n), then pass to stage T(n)—1,
etc. It is also important that the steps of stages a, are arranged as follows. First
we do step (ay+ 1, a5+ 2, ..., T(n)). Then, in some (arbitrary) order, we
do the steps corresponding to subsets of (@, ..., a,) of cardinality, T'(n) —
a, — 1; then, in some (arbitrary) order, the steps corresponding to subsets of
cardinality T'(n) — a, — 2, etc.

Let 7 be the common radius of all balls at the beginning of step (a,, ... , a,,)
of stage o, . At the beginning of this step, we can assume by induction that the
following holds.

Let o > o, and let (o), ..., a,.) be a step of stage a, that has already

been completed (automatic unless ay = oy, m' < m). Let p, €87,0<I'<
p;,

m'. Then for 0 </, < I, < m', our (previously redefined) fibrations satisfy
(66.1) £, f,, =f, onFB, (N\n---nFB, (r).
2 1 =ig Zipy

In addition, we can assume by induction that for all s, ¢, u with Js<J, <
Jus
(6.6.2) dia(£'(»)), dia(;;() < c(n, 4)3, .
(6.6.3) f, f; , are c(n, A)A-almost Riemannian submersions.
(6.6.4) f, [, , are {Ci(n, A)tj_l}-regular.
(6.6.5) d(f, ,f, , f)<c(n, A)lzj:.
(6.6.6) |V(f, f)—V/f|<c(n, AA.
(6.6.7) d(f; Jy. 4» f; ) Sc(n, A)/lljs.
(6.6.8) V(S ;) = VS ul Scln, .
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We now define certain O(n)-equivariant self-diffeomorphisms
(6.7.1) v, :FB, (N —FB, (r), 1<I<m
Yl Yl
and
(6.7.2) &;: f,(FB, (1)~ f,(FB, (1)), 1<l<m.
(We suppress the dependence of these maps on (e, ... , a,,).) Eventually, we
will redefine fi, to be
(6.7.3) é;lfilc//il , 1<i<m,
and redefine f. i, 1o be
2

(6.7.4) é—lf'l i, 12, 1<l <L <m.

Until this is done explicitly, f, , f. iy retain their previous meanings.
We now use Proposition A2 2 to construct the diffeomorphism v, - (Re-

marks similar to those that follow also apply to the construction of the diffeo-
morphism é below). Since Proposition A2.2 holds for fibrations with compact

fibres, we ﬁrst restrict the map f; i (which is used in defining the various v, )
to the subset of FB, (r) n---NnF B (r) consisting of the union of all compact

fibres of f The set contams (F B ( )N--NFB, (1)) ;) (the notation
m ’ J(ag

is as in (2. 3))
In view of (6.6.3)-(6.6.6), by Proposition A.2.2 we can find an O(n)-equi-

variant map, ¥ (= Vi i, ) such that:
.

(6.8.1) y is a self-diffeomorphism of FB, (r)n---NFB, (r).
(6.8.2) w is the identity near the boundary0 "

(6.8.3) fio,i.(fh'//) =fi0 on FB, (r )ﬂ nFBP.-,,,(r T (n))
(6.8.4) y is the identity on the subset of
FB (r N n)) -.nFBpim(r 2N(n)

on which f"o»i.fil = f'.0 .
(6.8.5) d(y,Ident) < c(n A)).zj(a )
(6.8.6) |Vy —Ident| < c n A)A.
(6.8.7) w is {C(n, A) } -regular.
Define v, as in (6.7.1) by

{ w(x) x€FB, (nn---nFB, (r),

V)= & x¢FB, ()n---NFB, (1)

Y

We now define the diffeomorphisms, ¢, .

In view of (6.6.3), (6.6.4), (6.6.7), (6.6.8), by Proposition A2.2, we can find
an O(n)-equivariant map, éi, (I > 2) such that:

(6.9.1) éi, is a self-diffeomorphism of fi, (FB, (nn---NnFB, ().
‘o 'm
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(6.9.2) ¢& i is the identity near the boundary.
(6.9.3) f f, z,f —fio,i: on fi/(FBP,-o(r z—m)n -NFB, (r o (n)))
(6.9.4) é:, 1s the identity on the subset of

fi (FBp. (r— 2N1’(n)) ﬂ-'-nFBpim (r— 2Nl’(n)))

on which fl llf N =fio’,.[.
(6.9.5) d(¢; i) Ident) < c(n A)ltj(a X
(6.9.6) |V§ —Ident| < c(n, A)A.
(6.9.7) é is {Ci(n, A)l,(a )} -regular.
Extend é to all of f (FB, (r)) by defining it to be the identity map off
f (FB (r) n ‘NFB, (r)) Also define é to be the identity map.
We now examine the effect of modifying f , f 0y asin (6.7.3), (6.7.4) on

our induction hypotheses.
First of all, it follows from (6.6.1), (6.8.4), (6.9.4) that v > ¢, isequal to the

identity over the subset of F B, (Nn---nFB, (r) that intersects any FB, (r),
lo ll 1
where p; € s# , B>ay, B#a,,...,a, . Moreover, the corresponding state-
ment holds for éi, . As a consequence, in examining the effect of the proposed
modifications on (6.6.1), we can assume that a, = «, , for some o, € §%,

u =1, 2 (since otherwise, nothing changes).
Next observe that for 1 </, </, <m,on FB, (r)n---NnFB, (r), by

(6.6.1) we have o
(6.10.1) (5 'r

i ‘1

§)E v ) =8 h

iy >,

- éill f;ll v
-1
B (éill f;’l Will)
(while outside FB, (r)n---NFB, (r), the maps y, , ¢, are the identity).
Now by construcgion, "
—1

(6.10.2) ﬁO’il(éil f:~|'/1i1) =f,~0 on FB (r 7% n)) ...nFBpim(,. 5 n))
(recall éil is the identity map).

Finally, for / > 2, by (6.6.1), on FBP.-O(r - _TZNl(n)) N---N FBPi,,, (r— —"_2Nl(n)) >
we have
(6.10.3) & ) =1 GE v
= fy i,
=t i ¥

igs

=in,
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Thus, if we redefine the maps fi,’ 1</<mand fi, , f,.l , 1< <, <m
as in (6.7.3), (6.7.4), then the part of the induction h‘ypotﬁesis corresponding
to (6.6.1) holds (here, of course, r is replaced by r — WI(T) ). Moreover, it is
straightforward to verify that the redefined maps satisfy the induction hypothe-
ses corresponding to (6.6.2)—(6.6.7). This completes the step (o, ... , @,,).
By taking A = A(n) sufficiently small and each ¢ ; of our sequence sufficiently
small relative to i B relations (6.6) guarantee that when the whole modification

process has been completed, the resulting maps will satisfy the conditions of
Proposition 6.1. This completes the proof.

Remark 6.11. Examination of the proof of Proposition 6.1 shows why we stated

Proposition A2.2 in such a way that a bound on the Hessian of only one of the

maps in the proposition is required. For example, the Hessian of the map, fi, R

and hence of the map, f,.o, I/ used in defining y , is bounded by a constant

times 1! , rather than by ! , as is the case for the map f, . Note that
Jlay) ) i

zj_(ll) >> lj—(io) , if j(ay) < j(a,). Also, care had to be taken in choosing the

method of redefining the maps fi, R fi, i\ in order to ensure that control over
. ‘ I ,‘ 2 . .
Hessians of relevant maps was not lost in the induction process.

Remark 6.12. By §§3, 4, the fibres of our maps, f,, carry canonical affine struc-
tures. However, the inclusions of fibres implied by (6.1.4) (namely, j:_l(yl) C
fs_'(ys) , where y, € fs_l1 (¥,)) need not be compatible with these affine struc-
tures. Arranging this is the subject of §7. However, if we pretend that it is

already the case, then Proposition 6.1 summarizes much of what we aim to
accomplish in this paper.

7. MAKING THE LOCAL GROUP ACTIONS COMPATIBLE

In this section we complete the construction of the nilpotent Killing structure
on the frame bundle.
By §6 we have a mutually compatible system of maps,

Iy s
(7.1) zZ - FBPS(%)—J’; ,

such that M" =J, Bps(%)v. As pointed out in the proof of Proposition 6.1, to
obtain actual fibrations with compact fibres, we must replace the sets F Bp:(%)
in (7.1) by slightly smaller sets, i.e., the union of all compact fibres intersecting
F Bp:(%) . This is to be understood (sometimes without explicit mention) in
what follows. We denote by # the fibration corresponding to (7.1).

By §3, each fibre, Z_, carries a canonical flat affine structure, affine isomor-
phic to some (A, \ N, , V"), and a canonical metric, whose image under such

an isomorphism lifts to a left invariant metric on N, .
In our case, we actually have

(7.2) A, C(N,), C Af(N,, V")
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(and not just #(A N (N,), \ A)) < w,). This follows from the fact that short
closed loops on the frame bundle of an A-regular Riemannian manifold (in this
case Z ) automatically have small holonomy (compare [G, R] and Appendix 1).

If Bps(%)an‘(%) is nonempty, then (say) each fibre Z, of .# is contained in
some fibre, Z_ of 5‘; . However, this inclusion need not be compatible with the
affine structures. We now show that &, lies close to a unique O(n)-equivariant
subfibration, #' of 7, such that the tangent bundle to the fibres, TZ/,isa
totally geodesic sub-bundle of (7Z , V*"). Given this and an argument that
replaces Proposition A2.2, the constructlon of the nilpotent Killing structure
can be completed by arguments like those in §6. Specifically, we will obtain
modified fibrations such that on nonempty intersections of their domains, the
inclusions of fibres are compatible with affine structures. Then we construct
nilpotent Killing structures and invartiant metrics as in §4.

For each fibre, Z of 7, there is a fibration

(1.3) Z,—~Z,—W.

Using the fibration in (7.3) and the affine structure on Z, , we will construct
for each Z_, a fibration,

! /
(7.4) Z,-Z —-W,

which has totally geodesic fibres and that lies close to the one in (7.3). Then we
define the fibration 97 to be the one whose fibres are all Z in (7.4) (as Z_ in
(7.4) varies).

Let Z be the universal covering space of Z, . Although a specific choice of

Z is gotten by choosing a base point, the construction of 5" that follows will
not depend on the particular choice of base point. Thus, our construction will
automatically be O(n )-equlvarlant

Write Z = A \Z and let =: Z — Z . The group n,(Z,) does depend on
a choice of base pomt However, the ex1stence of the ﬁbratlon in (7.3) implies
that

(7.5) i(n,(Z,) == A, C A,

the image of 7,(Z,) under the map induced by the inclusion, Z, — Z_,
well-defined normal subgroup.

Lemma 7.6. The map n,(Z,)5n,(Z,) is an injection.

Proof. Let Z_, Z, be the fibres of f,» 1, respectively. Then W is a fibre of
f; ;- Hence, by (6 1.10), W is almost flat, and, in particular, aspherical. Then,
by applymg the homotopy sequence for fibrations to the fibration in (7.3), our
claim follows.

Let ¥V denote the pullback to Zs , of the flat affine connection on Z, . Then
5 — can
(7.7) (Z,, V)= (N, V™),

where we view N as an affine homogeneous space; i.e., we do not distinguish
a base point. We regard the invariantly defined subgroup (N,), as contained
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in Aff (ZAx R 6) ; compare Remark 4.2. Then
(7.8) A, C(N),.
By Malcev’s theorem (3.7), there is a unique simply connected subgroup,
(7.9.1)  (N),C(N,),,
which contains A, as a cocompact subgroup. Since A, C A, is normal, (Nl' ). C
(N,), is normal as well. Define A; DA, by
(7.9.2) A=A N(N)),.
We will show in Lemma 7.13 that, in fact, A] = A,.

Let the fibration, Zt' - Z — W', in (7.4) be the one whose fibres are the
orbits,

(7.9.3)  Z =A)\(N),(2),

where z € Zx (compare Remark 3.9). Then the fibration, % ", is as specified

after (7.4). We now show that this %' is close to %, over Bps(%) NB,(3).
Note that Lemma 7.6 already implies
(7.10) dim Z, = dim Z,.
By (6.1.8),
(7.11.1) |11, gc(n,A)z;‘,
while from (3.6.1), (6.1.5), and (6.1.8) we get
(7.12.2) L] < e(n, 4)(b(1)) zjf + 1].:1) < 2¢(n, A)zjzl ,
(where zj:l < 1;l and j_, j, are as in §6).
Now suppose
(7.12.1) b(u) < 6u,
so that
(7.12.2) b(lf,) <01,
where 6 = 6(n, A) is a small constant. Then we obtain

Lemma 7.13. (1) There exists c*(n, A) > 0, such that the normal injectivity
radius of a fibre Z, is bounded below by min(c"(n, A, d(Z,, 0(dom%)).

(2)If Z,, Z, are fibres of &,, &' passing through z, then
(1.13.1) d(Z,, Z)) < Le(n, A)0*(n, A, .

(3) For 8(n, A) sufficiently small, if d(z, 8(dom(9:))) > c*(n, A)ljl , then
normal projection onto Z, defines a diffeomorphism from Zl' to Z,