
MAT 539 Algebraic Topology Spring 2004

G E N E R A L  I N F O R M A T I O N

Description and goals: This is a first course in algebraic topology and will cover basic material, i.e. the
elements of homotopy theory, homology and cohomology. The subject is vast, and it will be impossible to
do everything. I have decided to use the book by Aguilar, Gitler and Prieto that defines the homology and
cohomology groups of a space X in terms of the homotopy groups of an associated space SP(X), the
infinite symmetric product. This means that the first half of the course will be almost exclusively about
homotopy theory: we shall have to delve quite deeply into this, in particular proving the Dold--Thom
theorem about quasifibrations, to have enough tools to prove the basic results on (co)homology. Thus
students should get a good understand of homotopy theory. There should also be time to establish the
main properties of homology and cohomology, including the multiplication on cohomology. If there is
more time, students will decide with me what direction to go in: we could do more homological algebra
(eg universal coefficient theorem), we could discuss spectral sequences, or K-theory. Here is a
preliminary syllabus. 

Class Assignments: There will be weekly homework assignments, posted on this page. You are
expected to hand in one or two problems each week to be graded. I will be out of town during the last
two weeks in March and so will miss four classes. Students will be divided into four groups, each
reponsible for preparing one of these classes. I will give you topics and work with you on this assignment,
and will arrange for a faculty member to attend the classes. Each student will write up a portion of the
lecture material and hand it in so that I can see it as well. There will be no final exam. Grades will be
based on the assignments and class participation. 

Prerequisites: I will assume that students know the material in MAT 530/531. Of special relevance are
the following concepts: homotopy of maps, the fundamental group and covering spaces. An excellent
preparation for the class would be to read Chapters 0 and 1 in Hatcher or the introduction and chapter 1
from Aguilar, Gitler and Prieto. 

Professor: Professor Dusa McDuff.
Office Hours: Mon 1-2, Wed 11-12 and by appointment.
Office: 3-111 Mathematics Department. SUNY at Stony Brook.
e-mail: dusa at math.sunysb.edu.

Grader: Yasha Savalev.
Office Hours: Th 5-6 and by appointment 
Office: 3-101 e-mail: yasha at math.sunysb.edu.

H O M E W O R K S

All documents posted in this section are in PDF format. 

Homework 1(updated) Solutions
Homework 2(updated) Solutions
Homework 3 Solutions

Homework 4 (updated, corrected and with notes) Solutions

Homework 5 (revised, with notes) Solutions

Homework 6 Solutions

Homework 7 (preliminary version with notes) Solutions

http://www.math.sunysb.edu/~dusa/
http://www.math.sunysb.edu/
mailto:dusa@math.sunysb.edu
mailto:yasha@math.sunysb.edu


Homework 8 Solutions

Homework 9 (preliminary version) Solutions

A N N O U N C E M E N T S

Question 2 on Homework 1 was correct as stated originally; one needs to use the first part of the
question to prove (ii). So I rewrote it again.

You should choose topics for your presentations by March 5 at the very latest. For outlines of
possible topics, click here.
F O R  P E O P L E  W I T H  D I S A B I L I T I E S

If you have a physical, psychological, medical or learning disability that may impact your course
work, please contact Disability Support Services, ECC (Educational Communications Center)
Building, room 128, (631) 632-6748. They will determine with you what accommodations are
necessary and appropriate. All information and documentation is confidential. Students requiring
emergency evacuation are encouraged to discuss their needs with their professors and Disability
Support Services. For procedures and information, go to the following web site:
http://www.ehs.stonybrook.edu/fire/disabilities.asp

Last modified: Feb 3, 2004

http://www.ehs.stonybrook.edu/fire/disabilities.asp


At the moment I do not know how much we will be able to cover. Initial
topics include:

the Seifert–van Kampen theorem,

H-spaces and H co-spaces (loop spaces and suspensions),

homotopy groups and associated exact sequences,

cofibrations and the homotopy extension property,

fibrations and the homotopy lifting property,

locally trivial bundles are Serre fibrations,

the Whitehead theorems on CW complexes,

infinite symmetric products and quasifibrations, the Dold–Thom theorem,

definition and main properties of homology groups, (Eilenberg–Steenrod ax-
ioms)

the Blakers–Massey theorem (excision for homotopy groups),

Hurewicz theorem on relation between homotopy and homology,

Moore spaces and Eilenberg–McLane spaces,

definition and main properties of cohomology groups,

cellular (co)homology.
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Math 539 Homework 1

January 30, 2004

I recorrected Q 2, which can be proved in its original form if you use (i).

Problem 1. (i) Show that if X is a Hausdorff topological space then every compact subset
of X is closed.

(ii) Show that if X is locally compact and Hausdorff (i.e. X is the union of open subsets
with compact closures) then for every open U and point x ∈ U there is an open set V with
compact closure such that x ∈ V ⊂ V ⊂ U.

Problem 2. (i) Suppose that X is Hausdorff, let K ⊂ X be compact and suppose that
K ⊂ U1 ∪ · · · ∪ Un where the Ui are open. Show that K is the union of a finite number of
compact sets Kj , j = 1, . . . ,M, such that each Kj is contained in some Ui.

(ii) Consider the iterated mapping space M(X, M(Y, Z)) where X is Hausdorff and Y is
locally compact and Hausdorff. Let K ⊂ X be compact, L1, L2 ⊂ Y be compact and
U1, U2 ⊂ Z be open. Denote by UL the set of maps f : Y → Z such that f(L) ⊂ U . Show
that (

UL1
1 ∪ UL2

2

)K

is a finite intersection of sets of the form (UL)K . Hence deduce that the sets (UL)K (with U
open and K, L compact) form a subbasis for the compact–open topology in M(X, M(Y, Z)).
(We assume that M(Y, Z) is also given the compact-open topology.)

(iii) Show that the sets UK×L form a subbasis for the topology on M(X × Y, Z) where U
(resp. K, L) ranges over all open (resp. compact) subsets of Z (resp. X, Y ).

(iv) Deduce that the map φ : M(X × Y, Z) → M(X, M(Y, Z)) is a homeomorphism, where
for each g ∈ M(X × Y, Z)

φ(g)(x) : y 7→ g(x, y).

Problem 3 (i) If A is a subspace of X and B is a subspace of Y we denote by M(X, A;Y, B)
the subset of M(X, Y ) consisting of maps f : X → Y such that f(A) ⊂ B. We give it the
subspace topology. Suppose that B is a single point ∗ in Y . Then there is an obvious
bijection

φ : M(X, A;Y, ∗) → M(X/A, ∗;Y, ∗)
where X/A denotes the quotient space with base point ∗ equal to the image of A in X/A.
Show that if A is compact this is a homeomorphism.

(ii) Let X be the unit ball B in Rn and A be its boundary ∂B = Sn−1. Show that the
quotient space X/A is homeomorphic to the sphere Sn (where you define Sn as the unit
sphere in Rn+1.)



Math 539 Homework 2

February 5, 2004

Homework is due on Tuesdays; give it to me or Yasha.

Problem 1. Let X = ∪nCn ⊂ R2, where Cn is the circle of radius 1/n centered at (1/n, 0).
Give X the subspace topology and put the base point at (0, 0).
(i) Describe the elements in π1(X, x0).

(ii) Describe the group structure on π1(X, x0). eg Can you give generators and relations?
Can you describe it as an amalgamated free product?

Problem 2: on the direct limit. Consider a sequence Xi, i ≥ 1, of topological spaces
and, for each i let

ji
i+1 : Xi → Xi+1

be a closed imbedding. Thus ji
i+1 is an injective map such that a subset A ⊂ Xi is closed

in Xi iff ji
i+1(A) is closed in Xi+1. As a set, the direct limit X := limi→∞Xi is the quotient

of the disjoint union
∐

i Xi by the equivalence relation generated by setting x ∼ ji
i+1(x) for

all x ∈ Xi. X is given the quotient topology.
Note: direct limits are also called colimits.
Denote the composite of ji

i+1 with the quotient map by ji : Xi → X. (Thus we can also
identify X with the union of its subsets X ′

i := ji(Xi).)

(i) Show that a subset U ⊂ X is open in X iff j−1
i (U) is open in Xi for all i, iff U ∩X ′

i is
open in X ′

i for all i.

(ii) Show that X has the following universal property: Suppose given maps gi : Xi → Y, i ≥
1, such that gi+1 ◦ ji

i+1 = gi for all i, then there is a unique continuous map g : X → Y such
that gi = g ◦ ji.

(iii) Suppose that the Xi are Hausdorff. Show that every compact subset of X lies in X ′
n

for some n.

Problem 3. Consider the torus

T 2 = [0, 1]× [0, 1], (x, 0) = (x, 1) ∀x, (0, y) = (1, y) ∀y.

Write it as X1 ∪X2 where

X1 =
{
(x, y) : 1/6 < x, y < 5/6

}
∪Lε, X2 =

{
(x, y) : |x−1/2| > 1/4

}
∪X2 =

{
(x, y) : |y−1/2| > 1/4

}
,

where Lε is an ε-nhbd of the line segment {(x, x) : 0 ≤ x ≤ 1/6} in T 2 (with ε < 1/6). Put
the base point x0 at (0, 0).

(i) Show that X2 is homotopy equivalent to S1 ∨ S1 so that π1(X2, x0) = Z ∗ Z, the free
group on two generators α, β where α = [f ] is represented by f(t) = (t, 0) and β = [g] is
represented by g(t) = (0, t).

(ii) Calculate π1(X1, x0), π1(X1∩X2, x0). Using this decomposition of T 2 show that π1(T 2, x0) =
Z⊕ Z.

(iii) (an exercise meant to illustrate the proof of van Kampen’s theorem.)



Define a based homotopy

F :
(
[0, 1]× [0, 1], [0, 1]× {0, 1}

)
→

(
T 2, x0

)
so that F (t, 0) = f ∗ g(t), F (t, 1) = g ∗ f(t) and so that the domain I2 can be divided
by the lines t = 1/2 and λ = 1/3, 2/3 into 6 rectangles Rij such that F (Rij) belongs
either to X1 or to X2. Describe the paths F (t, λj) for λj = 0, 1/3, 2/3, 1 as words in
π1(X1) ∗π1(X1∩X2

π1(X2). Explain where the relation (j1)∗(h) = (j2)∗(h) appears in the
transition from the word corresponding to F (t, 0) to that given by F (t, 1). Hint: Instead
of writing a formula for F it might be easiest to draw a picture of F as a map I2 → I2.
The most natural way to divide the path F (t, 0) into two is so that it corresponds to the
word [f ][g], but since [f ], [g] both belong to π1(X2) one could make different divisions, eg
into [h1][h2], where h1 ∼ f ∗ g and h2 is nullhomotopic.



Math 539 Homework 3

February 11, 2004

Problem 1. (for those of you who know de Rahm cohomology.) Let M be a compact
smooth manifold, and denote by Mapsm

∗ (M,S1) the space of smooth based maps M → S1

with the topology of uniform C1-convergence. Let [M,S1]sm∗ be the set of smooth homotopy
classes of such maps. (Such a homotopy class corresponds to a smooth map M × I → S1.)
Since S1 is a group with smooth multiplication S1 × S1 → S1 (and hence an H-space)
this is a group. Show that this group is isomorphic to the first de Rham cohomology
group H1

deR(M), the quotient of the closed 1-forms on M by the exact 1-forms. Under this
isomorphism the map f : M → S1 corresponds to the 1-form f∗(dθ) where θ is the angular
coordinate on S1.

Question 2: (Do this after question 1) Prove that [M,S1]sm∗ = [M,S1]∗, in other words
every continuous map f : M → S1 is homotopic to a smooth map and every continuous
homotopy is homotopic (rel end points) to a smooth homotopy. Hint: The proof uses a
smoothing procedure which I outline below. You should fill in the important details and
then apply it to the case of maps M → S1.

Using partitions of unity on M one can reduce to considering a cts map f : B → Rn

where B = B1(0) is the closed unit ball in Rk. Choose a smooth bump function β : B → R
such that 0 ≤ β(x) ≤ 1, β(0) = 1, β(x) = 0 near ∂B; define βε by βε(x) := β(x/ε) – this has
support in εB – and then define

fε(x) = cε

∫
βε(x− y)f(y) dy.

Here the constant cε is chosen so that cε

∫
βε(y)dy = 1.

Problem 3: on the product. (i) Show that the product X ×Y of two topological spaces
(given the product topology), together with the projection maps pX , pY to X and Y , has
the following universal property.

Consider triples (Z, f, g) in the category of topological spaces where f ∈ Mor(Z,X), g ∈
Mor(Z, Y ). These form the objects of a category C whose morphisms are:

Mor
(
(Z, f, g), (Z ′, f ′, g′)

)
=

{
α ∈ Mor(Z,Z ′) : f = f ′ ◦ α, g = g′ ◦ α

}
.

Then (X × Y, pX , pY ) is a final object in C, i.e. for each object (Z, f, g) in C there is a
morphism (Z, f, g) → (X × Y, pX , pY ). Moreover this morphism is unique, and any other
final object is isomorphic (in C) to (X × Y, pX , pY ).

(ii) Formulate the equivalent universal property for the wedge X ∨Y . of based (or pointed)
topological spaces. (This is an exercise in reversing arrows!)

(iii) What is the equivalent of the wedge in the category of all (unpointed) spaces?

(iv) What are the equivalents to the product and the wedge in the category of groups, of
finitely generated commutative rings with unit?



Problem 4. Suppose that the contravariant functor

F :
(
based top. spaces

)
→

(
groups

)
, F (X) := [X, W ]∗,

defined by the space W has the property that the constant map e : X → W represents the
identity element in F (X) for all X. Show that W is a homotopy associative H-space with
homotopy inverses.

Again, you want to take the same statement for the covariant functor X ; [Q,X]∗ and
reverse all arrows (making appropriate substitutions for the wedge etc.).



Math 539 Homework 4 plus Notes

February 17, 2004

Problem 0: I did not state the first problem on last week’s homework with enough preci-
sion. The correct statement is that for connected manifolds H1(M ; Z) ∼= [M,S1]∗. ie one
starts with integral cohomology. The idea: each class in H1(M ; Z) can be represented by
a closed 1-form α whose integral round each closed loop in M is an integer. Given such
α define fα : M → S1 = R/Z that takes the base point x0 ∈ M to 0 ∈ R/Z by defining
fα(x) =

∫
γ α where γ is any smooth path from x0 to x. Now check that f∗

α(dθ) = α. Hint:
You must calculate the value of f∗

α(dθ) in the direction v ∈ Tx(M). Since fα(x) is indep of
the choice of path γ you may assume that γ is tangent to v at its endpoint x.

Problem 1: I promised a homework problem aboutbasepoints, good and bad, to help
answer the question of when X is homeomorphic to the quotient X/A (for some closed
subset A ⊂ X.) There does not seem to be a good general answer to this question. In
the cases we are interested in (eg In/∂In ∼= Sn) the quotient X/A is an n-manifold. In
this case the base point x0 in X/A has a neighborhood that is homeomorphic to an open
n ball and so X is homeomorphic to X/A iff A has a neighborhood N such that N \ A is
homeomorphic to the annulus Sn−1 × (0, 1).

There is a notion of a nondegenerate base point x0 in a space X. Here the condition is
that the inclusion x0 ↪→ X has the HEP. This condition has its uses, but it does not help
in the homeomorphism problem. Here are some questions.

(i) Suppose that A is a closed subset of X with the HEP. Show that the base point x0 ∈ X/A
also has the HEP.

(ii) Find an example of a closed contractible subset A ⊂ X such that the base point in X/A
is nondegenerate but X is not homeomorphic to X/A.

NOTE: the next defn is slightly changed from what I said in lecture: it is probably better
to stick to the language in the text book.

A map j : A → X is called a cofibration if given any homotopy F : A × I → Z and any
map f : X → Z that extends F (·, 0) : A → Z in the sense that f ◦ j = F (·, 0), the map
f is the time 0 map of a homotopy F̂ : X × I → Z such that F̂ (j(a), t) = F (a, t) for all
a ∈ A, t ∈ [0, 1]. (If we are in the based category all maps are assumed to preserve the base
point.)

A pair (X, A) is said to have the HEP (Homotopy Extension Property) if the
inclusion j : A → X is a cofibration. It follows from Ex 3 below that a map j : A → X is a
cofibration iff j is a homeomorphism onto its image and the pair (X, j(A)) has the HEP.

Problem 2 (The Hopf map) Think of S3 as the unit sphere in C2:

S3 = {(z1, z2) : |z1|2 + |z2|2 = 1}.

Define f : S3 → S2 = C ∪ {∞} by f(z1, z2) = z1/z2.
(i) Show that the inverse image of each point in S2 is a circle in S3.



(ii) Show that the complex projective plane may be decomposed as S2 ∪f B4 where f :
∂B4 = S3 → S2 is the Hopf map.
Hint: Think of CP 2 as the space of all complex lines through 0 in C3. The subset of lines
that intersect the plane z3 = 1 forms an open subset U of CP 2 whose complement can be
identified with S2 := CP 1, “the line at infinity”. Identify U with the interior of the (real)
4-ball B4 ⊂ R4 in such a way that you see the attaching map is f . As a warmup, it is
probably a good idea to do the real projective plane RP 2 and the complex projective line
S2 = CP 1 = pt ∪B2.

Problem 3 (More on the HEP and cofibrations) (i) Show that if j : A → X is a cofibration
then j : A → j(A) is a homeomorphism (where j(A) is given the subspace topology). ie we
can think of j as the inclusion of a subset A of X into X. (Hint: take Z to be the mapping
cylinder or the mapping cone of j.)

(ii) Let A ⊂ X be closed. Show that (X, A) has the HEP iff W := X × {0} ∪ A × I is a
retract of X × I, ie there is a map r : X × I → W that is the identity on W ⊂ X × I.

(iii) Show that if X is normal and A is closed, the pair (X, A) has the HEP iff there is a
neighborhood V of A in X such that (V,A) has the HEP. (ie in this case having the HEP is
a local property for A, depending only on a neighborhood of A in X.) Recall: X is normal
if any two closed sets can be separated bu disjoint open sets. The relevant property is given
by Urysohn’s lemma.

NOTE There is an interesting class of metric spaces called ANRs (ANR= Absolute
Neighborhood Retract) with the property that if X and A are ANRs such that A is
a closed subset of X then (X, A) has the HEP. Every finite dimensional manifold and every
paracompact manifold modelled on a Banach space is an ANR. I won’t have time to go into
this, but this is often a useful technical condition.

Problem 4 (More on mapping cones) The first part spells out what it means for the
mapping cone to be a “natural” construction; the second part shows that its homotopy
type only depends on the “homotopy class” of f : X → Y .

Let C be the category whose objects are morphisms f : X → Y in the category T∗ of
based top spaces, and whose morphisms are commutative diagrams

X
f−→ Y

↓ gX ↓ gY

X ′ f ′
−→ Y ′.

More formally, MorC((X, Y, f), (X ′, Y ′, f ′)) is the set of pairs (gX , gY ) that make the dia-
gram commute, where gX ∈ MorT∗(X, X ′), gY ∈ MorT∗(Y, Y ′).
(i) Show that the mapping cone f ; Cf is a functor from C to T∗.
(ii) Show that if the morphisms gX , gY are homotopy equivalences then Cf is homotopy
equivalent to Cf ′ .



Math 539 Homework 5

February 25, 2004

Given a map f : X → Y the mapping path space Ef is

Ef =
{
(x, ỹ) ∈ X ×M(I, Y ) : ỹ(1) = x

}
.

There is a map π : Ef → Y where (x, ỹ) 7→ ỹ(0) and the homotopy fiber Pf := π−1(y0).

A map p : E → B has the HLP if for every f : Z → E and F : Z × I → B such that
p ◦ f = F (·, 0) there is a lift F̂ : Z × I → E such that p ◦ F̂ = F and F̂ (·, 0) = f .

Problem 1: Comparing fiber and homotopy fiber (i) Suppose that Y is path con-
nected. Show that the homotopy type of the homotopy fiber Pf is independent of the choice
of point y0.

(ii) Suppose that B is path connected and p : E → B has the HLP. Fix b0 ∈ B and set
F := p−1(b0), Pp := π−1(b0), where π : Ep → B as above. Define a map F → Pp and show
that it is a homotopy equivalence.

(iii) (i) and (ii) imply that all the fibers Fb := p−1(b) of p are homotopy equivalent. Prove
this directly using the HLP.

Problem 2 Examples (i) Show that any projection map p : F ×B → B has the HLP.

(ii) Let E =
{
(a, b) ∈ [0, 2]×(0, 2) : b ≤ 1 if a ≤ 1

}
, and let p : E → [0, 2] be the projection

(a, b) 7→ a. Show that p : E → A has the HLP.

(iii) Let E′ := E ∪ ({1} × (0, 2)). Show that projection p : E′ → A does NOT have the
HLP, even though its fibers are all homotopy equivalent.

Problem 3 Pullbacks Let p′ : g∗(E) → A be the pullback of p : E → B by the map
g : A → B. So

g∗(E) = {(a, e) : g(a) = p(e)}.
Show that p′ : g∗(E) → A has the HLP if p : E → B does.

Problem 4 Barrett–Puppe fibration sequence Suppose that X and Y are path con-
nected. In class I sketched a proof that for any based map f : X → Y with homotopy fiber
Pf the homotopy fiber Pq of the map q : Pf → X is homotopy equivalent to the based loop
space ΩY . (i) gives another proof.

(i) Show that q : Pf → X has the HLP. Use Problem 1(ii) to conclude that there is a
homotopy equivalence ΩY → Pq. Describe the induced map r : ΩY → Pf

It follows that any W there is a long exact sequence

· · · → [W,ΩX]∗ → [W,ΩY ]∗ → [W,Pf ]∗ → [W,X]∗ → [W,Y ]∗.

Therefore, taking W = Sn, n ≥ 0, we get the long exact sequence

. . . πn+1(X) → πn+1(Y ) → πn(Pf ) → πn(X) → πn(Y ) → . . . .



Here all the maps except for πn+1(Y ) → πn(F ) are are the obvious ones, induced by the
maps q : Pf → X and f : X → Y .

(ii) Suppose that f : X → Y has the HLP. Then by Problem 1 we can replace Pf by the
fiber F , so that there is a map δ : πn+1(Y ) → πn(F ). Work out a nice description of this
map using the commutative diagram

πn+1(Y ) δ−→ πn(F )
↓ ↓

πn(ΩY ) r−→ πn(Pf ),

where r is as in (i).



Math 539 Homework 6

March 3, 2004

Problem 1 Let E = S1 × R \ A × (−∞, 0] where A 6= S1 is an open arc in S1. The
projection p : E → S1 does not have HLP (as in question 5.2(iii).)
(i) Check that p : E → S1 is a quasifibration.
(ii) Give a direct proof that the homotopy F : E × I → S1, F (θ, λ, t) → θ + t can be lifted
after a preliminary homotopy to a map H : E × I → E such that H(e, 0) = e. ie there is
D : E × I × I → S1 and H as above such that

D|E×I×0 = F, D|E×I×1 = p ◦H, D(e, 0, u) = p(e) ∀e ∈ E, u ∈ I.

Note You should think of D as a 1-parameter family of homotopies that all start at the
same map (in this case p); i.e. for each u D(·, ·, u) is a homotopy starting at p.

Problem 2 The five lemma Suppose given a commutative diagram of abelian groups

A
iA→ B

iB→ C
iC→ D

iD→ E
α ↓ β ↓ γ ↓ δ ↓ ε ↓
A′ iA′→ B′ iB′→ C ′ iC′→ D′ iD′→ E′

where the rows are exact, α is surjective, β and δ are isomorphisms and ε is injective.
Show that γ is an isomorphism. The proof is by “diagram chasing”. eg suppose that
c ∈ C is in ker γ. If the image d := iC(c) of c in D is nonzero, then δ(d) is nonzero. But
δ(d) = δ ◦ iC(c) = iC′ ◦ γ(c) = 0, a contradiction. Therefore iC(c) = 0 and so. . .

Problem 3 (Paracompactness) A space X is called paracompact if every open covering
{Uα}α∈A of X has a locally finite subcovering. (ie each point in X has a neighborhood that
intersects only finitely many elements in the subcovering.)

Show that any CW complex is paracompact.

Note: paracompactness is a very useful property; paracompact spaces are normal; also any
covering on a paracompact space has a subordinate partition of unity. See Munkres, for
example.)

Problem 4 Define πn(X, A) := [(In, ∂In, p0); (X, A, x0)] for n ≥ 1 where p0 ∈ ∂In, x0 ∈
A ⊂ X. Show that π2(X, A) is a group and that πk(X, A) is an abelian group for k > 2.
Find an example where π2(X, A) is nonabelian.
Note; This deals with some unfinished business from class. Note that π1(X, A) is just a
pointed set and that π0(X, A) is not defined.

Problem 5 Write down a careful proof that that the inclusion X ↪→ Y := X ∪ en+1 is an
n-equivalence. Here Y is obtained from X by attaching an (n+1)-cell. You may use the fact
that an inclusion A ↪→ Y is an k equivalence iff the relative homotopy groups πi(Y, A) = 0
for 1 ≤ i ≤ k and π0(A) → π0(X) is onto.



Math 539 Homework 7

April 2, 2004, due Thursday April 15

Definition of homology groups
Let (X, A) be a CW pair, i.e. X is a CW complex with subcomplex A. Then

Hn(X, A) := H̃n(X ∪ CA) ∼= H̃n+1

(
Σ(X ∪ CA)

)
= πn+1

(
SP (Σ(X ∪ CA))

)
.

If X ∪ CA is connected one can use the equivalent definition H̃n(X ∪ CA) = πn

(
SP (X ∪ CA)

)
.

Properties of homology groups
1. Functoriality in category of pairs;
2. Excision: if X is a CW complex that is the union of subcomplexes A and B, then Hn(A,A∩B) =
Hn(X, B).
3. Long exact sequence for pairs: if X is a CW complex with subcomplex A then the sequence

· · · → Hn(A) i∗→ Hn(X)
j∗→ Hn(X, A) ∂→ Hn−1(A) → . . .

is exact, where i∗, j∗ are induced by the inclusions. It is also functorial. One way to get this sequence:
consider the sequence

Σ(A+) → Σ(X+) → Σ(X+)/Σ(A+) ' Σ(X ∪ CA)

and the associated quasifibration

SP (Σ(A+)) → SP (Σ(X+)) → SP (Σ(X ∪ CA)),

and take its long exact sequence in homotopy. This defines ∂ as the composite

πn+1

(
SP (Σ(X ∪ CA))

) ∼= πn+1

(
SP (Σ(X+)), SP (Σ(A+))

)
→ πn

(
SP (Σ(A+))

)
,

where the last map is the boundary in the long exact homotopy sequence.

Problem 1: (Picky details about basepoints) (i) Check that (for unpointed X, A) Σ(X+/A+) =
Σ(X+)/Σ(A+) ' Σ(X ∪ CA). Here (since A is unpointed) CA denotes the unreduced cone CA =
A× [0, 1]/A× {0}, with base point the image of A× {0}.

(ii) If B is pointed, then CB denotes the reduced cone B× [0, 1]/(B×{0}∪ {b0}× I. Show that for
an unpointed set A the spaces C(A+) and CA are homeomorphic.
(iii) Give an example to show that if A is pointed then Σ(A+) 6' Σ(A).

Another way to define a boundary map in the l.e.s. for homology: define ∂1 : Hn(X, A) →
Hn−1(A) as the composite

Hn(X, A) = πn+1

(
SP (Σ(X ∪ CA))

) q∗→ πn+1

(
SP (Σ(Σ(A+)))

) S∼= πn

(
SP (Σ(A+))

)
= Hn−1(A),

where q∗ is induced by the quotient map q : X∪CA → Σ(A+) and S is the desuspension isomorphism.

Problem 2: Show that δ = δ1 by considering the diagram:

A+ → A+

↓ ↓
X+ φ→ CA+

↓ ↓
X ∪ CA

q→ Σ(A+)



where φ is the constant map that takes X to the base point in CA. Hint: First establish that the
above diagram is homotopy commutative. Then apply the functor SP ◦ Σ to get a map between
two quasifibrations. Therefore there is a map between the two corresponding long exact sequences
in homotopy, i.e. you get a commutative diagram of the form

πn(A) → πn(B) → πn(C) → πn−1(A) . . .
↓ ↓ ↓ ↓

πn(A′) → πn(B′) → πn(C ′) → πn−1(A′) . . .

Now relate the boundary maps in these long exact seqeunces to δ, δ1.

Problem 3 Unions (i) Use the functoriality of reduced homology to show that H̃n(A ∨ B) =
H̃n(A) ⊕ H̃n(B). (Hint: use the properties of the obvious maps A → A ∨ B,B → A ∨ B and
A ∨B → A,A ∨B → B.)

(ii) Show by a similar argument that Hn(A
∐

B) = Hn(A)⊕Hn(B), where
∐

denotes the disjoint
union.

Problem 4 Direct Limits (i) Let X1 ⊂ X2 ⊂ . . . be subcomplexes of X with union X. Then
(essentially by definition) X is the direct limit (or colimit) limi Xi. Show that Hn(X) = limi Hn(Xi),
where limi Hn(Xi) should be interpreted as the direct limit in the category of groups.
(ii) Deduce (using Exercise 3) that if X is the disjoint union of an arbitrary number of sets Xi then
Hn(X) = ⊕iHn(Xi).

Problem 5 Show that
SP ({0, 1}) → SP (I) → SP (S1)

is not a quasifibration. Conclude that A must be path connected in the Dold–Thom theorem. Also
do the example: A = S1 × {0, 1}, X = S1 × I, where a0 = (0, 0).



Math 539 Homework 8

April 15, 2004, due Thursday April 22

Problem 1: (Excision for π1) Suppose that X = A∪B and set C := A∩B. Find the best conditions
you can under which the inclusion π1(A,C) → π1(X, B) is an isomorphism (of pointed sets). Prove
your claim.
Hint: Adapt the proof of the Seifert–van Kampen theorem.

Problem 2: (Step 2 in Blakers–Massey theorem.) Let X be a CW complex that is the union of
the subcomplexes A,B. Set C := A∩B. Suppose that (A,C) is (m− 1)-connected and that (B,C)
is (n− 1)-connected. The Blakers–Massey thm says that the map

i∗ : πq(A,C) → πq(X, B)

is an isomorphism for 2 ≤ q < m + n − 2 and an epi for q = m + n − 2. We proved this in class
when A = C ∪ em, B = C ∪ en by showing that the triad homotopy group πq(X;A,B) = 0 for
2 ≤ q ≤ m + n− 2.

Prove this when A = C ∪ (cells of dim ≥ m) and B = C ∪ (cells of dim ≥ n).

Hint: You only need to prove this when A,B are obtained by adding a finite number of cells.
(Why?) Therefore you can argue by induction on the numbers of added cells. Suppose you obtain
A by adding a single cell to A′ ⊃ C. Let X ′ = A′ ∪ B. Then consider the relation of the triads
(X;A,B), (X ′;A′, B) and (X;A,X ′). The argt is easier when you add cells to B.

Problem 3: (Calculating πn(Sn).) There is a homomorphism φ : πn(Sn) → Z given by taking the
degree of any smooth map homotopic to f : Sn → Sn.
(i) Define φ precisely, show it is well defined.
(ii) Show that φ is injective.
Hint: Assume f is smooth, pick a regular value x and then homotop f so that it is “linear” (ie has
standard form) in a finite set of disjoint discs centered on the points in f−1(x). Then homotop f so
it takes the interiors of these discs onto Sn \ y (where y is the antipode of x) and takes the rest of
Sn to y. Then f is a composite

Sn → Sn ∨ · · · ∨ Sn g→ Sn,

where the middle space is the one point union of k copies of Sn, k := #{f−1(x)}. If f has degree 0
then k = 2` and you can construct g to be the identity on ` of the spheres and a reflection on the
other ` spheres. Now show how to homotop such a pair of maps Sn ∨ Sn → Sn to zero.

Go through the above steps first for n = 1 and then for n = 2. It would be okay to write out the
above proof in the case n = 2.
Note: In general I am rather lax in my treatment of base points. But this is permissible. eg if X
is simply connected then there is a bijective correspondence between the homotopy classes of based
maps (X, x0) → (X, x0) and the homotopy classes of arbitrary (unbased) maps X → X. So when
n > 1 we need not worry about keeping the base point fixed when calculating πn(Sn).



Math 539 Homework 9

April 27, 2004, due Thursday May 6

Problem 1: (Calculating πn(Sn ∨ Sn)).
(i) In class we calculated πn(Sn ∨ Sn), n ≥ 2, by the following argument: because Sn × Sn =
(Sn ∨ Sn) ∪ e2n,

πn(Sn ∨ Sn) = πn(Sn × Sn) = Z⊕ Z, n ≥ 2.

Check all details. You may use the fact that πn(Sn) ∼= Z.

(ii) Here is another argument, that also works for n ≥ 2. Consider the pair (X, A) = (Sn ∨ Sn, Sn)
where the sphere A is one of the obvious factors. Use the Blakers–Massey theorem to show that
πn(Sn∨Sn, Sn) ∼= πn(Sn). Now argue using the exact sequence of the pair (Sn∨Sn, Sn). (Remember
there are maps from Sn ∨ Sn to both of its factors.)

(iii) Deduce from (i) or (ii) that πn(∨j∈ASn
j
∼= ⊕j∈AZ.

Problem 2: (Symmetric products of wedges of spheres.)
(i) Show that SP (X ∨ Y ) ∼= SPX × SPY . (Here ∼= means that these spaces are homeomorphic.)
You can show this by direct construction.
(ii) For our purposes it is enough to know that the spaces SP (X∨Y ) and SPX×SPY are homotopy
equivalent. Prove this by considering the fibration coming from the sequence X → X ∨ Y → Y etc.
(iii) Deduce from (ii) and Problem 1 that if X is the wedge product of spheres ∨j∈ASn

j then πn(X) →
πn(SPX) is an (n + 1)-equivalence.

Problem 3: What is SP (S1×S1)? Can you work it out using the fact that S1×S1 = (S1∨S1)∪e2

and you know SP (S1 ∨ S1)?

Problem 4: (Maps to K(π, n)s) (i) In class we saw that if X is (n− 1)-connected and

f : πn(X) → G = πn(K(G, n))

is any homomorphism then there is a map f̂ : X → K(G, n) such that

f̂∗ : πn(X) → πn(K(G, n)

is f . Show that f̂ is unique up to homotopy.
Hint: You have a map X × {0, 1} → K(G, n). Show that it can be extended to X × I.

(ii) Deduce that if X is (n− 1)-connected then Hn(X;G) ∼= Hom(πn(X), G).



Math 539 Possible topics for Presentations

February 26, 2004

Here are some suggestions. I would like you to have formed into four groups of about
three each and settled on topics by the end of next week (March 5) at the very latest. Each
person in the group should talk for about 20–25 mins, so you will need to divide up the
topic. For these presentations to be successful they will have to be very well planned and
focussed. You should pick one or two main results to concentrate on. You won’t be able
to go into all details, but you should try to explain all concepts and definitions and state
theorems clearly, then do one or two proofs or do some examples.

I will be around through March 10 to help you plan. Tony Phillips and Jack Milnor have
agreed to act as consultants and one of them will come to the lectures.

1. Homological algebra Explain the basic concepts: chain complex and its homology,
maps between chain complexes, what is the equivalent of a homotopy of complexes? the
five lemma; short exact sequence of chain complexes gives rise to long exact sequence in
homology (and cohomology.) (Thm 7.4.10 in Aguilar, Gitler and Prieto). For reference look
at almost any book on algebraic topology except AGP.

2. Framed cobordism and the homotopy groups of spheres You could try to explain
Pontriagin’s proof that π3(S2) = Z while π4(S3) = Z/2Z. Pontriagin showed that if M is a
smooth manifold of dimension k without boundary then the set of homotopy classes of maps
M → Sp are in 1-1 correspondence with the set of framed codimension k − p submanifolds
of M . (Proofs are given in §7 of Milnor: Topology from a differentiable viewpoint. Also see
problems 16,17 (p.54) for how to make framed cobordisms classes into a group. This kind of
geometric interpretation for homotopy classes is important now, for example in the recent
proof of the Mumford conjecture about the stable homology of the mapping class groups.)
To calculate πp+1(Sp) Pontriagin then classified framed 1-dimensional submanifolds of Sp+1.
These are circles, but you have to understand the framing. It would be hard to give a
complete proof here, but at least you could explain why the standard framed circle has
infinite order in S3 but order 2 in S4.

You could well find other possible subjects in Milnor’s book, such as Brouwer degree and
the Poincaré–Hopf theorem on the index of vector fields. These may be too close to topics
covered by the last semester’s Differential Topology course. Oh the other hand, you might
be interested in looking again at those topics and interpreting them in a more topological
way. eg you could put the Poincaré–Hopf theorem in the context of the Euler class of the
tangent bundle. (See also Topic 4 below.)

Topic 3: Hopf invariant You could do a lecture on different ways of understanding the
Hopf invariant for a map f : S2p−1 → Sp (in particular, for the Hopf map π : S3 → S2.)
Problems 14 and 15 in Milnor outline its construction as a linking number. Ch 9.3 of
Spanier (Algebraic Topology) describes it in terms of CW complexes and long exact homo-
topy sequences. (It is in a chapter called applications of the homology spectral sequence,
but I don’t think he uses either homology or spectral sequences.) There is a discussion in



AGP Ch 10.6, but it looks rather too advanced for the present. We might do it at the end
of the semester.

Topic 4: Vector bundles and Characteristic classes

(a) First Chern class You can define the first Chern class of a complex line bundle
over a Riemann surface by counting the zeros of a generic section. Using this you can
define the first Chern for any complex vector bundle. Relate this to the Euler number of a
vector field as mentioned in 2. (This approach is outlined for example in McDuff–Salamon:
Introduction to Symplectic Topology Chapter 2 (see Thm 2.69, Remark 2.70) but in the
context of symplectic vector bundles.)

(b) Classifying spaces You could discuss other approaches to characteristic classes, or
talk about the classifying space for (complex) vector (or line) bundles. This is a space,
usually called BU(n) that carries a universal rank n vector bundle E → BU(n) and has the
property that the set of isomorphism classes of vector bundle over a paracompact space X
is in bijective correspondence with the homotopy classes of maps X → BU(n), i.e.

Vect(X) = [X, BU(n)].

Reference: Milnor and Stasheff: Characteristic classes or AGP Ch 8.


