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MAT 311 Number Theory, Spring 2015

-- Some of the topics we will cover are: Congruences, quadratic residues, quadratic forms, continued
fractions, Diophantine equations, number-theoretical functions, and properties of prime numbers.

Organizational Information

e Class schedule: TTh 2:30PM- 3:50PM, Physics P127, Spring 2015

o Textbook: An Introduction to the Theory of Numbers by |. Niven, H. S. Zuckerman, H. L. Montgomery
e Office Hour: TTh 12:30pm-1:30pm

e Math Learning Center: Math Learning Center, in Math Tower S-240A, is there for you to get help

Schedule, Homeworks, and Grades

e Grading Policy
Homework = 50%

Maximum of Midterm 1, Midterm 2, and Final Exam = 25%
In class presentation = 25%

e Your final letter grade will be curved following the performance of the whole class.

o Homeworks
o Homework sets can be found

o Homework will be assigned every Thursday and collected the following Tuesday in class.
o Homework counts 50% of your total scores.

o No late homework will be accepted. Instead, the lowest 3 homework grades will be dropped.

e Exams

o Make sure that you can attend the exams at the scheduled times.
o Make-ups will not be given.

o If one midterm exam is missed because of a serious (documented) illness or emergency, the
semester grade will be determined based on the balance of the work in the course.

o Exam Arrangements

What When Where

Midterm 1 March 12 2015, In Class Physics P127
Midterm 2 April 14 2015, In Class Physics P127
Final Exam May 18 2015 , 11:15am-1:45pm Physics P127

University Statements

Disability Support Services (DSS) Statement

If you have a physical, psychological, medical or learning disability that may impact your course work,
please contact Disability Support Services, ECC (Educational Communications Center) Building, room
128, (631) 632-6748. They will determine with you what accommodations, if any, are necessary and
appropriate. All information and documentation is confidential. Students who require assistance during
emergency evacuation are encouraged to discuss their needs with their professors and Disability
Support Services. For procedures and information go to the following website

http://www.stonybrook.edu/ehs/fire/disabilities

Academic Integrity Statement




Each student must pursue his or her academic goals honestly and be personally accountable for all
submitted work. Representing another person's work as your own is always wrong. Faculty are
required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty
in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare,
Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For
more comprehensive information on academic integrity, including categories of academic dishonesty,
please refer to the academic judiciary website at:

http://www.stonybrook.edu/commcms/academic_integrity/index.html

Critical Incident Management Statement

Stony Brook University expects students to respect the rights, privileges, and property of other people.
Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts
their ability to teach, compromises the safety of the learning environment, or inhibits students' ability
to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-
specific procedures.
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Your solution to each problem should be complete and be written in complete sentences where appropriate

Lecture ‘ ‘ Date ‘ Topics Lecture Notes [Homeworks
Lect 01 Tu 1/27/2015 Cancelled due to blizzard
1.1 Instroduction to Number Theory, Homework 01
SO U | Lz 1.2 Divisibility: b=aq +r S Due 02/12
leei@8 | Ty | aEpens | L2 ROl GERIes e lecture 03
divisor, Euclidean Algorithm
Lect 04 Th 2/5/2015 1.3 Primes lecture 04
Homework 02
. . - _Due 02/19
Lect 05 Tu  2/10/2015 1.4 binomial coefficient lecture 05
Lect 06 Th  2/12/2015 2.1 Congruence (Introduction) lecture 06
Homework 03
i Due 2/24
lesi@y | Tn | 2igpong L CEIIILENLS 2.2 SIS o lecture 07 —
Congruences
Lect08 | Tu | 2/24/2015 |22 Solutions of Congruences, 2.3 lecture 08
The Chinese Remainder Theorem Homework 04
i i Due 3/3
lewiy | Th | 2pEpais o SNNEED REMETET VNS lecture 09
and Solving Polynomial Equations
2.4 Divisibility among polynomials
Lect 10 Tu  3/3/2015 and more Solving Polynomial Lecture 10
Equations No homework
Cancelled Th 3/5/2015 Cancelled due to blizzard ancelled due to
blizzard
Lect 11 Tu  3/10/2015 Review for Midterm | Lecture 11
: Midterm 1: It will cover materials : Homework 05
Midterm 1 Th  3/12/2015 from Lect 01 to Lect 11 Midterm | Due 3/24
Lect 12 Tu  3/24/2015 Primitive roots and order of a mod m Lecture 12
Lect 14 Tu  3/31/2015 Primitive roots and order of a mod m Lecture 14 Homework 06
Due 03/31
Lect 15 Th | 4/2/2015 |Quadratic Reciprocity Lecture 15 Homework 07
Lect 16 Tu 4/7/2015 |Talks at Simons Center Due 04/09
Lect 17 Th | 4/9/2015 |Jacobi Symbol Lecture 17
Midterm II: It will cover materials HW 98
from Lect 01 to Lect 14 (mainly P;?—Ct":e”
; i midterm
Midterm Il Tu | 4/14/2015 Chapters after midterm I); Midterm Ii with
However, materials covered after .
midterm | require knowledge _solutions)

throughout the semester
Square Roots, Tonelli's Algorithm,

Homework 09
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0>0 thenb+0ae §

Si :
15 nonempty {b < 0 then adding a enough times makes it positive

We can make this rigorous by another application of WOP - since 5 is nonempty,

it has a smallest element r = b + ka for some k. Setting ¢ = —F results in
r=b— ga. r > 0 because its in §, and r < a because if not, then b+ (k — 1)a
would be smallest element in S instead (£). |

ote: albiffr=20

(Definition): If & and b are not both 0, then ged(a, b) or (a,b) is the greatest
common divisor of e and b

Theorem 2. Let g = (a,b). Then vy, yo € Z such that g = axq + byo.

Proof. Letset S ={ar+by:x,y€Zax +.by > 0}, and assume ¢, b not both 0.

a>0,eae 8

Si log, :
is nonempty (wlog, assume a # 0) {a<0,——a63

Since S is nonempty, it has a smallest element g = ax + by. To prove theorem,
show that gla, g|b, and g is largest common divisor (if anocther common divisor
d, then djg).

gla by contradiction (assume g { a).

a=gg+r,0<r<g
r=a-—gq
=g — g{ax + by)
= a{l — gz} — blqy)
= r ¢ §,butr < g, so gisn't smallest 4

g is largest common. If dja and d|b, then djaz +by =g
Since g|a, g|b, and g is largest common divisor, then g is ged of o, b. |

(Definition) Co-Prime, Relatively Prime: If (a,b) = 1, then a and b are co-
prime, or relatively prime.



Corollary 3. If (a,m} = 1and (b,m) = 1, then (ab,m) = 1

Proof.

l=az+my,ax=1—my
1=ba' +my',bx' =1 —my'
abzz’ = (1 —my){1 — my")
=1—rmy —my +m?yy
= 1+ m{—y —y + myy)
1 = ab(zz') + m{y + v - myy')

Corollary 4. If c|laband (c,a) = 1, then c|b

Proof.

la,c)=1=l=azr+cy
= b= abz + bey
clab, clbe = c|{abz + bey) = b
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Euclidean Algorithm, Primes
Euclidean ged Algorithm - Given a,b € Z, not both 0, find (a, b)

Step 1: If a, b < 0, replace with negative
Step 2: If o > b, switch g and b

Step 3: If a = 0, return b

Step 4: Since ¢ > 0, write b = ag + r with 0 < r < a. Replace (g, b) with
{r,a) and go to Step 3.

Proof of correctness. Steps 1 and 2 don't affect ged, and Step 3 is obvious. Need
to show for Step 4 that (a,b) = (r,a) where b = ag+ . Letd = (r,a) and
e = (a,b).
d={(ra) = da,dr
=dlag+r=0»>
= dla,b
= d|{a,b) =€
e={a,b) = ¢|a, efb
Seb—ag=r
= ¢|r, e
=e|(r,a)=4d

Since d and e are positive and divide each other, are equal. u

Proof of termination. After each application of Step 4, the smaller of the pair (o)
strictly decreases since r < a. Since there are only finitely many non-negative
integers less than initial a, there can only be finitely many steps. (Note: because
it decreases by at least | at each step, this proof only shows a bound of O(a)
steps, when in fact the algorithm always finishes in time O(log(a)) (left as

exercise)) E
To get the linear combination at th_s_f: same time: o &{ . F[nd @T&f) off 4{ g, 27
B 2 v
4301 0
1270 1 - 4% 27 \
11161 -1 [4;3 1 0 .
AR @ %1 270 1 : 51'3
5115 8 Q=+ b6 1 AN R "—‘27'
0 [ =1=—5(d3)+8(27) —_t @ ' ‘ 4

Q=16 @

~ 5§
® v < 2 -3




TMM for awij WS‘M’Q fﬁ'@:jm“ m ., ma, mb J = (d,b) @

Ezmaﬁj (ma, mb) = {ast oAV Vel af YK + M%f
= (st poitite ol "f Vet "1)
= m (th) @

6 b@_ &W@m. %U +’ (‘3 Thﬂ. MT@‘@"C&” It )y 0w ( NOE Qery ), %azw (A Limmer
jw/ﬁpée b kf’ :ﬂ;"b q%r’ 1<, 2,1 ey multiples exisd §

Hib e r"ﬂ(fj’hfﬁ{‘j ﬂ*&ﬂj ) 9. d-de G 4ny, - -

:
Dt TQ dost of all postie. Comuan Atufie

f(S b Q“fﬁg H [@&Sf oMy,
L, donata . e
ool w47

-—"""\_‘

Th [ |  * Ly "~ - Uy
— La,--, b, 1 = 'a(‘aa,, j )l'H

@ __ [CH , b]:; L.b\a ‘
‘ < {ab)
b

e et ge(hb) e ()=



). F’Mg(? (P ,qQ @ Gr“lc‘(g L

165147+ 3 f&g?ﬁ 65)

J dopt 7= 9 &(‘“@5 45?}{57 ZJK bs]-2-(343 ¢57),
Sl Pt 7= 4 ;ﬂéfl e =302
e 130 1oyl K36 (54 sy
NV |
%ﬂé;“’f@f 0 .‘ = @g\) 5’!:;7) i /?54/7 C/{;)

4= 167

02675y,

NN 2@?@@@ @UMMJF ision Aiymmm Grien b, €29
Ecafr e b= 9 ¢ .
C=49.1, 11, ﬁk;;;ﬁ}

%pﬁ&?eg@d k[lm,w%_
‘ P < (%‘é b) (J .
s :Y!j’ 6}’36

1 ° ! Zj-w 0 [ Fnite §f@f>gﬁ)



02/05 fooy 1 Lot oF | Womber ey | Py Pr27 |7
[ Show ﬂ’lédf (red (ng)(w) VE’

Z/f- q= [;(L%";),’@h!‘b—))
J

b
02

Then O“mb),

=D d}m, ﬂl(b =D &(‘(ﬁ;b)/&\
&Hﬂ.b/l L

She Qb)) s CTOP/OTIQ aond b
A bos fobe 4

) Balte () 01)  rey

ceses  n=l (1,2) = <)
= @Y=
h=3 (3,4);; =D |= 4 (-ny)
@-M%S [Vl )= A2 dil (LU}N’Y’&C(}W%)
| To o>
bt (n,n+l J=cly ) \ y
h:d)nl o) /}

| =dn, @



205205/ fedt-of  Nuwber TIWjJ [8/
%lﬁ"‘f){ Wlues, o{ XY g

93%’ 8“{:5
Consm 93 ard &/
93 3
a_ “?—SHJ/O'—,f
D 18ijo
o6 24 1 0%
/{9 @ - 60 =
@ 14 7 _
5\ o “g@;@
0
(3= 295-3.49/ ]

@: Shon, hgt. 4—{)’1}4’2 g@h/ Oll’lj ,'/;Te,e}e/r o
M: 4{}4-&2 =7 h%) = 4_?

N2 492- 9 (29-)

N 3

N N s wen

x n s ubn =F  2n ,/‘74104
=D 4|2 0944) = 24 entwditin

=’ 2




4

|3 Pﬂ'mﬂ -

Defn)s  An ,vnm.ur P>1 s called o Mme numr . ¥ apti,
in - (se Hwe (5 W £MWAM P wm g, l(ﬁ{(!\—' g

“\ T
fin intmer (> s N ammc? ,Jt % ml!edg umpzstm e/,
a%&ﬁjyll.lb){ 17:‘!2{ :

[hw | L»f prine. P Plah , ten plo_ga Plb

PF) I pfa e (pd=l = Plb

\r poved_tefore / ab K¢ be )=l Hen c.ja)

Thm b~ The rﬁfno(zﬁmmfal Iwé?T’/VWO'F frithmetic (s nigut

r@dfﬁnz&ﬁum HEOWain ).

Ewru positive féger (an be {fi&\ wrtten ps O\Dmofuoh‘lz panS

(nm Hlj With Yé&ﬁ‘hﬁn)@mf any. Sk &pms.émw 'S (X(/WII’L/Q up
0o peanutation F he_prine Jd%m‘vn

- TN S TEN——

18333 = 355 - >3 )

'ﬁi‘srwal_: / 131}1 contrliyfion )

e

let S e tu ge_an intlapts

o,

& pamgs & S
lot  n hetiv smgllest o S,

JANTE 'NOT MW => n=/1,0"s . |<h < n

Sne. Wi d:g (N isgpillist) = ‘%’L; '&ﬂﬂ? ibﬂl‘ke /fgcr,-—--
Hey nzpip, ﬁcLs pame. ﬁw‘ e -




(_LLZ_ |

I_W'qum-w‘% L Assund hw VQUfbmc&-ETTUWS-' b= %
|
| ton Qe @ IED OBy

|

Sin P; g‘ %1 oY h)Hq Pﬂ s P, - ?7
WLOG P=q, )
Q.] i duption @ T &anhg 01{7 2% b

' e ywmfe  He pring ﬁcmmww ﬁf i .posr-h% /»47“7'7@-- a4

TP A= = pw poin
7l etz 1o

7

I i { AP Bl ' . . ok
I, @_(D ’(‘,1}1)): m'b)__ A P [O[{() /39)/9 [ [-Cl.l_’)] =};i' PIWQ{P ﬁg

were 0= TP™" B b=Tp

@ A= 1og i o
Hon ()= 2?32’@! L= 2 53- 3
=" 3 K -90* 3 &

Wi (33) il 1)
4

6co ( 1of, 540)= 27 37
=230 8" = 23
[ld, 5do]= o™ Bmx(e,;) - ix(o, 1) RR

3 ]
=93 5



i N

m [/

(L

( @_ﬂcfﬂ?( ) ]fdm oL MZM h‘,’(ujf e /q pAns,
LW‘F !BtijW(ﬂ)fﬁ?ﬂ) ﬁm:ﬂlf m&n\u} : P
f-_@f' N= P} ‘P,n '+]
lﬂ o
h fes prine l;ﬁwfonzfzﬁfh\m <> nz | ﬁw'
AP_{"?W 'h’/} ehidp).
7
Howgwey . N (mod P)=] =
Tivke oy felse.
XD l\:f (hiby= (0,0 H-Qn[a,b]:[rl;d
(2,8 = [ 6) Lul=4 ) chp]=12
\/ (2); H? ()= (Ch(,\«Hum (_ﬂ. tln )- (6\ (,2
11F,m'vm(otq» M)
v (3) ]',}Q f(mlj] Ja d Hien (f;i_ LY = [ab, C\
[ab)=  ((tb), Y = f(cm,l,)-f (0\ (i b)
v @) P-pitv % pla, g plovs = plb
([ ow=p(p)  pa=> oo T Fzo(p) = p|5
Vg) e & pl gl ey DA P p/b)
WA & ) bf az}c.5 )i ol)‘(,
VO e o flen 6)C
{WA-‘EJ 75{? t‘ﬂ’!Cg, Hen m!(,




[~
\/T(L?] Lf Pis prne . P/ cath2) K p / (h*c2)
| Han P' e 2
) p-prive_ ¥ P]“%" X ploee . fhea p

(g—(zl_rél ) 5

(}|>*(_,Z

) lf ([ab)=1, flen [ab, b )=

I A3 G Y P S - o)
> B = Bl

My A (”) L)}IO\}*I = 10)06"*\ Qa2 Y
% § Lo
3 G‘f%*fﬂ) LS ?’

B Y bles) ten b 6

L [,;

(%UL\. 'i (I5):; (4,b,c) = ((alb)__, (a,t))
I



Lecture 3
Binomial Coefficients, Congruences

n(n —1)(n —2)...1 =n! = number of ways to order n objects.

n(n—1)(n —2)...(n — k + 1) = number of ways to order k of n objects.

”("_1)("_13,)”'(”_k+1) = number of ways to pick k of n objects. This is called a

(Definition) Binomial Coefficient:

(1) ="

Proposition 10. The product of any k consecutive integers is always divisible by k!.

Proof. wlog, suppose that the k consecutive integersaren—k+1,n—k+2...n—
1,n. If 0 < k < n, then

k! T =k

which is an integer. If 0 < n < k, then the sequence contains 0 and so the
product is 0, which is divisible by &!. If n < 0, then we have

(n—Fk+1)...(n—1)(n) n! (Z)

k k—1
[[n=k+i) =D [[(=n+k—1)
=0

=1

which is comprised of integers covered by above cases. |

We can define a more general version of binomial coefficient

(Definition) Binomial Coefficient: If o € C and £ is a non-negative integer,

(a) (@@=1)...(a—k+1)

k) !

Theorem 11 (Binomial Theorem). Forn > 1and z,y € C:

=3 (7)o

k=0

Proof.
(z+y)"=@+y)(r+y)...(z+y)

n times




To get coefficient of 2*y"~* we choose k factors out of n to pick x, which is the

number of ways to choose k out of n |

Theorem 12 (Generalized Binomial Theorem). For «, z € C, |z| < 1,

(14 2)" = i (Z)zk

k=0

Proof. We didn’t go through the proof, but use the fact that this is a convergent
series and Taylor expand around 0

A

f(2)=ap+ar1z+ax2*... a,= o

z=0

Pascal’s Triangle: write down coefficients (}) fork =0...n

n=0: 1

n=1 1 1

n=2 1 2 1

n=3: 1 3 3 1
n=4 1 4 6 4 1
n=>5: 1 5 10 10 5 1

* each number is the sum of the two above it

m—+1 m m
= +
n+1 n n+1
Proof. We want to choose n + 1 elements from the set {1,2,...m + 1}. Either
m + 1 is one of the n + 1 chosen elements or it is not. If it is, task is to choose n

from m, which is the first term. If it isn’t, task is to choose n + 1 from m, which
is the second term. |

Note:

Number Theoretic Properties
Factorials - let p be a prime and n be a natural number. Question is “what
power of p exactly divides n! ?”

Notation: For real number z, then |z is the highest integer < x



Claim

Fllnl, = bJ " {p_J n LD_J

|| means exactly divides = p°|n!, p°T! { n!

Proof. nl=n(n—-1)...1
{%J = number of multiples of pin {1,2,...n}

L%J = number of multiples of p? in {1,2,...n}, etc. [ ]

Note: There is an easy bound on e:

HaENE
e=|— — — ...
P p? p?
“p p? Py

P
S

p

n
<
S —

Proposition 13. Write n in base p, so that n = ag + a1p + asp? . .. axp®, with
a; € {0,1...p—1}. Then

n—(ap+ay---+ag)
p—1

e(a,p) =



Proof. With the above notation, we have

n _
{EJ :al—l—agp...akpk !

n =as+a app® L, etc
7 = asz 3P ...agp , .

n n
a; = L—J —-p {_QJ , etc.
p p

Corollary 14. The power of prime p dividing () is the number of carries when you
add k ton — k in base p (and also the number of carries when you subtract k from n in
base p)

Some nice consequences:

e Entire (2* — 1)™ row of Pascal’s Triangle consists of odd numbers
e 2"th row of triangle is even, except for 1s at the end

e (7) is divisible by prime p for 0 < k < p (p divides numerator and not
denominator)

o (¥ ,:) is divisible by prime p for 0 < k < p°
(Definition) Congruence: Let a,b, m be integers, with m # 0. We say a is

congruent to b modulo m (¢ = b mod m) if m|(a —b) (ie., @ and b have the same
remainder when divided by m

Congruence compatible with usual arithmetic operations of addition and multi-
plication.



ie,, ifa=b mod mand c=d mod m

a+c=b+d (modm)
ac =bd (mod m)

Proof.

a=b+mk
c=d+ml
at+c=b+d+m(k+1)
ac = bd + bml + dmk + m?kl
= bd +m(bl + dk + mkl)

* This means that if « = b mod m, then a* = b* mod m, which means that
if f(z) is some polynomial with integer coefficients, then f(a) = f(b)
mod m

NOT TRUE: if a =b mod m and ¢ = d mod m, then a® = b% mod m

NOT TRUE: if az

= bz mod m, then a = b mod m (essentially because
(x,m) > 1). Butif (z,m) =

1, then true.

Proof. m|(ax — bx) = (a — b)z, m coprime to x means that m|(a — b) |



Lecture 4
FFermat, Euler, Wilson, Linear Congruences

(Definition) Complete Residue System: A complete residue system mod m
is a collection of integers «; . .. a,, such that a; # a; mod m if i # j and any
integer n is congruent to some a¢; mod m

(Definition) Reduced Residue System: A reduced residue system mod m is
a collection of integers a1 . .. ax such that a; # a; mod mifi # jand (a;,m) =1
for all i, and any integer n coprime to m must be congruent to some a; mod m.
Eg., take any complete residue system mod m and take the subset consisting of
all the integers in it which are coprime to m - these will form a reduced residue
system

Eg. For m =12
complete = {1,2,3,4,5,6,7,8,9,10,11,12}
reduced = {1,5,7,11}

(Definition) Euler’s Totient Function: The number of elements in a reduced
residue system mod m is called Euler’s totient function: ¢(m) (ie., the number
of positive integers < m and coprime to m)

Theorem 15 (Euler’s Theorem).

If (a,m) = 1, then a®™ =1 mod m
Proof.

Lemma 16. If (a,m) = land ry . .. 1y, is a reduced residue system mod m, k = ¢(m),
then ary ... ary is also a reduced residue system mod m.

Proof. All we need to show is that ar; are all coprime to m and distinct mod m,
since there are k of these ar; and k is the number of elements in any residue
system mod m. We know that if (r,m) = 1 and (a, m) = 1 then (ar,m) = 1.
Also, if we had ar; = ar; mod m, then m|ar; — ar; = a(r; —r;). If (a,m) =1
then m|r; — r; = r; = r; mod m, which cannot happen unless i = j. O

Choose a reduced residue system 7 ...7; mod m with k = ¢(m). By lemma,
ary ...ary is also a reduced residue system. These two must be permutations of



each other mod m (ie., ar; = ;) mod m).
riry...TE = ariary...ary  (mod m)
vyt =a®™rire .1y (mod m)
(rire...rg,m) = 1= can cancel
a®™ =1 (mod m)

Corollary 17 (Fermat’s Little Theorem).
a’? =a (mod p) for prime p and integer a
Proof. If p{a (ie., (a,p) = 1) then a®® =1 mod p by Euler’s Theorem. ¢(p) =

p—1=a’"! =1 mod p = a” =a mod p. If p|a, then a = 0 mod p so both
sides are 0 = 0 mod p. [ ]

Proof by induction.

Lemma 18 (Freshman’s Dream).

(x+yP =aP+y? (modp) =m,y€Z, primep

Use the Binomial Theorem.

p—1
(x4 y)P = 2P +yP + Z <Z> ghyp=Fk
k=1

=0 mod p
We saw that (Z) is divisibleby pfor 1 <k <p—1,s0
(+y)P =2”+y" (mod p)
0

Induction base case of a = 0 is obvious. Check to see if it holds for a + 1
assuming it holds for a
(a+1)P —(a+1)=ad?+1—(a+1) (mod p)
=a’ —a (mod p)
0 (mod p)
(a+1)P=(a+1) (mod p)

This is reversible (if holds for a, then also for a — 1), and so holds for all integers
by stepping up or down |



Proposition 19 (Inverses of elements mod m). If (a,m) = 1, then there is a unique
integer b mod m such that ab=1 mod m. This b is denoted by L or a=! mod m

Proof of Existence. Since (a,m) = 1 we know that az + my = 1 for some integers
z,y,and so ax =1 mod m. Setb = . ]

Proof of Uniqueness. If aby = 1 mod m and ab; = 1 mod m, then ab; = aby
mod m = mla(b; — be). Since (m,a) = 1, m|by — by = by = by mod m. |

Theorem 20 (Wilson’s Theorem). If p is a prime then (p — 1)! = —1 mod p

Proof. Assume that p is odd (trivial for p = 2).

Lemma 21. The congruence z*> =1 mod p has only the solutions x = £1 mod p

Proof.

z2=1 modp
= plz® —1
=pllx —1)(z+1)
=plrt1l
=x=+1 modp

O

Note that z2 =1 mod p = (z,p) = 1 and x has inverseand z = z=! mod p

{1...p—1}is areduced residue system mod p. Pair up elements a with inverse

a~! mod p. Only singletons will be 1 and —1.

(p—1)!=(a1-a7 ") (az-a3")... (ag - a; ")(1)(~1) (mod p)

=—-1 (mod p)
[ ]
Wilson’s Theorem lets us solve congruence 2> = —1 mod p
Theorem 22. The congruence x> = —1 mod p is solvable if and only if p = 2 or

p=1 mod4



Proof. p = 2 is easy. We'll show that there is no solution for p = 3 mod 4 by
contradiction. Assume 22 = —1 mod p for some x coprime to p (p = 4k + 3).
Note that

p—1=4k+2=202k+1)

so (z2)2+1 = (—1)2*1 = —1 mod p. But also,

(:1:2)2k+1 =% 2 =3P =1 modp

So1l = -1 mod p = p|2, which is impossible since p is an odd prime.
Ifp=1 mod 4:

(p—1)!'=-1 (mod p) by Wilson’s Theorem
(1)(2)...(p—1)=-1 (mod p)

(1.2...1%1) (Z%l...p—l) — 1 (mod p)

T show that second factor
equals the first

p—1=(-1)1 (mod p)
p—2=(-1)2 (mod p)

= ()25 (mod p)

(Z%)...(p—l)z(—n%l (12(1%1)) (mod p)

second factor T

P==is even since p = 1 mod 4, and so second factor equals the first factor, so
z = (251)!'solves 2 = —1 mod pif p=1 mod 4. [ |

Theorem 23. There are infinitely many primes of form 4k + 1

Proof. As in Euclid’s proof, assume finitely many such primes p; ... p,. Con-
sider the positive integer

N = (2pip2...pn)? +1

N is an odd integer > 1, so it has an odd prime factor ¢ # p;, since each p;
divides N — 1. ¢|N = (2p1...pn)? = —1 mod ¢, so 2> = —1 mod ¢ has a
solution and so by theorem ¢ =1 mod 4, which contradicts ¢ # p;. |



(Definition) Congruence: A congruence (equation) is of the form a,z™ +
ap—12" 1o + a9 = 0 mod m where a, ...ao are integers. Solution of the
congruence are integers or residue classes mod m that satisfy the equation.

Eg. 2 — 2 =0 mod p. How many solutions? p.
Eg. 22 = —1 mod 5. Answers = 2, 3.
Eg. 7?2 = —1 mod 43. No solutions since 43 = 3 mod 4.

Eg. 22 =1 mod 15. Answers = £1,+4 mod 15.

Note: The number of solutions to a non-prime modulus can be larger than the
degree

(Definition) Linear Congruence: a congruence of degree 1 (ax = b mod m)

Theorem 24. Let g = (a,m). Then there is a solution to ax = b mod m if and only
if g|b. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose g 1 b. We want to show that the congruence doesn’t have a
solution. Suppose z is a solution = axg = b + mk for some integer k. Since
gla, glm, g divides axg — mk = b, which is a contradiction. Conversely, if g|b,
we want to show that solutions exist. We know g = axo + myqo for integer o, yo.
If b = b/ g, multiply by V' to get
b="Vg="0axg + myo
= a(b'xo) + m(b'yo)
= a(l'zo) =b (mod m)

and so x = b’z is a solution.

We need to show that there are exactly g solutions. We know that there is one
solution z;, and the congruence says ax = b = ax; mod m.

alx —x1) =0 (mod m)
a(x — x1) = mk for some integer k

g=(a,m)=a=dg, m=mlg

So (a,m') =1,s0d' g(x—x1) = m/gk = a(x—2x1) = m'k for some k. Som/|z—1x1,
so x = x; mod m’, so any solution of the congruence must be congruent to



mod m’ = m. So all the solutions are x1,z1 + m/,x1 +2m/,..., 21 + (¢ — 1)m/.
They are all distinct, so they are all the solutions mod m. |
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Chspler 2. CM? RUENE S

Lecture?
FFermat, Euler, Wilson, Linear Congruences

(Definition) Complete Residue System: A complete residue system mod m
is a collection of integers a; . .. ¢y, such that a; # »; mod mif § # j and any
integer n is congruent to some &; mod m

{Definition) Reduced Residue System: A reduced residue system mod m is
a collection of integers a; . . . ai such thata; # a; mod mifi # jand (a;,m) =1
for all ¢, and any integer n coprime to m must be congruent to some a; mod m. &
Fg., take any complete residue system mod m and take the subset consisting of 5
all the integers in it which are coprime to m - these will form a reduced residue E

gystern

Bg, Form =12 oy Pi‘}“n*@ Nlw b@?ﬁ
complete = {1, 2,3,4,5,6,7,8,9,10,11, 12} | |
reduced = {1,5,7,11} 553”}{31&??@/, i 1@11«{‘4{,&'”{

{Definition) Euler’s Totient Function: The number of elements in a reduced
residue gystem mog;LQ{ris called Euler’s totient function: p{m) (ie., the number
of positive integers ¥ Jm and coprime to )

Theorem 15 (Fuler’'s Theorem].

Flo,m)=1, thena®™ =1 modm
T

Lemma 16. If (a,mm) — 1 and ry .. . ry, i3 a reduced residue system mod m, k = ¢(m),
then ary ... ary is 2lso a reduced residue system mod m.

Proof. - e

Proof. All we need to show is that ar; are 21l coprime to m and distinet mod m,
since there are & of these ar; and k is the number uf elements in any residue N
systemn mod m. We know that if (r,m) — 1 and (a,m) — 1 then (ar,m} — L. A
Alsy, if wehad ar; = ar; mod m, then mlar; —er; = a(r; — ;). lf (a,m) =1
then m|r; — r; = r; = r; mod m, which cannot happen unless ¢ = j. |

Choose a reduced residue system ry ...ry mod m with k = ¢{m). By lemma,
ary ...ar; is adso a reduced residue system. These two must be permutations of



each other mod m (ie., ary = r;;; mod m).
TITg. . Tk = Bryarg...orp  (mod m)

rira... 7k = 0™ rira . r, (mod m)
(rirg...ry,m) =1 = can cancel

a®™ =1 (mod m)

Corollary 17 (Fermat's Litle Theorem).

af =aqa (modp) forprimeypand integer
Proof. If p < a (ie., (g, p) = 1) then a*'?) = 1 mod p by Buler's Theorem. ¢(p) =
p-1=2e"1=1 modp=>af =a modp Ifpe thena =0 mod psoboth
sidesare 0 =0 mod . |

Proaf by induction.

Lemma 18 (Freshman’s Dream),
fz+yf=o"+¢* (modp) =,y<Z primep

LIse the Binomind Theorem.

r—1
z+yP =0 +47+ z (i)wky”'k
k=1

=0 modp
We saw that (F) is divisiblebypfor 1<k <p-—1,80
(z+yff=af +¢7 (modp)
O

Induction base case of ¢ = 0 is obvious, Check to see if it helds for @ + 1
assuming it halds for a
(a+1)—(a+)=a’+1-(a+1) (modp)
=g’ —a (modp)
=0 (modp)
(e+1=(a+1) {(modp)

This is reversible (if holds for g, then also for a — 1), and so holds for all integers
by stepping up or down [ |




Propesition 19 (Inverses of elements mod m). If (a,m) = 1, then there is a unigue
infeger b mod m suck that eb =1 mod m. This bis denoted by L or a™! mod m

Proof of Existence. Since (e, m) = 1 we know that az+my = 1 for same integers
x,y,and soaxr =1 mod m. Setb = z. L

Proof of Uniqueness. Ifahy = 1 mod m and a¢b; = 1 mod m, then aby = ab

mod m = m|e(l, — b). Since (m,e) =1L, mby —by = by = b med m. [ §
_Theorem 20 (Wilson’s Theorer). Ifpisa primethen (p— 1)1 = -1 mod p

Proof. Assume that pis odd (trivial for p = 2).

-

{ %
/ Lemma 21. The congruence 2° =1 mod p higs only the solutions x = =1 modp %

Pmﬁ :“.
z2=1 modyp
= plz® -1 .
=iz —1)(z+1) {
=plrtl {
>s=%1 modp )!;
. ;{,
/
\1{ [ f
K jr

5,
Note that % = 1 mod p = (#,p) = L and z has inverseand ¢ = 2~' mod p
{1...p— 1}is a reduced residue system mod p. Pair up elements a with inverse

z~! mod p. Only singletons willbe 1 and —1. i' 4 -’f'%{/ef %’ ".' < z j {fﬁ ,.‘/] g g:qpémgg
(b1t = (o1 -4 ez a5 -y o )1)(—1) (muod ) Sy T

=-~1 (modyp)
Wilson's Theorem lets us solve congruence z? = —1 mod p

Theorem 22. The congrience z2 = —1 mod p #s soloable if and only if p = 2 or
p=1 mod4



Proof. p = 2 is easy. We'll show that there is no solution for p = 3 med 4 by
contradiction. Assume 72 = —1 mod p for some z coprime to p (p = 4k + 3).
Note that

p=1l=4k+2=22k+1)

so (#2)%+1 = (— 1%+ = 1 mod p. But also,

(g2 = g%t = -1 =1 mod p
S0l = -1 mod p -+ p|2, which is impossible since p is an odd prime.
Ifp=1 mod 4

(p—1)1=-1 (mod p)by Wilson's Theorem
(1(2)...(p~1)=~1 (modp)

h(l-z..ﬁ%) (%.“p_l)dz_l (mod p) I

Y

P show that s:cand factor ) i
equals the firgt !

p—1=(-1)1 (modp)
p—2=(-1)2 (modp)

r+1 p—1

——= (-1)—— (mod p) .
(?%1) (p— 1)15(_1)“’%1{1-2... (p—;l)) (mod p)
secand factor z

2-5-3 isevensincep =1 med 4, and so second factor equals the first factor, so
w= (&) solves z* = —1 mod pifp=1 mod 4. [}

Theorem 23. There are infinitely many primes of form 4k + 1
Progf. As in Euclid’s proof, assume finitely many such primes p; ... p,. Con-
sider the positive integer

N—(ppa...pn)? +1

N i3 an odd integer > 1, so it has an odd prime factor ¢ # p;, since each p;
divides v — 1. g|N = (2p. o) = -1 mudg, 022 = -1 modghasa
sclution and soby theorem ¢ = 1 med 4, which contradicts 4 # ;. [ |
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(Definition) Congruence: A congruence (equation) is of the form ana™ +
12" 1« 4 ap = 0 mod m where a,...ay are integers, Solution of the
congruence are integers or residue classes mod m that satisfy the equation.

- O ' )
Pi" Pﬂ\/m, Eg. 2 — ¢ =0 mod p, How many solutions? p. (ﬁ;'w’h M 5 / jkf{'[@ H ﬂ@i (,I’?Al/l )
Eg. z® =—1 mod 5. Answers = 2, 3.
Bg. %% = —1 mod 43. No solutions since 43 = 3 mod 4.

Eg. 2 =1 mod 15. Answers = £1,+4 mod 15.

&y Note: The number of solutions to a non-prime modulus can be larger than the
degree (O PUL Y10 R, g,~ - )

(Definition) Linear Congruence: a congruence of degree 1 (ax = b mod m)

Theorem 24. Let g = {6, m). Then there is a solution to ax = b mod m if and only
if glb. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose g t b. We want to show that the congruence doesn’t have a
solution. Suppose zq is a solution = axy = b+ mk for some integer k. Since
gla, glm, g divides azg — mk = b, which is a contradiction. Conversely, if g|b,
we want to show that solutions exist. We know g = azg + mye for integer xq, ¥o.
If b = Vg, multiply by b’ to get -

b=tg= b"amo + mya)
= a(b'zo) + m(b'yo)
El = a(t'mo) =b (mod m)

k\” ___-—and so z = W gy is a solution. qufifs PW l,f‘cfe A M&/ p?g ﬁl? bﬁlzf Q)/(,pﬁ[m S )

-~ Weneed to show that there are exactly g solutions. We know that there is one
solution z, and the congruence says ez = b = ax; mod m,

&
¢

2 )

" a(w—21)=0 (mod m)
e — zy) = mpk for some integer &
f?("rﬁﬁ?{'y m&m'y)

So{a,m') = 1,s0a'g(z—z1) =m'gk = tf(m—ml) = m'k for some k. So m/|z—m1,
soz =g; mod m’, 80 any solution of the congruence must be congruent to =

uw‘u,gﬂr___w_ﬂm/ S

4




mod m’ <@, So all the solutions are z1,z; +m', 21 +2m/,..., 21 + (g — 1)m’.
They are all distinet, so they are all the solutions mod m.
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Linear Congruences, Chinese Remainder Theo¥em, Algorithms

Recap - linear congruence az = b mod m has solution if and only if ¢ = (a,m)
divides b, How do we find these solutions?

Case 1t g = (e¢,m) = 1. Then invert & mod m to get ¢ = b mod m. Al-
gorithmically, find azg + mye = 1 with Euclidean Algorithm, then azg = 1
mod m 50 2g = a1, 50 ¢ = xob = aLh solves the congruence. (az = a(zob) =
(az)b = b mod m). Conclusion: There is a unique solution mod .

Case 2t g = (a,m) > 1. If g 1 b, there are no solutions. If g, write ¢ =
d'g,b = bg,m = m'g so that az = b mod m = o'z = b mod m' so that
(a’,m') is now 1. The unique solution (found by Case 1) & mod m' also satisfied
az = b mod m so that we have one solution mod m. We know any solution
# mod m must be congruent to z mod m/, so & must have form z + m'k for
some k. As k goes from 0 through g — 1 we get the g distinct integers mod m:
2,z +m,z+ 2m' ...z + (g — 1)m’, which all satisfy a# =b mod m because

a(z + km') = az + akm’
= ax + a'ghm’
= az + m(a'k)
=az (mod m)

"g_é]‘ ] =b (modm) " - _/

Conclusion: this congruence has g = (a,mn) solutions mod 1.

) _ 5
k=5 (6) -
' 35z =14 (mod 28) { o
(o >6 =2 (35,28) = g = 7. Td solve, first divide through by 7 to get 5z =2 mod 4. 10 d—
‘3 : . Solution of z = 2 mod 4 is ¢ = 2, which will also satisfy original congru- - -2
wl/ 2 q/ B ence. m' = % = 4 = all solutions mod 28 = 2, 6, 10, 14, 18, 22, 26,
lo <oluttony ’
T‘-lo <o TN Simultaneous System of Congruences to Different Moduli: Given _ '
s=a; (modm;) 4 + I’))Q:"{

{é—g] | z=ay (modma)

. _ o z=a;r (mod mg)
/X=
X=14 (6) |
lupie M ERSEY 7 ' Does this system have a common solution? (Not always, eg., =3 mod 8and |
tyesY A y ys: €8
_ i @=1 mod 12) In general, need some compatibility conditions. '

z
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Theorem 25 (Chinese Remainder Theorem). If the moduli are coprime in pairs (ie.,
(miymy) = Lfor i j), then the system has a unique solution mod mima . . . my.,

Proof of Unigueness, Suppose there are two solutionse =y =a; mod my, & =
Y = aa mod my, etc. Then my|{z — ¥), mal(z — ), ete. Since m’s are relatively
prime in pairs, their product mymg...m; divides ¢ — y as well, soz = y
mod mymg ... my. So solution, if exists, must be unique mod mymsy...my. W -

N

Proof of Existence. Write solution as a linear combination of a;
Ajay + Asas + -+ + Apag

Want to arrange so that mod q; all the A; for j #{are=0 mod m,and 4; =1
mod m;. Let

3
1 Pos -7
--ft} . 4 .’% AT
Ny =momg...my R 'E' A Vit = é\u
N2 = fMiing... My
E¥a f." R bk (’;‘
f:(‘ e 5‘\“‘/;‘ A
s i

N,; =MWz .. T 145 T

So (Nj,m;) = 1, since all the other m are coprime to m;. Let H; equal the multi-
plicative inverse of N; mod m;, and let A; = H;N;. Then, A; = 0 mod m; for
§#iand A; =1 mod m; Sonow let

a=Aja + Agag + - + Ao
= HyNyay + HyNpag + -+ - + HyNypay

Then if we take mod m; all the terms except ith term will vanish (since m;| N,

for j # ). So
a= H;N;a; {(mod my)
=g; (modm;)
]
Eg.
#=2 mod 3, Ni=5§-7T=36=2 mod3, Hi=2
£=3 mod 5, Ny=3.7=21=1 mod §, Hy=1
=5 mod?T, Ny=3-5=16=1 mod7, Hy =1
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Note: Assuming we have mq, 1y ... my that are relatively prime, the Chi-
nese Remainder Theorem says that any choice of ¢; mod gy, ap mod ma, etc.
gives rise to particular z(ai, aa, ... ag,my,...myE) mod mymg . .. m;. Number
of choices that we have is mymg .. . my, which agrees with number of integers

mod myms ... my.
Note: Now note that z({a,,a2,...a ml, mk)iscoprimetomlmz...mkif
and only if ai, M = 1. .

»:rr M by ¢

¢ If x is coprime to []m; then it is relatively coprime to each of them, so
since x = g; mod m; we'll also have (a;,m;) = 1.

¢ Conversely if {a;, m;) = 1 for all 4, then since £ = a; mod m;, this implies
that (z;, m;) = 1 holds for all £, so (z,[[ m;) = 1 as well.

What is the number of = coprime to [ [ m;? {by definition this is ¢(mmsz . . . my))
g# of choices of all S# of choices of ﬂzl. ..
¢'(;1) ¢(T‘;i1)
with each a; coprime to m;. This gives corollary that if m; coprime in pairs,

d(11my) = [] ¢(m,). We can use this to understand ¢(n) for any n. With m;
coprime in pairs,
n=ppipst... pyF
my=p7, mp=p5F... g =pg
¢(n) = (p7)é(p3*) ... $(p§*)

All we need, then, is how to find ¢(p%).
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¢o(p°) =#of {z|1 <z < p®and (z,p) =1and so (z,7°) = 1} P { . a
- 02, N, /{3_’1

4
€ e-—1 {

A T, ap

a 1 :';
-7 (1-3) '

and so
$(n) =5~ (o1 — Vpf (o2~ 1)... 5 ™ (o — 1)

1 1 1

—pope . p (11— — 1———)...(1——)

PPz p"( Pl)( P2 Dr
1
=n 1—-
[m(t-;)

+ Numerical Calculations for Algorithms

NM &j Want to do arithmetic modulo N (some large number). Benchmark = time to
@F’ﬂ ' « write down N, which is roughly the number of digits of N = clog N for some
constant ¢.

Addition is log N steEs /time
Multiplication is log® N steps/time in the simplest way

Karatsuba Multiplication This is a faster algorithm for multiplication (see
http://en.wikipedia.org/wiki/Karatsuba_algorithm#Algorithm);
reduces time to (log N)les3/log2

Multiplication can be further improved by using Fast Fourier Transforms to
log Npoly(loglogn).

Exponentiation - we want to compute a® mod N, with a at most N and b is
also small (~ N). Most obvious way would be repeated multiplication for
Nlog? N, but better to use repeated squaring. Write b in binary as

b=bbr—1...b
=0+ ey 4+ By

then compute a®’,4?',...a?" mod N by repeatedly squaring the previous one

(at most log? N for each), Then take

()" (@) (@) ()"

for a total of log blog® N ~ log® N steps.
. D

i4
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Congruences mod Primes, Order, Primitive Roots

Continuation of Proof of Hengel’s Lemma. By lemma,
fla+tp?) = f(a) =10’ f'(a) (mod p'™)

Now we want to have the right hand side = 0 mod p?*+*.
fl@)+tp’f{a) =0 mod p*! & if(a) + f(a) mod p
this has a unique soluticn ; By
IO o Qe t,
== (5 F@y ™ d .
. W Wepn Toke
G\M m: at (- qﬂ(a)ﬂﬂ’ﬁ) ) OH{TF,'I—So!q (

{}4
Direct formula - start W1th solution a of f(z) = O mod p, a.nd we want a solution F ) f HVW ( WUEA
mod p*, Seta; = a. — Simne p‘} WA

ay1 = 4 = f(a)F@) (mod p*Y) P)
where f/{a) is an integer chosen once at the beginning of the algorithm, which '

only matters mod p. It's chosen such that f’{a) f'{a) = 1 mod p. Then f(a;) =0
mod p? for j > 1aslong as f'(a) % 0 mod p.

qf&z*iiq

Eg. Solve the congruence #° = —1 mod 125. (f(z) = z* + 1, f'(z) = 2z). Mod
5:22 = —~1 mod 5,soseta = 2. f’{a) = 4 mod 5, so can choose f'{a) = —1.
a1 =2 (mod 5)
az = a1 — fla1)f(a) (mod 25)
=2—(5)(-1) (mod 25)
=7 (mod 25)
a3 = az — f(a2)f’(a) (mod 125)
— (50)(—1) (mod 125)
=57 (mod 125)

Congruences to prime modulus: Assume that all the coefficients of f(z) =
@nT™ + Gn_12" "t +++ + ag are reduced mod p and also that a,, % 0 mod p. By
dividing out by a,,, can assume that f(x) is monic (le., highest coefficient is 1).
We can also assume degree n of f is less than p. If not, can divide f by 2 — ¢ to
get

f(z) = g(@)(z” — z) + r(z) with deg(r(z)) <p

fla) = g(a)(e® — ) + r{a) =r(a) mod pby Fermat

s0 roots of f{z) mod p are the same as the roots of r{z) mod p.

S
Lo



Theorem 28. A congruence f(x) = 0 mod p of degree n has at most n solutions.

Proof. (imitates proof that polynomial of degree n has at most n complex roots)

Induction on n: congruences of degree 0 and 1 have 0 and 1 selutions, trivially,
Assume that it holds for degrees < n {n > 2)

If it has no roots, then we're done. Otherwise, suppose it does have a root
a. Dividing f(z) by z — o, we get g{z) € Z[z] and a constant r such that
F(z) = g(z){z — o) + r. Now if we plug in o we get f(a) = (e~ a)gla)+r=r,
which means that f(a) =r and f(z) = (2 — a)g(a) + fla). '

We know that f{a) = 0mod p. If 3 is any other root of f{x) then we plug 5 into
the equation to get f(8) = (8 — )g(8) + f(e). Mod p, f(B) = (8 — @)g(B) mod

1,80 0= (8 — a)g(B). We also assume that # # ¢, so g(8) = 0 mod p.

So A is a root of g(z) as a solution of g(z) = 0 mod p. We know that g(x) has
degree n — 1, so by induction hypothesis g(z) = 0 mod p has at mostn — 1
solutions, which by including « gives f(z) at most n solutions. [ |

Corollary 29. If apz™ + @q—12" ! + « -+ + ag = 0 mod p has more than n, solutions,
then all a; = 0 mod p.

Theorem 30. Let f(z) = 2® + ap—12" 1 + -+ + ap. Then f(z) = 0 mod p has

exactly n distinct solutions if and only if f(z) divides o — Kmod p. le., there exists

g(z) € Z[z] such that f(z)g(z) = 2 — z mod p as polynomials (all coefficients mod
)

Proof. Suppose f(z) has n solutions. Then n < pbecause only p possible roots
mod p (ie., deg(f) < deg(z¥ — z)). Divide z¥ — 2 by f(x) to get
2* —z = f(z)g(z) +r(z), deglr) < deg(f)=n
Now note, if @ is a root of f{z) mod p then plug in to get
o —a = fla)g(a) +r(a)

= 0g(a) + r(a)

=r(a) modyp
50 a must be a solution to r(z) = 0 mod p. Since f(z) has distinct roots, we see
that r(z) = 0 mod p has n distinct solutions. But deg{r) < n. So by corcllary

we must have r(z) = 0 mod p as a polynomial {each coefficient is 0 mod p.) Ie.,
z? — p = f(z)g{z) mod p, and so f(z) divides z* — z.

Now suppose f(z)|zF — z mod p. Write z¥ — z = f(z)g(z) mod p, where f(z)
is a monic of degree n and g(x) is a monic of degree p — n. We want to show
that f(x) has n distinct solutions.



By previous theorem, g(z) has at most p — nrootsmod p. fa €0,1,...p—1is
not a root of g{x) mod p then o — a = f(a)g(a) mod p, which by Fermat = 0.
Since g(a) & 0mod p, f(a) = 0 mod p. So since there are at least p — (p — n)
such «, we see that f(z) has at least n distinct roots mod p. By the theorem, f(z)
has at most n roots mod p = f(z) has exactly n distinct roots mod p. ]

Corollary 31. Ifd|p — 1 then =% = 1 mod p has exactly d distinct solutions mod p.

Proof. d|p — 1,50 24® — 1|z?~! — 1 as polynomials. p—1 = kd, so %% — 1 =

(z¢ — 1)(z*~V4... +1). So ¥ — 1]z(z7~! — 1) = 2? — z. So has d solutions. W
e Twgargst 30

Corellary 32. Another proof of Wilson's Theorem

Proof. Let pbe an odd prime. Let f(z} = z(x — 1)(z — 2)... (z —p+ 1). This has
deg p and p solutions mod p, so it must divide z” — = mod p. Both polynomials
are monic of the same degree (p), so must be equal mod p. '

zz—1..(z—p—-1)) =0 -2 modp
Coefficient of z on the LHS is just (-1)(-2)...(-(p—1)) = (-1)F Hp- 1)l =
{p — 1)! since pis odd, and so (p — 1)! = —1 mod p (coefficient on RHS). |
This tells us much more aswell-eg., 1+ 2+ +p—-1=0modpforp > 3,
and (1)(2)+ (13 +... (@) +(p—-1)p—2)=0mod pforp 2> 5.

If we have a product f(z) = (z — o)...(z — o) then f(z) = z" — o1z2™ 1 +
622" 2 + ... (~1)"0p. 0, are elementary symmetric polynomials.

UI:Z{).'i
og = E [ F {001

i<j

oy = Z(all products of k roots a;)

Question - We know by Euler that if (n,35) = 1, then n#(3%) = p?* = 1 mod
35, Can 24 be replaced by something smaller? Ie., what's the smallest positive
integer N such that if (n, 35) = 1 then n"¥ = 1 mod 35.

(Definition) Order: If (a,m) = 1 and h is the smallest positive integer such
that 6" = 1 mod m then say h is the order of e mod m. Written as h = ord.,(a).

Lemma 33, Lef h = ordy, (a). The sef of integers k such that a* = 1 mod m is exactly
the set of multiples of h.
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Midterm Exam I

Spring 2015 MAT 311 Number Theory

March 9, 2015

o Last Name (print):
o First Name (print):

ID number (print):

Instructions

Please answer each question in the space provided, and write full solutions.

Please show all work, explain your reasons, and state all theorems you appeal to.

Unless otherwise marked, answers without justification will get little or no partial credit.

Cross out anything the grader should ignore and circle or box the final answer.

Do NOT round answers.

No books, notes, or calculators are allowed while taking the exam.



Problem | Full Points || Scores

1 30

30

2
3 20
4 20




Question 1: (a) [10 pts| Compute ged(91, 112) using any algorithm at all (even being psychic, i.e.,no
proof required just get the right answer).

(b) [20 pts] Find integers x and y such that 112z — 91y = 2 - ged(91, 112).



Question 2: [30 pts] Determine if the following linear congruence system has a solution. If so, find
ALL integer solutions.

3z = 7(mod 19)
x = 26(mod 17)
22 = 3(mod 5)
x = 4(mod 10)
x = 1(mod 3)



Question 3: Let f(z) € Z[z], f(z) = 2" + 172* + 16

(a) [5 pts] Find all solutions of the congruence f(x) =0 mod 17;

(b) [15 pts] Find one solution of the congruence f(x) = 0 mod 173;

?



Question 4: [20 pts] Let f(z) = 27 — 1. Determine if f(z) = 0 ( mod 127) has distinct solutions
( mod 127).



Lo 12 Mamer Tosomy

By previous theorem, g{x) has at most p — n roots modp. faed1,...p—1is
not a root of g(z) mod p then o — & = f{a)g(a) mod p, which by Fermat = 0.
Since g(a) # 0 mod p, f(e) = 0 mod p. So since there are at leastp — (p — n)
such @, we see that f(z) has at least » distinct roots mod p. By the theorem, flz)
has at most n roots mod p = f() has exactly n distinct roots mod p. [ |

Corollary 31. If dip — 1 then o® = Lmod p has exactly d distinct solutions mod p.

Proof. dlp — 1, s0 z47" = 1|zP ! — 1 as polynomials. p — 1 = kd, so o 1=
(z¢ = 1){a®=D4. .. +1). So o? — 1|z(aP~? — 1} = #” — . So has d solutions. W

Corollary 32. Another proof of Wilson’s Theorem

Proof. Let pbe an odd prime. Tet f(z) = z(z —1){z—~2)... (x —p+1). Thishas
deg p and p solutions mod p, so it must divide zP — mod p. Both polynomials
are monic of the same degree (p), so must be equal mod p.

ez —1...(z—(p—1}) =47z modp
Coefficient of z on the LHS is just (—1){~2) ... (=(p— 1}} = (=1} {p— Dl =
(p — 1)! since pis odd, and so (p — 1)! = —1 mod p (coefficient on RHS). |
This tells us much mote as well -eg., 1+ 2+ - +p—~1=0mod pforp >3,
and (1){(2) + (1)(3) + ... (2)(3) -+ {p— 1){p - 2) =0mod pforp = 5.

If we have a product f(z} = {x — c1}...{z — o) then f(z) = 2" — a4
aax™ 2 4. (=)™, o; are elementary symmetric polynomials.

J1=§ [£51
0'2:5 g Qg

i<

ap = Z(aﬂ products of & roots o)

Question - We know by Euler that if (r,35) = 1, then 38 = n2 = 1 mod
35. Can 24 be replaced by something smaller? Te., what's the smallest positive
integer N such that if (n, 35) = 1 then » = 1 mod 35. ¢

(Definition) Order: If {(a,m) = 1 and h is the smallest positive integer such

that a”* = 1 mod m then say h is the order of & mod m. Writtenas i = ordq,{a).

Lemma 33. Let b = ordy,(a). The set of inlegers k such that a® = 1 mod m is exactly
the set of multiples of h.



Proof. a™ = (a")" = 1" = 1 mod m. Suppose we have & such that ¢* = 1 mod
m. Want to show h|k. Write k = hg + r where 0 < r < h. 1 = a* = ghdtr =
a™y” = 10" = a" mod m, s0 ¢" = 1 mod . Butr < h. So'if r > 0, contradicts
minimality of k, which means that r = 0, and % is multiple of A. [ ]

Lemma 34, If b = ord,, (a) then a® has order (T:% mod m.

Proof.
¥ =1 modm
& hlkj
o h | ko
1) ()’
o h i
(%)
So smallest such positive j = TJTh‘ﬂ ]

Lemma 35. If o has order homod m and b has order k mod m, and (h, k) = 1, then ab
has order hk mod m.

Proof. We know
() = (@)
=1%1"
=1 modm
Conversely suppose that r = ord, (ab}.

{chY' =1 modm
(@bY* =1 modm
(a®7¥" =1 modm

=1 modwm

so klrh = k|r (since (k, k) = 1), and similarly hjr. So hklr, and so kk =
ordy, (ab). [ ]

(Definition} Primitive Root: If a has order ¢{m) mod m, we say thata is a
primiiive root mod m.

Eg. mod 7:



- :
n W\w{ ? :

1 hasorder 1

2 hasorder 3 (2° =1mod7)
3 hasorder 6 v (T} =86)

4 hasorder 3

5 hasorder 6 v (#{7)=6)

6 hasorder 2

Lemma 36. Let p be prime and suppose ¢°||p — 1 for some other prime q. Then there's
an element mod p of order ¢

Assuming Lemma...
—l=gites’ .. gr

Lemma says that 3 ¢ with ordy(g:) = ¢7", g2 with ord, (gz) = ¢5?, etc. Set
g=g1g2 ... g S0 by previous lemma above, g has order q7'¢5* ...gir =p—1
because all g; are coprime in pairs. p — 1 = ¢(p), so g isa primiﬁve root mod p.

Proof. Consider solutions of #¢” = 1 mod p. Because ¢°|p— 1, z% — 1 has exactly
q° roots mod p. Tf o is any such root, then ord, («) must divide ¢°.

So if it’s not equal to ¢°, it must divide ¢® L. Then o would have to be root of

e—1 T

2% — 1 = 0 mod p, which has exactly g~ solutions. Since ¢* - 1 >0,
there exists a such that ord, () = g°. |
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- I
n Ww‘\ ?:

1 hasorder 1

2 hasorder 3 (22 =1mod 7
3 hasorder 6 v {(&(7)=6)

4 hasorder 3

5 hasorder 6 v {(${7)=6)

6 hasorder 2

Lemma 36. Let p be prime and suppose 4°||p — 1 for some other prime q. Then there’s
an element mod p of order g©.

Assuming Lemma...
E1 .03

p—l=aqyq" . g

Lemma says that = g1 with ord,(g:) = ¢f*, go with ord, (g2} = ¢5*, etc. Set
g=4q9z...g- S0 by previous lemma above, g has order g;'¢5% . .. gf- = p — 1
because all g; are coprime in pairs. p — 1 = ¢(p), so ¢ is a primitive root mod p.

Proof. Consider solations of 2¢° = 1 mod p. Because g¢lp—1, 29 —1has exactly
g° roots mod p. If « is any such root, then ord,{«) must divide ¢°.

So if it's not equal to ¢°, it must divide ¢* 1. Then o would have to be root of
2" — 1 = 0 mod p, which has exactly 4°7% solutions. Since ¢° — ¢°% = 0,

there exists o such that ord, () = ¢°. [ |
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Lecture 43
Primitive Roots (Prime Powers), Index Calculus

Recap - if prime p, then there’s a primitive root g mod p and it’s order mod p
isp—1=¢'¢s?...q%. We showed that there are integers g; mod p with order
exactly ¢f* {counting number of solutions to 2% —1=0modp). Setg=T1]g -

has order [[¢5* =p — 1.

Number of primitive roots - suppose that m is an integer such that there is a
primitive root ¢ mod m. How many primitive roots mod m are there?

We want the order to be exactly ¢(m). If we look at the integers 1, g, g%,

.g®™)~1 these are all coprime to m and distinct mod 1. If we had ¢* = ¢/
modm(O < i< j < ¢im) — 1), then we'd have g/~ T = 1 mod m with
0 < —i< ¢(m), contradicting the fact that g is a primitive root.

Since there are ¢{m) of these integers, they must be all the reduced residue
classes mod m (in particulax if m = p, a prime, then {1,2, ... p—1} is arelabeling
of {1,7,...97 "2} mod p). Suppose that a is a primitive root mod m, then a = g
mod m. Recall that order of g* is

ord{g) ¢lm)

(k,ord{g))  (k, p(m}}
So only way for the order to be exactly ¢(m) is for k to be coprime to ¢(m). le..

the number of primitive oots mod m is exactly ¢{¢(m)) %if there s at least one. ﬁ

In particulay, if m = a-prime, then number of prmu‘rlve ro

f’ [7-0)= gty = #2) gp3) = g fi= )5@0

onjecture 37 (Artin's Conjecture). Leta be anatural number, whm 1s Hot a SqUAre.
Then there are infinitely many primes p for which o is a primite root mod p.

This is an open guestion. Hooley proved this conditional on GRH, and Heath-
Brown showed that if @ is a prime, then there are at most 2 values of a which
fail the conjecture

(Definition) Discrete Log: Say p is a prime, and g is a primitive root mod p (ie.,
1,9,9%...¢7"2 are all the nonzero residue classes mod p). Say we havea # 0
mod p. We know @ = g* for some & (0 < &k < p— 2) - k is called the index or the
discrete log of a to the base g mod p. This is a computationally hard problem,
and is also used in cryptography.

F
Index Calculus - Let's say we're trying to solve a congruence z? = 1 mod p.
Any z which satisfied this congruence is coprime to p. So if g is a primitive root



MWWHMAM

Gl ] Doed o R [etp)

mod p, we can write z = g% mod p. New variable is now k:
Aot iyt oty L L 4 i
+— p— 1 = ord(g} divides kd .
p—1 . . d
4 e divides ———=k&
(d,p—1) (dp—1)
¥

- gﬁ divides k Z@ . Tﬁf . (;'O ! l,é’

So set of solutions for k is exactly the set of multiples of 72 ""1{) (remember k is

only modulo p—1). So we can get all the solu‘aons z by ralsmg g to the exponent /X' = E Lvl otﬁk ‘?)
k, where 0 < k < p — 1is a multiple of 1= The number of solutions is '

7;:1—1) :,'(d,p" 1) L’F ?‘35)’ ) iz
p)= 2

{d.,p—1] —

Similarly, if we're trylng to solve the congruence 2% = g mod p (a # 0 mod p),
we can write a = ¢’ mod p so if z = g* as before then ¥*¢ = ¢* mod p. This
means that ¢** T = 1mod p & p— 1|kd — 1 < kd = I niod p — 1 {k is variable),
which has a solution iff (d, p — 1) divides I, in which case it has exactly {d,p — 1)

solutions. .=

Note: Mi 7

(d,p— 1) divides | +— p — 1 divides Up—1) M

=1
s g @D =1 mod p
> o,fd?;—ll) =1 modp
Theorem 38. There's a primitive root mod m iff m = 1,2,4,p°, or 2p° (where p is an

odd prime). Let's assume that p is an odd prime, and e > 2. Want to show that there’s a
primitive root meod p°.

Part 1 - There's a primitive root mod p?

Proof. Choosegtobea primiﬁve oot mod p, and use Hensel's Lemma to show
there’s a primitive root mod p? of the form g—+tp for some 0 < ¢ < p 1. We know
(g +tp,p) = Lsince p g and pltp. ord,s (g + #p) must divide $(p?) = p(p — 1).

On the other hand, if (g + #p)* = 1 mod p? then {g + tp)f=1modp < gf =
mod p <> p — 1}k

So p— 1 divides ord,{g+ tp). Since ord, (g +ip) is a multiple of p— 1 and divides
p(p — 1), it’s either equal top—1or equal to p(p — 1) = ¢{p*). We'll show that
there’s exactly one value of ¢ for which the former happens.




Since there are p possible values of t(0} < £ < p - 1), any of these remaining cnes
give a g + tp which is a primitive root mod p?. Consider f{z) = z* ' — 1: mod
p it has the root g. Since f/(z) = (p— 12" 2 and f'(g) = (p— 1)g*"* £ O mod p,
by Hensel’s Temma there is a unique lift g + tp of ¢ mod p? satistying «#~' = 1
mod p?. This is the unique lift for which order is p — 1 mod p*. This proves that
there’s a primitive root mod p*. _ O

Part 2 - Let ¢ be a primitive root mod p*. Then g is a primitive root mod p® for
every e > 2. '

Proof. Since ord,.(g) divides (p®) = p*~(p— 1) and also that p — 1} ord,. (g) (as
in proof of previous part), ord,e(g) mustbe p*(p—1) forsome 0 < k <e—1. We

want to show that & = ¢ — 1. To see that, it's enough to show that gi"g_2(1’_1) ]
mod p°.

We'll show it by induction (base case is e = 2). g7 ! # 1 mod p* is true because
g is a primitive root mod p?, so order = p(p — 1). So say we know it for e.

We know that ¢(p®1) = p*~2(p — 1). So g¢®° ) =1 mod pe! assuming that
g“s(pﬁ_l} # 1 mod p®. In other words g*ﬁ(f*l) = 1+ bp* ! with p § b. Need to
show it for e + 1 -ie., g%*) £ 1 mod pett,

We know that g7 P—1} = 1 4+ bpe~L. Raising to power p we get
gpg—l(p_l) — (1 + b,pe—l)p

=1 +pbpe—l + (]29) (bpeml)Z + (g) (bpchl)ﬁ 4 ...
=1+4bp° mod p°F*

(because for e > 2, 3¢ — 3 = e + L and p| (%) so {£)p*p*~2 divisible by p** ' and
2e—1>e+1)

e—l(

So g?" TP~ = 1 4 bp® mod pett with p 1 b, which # 1 mod p¢**. Completes
the induction. 0

Main Proof. Check 1, 2, 4 directly. p odd, m = p° proved. m = 2p° (p odd) -
¢{m) = ¢(2)d(p”) = ¢{p°). Let g be a primitive root mod p°. If gis odd, itisa
primitive root mod m. If not odd, then add p® to it. ‘

Now show that nothing else works: otherwise, if n = mm/ with m and m/’
coprime and m,m’ > 2, we'll show there does not exist a primitive root mod .
By hypothesis (m,m’ > 2) we know ¢(m) and ¢(m’) are even. So for {a,n) =1,




we have (a,m) = 1= {a,m’). S0 ¢#) = 1 mod m and a#?™") = 1 mod m'. So

qblmle(m’)/2 (a¢(m))¢(m’)/2

=1 modm

a2 — 1 mod m/

Similarly so, a?#0%)/2 = 1 mod n

but ¢{n) = ¢(m)p(m’) so ardy,(a) < $(n). So a can't be a primitive root mod n.

Only remaining candidate is n = 2* for k > 3. No primitive root mod 8 since
odd? = 1 mod 8 (and (8} = 4). Soif ais odd, a® = 1 + 8%. Show by induction

that 2* " = 1 mod 2* (k > 3). Since ¢(2F) = 251, we see there does not exist a
primitive root mod 2%,
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Qﬁé&raﬁé Residues, Quadratic Reciprocity

Quadratic Congruence - Consider congruence az? + bz + ¢ =0 mod p, with
a # 0 mod p. This can be reduced to z2 + az + b = 0, if we assume that p is
odd (2 is trivial case). We can now complete the square to get

(a:+g)2+b—az2§0 mod p

So we may as well start withz? =a mod p

If a = 0 mod p, then z = 0 is the only solution. Otherwise, there are either
no solutions, or exactly two solutions (if b = ¢ mod p, then z = +b mod p).

(> =a=b modp= p|z?-b® = p|(z—b)(z+b) = z=bor—b mod p). We
want to know when there are 0 or 2 solutions.

(Definition) Quadratic Residue: Let p be an odd prime, a # 0 mod p. We

say that a is a quadratic residue mod p if a is a square mod p (it is a quadratic
non-residue otherwise).

Lemma 39. Let a # 0 mod p. Then a is a quadratic residuemod p iff a*7 = 1
mod p

Proof. By FLT, a?~! = 1 mod p and p — 1 is even. This follows from index
calculus. Alternatively, let’s see it directly

_1\2 -
(aLfl') =1 modp=>az'2—15:!:1 mod p

Let g be a primitive root mod p. {1,9,¢%...¢°72} = {1,2,...p — 1} mod p.
Then a = g* mod p for some k. With that a = g**(P=1)™ mod p so k’s only
defined mod p — 1. In particular, since p — 1 is even, so we know k is even or

odd doesn’t depend on whether we shift by a multiple of p — 1. (ie., k is well
defined mod 2).

We know that a is quadratic residue mod p iff & is even (if k = 2l thena = g% =
(¢')? mod p). Conversely if a = b* mod pand b = ¢ mod p we geta = g%

mod p, so k is even.

Note: this shows that half of residue class mod p are quadratic residues, and
_—C _

half are quadratic nonresidues. Now look at a*7 = (g*) 5 = g™ mod p.

k=1 mod piff p— 1= ord, g divides XE=1 jff (p — 1)| 2 3 2k > aisa
quadratic residue. -



(Definition) Legendre Symbol:
(2 ) _ )1 ifaisaquadraticresidue mod p
p)  |-1 ifaisa quadratic non-residue mod p

Defined for odd prime p, when (g, p) = 1. (For convenience and clarity, written
(alp)).

We just showed that (a|p) = a7 mod p.
Remark 1. This formula shows us that (alp)(b|p) = (abd|p).

LHS = o7 b7 = (ab)*T" mod p=RHS mod p

and since both sides are &1 mod p, which is an odd prime, they must be equal
Similarly, (a?|p) = (alp)? =1

e | & (_Qi)

(—4|79) = (-1-2%|79) = (-1|79)(2(79)? = (—1|79) = (=1)*® = —1 l (l
Also, 79isnot 1 mod 4 so —1 is quadratic non-residue, ‘7‘1 def-

. 1 3c
We'll work toward quadratic reciprocity relating (p|q) to (g|p). We'll do Gauss’s - S, cl__ lbr
3rd proof. — ¥=

o)

Lemma 40 (Gauss Lemma). Let p be an odd prime, and a # 0 mod p. For any | "'J[ ¥ C
integer z, let z, be the residue of z mod p which has the smallest absolute value.
(Divide z by p, get some remainder 0 < b < p. Ifo> % letz, =b,ifb > C.h
S let zpbeb—p. ie, —% < zp < ) Let n be the number of integers among -":
(a)p, (20)p, (3a)p . . . ((B52)a), which are negative. Then (alp) = (—1)™. Cz1HQ)

Proof. (Similar to proof of Fermat’s little Theorem)

- [
We claim first thatif 1 < k # | < 231 then (ka), # *+(la),. Suppose not true: - [ )
(ka)p = £(la)p. Then, we’d have ?

ka=+la modp=(k¥l)a=0 modp=>kFl=0 mod p — ___E)
Thisisimpossiblebecause25k+lgp—land—%<k—l<§andk—l#0 " )C/
(no multiple of p possible).
Sothenumbers](ka.),|fork=1...%1arealldistinctmodp(ﬂ1ere’s’%lof -~ 5-%:{ (I?)
= ?

11




them) and so must be the integers {1,3... ?%1-} 1n some order.

k=1
%‘.—1
= (-1)" H(ka)p mod p
k=1
tl-

=>1=a"T (-1)* mod p
a"T = (-1)* mod p
(alp) = (-1)" mod p
(a|lp) = (—1)™ since p > 2

where the second step follows from the fact that exactly n of the numbers (ka),
are < 0. |

Theorem 41. If p is an odd prime, and (a,p) = 1, then if a is odd, we have (alb)
(=1)* where t = $270/% | &2 |. Also, (2lp) = (—1)@*-1/8

Proof. We'll use the Gauss Lemma. Note that we're only interested in (—1)",
We only care about n mod 2.
We have, for every k between 1 and L;-l-

o= ka 0 if (ka)p >0
* plpJ+(k“)”+{p if (ka), < 0

_ | ka 0 if (ka)p, >0
=lp_|+|(ka),,|+{1 if(k:),,<0 mod 2

Sum all of these congruences mod 2



(r—1)/2 (r-1)/2 B (r-1)/2
Z ka = Z l?J+ Z |(ka)p| +n mod 2

k=1 k=1 k=1
(p-1)/2 (p—1)/2

Z ka=a Z k
k=1

R
a(p’8 1)

()

Now 3~ |(a),|. Since {|alp, . - ., |E5-alp} isjust {1... 21},

(p—1)/2 (p—1)/2
Y lka)l= D K
k=1 k=1
1 (=1} (el
2 2 2
_r-1
=t |
Plug in to get
(p-1)/2
_ (-1 -1
n=a( 8 )—( . 3 Z mod 2
k=1
(p—1)/2
=(a—1) (p2 1) + z (kalp) mod 2
k=1

If a is odd, we have £ is integer and a — 1 is even, so product = 0 mod 2, to
get

3
]

(p—-1)/2
l@-] mod 2

k=1
=t mod 2

So (alp) = (~1)" = (-1)*

Whena = 2,

(p-1)/2

-1

nEp28 + z l%J mod 2
k=1



So, note that for k € {1... 232}

2
2<2k<p-1
SO
o<k p-1
p p p
SO
2k
15!
SO
(r-1)/2
Y (kp) =0
k=1
S0 2_ \
n s mod Band (2/p) = (1" = (-1)*F"
So far,
_ ==t J1 ifp=1 mod4
(=1lp) = (=1) —{—1 ifp=3 mod4
Check

% 3 1 ifp=1,7 mod8
= (=1 = - ’
(2lp) = (-1) {_1 ifp=3,5 mod 4

Theorem 42 (Quadratic Reciprocity Law). If p, q are distinct odd primes, then

(&t _J1 ifporg=1 mod4
(plg)(glp) = (-1)*T —{_1 otherwise

Proof. Consider the right angled triangle with vertices (0, 0), (%,0),(%,2). Note
that: no integer points on vertical side, no nonzero integer points on hypotenuse
(slope is £, so if we had integer point (a, b) then & = 1 = pb = qa, s0 pla, q|b,

. Aol
and if (a, b) # (0,0), then a > p,b > q). Ignore the ones on horizontal side, N 0 \;ng A

U’/ 2. Y z’)
Claim: the number of integer points on interior of triangle is L
-1)/2
i p ) hj ijr
prs
- *

(o, 0) (2, ; O)



Proof. 1f we have a point (k,1), then 1 < k < 25* and slope § < I=21< 93‘-.
Number of points on the segment z = k is the number of possible /, which is
just l_ngJ O

Add these (take triangle, rotate, add to make rectangle) - adding points in
interior of rectangle is

(v=1)/2 (v=1)/2 _1\ (g
x5 [2-0) ()

(o) = (-1 wheret; = Y | £]
(rlg) = (—1)"*where t; = ) [%EJ

(plg)(qlp) = (—1)"*+*2where t; + ¢, = total number of points




EX RN EIC

Defined the Jacobi Symbol - used to compute Legendre Symbol efficiently
(quadratic character)

Eg.

(1729|223) = (168]223) = (4 - 42|223) = (42/223)
= (2]223)(21(223) = (21/223) = (223|21) = (13|21)
= (21/13) = (8[13) = (2]13) = -1

l elo

-1 ifp=3 mod4
—1lp) =
(-1lp) {1 ifp=1 mod4

-1 ifp=+3 mod 8
2lp) =
(2lp) {1 ifp=+1 mod 8

Lemma 43. If p, q,r are distinct odd primes, and g = r mod 4p, then (p|q) = (p|r).

Proof. We know (g|p) = (r|p) since ¢ = r mod p. Also, g and r are both either 1
mod 4 or both 3 mod 4. So

(()FF = ()T
(pla) = (alp)(-1) =" ="
= (rlp)(-1)"5 %
= (plr)
n

Eg. Characterize the primes p for which 17 is a square mod p. It’s clear that
17 is square mod 2. We see that since 17 =1 mod 4, so if g = + mod 17 then
(17|g) = (17|r). So we only need to look mod 17 to see when (17]g) = (q17) = 1.
Go through mod 17: +1,+2, 44, +8 mod 17 are nonzero square classes, so 17
is a square mod q iff ¢ = 2,17, or 1, +2,+4, +8 mod 17.

If we had asked for 19, we need to look at classes mod (4-19), since 19 # 1

mod 4. (If g =1 mod 4 then (19|q) = (q|19), so we need g tobe a square mod
19.1f g =3 mod 4 then (19|¢) = —(g|19), we need g to be not square mod 19)

Euclidean ged Algotithm - Given a, b € Z, not both 0, find (a, b)
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1. If a,b < 0, replace with negative y w ll— n&_j_f B —(
=N= ,t=n, /(/1 J

2. Ifa > b, switchgand b

3. Ifa=0,returnb 16’7 }‘WP; ";E t=l remwmn R
4. Since @ > 0, write b = ag + r with 0 < r < a. Replace (a, ) with (r,e) and .
MM'M , q&,m/(

go to Step 3.
~ Tonelli’s Algorithm - To compute square roots mod p (used to sqlvg .:52 =a vH{Q, iOW@S _+ ‘
mod p). Need a quadratic non-residue mod p, called n. Let g be a primitive roc;vt '
mod p. Now let p — 1 = 2%, for t odd. We know nis a power of g, sayn =g". OZ | ¢ R
Set c = nt = g~t.
Claim: The order of ¢ is exactly 2°. s, _6.).1:,
Proof. ( N ¢ 1o
62‘ = (gkt)?.' 4(1 1ﬂ\V1t
= (9‘2 )k e f & )
= (gp _l)k W b - 2
=1 modp — C, g

So ord(c) has to divide 22, so it’s a power of 2. If we can show that & #£1 Q“
mod p then order has to be 2°. fos ‘Qlo

— (gtz“l)k - )

= (¢"D/2) mod p C ibﬁl 2[ M:{

= (—1)* mod p, since g is a primitive root

Note that k is odd since otherwise n = g* would be a quadratic residue, so we
getc® ™' = —1 mod p, proving claim that ord(c) = 2° ]

Lemma 44. If a, b are coprime to p and have order 2/ mod p (for j > 0) then ab has
order 2% for some k < j.

Proof. Since @ =1 Jn;lod P, (az’_l)"’ =1 mod p, we have a?/~! = +1 mod p.
So we must have ¥~ = —1 mod p, since ord(a) = 2. Similarly ¥ = -1
mod p. Therefore, (ab)* " =1 mod p, so orderhas to divide 2/-1,s0 k < j. W




Proof of Tonelli’s Algorithm. First check (by repeated squaring) if aP—1)/2

mod p . If not, terminate with “false.” So assume now on that a(P—1)/2
mod p.

i
p—t

Set A=aand b= 1. Ateach step a = Ab% (a = Ab? mod p) At the end, want
A =1, 0 bis square root of a mod p.

Each step: decrease the power of 2 dividing the order of A. To start with,
AP-D/2 = A2 =1 10d p. Check if A®P-1/4 =1 mod P.

If not, then A% ™™ = —1 mod p (since (42" ") = 1 mod p). So powers of 2
dividing ord(A) is exactly 2°~. Same as the power of 2 diving ord (¢?) = 2°71,
Soset A= Ac™2,b = bc mod p. Notice that

_ o2 A2'—2t
(AC 2)2 t W

= (-1)(-1)*
=1 modp
ord (Ac™2) divides 2°~2t, so power of 2 dividing the order is at most 22, so
has decreased by 1.
If yes, (ie., A2 " =1 mod p), do nothing.
Next step: check if A2°™°t = A®P-1)/8 =1 mod p,

If no, (ie., A2t = —1 mod p, set A := Ac™4, b := bc? (c* has order 2°-2).
(Ac—4)2" %t =1,

If yes, do nothing.

After at most s steps we'll reach the stage when a = Ab? mod p and the power
of 2 dividing ord(4) is 1 - ie., ord(A) is odd. Now we just compute a square
root of A as follows: ord(A) odd and divides p — 1 = 2°¢, so divides . So A = 1
mod p (¢ odd). Claim A(+1)/2 js a square root of A mod p.

(A(t+1)/2)2 = At+1
= AA
=1-A
=A modp
So algorithm just returns bA®+1)/2 a5 /g
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Cyclotomic Polynomials, Primes Congruent to 1 mod n

Cyclotomic Polynomials - just as we have primitive roots mod p, we can have

primitive n™ roots of unity in the complex numbers. Recall that there are n

distinct nth roots of uni?r - ie., solutions of 2" = 1, in the complex numbers. We
n

can write them as e>™/" for j = 0,1,...n — 1. They form a regular n-gon on
the unit circle.

We say that z is a primitive nth root of unity if 2¢ # 1 for any d smaller than n.

If we write z = €2™%/", this is equivalent to saying (j,n) = 1. So there are ¢(n)
primitive nth roots of unity.

Eg. 4th roots of 1 are solutionsof 2 —1=0,0r (z —1)(z + 1)(2* + 1) =0 =
2=1,—14i

‘Now 1is a primitive first root of unity, —1 is a primitive second root of unity, and

+i are primtiive fourth roots of unity. Notice that £ are roots of the polynomial
z? + 1. In general, define

eu(z)= [] (@-em9/m)

(3,m)=1
1<j<n

This is the{nth cyclotomic polynoitg

We'll prove soon that ®,(z) is a polynomial with integer coefficients. Another
fact is that it is irreducible, ie., cannot be factored into polynomials of smaller
degree with integer coefficients (we won't prove this, however).

Anyway, here is how to compute ®,(z): take ™ — 1 and factor it. Remove all
factors which divide z¢ = 1 for some d|n and less than n.

e

Eg. ®¢(z). Start with 2® — 1= (z° = 1)(z® + 1). Throw out 23 — 1 since 3|6 and
3 < 6. 2+ 1= (z+1)(a? — z+1). Throw out = + 1 which divides 22 — 1, since

216, 2 < 6. We're left with z° — z + 1 and it must be ®¢(x) since it has the right
degree 2 :F,E)i the nth cyclotomic polynomial has degree ¢(n), by definition).

If you write down the first few cyclnotomic polynomials you’ll notice that the
coefficient seems to be 0 or il.. But in f.act, ®105(z) has —2 as a coefficient, and
the coefficients can be arbitrarily large if n is large enough,

These polynomials are very interesting and useful in number theory. For in-

stance, we're going to use them to prove that given any #, there are infinitely
many primes congruent to 1 mod n.

Eg. d4(c) =22 +1 and the proof for primes =1 mod 4 uged (2p1...pn)% +1



Proposition 45. 1. z" — 1 = [] &/{(z)

2. @, () has integer coejﬁcientsdln

3. For n > 2, ®,(x) is reciprocal; ie., d)n(;lg-) - g¥() = @, () (ie., coefficients are
palindromic)

Proof. 1. is easy - we have

o —1= H (.’E _ e27ri_7'/n)

1<j<n

If (j,n) = d then e2™i/n = ¢2i'/n" where j/ = -}i',n’ = 2,and (§',n') = L.
(x — €2™3'/7"Y is one of the factors of &,/ (z) and n’|n. Looking at all possible j,

we recover all the factors of @, (z), for every n’ dividing n, exactly once. So

2. By induction. ®,(z) = z — 1. Suppose true for n < m. Then

g™ —-1= H By(x) = H Dq(x) "B ()
dlm d|m
d<m

monic (byagf'n), integer
coefficients (by ind. hypothesis)

So @,(z), obtained by dividing a polynomial with integer coefficients, by a

monic polynomial with integer coefficients, also has integer coefficients. This
completes the induction.

3. By induction. True for n = 2, since ®2(z) = z + 1.

1 1
023 (;) 2#) = (;+1).’1:=1:+1 = ®y(x)

Suppose true for n < m. If we plug in 2 into

g ] == E@d(m)
(5) =T (3)



Multiply by 2™ = 3 4\, 0(d) = [14m 2% - proved before - to get

1
1-3"= H q)d<l)x¢(d) .¢m<l) Sﬂ(m).(__l)x
2 T z
1<d<m

dlm
(=™ - 1) (H 34(c) @(1)“"‘)(1 z)
1) — o | o (L) evtm .1 -
o)
( 1
M@ =| TI 2u) | n (—) om) . (-, (z))

dim 1<d<m
d|m

Cancelling almost all the factors we get

B() = B 3 ) 27

completing the induction. [

Lemma 46. Let p { n and m|n be a proper divisor of n (ie., m # n). Then &, (z) and
x™ — 1 cannot have a common root mod p.

Proof. By contradiction. Suppose a is a common root mod p. Then g™ =
mod p forces (a,p) = 1. Next,

a5
" 1= chd(z) = <I>n(wo)\ D4(z Zr‘vw;f*o\

din

d<n

Notice that 2™ — 1 = []»®a(z) has all its factors in the last product. So this
shows z™ — 1 has a double root at g, ie., (z" — 1) = (z - a)2f(z) mod pf
f(z). Then the derivative must also vanish at ¢ mod D, S0 ng™~1 — Op zfoi;)?e
But p{nand p1{ a, a contradiction. (4)

Now, we're ready to prove the main theorem.

Theorem 47. Let n be a positive integer. There are infini .
tol mod n. ¢ © infinitely many primes congruent



Proof. Suppose not, and let p1,ps, ... py be all the primes cox}gruent to 1' mod n.
Choose some large number [ and let M = @, (Inp: - - .PN)- Smcg ®,,(z) is monic,
if I is large enough, M will be > 1 and so divisible by some prime Py P ,ff L.

First, note that p cannot equal p; for any i, since &, (z) has c0n§tant term 1., aEnd
so p; divides every term except the last of @, (Inp: .. .pn) = it doesn’t divide
M. For the same reason we have p{ n. In fact, (p,a) = 1 wherea = inp; ... pn.

Now &, (a) = 0 mod p by definition, which means a™ = 1 mod p. By the
lemma, we cannot have a™ = 1 mod p for any m|n, m < n. So the order of a
mod p is exactly n, which means that n|p — 1 since a?'=1 modp=>p=1
mod n, exhibiting another prime which is =1 mod n. Contradiction. (4) ®

Note - we did not even need to assume that there’s a single prime = 1 mod n;

if N = q take the empty product, ie., 1, and we end up looking at ®,(In) for
large I.



Arithmetic Functions

Today - Arithmetic functions, the Mbius function

(Definition) Arithmetic Function: An arithmetic function is a function f :

N-C
N=10
Eg.
: J n) = £
n(n) = the number of primes < n
d(n) = the number of positive divisors of n (\[ ( )= 4
o(n) = the sum of the positive divisors of n _
ox(n) = the sum of the kth powers of g{usa$ t\e(\ - ( n)= 1424540 ’g
w(n) = the number of distinct primes dividing n %
Q(n) = the number of primes dividing n counted with multiplicity Tz ( L) = T d" =—li 23;'_5
= RS LSRE N
Wl)=9
Eg.
o) =1 Qw)z2. .

c(2)=14+2=3
c(3)=1+3=4¢
c6)=1+2+3+6=12

(Definition) Perfect Number: A perfect number n is one for which a(n) = 2n
(eg., 6, 28,496, etc.) ‘T(é\: Hlf)}‘fé = 2.[ ; Y."(:.Q): g b e s m:h\q (L“Uﬁ&g- V(;VL
‘ Big open conjecture: Every perfect number’is even\ =228

Note: One can show thatif n is an even perfect number, thenn = 2™-1(2™ —1)
where 2™ — 1 is a Mersenne prime (Euler)

(Definition) Multiplicative: If f is an arithmetic function such that whenever
(m,n) = 1then f(mn) = f(m)f(n), we say f is multiplicative. If f satisfies the
stronger property that f(mn) = f(m)f(n) for all m, n (even if not coprime), we
say f is completely multiplicative

Eg.

O {; "

is completely multiplicative. It’s sometimes called 1 (we'll see why soon).




Spring 2015 MAT 311 Number Theory

Homework 01, Due 02/12/2015 in class

Letao Zhang

February 4, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems:
Section 1.2:



Spring 2015 MAT 311 Number Theory

Homework 02, Due 02/17/2015 in class

Letao Zhang

February 4, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems of Section 1.3:
o6

o 11

e 20

e 22 (6) (8) (12) (13) (15)
e 16

e 27



Spring 2015 MAT 311 Number Theory

Homework 03, Due 02/24/2015 in class

Letao Zhang

February 17, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems of Section 1.4:
o 4
e 10
Problems of Section 2.1
o 6
o 7

e 10



Spring 2015 MAT 311 Number Theory
Homework 04, Due 03/03/2015 in class

Letao Zhang
February 24, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems of Section 2.1

e 18

e 23

e 43

Problems of Section 2.2
* 5 (a), (d)

e 6

LIRS

Problems of Section 2.3
o1

o 7

e 8



Spring 2015 MAT 311 Number Theory
Homework 05, Due 03/24/2015 in class

Letao Zhang
March 13, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

1. Solve (by hand) the congruence x® — 922 + 23z — 15 = 0 ( mod 143).
2. What are the last two digits of 2!°° and of 319 ?
3. Find the number of solutions of 2> = z ( mod m) for any positive

integer m.

4. Let property P be : for any a coprime to n, we have "' =1 ( mod n)

(a) Show that the number n = 561 satisfying P

(b) Let n be a squarefree composite number satisfying P. Show that
n has at least 3 prime factors

(c) Write down a sufficient condition for n = pgr (where p,q,r are
primes) to satisfy property P.

5. Do there exist arbitrarily long sequences of consecutive integers, none
of which are squarefree? (i.e. given any positive integer N, does there
exist a sequence of integers x,z + 1,...,x + N — 1 such that none of
these is squarefree?) Prove your assertion.



Spring 2015 MAT 311 Number Theory

Homework 05, Due 03/31/2015 in class

Letao Zhang

March 26, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Section 2.8



Spring 2015 MAT 311 Number Theory

Homework 05, Due 04/07/2015 in class

Letao Zhang

April 2, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Section 3.1
o 7
e 10
e 15

Section 3.2



Practice Midtlerm Exam I

Spring 2015 MAT 311 Number Theory

April 8, 2015

o Last Name (print):
o First Name (print):

ID number (print):

Instructions

Please answer each question in the space provided, and write full solutions.

Please show all work, explain your reasons, and state all theorems you appeal to.

Unless otherwise marked, answers without justification will get little or no partial credit.

Cross out anything the grader should ignore and circle or box the final answer.

Do NOT round answers.

No books, notes, or calculators are allowed while taking the exam.



Question 1:

Question 2:

Question 3:

Question 4:

Question 5:

Determine if a is a quadraitic residue mod p

(a) a=2,p=13
(b) a=5,p=23
(¢c) a=10,p=13
(d) a=25,p=23
Answer:
(a) No
(b) no
(c) yes
(d) yes

Find the order of @ mod m, AND determine if a is primitive.

(a) a =2, m =27
(b) a=5,m=27
(¢) a=10,m =27

Answer

Can you find a number a such that every number in {1, 2,3,
a power of a mod 17. Justify your answer. Answer: Yes.

Find the order of 2,4 mod 31 answer:

(a) ords (2)

=5
(b) O’f’d31 (4) =5

..., 16} can be expressed as



Question 6: compute the following Legendre Symbol

(a) (%)
() (57)
(a)
(b)

Question 7: Determine if the following quadratic residue mod p is solvable. If so, find all solutions
mod p

1
1

(a) 222 +3r—1=0mod 7
(b) 22 —5=0 mod 13

answer

(a) not solvable

(b) not solvable



Spring 2015 MAT 311 Number Theory

Homework 09, Due Thursday 04/30/2015 in class

Letao Zhang

April 23, 2015

Your solution to each problem should be complete, and be written in com-
plete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Section 3.3

e 9
Section 3.4

e 1(c) (e)
o 4



Practice Final Exam

Spring 2015 MAT 311 Number Theory

May 5, 2015
o Last Name (print):
o First Name (print):
o ID number (print):

Instructions

Please answer each question in the space provided, and write full solutions.

Please show all work, explain your reasons, and state all theorems you appeal to.

Unless otherwise marked, answers without justification will get little or no partial credit.

Cross out anything the grader should ignore and circle or box the final answer.

Do NOT round answers.

No books, notes, or calculators are allowed while taking the exam.



Question 1:

Question 2:

Question 3:

Question 4:

Question 5:

Question 6:

Question 7:

Question 8:

Find (2100, 72) and [2100, 72]

Find the value of the Legendre symbol
ki)
107

Suppose (a,b) = d and d is not a divisor of g. Prove that the equation ax? + by* = g has
no solutions with integers x, y.

Suppose p is an odd prime and a is a quadratic residue of p. Prove that a is not a prmitive
root of p

Let @ =27-3%*-11°-19 and b = 2!7. 72 . 11

(a) find (a,b) and [a, b]

(b) Find the number of divisors of a

(¢) Find ¢(a) and ¢(b)
Prove that for every integer n, (n,2n?+1) =1

True or False. Answer True or False.If it’s false, please provide explanations, proofs or
counterexamples.

(a)
(b)
(¢) Every prime has a primitive root.
(d)

Every positive integer has a unique factorization into primes

There are infinitely many primes p such that p + 5 is also a prime
For all positive integers m,n and all integers a, b the system of congruences has a
solution =

x = a (mod m)

b (mod n)

(e) There are infinitely many primes p such that p 4+ 3 is also a prime

(f) For all positive integers n and for all bsuch that (b,n) =1, ord,b = ¢(n)

For each congruence, determine (with some explanation ) if there are solutions or not.(x
and y are integers)

(a) 8x =2 (mod 180)
(b) 27 =2 (mod 47)



