About me	Research	Teaching	Useful Links	
	ao Zhan		Teaching $>$ MAT 311 Number Theory, Spring 2015 -- Some of the topics we will cover are: Congruences, quadratic residues, quadratic forms, continued fractions, Diophantine equations, number-theoretical functions, and properties of prime numbers.	
Office: Email: Mailin Depart Stony 100 Ni	th Tower st name.la stonybrook ddress: ent of Math ok University Is Road	-116 name ot)edu natics	Organiza - Clas - Text - Offi - Math	nal Information chedule: TTh 2:30PM- 3:50PM, Physics P127, Spring 2015 ok: An Introduction to the Theory of Numbers by I. Niven, H. S. Zuckerman, H. L. Montgomery Hour: TTh 12:30pm-1:30pm earning Center: Math Learning Center, in Math Tower S-240A, is there for you to get help

Schedule, Homeworks, and Grades

- Grading Policy

Homework = 50\%
Maximum of Midterm 1, Midterm 2, and Final Exam $=25 \%$
In class presentation = 25%

- Your final letter grade will be curved following the performance of the whole class.

- Homeworks

- Homework sets can be found

Schedule Notes and Homeworks

- Homework will be assigned every Thursday and collected the following Tuesday in class.
- Homework counts 50% of your total scores.
- No late homework will be accepted. Instead, the lowest 3 homework grades will be dropped.
- Exams
- Make sure that you can attend the exams at the scheduled times.
- Make-ups will not be given.
- If one midterm exam is missed because of a serious (documented) illness or emergency, the semester grade will be determined based on the balance of the work in the course.
- Exam Arrangements

What	When	Where
Midterm 1	March 12 2015, In Class	Physics P127
Midterm 2	April 14 2015, In Class	Physics P127
Final Exam	May 18 2015, 11:15am-1:45pm	Physics P127

University Statements

Disability Support Services (DSS) Statement
If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Disability Support Services, ECC (Educational Communications Center) Building, room $128,(631)$ 632-6748. They will determine with you what accommodations, if any, are necessary and appropriate. All information and documentation is confidential. Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website

> http://www.stonybrook.edu/ehs/fire/disabilities

Academic Integrity Statement

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty are required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology \& Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at:
http://www.stonybrook.edu/commcms/academic_integrity/index.html
Critical Incident Management Statement
Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their schoolspecific procedures.

Your solution to each problem should be complete and be written in complete sentences where appropriate

Lecture		Date	Topics	Lecture Notes	Homeworks
Lect 01	Tu	1/27/2015	Cancelled due to blizzard		$\begin{aligned} & \text { Homework } 01 \\ & \text { Due 02/12 } \end{aligned}$
Lect 02	Th	1/29/2015	1.1 Instroduction to Number Theory, 1.2 Divisibility: $b=a q+r$	lecture 02	
Lect 03	Tu	2/3/2015	1.2 Divisibiliy: greatest common divisor, Euclidean Algorithm	lecture 03	
Lect 04	Th	2/5/2015	1.3 Primes	lecture 04	Homework 02
Lect 05	Tu	2/10/2015	1.4 binomial coefficient	lecture 05	Due 02/19
Lect 06	Th	2/12/2015	2.1 Congruence (Introduction)	lecture 06	$\begin{aligned} & \text { Homework } 03 \\ & \text { Due } 2 / 24 \end{aligned}$
Lect 07	Th	2/19/2015	2.1 Congruence 2.2 Slutions of Congruences	lecture 07	
Lect 08	Tu	2/24/2015	2.2 Solutions of Congruences, 2.3 The Chinese Remainder Theorem	lecture 08	$\begin{aligned} & \text { Homework } 04 \\ & \text { Due 3/3 } \end{aligned}$
Lect 09	Th	2/26/2015	2.3 Chinese Remainder Theorem and Solving Polynomial Equations	lecture 09	
Lect 10	Tu	3/3/2015	2.4 Divisibility among polynomials and more Solving Polynomial Equations	Lecture 10	No homework
Cancelled	Th	3/5/2015	Cancelled due to blizzard	Cancelled due to blizzard	
Lect 11	Tu	3/10/2015	Review for Midterm I	Lecture 11	$\begin{gathered} \text { Homework } 05 \\ \text { Due } 3 / 24 \end{gathered}$
Midterm 1	Th	3/12/2015	Midterm 1: It will cover materials from Lect 01 to Lect 11	Midterm I	
Lect 12	Tu	3/24/2015	Primitive roots and order of a mod m	Lecture 12	
Lect 14	Tu	3/31/2015	Primitive roots and order of a mod m	Lecture 14	Homework 06 Due 03/31
Lect 15	Th	4/2/2015	Quadratic Reciprocity	Lecture 15	$\begin{gathered} \text { Homework } 07 \\ \text { Due 04/09 } \end{gathered}$
Lect 16	Tu	4/7/2015	Talks at Simons Center		
Lect 17	Th	4/9/2015	Jacobi Symbol	Lecture 17	HW 08 Practice midterm II (with solutions)
Midterm II	Tu	4/14/2015	Midterm II: It will cover materials from Lect 01 to Lect 14 (mainly chapters after midterm I); However, materials covered after midterm I require knowledge throughout the semester	Midterm II	
			Square Roots, Tonelli's Algorithm,		Homework 09

Lect 18	Th	$4 / 23 / 2015$	Number os consecutive paris of squares mod p	Lecture 18	Due 04/30
Lect 19	Th	$4 / 30 / 2015$	Cyclotomic Polynomial and Mod $\mathrm{n}==1$	Lecture 19	Practice final

$01 / 24 / 2015$ Thu. Number Theory.

- Th $2.30 \sim 350 \mathrm{pm}$
- Textbook: An introduction to the theory of numbers, Ivan Niven, Herbert. Zuckerman. Hugh L, Montgomery.
- Grading.

Homework $50 \%-\left\{\begin{array}{l}\text { No tate Homework. } \\ \text { lowest } 3 \text { sets will be dropped, }\end{array}\right.$ Mex (Mid 1, Mid 2, final 25%
presentation. 25%

- Exams:

Mid 1: March 12. 2015 . in class
Mid 2: April 14 2015. incus
Final: May 18 2015, 11:15AMn 1:45 pm.
(lavation: To be Anneracel)

- Letao.zhang@stonybrook.edu.
- wow. math. sunysb. edu/v lE 7

01/29/2015. Thus. Number Theory , lecture 02.

- Introduction
- Objects we study: Integers: $\cdots-2,-1,0,1,2,3, \cdots$

We denote the set of all integers by \mathbb{Z}

$$
\mathbb{Z}:=\{\ldots-5,-4,-3,-2,-1,0,1,2, \cdots\}
$$

- Properties of \mathbb{Z} :

1. Piusiblity.
(q): An integer is divisible by 2 if and only if it ends with an even number.

$$
2+365(21366 \ldots
$$

of: An integer is chisibible by 3 if and only, if the sum of its cligits is divisible by 3

- $78 \quad 7+8=15 \quad 3115$ \& thus 3178
- $77 \quad 7+7=14 \quad 3+14$ \& thus $3+77$
[eg]: An integer is divisible by 5 , if and only if it ends with 5 or 0 .
- 5/10 as lends w/ o
-111.5: 5/1115 as 11115 ends w/ 0
? How abou 4 ?
study in this course.

2 Solutions to multiveriable polynomials:
eq

$$
3^{2}+4^{2}=5^{2}
$$

Question: Dues the equation $x^{2}+y^{2}=z^{2}$ has any solution? How many?

- $x=3, y=4, z=5$ is one solution
- Actually, it has infinitely many solutions.

Question: Algorithmatically, we can always run computer program to check for solutions

$$
\left\{\begin{array}{r}
\text { ky: sett } x \neq, y=2 x, \\
\text { for } x=[-1000,1000] \\
y=[-1000,1000] \\
z=[-1000,1000] \\
\text { test if } x^{2}+y^{2}=z^{2} \text { for each poising }
\end{array}\right.
$$

Why we need number theory?
(1): Computer cannot tell you there ane NO. solutions
2): Computer cannot tell you there are infinity many solutions.
In this loss, wp will introduce ways of finding int. solutions.
for polynomials of a few variables
［g］：$x^{3}+y^{3}=z^{3}, x^{4}+y^{4}=z^{4}$ have no integer solutions
Famous＂Cony＂：Fermat＇s last Theorem：
$x^{n}+y^{n}=z^{n}$ has NO positive integer solutions for all $n>2$ ．

Nite：this wis still a conjecture by the time ourtaxtbook was written

Andrew Wite
proved Fermat＇s Conjecture（or last Theorem）．
June 23， 4993 （1994）
Technique：＂complex analysis，＂Toms＂，Galoiskep．
Stony Fermat＇s lost theorem（ 1601 ～ 1665 ）
French Mathematician sets problem \＆ton solves them．
Jots down in the margin of a book that he has a proof，but cant be bothered to untedown the proof itself．Frenchmen dies，son discovers marginal rote，publishes it，and the presto toward storks trying to figure out the proof of Fermat＇s Last theorem． bremorefuits，untieaboy（lo－veor－o（d）starts wooing on the problem in 1963．Roughly 30 －年ts later he comes sapor／a proof
bunt he male a mistake, Damn! He's embamassed \& humtiatec but undauneel he cts down towork agon and...
3 Prime Numbers.
Beth: A prime is a natural number that cannot be factoreal into two smaller natural numbers
[g]: $2=2 \cdot 1$ prime
$3=3 \cdot 1$ prime
$4=2 \cdot 2=4.1$ product of 2 natural numbers. smaller than 4.
$5=5 \cdot 1 \quad$ prime
Theorem: There are infinitely many prime numbers (To be proven in this course).
? What do prime numbers look like?
properties like:
except for 2, all prime numbers are odd.
$\frac{\text { Goldbach Conjecture Every integer greater than } 2 \text { is the sum of }}{(1742)}$ (1742) two primes, as in the example:

$$
\begin{gathered}
4=2+2 \quad 6=3+3 \quad=3+5 \\
100=29+71
\end{gathered}
$$

Unsolved! still $\frac{P}{D}$ We will NOT try to solve this in class? Also called : binmen conjecture

Alternatively: Every odd integer $(>5$) is the sum of 3 primes.

$$
\begin{aligned}
7=2+2+3,
\end{aligned} \begin{aligned}
& q+2+5 \\
&=3+3+3
\end{aligned} \text { y ot unique }
$$

NoTE Solving Goldbach conjecture will easily indicate above Theorem.
[Proof]: Given an odd patinae number $m, m>5$.
then $m-3$ is even and $m-3>2$.
By Goldbach conjecture, every even number (>2) is the sum of two primes.
thus: $m-3=P_{1}+P_{2} \Rightarrow \frac{m=3+P_{1}+P_{2}}{\text { sum of } 3 \text { primes }}$

In this dues, we will ty to solve problems involving prime numbers. Be prepared to write proofs

In number theory, it's alsy to make conjectures, but it is sometimes tory hard to prove the conjecture.
(To disprove, you just need one canter example!)
[99: "I" comecture that, for every natural number n, $n^{2}+n+7$ is a prime number.
Gory to find: for $n=1,1^{2}+1+7=9$ NOT prime
So $n=1$ is a counter example fo my conjecture.
1.2: Divisibility:

Defy. An integer b is divisible by an integer a, NOT zeN, if there is an integer x such that $b=a x$, and we write a / b. In case bis NOT divisible by a, we unite at b.
$a \mid b$ means: a divides $b ; a$ is a divisor of b, b is a multiple of a,
[eg: $6=2 \cdot 3=1.6$
$2,3,1,6$ are all divisors of 6 .
we have: $216,116,316,616$
5 is NOT a divisor of 6 . then $5+6$;
Eeg: For 0, every integer (None Zero) divides 0
so $n \mid 0$ for all nonzero integer n.
[y. 0 is Hover a divisor of any integer.
so "o n" is WRONG always
observation: If $a \mid b$ and $b \neq 0$, then $|a \leq|b|$.
Lie, a divisor of a number is always less than or equal to the number.

Theorem 1.11:
(1) $a \mid b$ implies $a \mid b c$ for any integer $c,(2|6 \Rightarrow 2| 6.5)$
(2) $a \mid b$ and $b / c, \operatorname{impl} a \mid c, \quad(2|8, g| 24 \Rightarrow 2 \mid 24)$
(3) $a \mid b$ and $a \mid c$, imply $a \mid(b x+c y)$ for any integers x, y.
$(316,3127 \Rightarrow 316-27,31-21)$
(4): $a \mid b$ and $b \mid a$, imply $a=b$ or $a=-b$ (write $a= \pm b$).
6): If $m \neq 0$, a / b implies and is implied by ma/ mb.

$$
\left(\begin{array}{l|ll|l}
7 \mid 56 & \Rightarrow 2.7 & 2.56 \\
8 & 24 & \text { in } 2.4 & 2.12 \Rightarrow 4 \mid 12
\end{array}\right)
$$

[proof]: (1): $a \mid b$. by detn: $b=a x$ for sone int. x.
then: $b c=a \times c$. so $b c=a \cdot(x c) \Rightarrow a / b c$.

Theorem 1.2 2 The division algorithm. Given any integers $a . b$, with $a>0$ there exists unique integer q and r, such that

$$
b=9 a+r, \quad 0 \leq r<a .
$$

If $a+b$, then r satibefies the stronger inequalities

$$
0<r<a
$$

[eg]: Given two integers: 7,30 , unite $30=q \cdot 7+r$ where $0 \leqslant r<7$

Consider the arithmetic progression. $(b=30, a=7$.

$$
\begin{aligned}
& \cdots, b-3 a, b-2 a, b-a, b, b+a, b+2 a, \cdots \\
& 30-5 \cdot 7=-5<0 \\
& 30-4.7=2 \leftarrow[0,7] \quad 30=4 \cdot 7+2 \\
& 30-3.7=9>7
\end{aligned}
$$

eq: Given $a=5, b=35$. unite b as $q \cdot a+r$
where $0 \leqslant t \leqslant a$.
We know. $5 \mid 35, \quad 35=\begin{array}{r}7 \cdot 5+0 \\ 9 \cdot 5+r\end{array} \quad r=0 \in[0,5]$
[proot]: Comider the anithmetic prygussion:
if $b-a>0$
comider

$$
\begin{aligned}
& b-2 a \\
& b-3 a \\
& b-4 a
\end{aligned}
$$

If $b-a<0$
consder

$$
b+a
$$

$b+2 a$
$b+3 a$
select the smallest nonnugatine member \& denote it by r.
Thus by defirition r sutisfues tre inequalitien of the
unquenss. if we have $b=9, a+r_{1}, b=9, a+r_{2}$
stept show. $r_{1}=r_{2}$
Asurve $r_{1}<r_{2}$ then $0<r_{2}-r_{1}<a$.

$$
\Rightarrow a: \quad b-b=\left(q_{1}-q_{2}\right) a+r_{1}-r_{2} \quad \Rightarrow \quad r_{2}-r_{1}=\left(q_{1}-q_{2}\right) a
$$

$\Rightarrow a \mid r_{2}-r_{1} \quad$ contradiction to $o<r_{2}-r_{1}<a$.

Thus

$$
r_{1}=r_{2}=r
$$

$$
\begin{aligned}
& \Rightarrow \quad b=q_{1} a+r \quad b=q_{2} a+r \\
& \Rightarrow \quad q_{1}=q_{2}
\end{aligned}
$$

Division w/ reminder Glen $a, b \in \mathbb{Z}, a>0, \exists i q, r \in \mathbb{Z}$
such that $b=a q+r, \quad 0 \leqslant r<a$
(\exists - symbol for tile exists, $\exists!$-symbol for there exists unique)
ea: $a=+10 \quad b=-3$ write $b=9 a+r \quad 0 \leq r<a$

$$
-3=109+r \quad a=-1 \quad r=7
$$

Gravest common divisor
Definition The integer $\stackrel{a}{=}$ is a commondinisor of band c in case a / b and $a \mid c$.

Note. There is only a finite number of common divisors of b and C if at least one of b and C is NOT O.
Definition: Greatest common divisor of b and c, denoted by (b, c), is the largest among their common divisors. (assume $b \neq 0$ or $c \neq 0$)
[27]. Find common divisors of 306 and 45 .
From the smallest: (1) 306 and 45 are relatively prime

Neth: We say tow integers a and $\underline{\underline{x}}$ are relatively prime in case $(a, b) \frac{1}{=1}$
[eg]: Find commondivisors of 81,54 .
dinsisis fol: 1, 3, $2,27,81$ divisor of 54 : $1,2,3,6,9,18,27,54$

$$
\{\text { largest } 27
$$

Lag. Find G-common divisors 'of 81,54, 9
Greenest cimon divisors of $\mid((81,54), 9)$

$$
3 \text { numbers: } \quad=(27,9)=9
$$

Definition: Common divisors of integers b_{1}, \cdots, b_{n} (at least one of them is zeno) are collections of number cis such that

$$
c\left|b_{1}, \cdots, c\right| b_{n}
$$

Dethitton: Greatest common divisors of inteques b_{1}, \cdots, b_{n} ane He laropst of collections of numbers dinge all bi's

Thy 1.3: If g is the greatest common divisor of b and C, tilen \exists integers x_{0}, y_{0}, such that $g=(b, c)=b x_{0}+c y_{0}$ Note Not unique: $G C D(2,4)=2, \quad 2=-2+4, \quad 2=3 \cdot 2-4$

We can make this rigorous by another application of WOP - since S is nonempty, it has a smallest element $r=b+k a$ for some k. Setting $q=-k$ results in $r=b-q a . r \geq 0$ because its in S, and $r<a$ because if not, then $b+(k-1) a$ would be smallest element in S instead (\langle).
(Definition): If a and b are not both 0 , then $\operatorname{gcd}(a, b)$ or (a, b) is the greatest common divisor of a and b

Theorem 2. Let $g=(a, b)$. Then $\exists v_{0}, y_{0} \in \mathbb{Z}$ such that $g=a x_{0}+b y_{0}$.

Proof. Let set $S=\{a x+b y: x, y \in \mathbb{Z}, a x+b y>0\}$, and assume a, b not both 0 .

$$
S \text { is nonempty (wlog, assume } a \neq 0 \text {): }\left\{\begin{array}{l}
a>0, a \in S \\
a<0,-a \in S
\end{array}\right.
$$

Since S is nonempty, it has a smallest element $g=a x+b y$. To prove theorem, show that $g|a, g| b$, and g is largest common divisor (if another common divisor d, then $d \mid g)$.
$g \mid a$ by contradiction (assume $g \nmid a$).

$$
\begin{aligned}
a & =g q+r, 0<r<g \\
r & =a-g q \\
& =a-q(a x+b y) \\
& =a(1-q x)-b(q y) \\
& \Rightarrow r \in S, \text { but } r<g, \text { so } g \text { isn't smallest }
\end{aligned}
$$

g is largest common. If $d \mid a$ and $d \mid b$, then $d \mid a x+b y=g$

Since $g|a, g| b$, and g is largest common divisor, then g is gcd of a, b.
(Definition) Co-Prime, Relatively Prime: If $(a, b)=1$, then a and b are coprime, or relatively prime.

Corollary 3. If $(a, m)=1$ and $(b, m)=1$, then $(a b, m)=1$

Proof.

$$
\begin{aligned}
1 & =a x+m y, a x=1-m y \\
1 & =b x^{\prime}+m y^{\prime}, b x^{\prime}=1-m y^{\prime} \\
a b x x^{\prime} & =(1-m y)\left(1-m y^{\prime}\right) \\
& =1-m y-m y^{\prime}+m^{2} y y^{\prime} \\
& =1+m\left(-y-y^{\prime}+m y y^{\prime}\right) \\
1 & =a b\left(x x^{\prime}\right)+m\left(y+y^{\prime}-m y y^{\prime}\right)
\end{aligned}
$$

Corollary 4. If $c \mid a b$ and $(c, a)=1$, then $c \mid b$

Proof.

$$
\begin{aligned}
(a, c)=1 & \Rightarrow 1=a x+c y \\
& \Rightarrow b=a b x+b c y \\
c|a b, c| b c & \Rightarrow c \mid(a b x+b c y)=b
\end{aligned}
$$

$\operatorname{Inm} 1.5$
Greatest common ilinsor g of b_{1}, \cdots, b_{n} can be expressed
as:

$$
g=\left(b_{1}, \cdots, b_{n}\right)=\sum_{j=1}^{n} b_{j} x_{j}
$$

[proof]: Note GCD of b_{1}, b_{3} an be expressed as:

$$
y_{12}=y_{1} b_{1}+y_{1} b_{2}
$$

GCP of $b_{1} b_{2} b_{3}$ is the GiD: $\left(\left(b_{1}, b_{2}\right), b_{3}\right)$.

$$
\begin{aligned}
\text { ie. }\left(g_{12}, b_{3}\right) & \Rightarrow c_{12} g_{12}+c_{3} b_{3} \\
& \Rightarrow c_{12}\left(y_{1} b_{1}+y_{2} b_{2}\right)+c_{3} b_{3} \\
& =c_{12} b_{1}+c_{12} y_{2} b_{2}+c_{3} b_{3}
\end{aligned}
$$

Induction: Assume for $n-1$ integers we nave $G-C D$

$$
\text { expression: } \quad g^{\prime}=c, b_{1}+\cdots+c_{n-1} b_{n-1}
$$

For n integers

$$
\begin{aligned}
& \quad\left(b_{1}, \cdots, b_{n}\right)=\left(\left(b_{1} ; \cdots, b_{n-1}\right), b_{n}\right) \\
& =\left(g^{3}, b_{n}\right) \leftarrow \text { case of } 2 \text { integers }
\end{aligned}
$$

Thus $\left(y^{\prime}, b_{n}\right)$ has expression: $d_{1} g^{\prime}+d_{2} b_{n}$

$$
\begin{aligned}
& d_{1}\left(c_{1} b_{1}+\cdots+c_{n-1} b_{n-1}\right)+d_{2} b_{n} \\
\left(b_{1}, \cdots, b_{n}\right)= & d_{1} c_{1} b_{1}+d_{2} c_{2} b_{2}+\cdots+d_{2} b_{n}
\end{aligned}
$$

Euclidean Algorithm, Primes

Euclidean ged Algorithm - Given $a, b \in \mathbb{Z}$, not both 0 , find (a, b)

- Step 1: If $a, b<0$, replace with negative
- Step 2: If $a>b$, switch a and b
- Step 3: If $a=0$, return b
- Step 4: Since $a>0$, write $b=a q+r$ with $0 \leq r<a$. Replace (a, b) with (r, a) and go to Step 3.

Proof of correctness. Steps 1 and 2 don't affect ged, and Step 3 is obvious. Need to show for Step 4 that $(a, b)=(r, a)$ where $b=a q+r$. Let $d=(r, a)$ and $e=(a, b)$.

$$
\begin{aligned}
d=(r, a) & \Rightarrow d|a, d| r \\
& \Rightarrow d \mid a q+r=b \\
& \Rightarrow d \mid a, b \\
& \Rightarrow d \mid(a, b)=e \\
e=(a, b) & \Rightarrow e|a, e| b \\
& \Rightarrow e \mid b-a q=r \\
& \Rightarrow e \mid r, a \\
& \Rightarrow e \mid(r, a)=d
\end{aligned}
$$

Since d and e are positive and divide each other, are equal.
Proof of termination. After each application of Step 4, the smaller of the pair (a) strictly decreases since $r<a$. Since there are only finitely many non-negative integers less than initial a, there can only be finitely many steps. (Note: because it decreases by at least 1 at each step, this proof only shows a bound of $O(a)$ steps, when in fact the algorithm always finishes in time $O(\log (a))$ (left as exercise))

To get the linear combination at the same time:

		43	27
	43	1	0
1	27	0	1
1	16	1	-1
1	11	-1	2
2	5	2	-3
5	1	-5	8
	0	$1=-5(43)+8(27)$	

Tum 1.6: For any positive integer $m, \quad(m a, m b)=m(a, b)$
[prof]: $\quad(m a, m b)=$ least positive value of max $+m b l y$.

$$
=m \text { (least positive value of } a x+b y \text {) }
$$

$$
=m(a, b)
$$

- beth Common Multiple The integers $a_{1} \cdots, a_{n}$ (None zeno), have a common) multiple b if $a_{i} \mid b$ for $i=1,2, \cdots, n$. common multiples exist \& Here arno infinitely many) eg. $a_{1} \cdots a_{n},\left(a_{1} \cdots a_{n}\right)^{2}, \ldots$.
- Lethe. The least of all positive common Multiples is called the least common multiple, denoted by $\left[a_{1}, \cdots, a_{n}\right]$.

The: $\quad\left[a_{1}, \cdots, a_{n}\right]=\frac{\left|a_{1}, a_{2} \cdots a_{n}\right|}{\left(a_{1}, \cdots, a_{n}\right)^{n-1}}$
[la]: $\quad[a, b]=\frac{|a b|}{(a, b)}$
Note set $g=(a, b)$. then $\left(\frac{a}{y}, \frac{b}{g}\right)=1$

Th: Find GCD of 963 and 657

$$
\begin{aligned}
& 963=1.657+306 \quad 306=(963-657) \\
& 657=? \cdot 306+?=2 \cdot 306+45,45=657-2 \cdot 3 \cdot 6=657-2 \cdot(963 \cdot 657) \\
& 306=? .45+?=6.45+36 \\
& 45=? 36+?=1.36+9 \quad 36=306-6 \cdot(3.657-2.963) \\
& 36=4(9)+0 \\
& =(963-6.57)-6(3.657-2.963) \\
& =13 \cdot 963-19 \cdot 657 \\
& 9=45-36 \\
& =3.657-2.963-(13.963-19.157) \\
& =22.657-15.963
\end{aligned}
$$

Inm 1.11 Repested Application of duision Alyentithom: Given b, C C

$$
\begin{array}{ll}
b=c q_{1}+\stackrel{r}{r}_{1} & r_{1}=b-q_{1} c \\
c=q_{2} r_{1}+r_{2} & r_{2}=c-q_{2} r_{1} \\
r_{1}=q_{3} r_{2}+r_{3} & r_{3}=r_{1}-q_{3} r_{2} \\
\vdots & \\
r_{j-1}=r_{j} q_{j+1}+0 & \text { of } b, c \text { inced intem, } \\
&
\end{array}
$$

$02 / 05 / 2015$ /hect o4 Member Theory 1 phy. P127 17
[f]: Show that $G C D\left(\frac{a}{(a, b)}, \frac{b}{(a, b)}\right)=1$
q. $d=\left(\frac{a}{(a, b)}, \frac{b}{(a, b)}\right)$
then $\quad d\left|\frac{a}{(a, b)}, \quad d\right| \frac{b}{(a, b)}$

$$
\begin{aligned}
\Rightarrow d|a . \quad d| b \Rightarrow & d \cdot(a, b) \mid a \\
& d \cdot(a, b) \mid b
\end{aligned}
$$

Eghce (a, b) is GCD of a and b, d has tobe 1
[eq] Eraluate $(n, n+1) \quad n \in \mathbb{Z}_{+}$
coses

$$
\begin{array}{ll}
n=1 & (1,2)=1 \tag{2}\\
n=2 & (2,3)=1 \\
n=3 & (3,4)=1
\end{array}
$$

Quess $\quad(n, n+1)=1$.
assume $(n, n+1)=d>1$

$$
\Rightarrow 1=d\left(n_{2}-n_{1}\right)
$$

$\Rightarrow d \mid 1$ (contradistion) to $d>1$

$$
n=d n_{1} \oplus
$$

$n+1=d n_{2}$ Q
ant Find $02 / 05 / 2015 /$ Sect. 04 Number Theory

$$
93 x-81 y=3
$$

Consider GCD 93 and 81

[en): show hat. Af $n^{2}+2$ for any integer n
[poof]: $4 / n^{2}+2 \Rightarrow$

$$
\begin{aligned}
& n^{2}+2=49 \\
& n^{2}=49-2=2(29-1)
\end{aligned}
$$

$$
\Rightarrow \quad 2 / n^{2} \Rightarrow n^{2} \text { is even }
$$

$$
\Rightarrow n \text { is even } \Rightarrow \quad 21 n \Rightarrow 4 / n^{2}
$$

$$
\Rightarrow 412(29-1) \Rightarrow 212 q-1 \quad \text { contradiction }
$$

1.3 Primes.

Defnlis An integer $P>1$ is called a prime number. or apace, in cause there is no divisor of p satisfying $1<d<p$. An integer $a>1$ is NOT a prime, it is collin a composite number. $2,3,5,7$, , 11,13 , 设, $17,19,2 K$
Thu L15 If prime $p, p \mid a b$, then p / a or p / b.
$[p f]$: If $p \nmid a$, then $(p, a)=1 \Rightarrow p / b$.
(We proved before if $d a b \&(b, c)=1$, then c / a)
Thu 1. 16 The fundomental Theorem of Arithmetic (or unique factorization theorem).
Grey positive integer can be written as a product of primes (possibly with repetition) and any such expression is unique up to a permutation of the prime factors.

$$
\left(\text { eg: } 18=2 \cdot 3 \cdot 3=3 \cdot 2 \cdot 3=2 \cdot 3^{2}\right)
$$

Existence: (by contradiction)
Let S be the set of integers, having No prime pactoristo
$1 \&$ primes $⿻$ \& S
set n be the smallest in S.
n is Not prime $\Rightarrow n=n_{1} n_{3}, 1<n_{i}<n$
Sine $n_{i} \& S$ (n issmilest) \Rightarrow, \$ni hare ponce fact Hon $n=n i n$. has prime fact.
[uniqueness]: Assume tho factorizations: $p_{1} \cdots p_{r}=q_{1} \cdots q_{s}$ Hen $p_{i} \mid q_{1} \cdots q_{3} \Rightarrow \exists j$ E.t1 $p_{i} \mid q_{j}$

Since $p_{i} \& q_{j}$ ane both primes, $p_{i}=q_{j}$
FLOG, $\quad p_{1}=q_{1}$
By induction two factorizations agree.
We unite the prime factorizetiven of a positive integer as:

$$
\begin{array}{r}
n=\prod_{p} p^{\alpha(p)} \quad \alpha(p):=\text { \#of pane } p \text { in } \\
\text { Hue factorization } \\
\text { H } G\left(D(a, b)=(a, b)=\prod_{p} p^{\min (\alpha(p), \beta(p))} ;[a, b]=\prod_{p}^{\max (\alpha(p), p, p)}\right.
\end{array}
$$

Where $a=\prod_{p} p^{\alpha(p)} \& b=\prod_{p}^{\beta(p)}$
eg. $a=108 \quad b=540$
then $a=2^{2} 3^{3} \quad b=2^{2} 3^{3} \cdot 5^{1}$

$$
\begin{aligned}
=2^{2} 3^{3} 5^{\circ} & =2^{2} 3^{3} 5^{1} \\
\operatorname{ACD}(108,540) & =2^{\min (2,2)} 3^{\min (3,3)} 5^{\min (0,1)} \\
& =2^{2} 3^{3} 5^{0}=2^{2} 3^{3} \\
{[108,540] } & =2^{\max (2,2)}, 3^{\max (3,3)} 5^{\max (0,1)} \\
& =2^{2} 3^{3} 5^{1}
\end{aligned}
$$

Ihm 1.17 (Enclid) There are infritity mony pines. [pooof] (Byccormadition) finitidy many. $P_{1} \cdots p_{n}$

Let $n=P_{1} \cdots P_{n}+1$.

However. $n\left(\bmod \left(p_{i}\right) \equiv 1\right.$

Trueiralase
x (1): \&f $(a, b)=(a, c)$ Hen $[a, b]=[a, c]$

$$
(2,4)=(4,6) \quad, \quad[2,4]=4, \quad[4,6]=12
$$

(2): If $(a, b)=(a, c)$ Hien $\left(a^{2}, b^{2}\right)=\left(a^{2}, c^{2}\right)$

$$
\pi p^{\operatorname{mix}(\alpha(p), \beta p))}
$$

(3) If $(a, b)=(a, c)$ then $(a, b)=(a, b, c)$

$$
(a, b)=((a, b), b)=((a, c), b)=(a, c, b)
$$

(4) p-prine \& $p \mid a$, 隹d $p\left|a^{2}+b^{2} \Rightarrow p\right| b$

$$
\left(a^{2}+b^{2} \equiv 0(p) \quad p \mid a \Rightarrow \quad a(p)=0 \Rightarrow \quad b^{2} \equiv 0(p) \Rightarrow p / b^{2}\right.
$$

(5) p-prime \& $p \mid a \vec{a}$, then $p \mid a$

HW Δ if if $a^{3} c^{3}$, then alc
V (7): if a^{3} / c^{2}, Hien a/c
Ho $\Delta(8)$ it a^{3} / c^{3}, Hen a/c
(q) If p is a phine, $p /\left(a^{2}+b^{2}\right)$ \& $p /\left(b^{2}+c^{2}\right)$ then $p / a^{2}=c^{2}$

X (10). p-prine \& $p\left|a^{2}+b^{2} \& p\right| b^{2}+c^{2}$. then $p \mid a^{2}+c^{2}$

$$
\left(5\left|2^{2}+4^{2}, 5\right| 4^{2}+3^{2}\right)
$$

(iI): if $(a, b)=1$, then $\left(a^{2}, a b, b^{2}\right)=1$

$$
\begin{aligned}
\left(p \mid\left(a^{2}, a b, b^{2}\right)\right. & \Rightarrow p\left|a^{2} \Rightarrow p\right| a \quad \Rightarrow p \mid(a, b) \\
& \Rightarrow p\left|b^{2} \Rightarrow p\right| b
\end{aligned}
$$

ith $\Delta_{(, 2)}\left[a^{2}, a b, b^{2}\right]=\left[a^{2}, b^{2}\right]$

HWA
(B): $b\left|a^{2}+1 \Rightarrow b\right| a^{4}+1$

$$
|5| 3^{2}+1, \quad 5 \times\left(3^{4}+1\right)
$$

another counter eg.
(14). If $b \mid\left(a^{2}-1\right)$ then $b \mid\left(a^{4}-1\right)$
$\operatorname{ItwA}(\mid 5): \quad(a, b, c)=((a, b),(a, c))$

Lecture 3

Binomial Coefficients, Congruences

$n(n-1)(n-2) \ldots 1=n!=$ number of ways to order n objects.
$n(n-1)(n-2) \ldots(n-k+1)=$ number of ways to order k of n objects.
$\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!}=$ number of ways to pick k of n objects. This is called a

(Definition) Binomial Coefficient:

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Proposition 10. The product of any k consecutive integers is always divisible by k !.

Proof. wlog, suppose that the k consecutive integers are $n-k+1, n-k+2 \ldots n-$ $1, n$. If $0<k \leq n$, then

$$
\frac{(n-k+1) \ldots(n-1)(n)}{k!}=\frac{n!}{(n-k)!k!}=\binom{n}{k}
$$

which is an integer. If $0 \leq n<k$, then the sequence contains 0 and so the product is 0 , which is divisible by k !. If $n<0$, then we have

$$
\prod_{i=1}^{k}(n-k+i)=(-1)^{k} \prod_{i=0}^{k-1}(-n+k-i)
$$

which is comprised of integers covered by above cases.

We can define a more general version of binomial coefficient
(Definition) Binomial Coefficient: If $\alpha \in \mathbb{C}$ and k is a non-negative integer,

$$
\binom{\alpha}{k}=\frac{(\alpha)(\alpha-1) \ldots(\alpha-k+1)}{k!} \in \mathbb{C}
$$

Theorem 11 (Binomial Theorem). For $n \geq 1$ and $x, y \in \mathbb{C}$:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof.

$$
(x+y)^{n}=\underbrace{(x+y)(x+y) \ldots(x+y)}_{n \text { times }}
$$

To get coefficient of $x^{k} y^{n-k}$ we choose k factors out of n to pick x, which is the number of ways to choose k out of n

Theorem 12 (Generalized Binomial Theorem). For $\alpha, z \in \mathbb{C},|z|<1$,

$$
(1+z)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k}
$$

Proof. We didn't go through the proof, but use the fact that this is a convergent series and Taylor expand around 0

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2} \ldots \quad a_{n}=\left.\frac{f^{(k)}(z)}{k!}\right|_{z=0}
$$

Pascal's Triangle: write down coefficients $\binom{n}{k}$ for $k=0 \ldots n$
$n=0$:
1
$n=1$:
$n=2$:
$n=3$:
1
12
21
$n=4$:
1
4
6
3
1

| $n=4:$ | | | 1 | | 4 | | 6 | | 4 | | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n=5:$ | 1 | | 5 | | 10 | | 10 | | 5 | | 1 | |

$\vdots \quad \vdots$

* each number is the sum of the two above it

Note:

$$
\binom{m+1}{n+1}=\binom{m}{n}+\binom{m}{n+1}
$$

Proof. We want to choose $n+1$ elements from the set $\{1,2, \ldots m+1\}$. Either $m+1$ is one of the $n+1$ chosen elements or it is not. If it is, task is to choose n from m, which is the first term. If it isn't, task is to choose $n+1$ from m, which is the second term.

Number Theoretic Properties

Factorials - let p be a prime and n be a natural number. Question is "what power of p exactly divides n ! ?"

Notation: For real number x, then $\lfloor x\rfloor$ is the highest integer $\leq x$

Claim

$$
p^{e} \| n!, \quad e=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor \ldots
$$

$\|$ means exactly divides $\Rightarrow p^{e} \mid n!, p^{e+1} \nmid n!$

Proof. $n!=n(n-1) \ldots 1$
$\left\lfloor\frac{n}{p}\right\rfloor=$ number of multiples of p in $\{1,2, \ldots n\}$
$\left\lfloor\frac{n}{p^{2}}\right\rfloor=$ number of multiples of p^{2} in $\{1,2, \ldots n\}$, etc.

Note: There is an easy bound on e :

$$
\begin{aligned}
e & =\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor \ldots \\
& \leq \frac{n}{p}+\frac{n}{p^{2}}+\frac{n}{p^{3}} \ldots \\
& \leq \frac{\frac{n}{p}}{1-\frac{1}{p}} \\
& \leq \frac{n}{p-1}
\end{aligned}
$$

Proposition 13. Write n in base p, so that $n=a_{0}+a_{1} p+a_{2} p^{2} \ldots a_{k} p^{k}$, with $a_{i} \in\{0,1 \ldots p-1\}$. Then

$$
e(a, p)=\frac{n-\left(a_{0}+a_{1} \cdots+a_{k}\right)}{p-1}
$$

Proof. With the above notation, we have

$$
\begin{aligned}
\left\lfloor\frac{n}{p}\right\rfloor & =a_{1}+a_{2} p \ldots a_{k} p^{k-1} \\
\left\lfloor\frac{n}{p^{2}}\right\rfloor & =a_{2}+a_{3} p \ldots a_{k} p^{k-1}, \text { etc. } \\
& \vdots \\
a_{0} & =n-p\left\lfloor\frac{n}{p}\right\rfloor \\
a_{1} & = \\
\vdots & \left\lfloor\frac{n}{p}\right\rfloor-p\left\lfloor\frac{n}{p^{2}}\right\rfloor, \text { etc. } \\
\sum_{i=0}^{k} a & =n-(p-1)\left(\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor \ldots\right) \\
\sum_{i=0}^{k} a & =n-(p-1)(e) \\
e & =\frac{n-\sum_{i=0}^{k} a}{p-1}
\end{aligned}
$$

Corollary 14. The power of prime p dividing $\binom{n}{k}$ is the number of carries when you add k to $n-k$ in base p (and also the number of carries when you subtract k from n in base p)

Some nice consequences:

- Entire $\left(2^{k}-1\right)^{\text {th }}$ row of Pascal's Triangle consists of odd numbers
- 2^{n} th row of triangle is even, except for 1 s at the end
- ($\binom{p}{k}$ is divisible by prime p for $0<k<p$ (p divides numerator and not denominator)
- $\binom{p^{e}}{k}$ is divisible by prime p for $0<k<p^{e}$
(Definition) Congruence: Let a, b, m be integers, with $m \neq 0$. We say a is congruent to b modulo $m(a \equiv b \bmod m)$ if $m \mid(a-b)$ (ie., a and b have the same remainder when divided by m

Congruence compatible with usual arithmetic operations of addition and multiplication.
ie., if $a \equiv b \bmod m$ and $c \equiv d \bmod m$

$$
\begin{aligned}
a+c & \equiv b+d \quad(\bmod m) \\
a c & \equiv b d \quad(\bmod m)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
a & =b+m k \\
c & =d+m l \\
a+c & =b+d+m(k+l) \\
a c & =b d+b m l+d m k+m^{2} k l \\
& =b d+m(b l+d k+m k l)
\end{aligned}
$$

* This means that if $a \equiv b \bmod m$, then $a^{k} \equiv b^{k} \bmod m$, which means that if $f(x)$ is some polynomial with integer coefficients, then $f(a) \equiv f(b)$ $\bmod m$

NOT TRUE: if $a \equiv b \bmod m$ and $c \equiv d \bmod m$, then $a^{c} \equiv b^{d} \bmod m$
NOT TRUE: if $a x \equiv b x \bmod m$, then $a \equiv b \bmod m$ (essentially because $(x, m)>1)$. But if $(x, m)=1$, then true.

Proof. $m \mid(a x-b x)=(a-b) x, m$ coprime to x means that $m \mid(a-b)$

Lecture 4
 FFermat, Euler, Wilson, Linear Congruences

(Definition) Complete Residue System: A complete residue system mod m is a collection of integers $a_{1} \ldots a_{m}$ such that $a_{i} \not \equiv a_{j} \bmod m$ if $i \neq j$ and any integer n is congruent to some $a_{i} \bmod m$
(Definition) Reduced Residue System: A reduced residue system mod m is a collection of integers $a_{1} \ldots a_{k}$ such that $a_{i} \not \equiv a_{j} \bmod m$ if $i \neq j$ and $\left(a_{i}, m\right)=1$ for all i, and any integer n coprime to m must be congruent to some $a_{i} \bmod m$. Eg., take any complete residue system $\bmod m$ and take the subset consisting of all the integers in it which are coprime to m - these will form a reduced residue system

Eg. For $m=12$
complete $=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
reduced $=\{1,5,7,11\}$
(Definition) Euler's Totient Function: The number of elements in a reduced residue system mod m is called Euler's totient function: $\phi(m)$ (ie., the number of positive integers $\leq m$ and coprime to m)

Theorem 15 (Euler's Theorem).

$$
\text { If }(a, m)=1, \text { then } a^{\phi(m)} \equiv 1 \quad \bmod m
$$

Proof.

Lemma 16. If $(a, m)=1$ and $r_{1} \ldots r_{k}$ is a reduced residue system mod $m, k=\phi(m)$, then $a r_{1} \ldots a r_{k}$ is also a reduced residue system mod m.

Proof. All we need to show is that $a r_{i}$ are all coprime to m and distinct $\bmod m$, since there are k of these $a r_{i}$ and k is the number of elements in any residue system mod m. We know that if $(r, m)=1$ and $(a, m)=1$ then $(a r, m)=1$. Also, if we had $a r_{i} \equiv a r_{j} \bmod m$, then $m \mid a r_{i}-a r_{j}=a\left(r_{i}-r_{j}\right)$. If $(a, m)=1$ then $m \mid r_{i}-r_{j} \Rightarrow r_{i} \equiv r_{j} \bmod m$, which cannot happen unless $i=j$.

Choose a reduced residue system $r_{1} \ldots r_{k} \bmod m$ with $k=\phi(m)$. By lemma, $a r_{1} \ldots a r_{k}$ is also a reduced residue system. These two must be permutations of
each other $\bmod m\left(\right.$ ie., $\left.a r_{i} \equiv r_{j(i)} \bmod m\right)$.

$$
\begin{aligned}
r_{1} r_{2} \ldots r_{k} & \equiv a r_{1} a r_{2} \ldots a r_{k} \quad(\bmod m) \\
r_{1} r_{2} \ldots r_{k} & \equiv a^{\phi(m)} r_{1} r_{2} \ldots r_{k} \quad(\bmod m) \\
\left(r_{1} r_{2} \ldots r_{k}, m\right) & =1 \Rightarrow \text { can cancel } \\
a^{\phi(m)} & \equiv 1 \quad(\bmod m)
\end{aligned}
$$

Corollary 17 (Fermat's Little Theorem).

$$
a^{p} \equiv a \quad(\bmod p) \quad \text { for prime } p \text { and integer } a
$$

Proof. If $p \nmid a$ (ie., $(a, p)=1$) then $a^{\phi(p)} \equiv 1 \bmod p$ by Euler's Theorem. $\phi(p)=$ $p-1 \Rightarrow a^{p-1} \equiv 1 \bmod p \Rightarrow a^{p} \equiv a \bmod p$. If $p \mid a$, then $a \equiv 0 \bmod p$ so both sides are $0 \equiv 0 \bmod p$.

Proof by induction.

Lemma 18 (Freshman's Dream).

$$
(x+y)^{p} \equiv x^{p}+y^{p} \quad(\bmod p) \quad x, y \in \mathbb{Z}, \text { prime } p
$$

Use the Binomial Theorem.

$$
(x+y)^{p}=x^{p}+y^{p}+\underbrace{\sum_{k=1}^{p-1}\binom{p}{k} x^{k} y^{p-k}}_{\equiv 0 \bmod p}
$$

We saw that $\binom{p}{k}$ is divisible by p for $1 \leq k \leq p-1$, so

$$
(x+y)^{p} \equiv x^{p}+y^{p} \quad(\bmod p)
$$

Induction base case of $a=0$ is obvious. Check to see if it holds for $a+1$ assuming it holds for a

$$
\begin{aligned}
(a+1)^{p}-(a+1) & \equiv a^{p}+1-(a+1) \quad(\bmod p) \\
& \equiv a^{p}-a \quad(\bmod p) \\
& \equiv 0 \quad(\bmod p) \\
(a+1)^{p} & \equiv(a+1) \quad(\bmod p)
\end{aligned}
$$

This is reversible (if holds for a, then also for $a-1$), and so holds for all integers by stepping up or down

Proposition 19 (Inverses of elements $\bmod m)$. If $(a, m)=1$, then there is a unique integer $b \bmod m$ such that $a b \equiv 1 \bmod m$. This b is denoted by $\frac{1}{a}$ or $a^{-1} \bmod m$

Proof of Existence. Since $(a, m)=1$ we know that $a x+m y=1$ for some integers x, y, and so $a x \equiv 1 \bmod m$. Set $b=x$.

Proof of Uniqueness. If $a b_{1} \equiv 1 \bmod m$ and $a b_{2} \equiv 1 \bmod m$, then $a b_{1} \equiv a b_{2}$ $\bmod m \Rightarrow m \mid a\left(b_{1}-b_{2}\right)$. Since $(m, a)=1, m \mid b_{1}-b_{2} \Rightarrow b_{1} \equiv b_{2} \bmod m$.

Theorem 20 (Wilson's Theorem). If p is a prime then $(p-1)!\equiv-1 \bmod p$

Proof. Assume that p is odd (trivial for $p=2$).

Lemma 21. The congruence $x^{2} \equiv 1 \bmod p$ has only the solutions $x \equiv \pm 1 \bmod p$

Proof.

$$
\begin{aligned}
& x^{2} \equiv 1 \quad \bmod p \\
\Rightarrow & p \mid x^{2}-1 \\
\Rightarrow & p \mid(x-1)(x+1) \\
\Rightarrow & p \mid x \pm 1 \\
\Rightarrow & x \equiv \pm 1 \quad \bmod p
\end{aligned}
$$

Note that $x^{2} \equiv 1 \bmod p \Rightarrow(x, p)=1$ and x has inverse and $x \equiv x^{-1} \bmod p$ $\{1 \ldots p-1\}$ is a reduced residue system $\bmod p$. Pair up elements a with inverse $a^{-1} \bmod p$. Only singletons will be 1 and -1 .

$$
\begin{aligned}
(p-1)! & \equiv\left(a_{1} \cdot a_{1}^{-1}\right)\left(a_{2} \cdot a_{2}^{-1}\right) \ldots\left(a_{k} \cdot a_{k}^{-1}\right)(1)(-1) \quad(\bmod p) \\
& \equiv-1 \quad(\bmod p)
\end{aligned}
$$

Wilson's Theorem lets us solve congruence $x^{2} \equiv-1 \bmod p$

Theorem 22. The congruence $x^{2} \equiv-1 \bmod p$ is solvable if and only if $p=2$ or $p \equiv 1 \bmod 4$

Proof. $p=2$ is easy. We'll show that there is no solution for $p \equiv 3 \bmod 4$ by contradiction. Assume $x^{2} \equiv-1 \bmod p$ for some x coprime to $p(p=4 k+3)$. Note that

$$
p-1=4 k+2=2(2 k+1)
$$

so $\left(x^{2}\right)^{2 k+1} \equiv(-1)^{2 k+1} \equiv-1 \bmod p$. But also,

$$
\left(x^{2}\right)^{2 k+1} \equiv x^{4 k+2} \equiv x^{p-1} \equiv 1 \quad \bmod p
$$

So $1 \equiv-1 \bmod p \Rightarrow p \mid 2$, which is impossible since p is an odd prime.
If $p \equiv 1 \bmod 4$:

$$
\begin{aligned}
&(p-1)! \equiv-1 \quad(\bmod p) \text { by Wilson's Theorem } \\
& \underbrace{\left(1 \cdot 2 \ldots \frac{p-1}{2}\right)}_{x} \underbrace{\left(\frac{p+1}{2} \ldots p-1\right) \quad(\bmod p)}_{\begin{array}{c}
(1)(2) \ldots(p-1) \\
\text { show that second factor } \\
\text { equals the first }
\end{array}} \begin{aligned}
p-1 & \equiv(-1) 1 \quad(\bmod p) \\
p-2 & \equiv(-1) 2 \quad(\bmod p) \\
\vdots & (\bmod p) \\
\frac{p+1}{2} & \equiv(-1)^{\frac{p-1}{2}}(\bmod p) \\
\underbrace{\left.\frac{p+1}{2}\right) \ldots(p-1)}_{\text {second factor }} & \equiv(-1)^{\frac{p-1}{2}} \underbrace{\left(1 \cdot 2 \ldots\left(\frac{p-1}{2}\right)\right)}_{x}(\bmod p)
\end{aligned}
\end{aligned}
$$

$\frac{p-1}{2}$ is even since $p \equiv 1 \bmod 4$, and so second factor equals the first factor, so $x=\left(\frac{p-1}{2}\right)$! solves $x^{2} \equiv-1 \bmod p$ if $p \equiv 1 \bmod 4$.

Theorem 23. There are infinitely many primes of form $4 k+1$

Proof. As in Euclid's proof, assume finitely many such primes $p_{1} \ldots p_{n}$. Consider the positive integer

$$
N=\left(2 p_{1} p_{2} \ldots p_{n}\right)^{2}+1
$$

N is an odd integer >1, so it has an odd prime factor $q \neq p_{i}$, since each p_{i} divides $N-1 . q \mid N \Rightarrow\left(2 p_{1} \ldots p_{n}\right)^{2} \equiv-1 \bmod q$, so $x^{2} \equiv-1 \bmod q$ has a solution and so by theorem $q \equiv 1 \bmod 4$, which contradicts $q \neq p_{i}$.
(Definition) Congruence: A congruence (equation) is of the form $a_{n} x^{n}+$ $a_{n-1} x^{n-1} \cdots+a_{0} \equiv 0 \bmod m$ where $a_{n} \ldots a_{0}$ are integers. Solution of the congruence are integers or residue classes $\bmod m$ that satisfy the equation.

Eg. $x^{p}-x \equiv 0 \bmod p$. How many solutions? p.

Eg. $x^{2} \equiv-1 \bmod 5$. Answers $=2,3$.
Eg. $x^{2} \equiv-1 \bmod 43$. No solutions since $43 \equiv 3 \bmod 4$.

Eg. $x^{2} \equiv 1 \bmod 15$. Answers $= \pm 1, \pm 4 \bmod 15$.
Note: The number of solutions to a non-prime modulus can be larger than the degree
(Definition) Linear Congruence: a congruence of degree $1(a x \equiv b \bmod m)$

Theorem 24. Let $g=(a, m)$. Then there is a solution to $a x \equiv b \bmod m$ if and only if $g \mid b$. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose $g \nmid b$. We want to show that the congruence doesn't have a solution. Suppose x_{0} is a solution $\Rightarrow a x_{0}=b+m k$ for some integer k. Since $g|a, g| m, g$ divides $a x_{0}-m k=b$, which is a contradiction. Conversely, if $g \mid b$, we want to show that solutions exist. We know $g=a x_{0}+m y_{0}$ for integer x_{0}, y_{0}. If $b=b^{\prime} g$, multiply by b^{\prime} to get

$$
\begin{aligned}
b=b^{\prime} g & =b^{\prime} \mid a x_{0}+m y_{0} \\
& =a\left(b^{\prime} x_{0}\right)+m\left(b^{\prime} y_{0}\right) \\
& \Rightarrow a\left(b^{\prime} x_{0}\right) \equiv b \quad(\bmod m)
\end{aligned}
$$

and so $x=b^{\prime} x_{0}$ is a solution.
We need to show that there are exactly g solutions. We know that there is one solution x_{1}, and the congruence says $a x \equiv b \equiv a x_{1} \bmod m$.

$$
\begin{aligned}
a\left(x-x_{1}\right) & \equiv 0 \quad(\bmod m) \\
a\left(x-x_{1}\right) & \equiv m k \text { for some integer } k \\
g=(a, m) & \Rightarrow a=a^{\prime} g, m=m^{\prime} g
\end{aligned}
$$

So $\left(a, m^{\prime}\right)=1$, so $a^{\prime} g\left(x-x_{1}\right)=m^{\prime} g k \Rightarrow a\left(x-x_{1}\right)=m^{\prime} k$ for some k. So $m^{\prime} \mid x-x_{1}$, so $x \equiv x_{1} \bmod m^{\prime}$, so any solution of the congruence must be congruent to x
$\bmod m^{\prime}=m$. So all the solutions are $x_{1}, x_{1}+m^{\prime}, x_{1}+2 m^{\prime}, \ldots, x_{1}+(g-1) m^{\prime}$. They are all distinct, so they are all the solutions $\bmod m$.
$02 / 9 / 2015$ Number Tloong
chpt2. Congmences
Tme Or Folse
inf $a \equiv b$ mod $m, c \equiv d \bmod m$, then $a^{c} \equiv b^{d}$ nod m Tokse $2=2(\bmod 3) \quad 1 \equiv 4 \bmod 3$

But $\quad 2^{1} \equiv 2$ (3) $\quad 2^{4} \equiv 1(3)$
27t $a \equiv b(m) c \equiv d(m)$, then $a c \equiv b d(m)$ the
3) if $a x$ zbx (m), then $a=b(\mathrm{~m})$

$$
x=2, m=2
$$

what if $(x, m)=1 ?$ True
Bosic proptiles) Therem $21,2,22 a, b, c, d$ - ineepis, then
$174 a \equiv b(\mathrm{~m}), b=a(\mathrm{~m}) \quad \& \quad a-b \equiv 0(\mathrm{~m})$ che aqualent
2) $4(a \equiv b$ (m) $\quad b \equiv c(m), ~ H E M \quad a \equiv c$ (m)
3) $f(a \equiv b(\mathrm{~m}), c \equiv d(\mathrm{~m}), \quad a \pm c \equiv b \pm d(\mathrm{~m}), \quad a c=b d(\mathrm{~m})$
4): If $a=b(m), d m X d>0$, then $a=b(d)$.
5): $\psi a \equiv b(m)$, than $a c \equiv b c(m c)$ for $c>0$
6): Let $f \in \mathbb{Z}[x]$ - polynomial ivith inferior weffilionts. If $a \equiv b(m)$ then $f(a) \equiv f(b)(m)$
$7 \mathrm{hm}: 2.3$
(1): $a x \equiv a y(\bmod m)$ if $x \equiv y\left(\bmod \frac{m}{(a, m)}\right)$
(IF): if $a x \equiv \operatorname{ay}(m)$ and $(a, m)=1$, then $x \equiv y(m)$
(IV): $x=y\left(m i n\right.$ for $i=1,2, \cdots, r$. if $x=g\left(\operatorname{mad}\left[m, \cdots, m_{r}\right]\right)$
[port]: (I) $a x=a y \Leftrightarrow a x-a y=m \cdot N \Leftrightarrow \frac{a x-a y}{(m, a)}=\frac{m}{(m, a)} N$

$$
\begin{aligned}
& \Delta \frac{a}{(m, a)}(x-y)=\frac{m}{(m, a)} N \quad \\
& \rightarrow \frac{m}{(m, a)} \left\lvert\,(x-y) \Rightarrow x \equiv y\left(\frac{m}{(m, a)}\right)\right. \\
& \leftarrow \text { if } x \equiv y\left(\frac{m}{m 1, a}\right) \quad \Rightarrow a(x-y)=\left(x \cdot \frac{m}{(m, a)}\right)
\end{aligned}
$$

II. (Wast tine)

I业: if $x=0$ (mi). Then $m_{i} \mid y-x$ for all i
\Rightarrow if $\left[m_{1}, \cdots, m_{r}\right]|x-y| ;$ \& $\left[m_{1}, \cdots, m_{r}\right] \mid x-y \Rightarrow$

Recall: A complete resile de system $\bmod (m)$ is a set of integers x_{1}, \cdots, x_{m} sit. for any inteyor y. than exists a unique x_{j} in the bet s. th $y \equiv x_{j}(\mathrm{~m})$
y

$$
m=3
$$

complete residue sy stem: $:\{-2,-1,0\}$

$$
\{-2,2,0\}, \quad\{30,29,28\},
$$

(NOT) $\{1,3,4\}$ as $p=4$ (3)

The set is coll a residua class or corgnencedes. mod m.

Th n of $b=c(m)$ then $(b, m)=(c, m)$ id ed $\quad b=M^{x}+C$ (the prof for findry $Q C D$)

Recall A roduad Recrdice System: mod m.

$$
\neg\left\{a_{1}, \cdots, a_{k}\right\} \quad \text { sit. } \quad a_{i} \neq a_{j}(m) \quad \forall i \neq j \text {. }
$$

2) + aram if $(a i, m)=1$ for all
3) any int. in connie to m is congruent to some ai
chapter 2. Comprenas

Lecture
 FFermat, Euler, Wilson, Linear Congruences

(Definition) Complete Residue System: A complete residue system mod m is a collection of integers $a_{1} \ldots a_{m}$ such that $a_{i} \neq a_{j} \bmod m$ if $i \neq j$ and any integer π is congruent to some $a_{i} \bmod m$
(Definition) Reduced Residue System: A reduced residue system mod m is a collection of integers $a_{1} \ldots a_{k}$ such that $a_{i} \neq a_{j} \bmod m$ if $i \neq j$ and $\left(a_{i}, m\right)=1$ for all i, and any integer n coprime to m must be congruent to some $a_{i} \bmod m$. Eg, take any complete residue system mod m and take the subset consisting of all the integers in it which are coprime to m - these will form a reduced residue systems

Eg. For $m=12$
complete $=\{1: 2,3,4,5,6,7,8,9,10,11,12\}$ reduced $=\{1,5,7,11\}$
for prime numbers
complete /p are reined
(Definition) Euler's Tutient Function: The number of elements in a reduced residue system mod m is called Euler's totient function: $\phi(m)$ (ie., the number of positive integers ? $n n$ and coprime to m)

$<$

Theorem 15 (Euler's Theorem).

$$
\text { If }(a, m)=1, \text { then } a^{\phi(m)}=1 \quad \bmod m
$$

Proof.

Lemma 16. If $(a, m)-1$ and $r_{3} \ldots T_{k}$ is a reduced residue system mod $m, k=\phi(m)$, then $a r_{1}$. . . ar $T_{\text {b }}$ is also a reduced residue system mod m.

Proof. All we need to show is that $a r_{i}$ are all coprime to m and distinct mod m, since there are k of these $a r_{i}$ and k is the number of elements in any residue systern mod m. We know that if $(r, m)-1$ and $(a, m)=1$ then $(a r, m)=1$. Also, if we had $a r_{i}=a r_{j} \bmod m$, them $m \mid a r_{i}-a r_{j}=a\left(r_{i}-r_{j}\right)$. If $(a, m)=1$ then $m \mid r_{i}-r_{j} \Rightarrow r_{i}=r_{j}$ mod m, which cannot happen unless $i=j$.

Choose a reduced residue system $r_{1} \ldots r_{k}$ mod m with $k=\phi(m)$. By lemma, $a r_{1} \ldots a r_{k}$ is also a reduced residue system. These two must be permutations of

each other $\bmod m\left(\right.$ ie., $\left.a r_{i} \equiv r_{j(i)} \bmod m\right)$.

$$
\begin{aligned}
r_{1} r_{2} \ldots r_{k} & \equiv a r_{1} a r_{2} \ldots a r_{k} \quad(\bmod m) \\
r_{1} r_{2} \ldots r_{k} & \equiv a^{\phi(m)} r_{1} r_{2} \ldots r_{k}(\bmod m) \\
\left(r_{1} r_{2} \ldots r_{k}, m\right) & =1 \Rightarrow \text { can cancel } \\
a^{\phi(m)} & \equiv 1 \quad(\bmod m)
\end{aligned}
$$

Corollary 17 (Fermat's Little Theorem).

$$
a^{p} \equiv a(\bmod p) \text { for prime } p a n d \text { integer } a
$$

Proof. If p : α (ie., $(a, p)=1$) then $a^{\phi(p)} \equiv 1$ mod p by Euler's Theorem. $\phi(p)=$ $p-1 \Rightarrow a^{p-1} \equiv 1 \bmod p \Rightarrow a^{p} \equiv a \bmod p$. If $p a$, then $a \equiv 0 \bmod p$ so both sides are $0 \equiv 0 \bmod p$.

Proof by induction.

Lemma 18 (Freshman's Dream).

$$
(x+y)^{p} \equiv x^{p}+y^{p} \quad(\bmod p) \quad x, y \in \mathbb{L}_{1} \text { prime } p
$$

Use the Binomial Theorem.

$$
(x+y)^{p}=x^{p}+y^{p}+\underbrace{\sum_{k=1}^{p-1}\binom{p}{k} x^{k} y^{p-k}}_{\equiv 0 \bmod p}
$$

We saw that $\binom{p}{k}$ is divisible by p for $1 \leq k \leq p-1$, so

$$
(x+y)^{p} \equiv x^{p}+y^{p} \quad(\bmod p)
$$

Induction base case of $a=0$ is obvious. Check to see if it holds for $a+1$ assuming it holds for a

$$
\begin{aligned}
(a+1)^{n}-(a+1) & \equiv a^{p}+1-(a+1) \quad(\bmod p) \\
& \equiv a^{p}-a \quad(\bmod p) \\
& \equiv 0 \quad(\bmod p) \\
(a+1)^{p} & \equiv(a+1) \quad(\bmod p)
\end{aligned}
$$

This is reversible (if holds for a, then also for $a-1$), and so holds for all integers by stepping up or down

Proposition 19 (Inverses of elements $\bmod m$). If $(a, m)=1$, then there is a unique integer $b \bmod m$ such that $a b \equiv 1 \bmod m$. This b is denoted by $\frac{1}{a}$ or $a^{-1} \bmod m$

Proof of Existence. Since $(a, m)=1$ we know that $a x+m y=1$ for some integers x, y, and so $a x \equiv 1 \bmod m$. Set $b=x$.

Proof of Uniqueness. If $a b_{1} \equiv 1 \bmod m$ and $a b_{2} \equiv 1 \bmod m$, then $a b_{1} \equiv a b_{2}$ $\bmod m \Rightarrow m \mid n\left(b_{1}-b_{2}\right)$. Since $(m, a)=1_{d} m \mid b_{1}-b_{2} \Rightarrow b_{1} \equiv b_{2}$ mod m.

Theorem 20 (Wilson's Theorem). If p is a prime then $(p-1)!\equiv-1$ mod p

Proof. Assume that p is odd (trivial for $p=2$).

$$
\begin{aligned}
& x^{2} \equiv 1 \quad \bmod p \\
\Rightarrow & p \mid x^{2}-1 \\
\Rightarrow & p \mid(x-1)(x+1) \\
\Rightarrow & p \mid x \pm 1 \\
\Rightarrow & x \equiv \pm 1 \quad \bmod p
\end{aligned}
$$

Note that $x^{2} \equiv 1 \bmod p \Rightarrow(x, p)=1$ and x has inverse and $x \equiv x^{-1} \bmod p$ $\{1 \ldots p-1\}$ is a reduced residue system mod p. Pair up elements a with inverse

$$
\begin{aligned}
(p-1)! & \equiv\left(a_{1} \cdot a_{1}^{-1}\right)\left(a_{2} \cdot a_{2}^{-1}\right) \ldots\left(a_{k} \cdot a_{k}^{-1}\right)(1)(-1) \quad(\bmod p) \\
& \equiv-1 \quad(\bmod p)
\end{aligned}
$$

$$
i \leq\langle=1\rangle
$$

Proof. $p=2$ is easy. We'll show that there is no solution for $p \equiv 3 \bmod 4$ by contradiction. Assume $x^{2} \equiv-1 \bmod p$ for some x coprime to $p(p=4 k+3)$. Note that

$$
p-1=4 k+2=2(2 k+1)
$$

$\mathrm{so}\left(x^{2}\right)^{2 k+1} \equiv(-1)^{2 k+1} \equiv-1 \bmod p$. But also,

$$
\left(x^{2}\right)^{2 k+1} \equiv x^{1 k+2} \equiv x^{p-1} \equiv 1 \quad \bmod p
$$

So $1 \equiv-1 \bmod p \rightarrow p \mid 2$, which is impossible since p is an odd prime.
If $p \equiv 1 \bmod 4$:

$$
\begin{aligned}
& (p-1)!\equiv-1 \quad(\bmod p) \text { by Wilson's Theorem } \\
& \text { (1) }(2) \ldots(p-1)=-1 \quad(\bmod p) \\
& \underbrace{\left(1 \cdot 2 \ldots \frac{p-1}{2}\right)}_{x} \underbrace{\left(\frac{p-1}{2} \ldots p-1\right)}_{\begin{array}{c}
\text { khow that secemul factor } \\
\text { equals he first }
\end{array}} \equiv-1 \quad(\bmod p) \\
& p-1 \geqslant(-1) 1 \quad(\bmod p) \\
& p-2 \equiv(-1) 2 \quad(\bmod p) \\
& \vdots \\
& \frac{p+1}{2} \equiv(-1) \frac{p-1}{2} \quad(\bmod p) \\
& \underbrace{\left(\frac{p+1}{2}\right) \cdots(p-1)}_{\text {second factor }} \equiv(-1)^{\frac{2-1}{2}} \underbrace{\left(1 \cdot 2 \ldots\left(\frac{p-1}{2}\right)\right)}_{x}(\bmod p)
\end{aligned}
$$

$\frac{p-1}{2}$ is even since $p \equiv 1$ mod 4 , and so second factor equals the first factor, so $x=\left(\frac{p-1}{2}\right)!$ solves $x^{2} \equiv-1 \bmod p$ if $p \equiv 1 \bmod 4$.

Theorem 23. There are infinitely many primes of form $4 k+1$

Proof. As in Euclid's proof, assume finitely many such primes $p_{1} \ldots p_{n}$. Consider the positive integer

$$
N-\left(2 p_{1} p_{2}, \ldots p_{n}\right)^{2}+1
$$

N is an odd integer >1, so it has an odd prime factor $q \neq \varphi_{i s}$ since each p_{i} divides $N-1 . q \mid N \Rightarrow\left(2 p_{1} \ldots p_{q}\right)^{2} \equiv-1 \bmod q$, so $x^{2}=-1 \bmod q$ has a solution and so by theorem $q \equiv 1 \bmod 4$, which contradicts $q \neq \mu_{i}$.

02/24/2015 Number Theong
Recall
DEuler's Thandem if $(a, m)=1$, then $a^{\phi(m)} \equiv 1 \mathrm{mod} \mathrm{m}$
Two meanings: if $(a, m)=1$, tion aisinuentible

$\phi(m):=$ size of Recluided Resiciue sytem (mod m)
=size of $\{a / 0<a<m, \quad(a, n)=1\}$
og: $\phi(10)=?$
Find \#'s mel. prime to $108 \leq 10$

$$
1,3,7,9 \Rightarrow \varphi(10)=4
$$

\& by Eulet's Thanom: $y^{4}=1(10), 3^{4} \equiv 1(10)$

$$
7^{4} \equiv 1(10), q^{4} \equiv 1(10)
$$

Inwere of $7(\bmod 10)$.
Two mays to find out $177^{3}=1$ (10)

$$
\begin{aligned}
\Rightarrow & 7^{3}(\bmod 10) \text { is } 7^{-1} \\
& =343(\bmod 10) \\
& =3(\bmod 10)
\end{aligned}
$$

$$
\Rightarrow 7^{-1} \equiv 3(10) \quad \& \quad 3^{-1} \equiv 7(10)
$$

(2): Sink $(7,10)=1$, we can find a, b
siti $7 a+10 b=1$ use Endeled Nextinn

$$
\begin{gathered}
0 \\
0 \\
2 \\
\hline 10 \\
7
\end{gathered} \left\lvert\, \begin{array}{cc}
10 & 7 \\
2 \times(1) 3 & 1 \\
17-23 & -2 \\
\hline
\end{array}\right.
$$

27 Fermot's Little Theorem: $a^{p} \equiv a(p)$ if p is aptime
3) Sdution to $x^{2} \equiv 1$ (p) $\quad x \equiv \pm 1$ (p)
4) $x^{2} \equiv-1(p)$ is solvable $\Leftrightarrow p=2$ or $p \equiv$ (4)
(Definition) Congruence: A congruence (equation) is of the form $a_{n} x^{n}+$ $a_{n-1} x^{n-1} \cdots+a_{0} \equiv 0 \bmod m$ where $a_{n} \ldots a_{0}$ are integers. Solution of the congruence are integers or residue classes $\bmod m$ that satisfy the equation.
P=prink Eg. $x^{p}-x \equiv 0 \bmod p$. How many solutions? p. (FOMM Qt's little tikOMOM)
Eg. $x^{2} \equiv-1 \bmod 5$. Answers $=2,3$.

Eg. $x^{2} \equiv-1 \bmod 43$. No solutions since $43 \equiv 3 \bmod 4$.
Eg. $x^{2} \equiv 1 \bmod 15$. Answers $= \pm 1, \pm 4 \bmod 15$.
Note: The number of solutions to a non-prime modulus can be larger than the degree (aiotthue over 17, c, - -)
(Definition) Linear Congruence: a congruence of degree $\mathbf{1}(a x \equiv b \bmod m)$
Theorem 24. Let $g=(a, m)$. Then there is a solution to $a x \equiv b \bmod m$ if and only if $g \mid b$. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose $g \nmid b$. We want to show that the congruence doesn't have a solution. Suppose x_{0} is a solution $\Rightarrow a x_{0}=b+m k$ for some integer k. Since $g|a, g| m, g$ divides $a x_{0}-m k=b$, which is a contradiction. Conversely, if $g \mid b$, we want to show that solutions exist. We know $g=a x_{0}+m y_{0}$ for integer x_{0}, y_{0}. If $b=b^{\prime} g$, multiply by b^{\prime} to get

$$
\begin{aligned}
b=b^{\prime} g & =b^{\prime}\left(a x_{0}+m y_{0}\right) \\
& =a\left(b^{\prime} x_{0}\right)+m\left(b^{\prime} y_{0}\right) \\
& \Rightarrow a\left(b^{\prime} x_{0}\right) \equiv b \quad(\bmod m)
\end{aligned}
$$

and so $x=b^{\prime} x_{0}$ is a solution. (this provide a wei of finding solutions)

$\bmod m^{\prime} n$. So all the solutions are $x_{1}, x_{1}+m^{\prime}, x_{1}+2 m^{\prime}, \ldots, x_{1}+(g-1) m^{\prime}$. They are all distinct, so they are all the solutions $\bmod m$.

$$
1
$$

later
7.7. Determinism of the folowhy congruences have solutions if 50 , find all form.

$$
\begin{aligned}
& 715 x \equiv 36(17) \\
& 24 x \equiv 8 \quad(16)
\end{aligned}
$$

3) $6 x=14(12)$
4) $4 x \equiv 2(14)$

Section 2.2 Solution of congneeraes. Linear Congruences, Chinese Remainder Theorem, Algorithms

Recap -linear congruence $a x \equiv b \bmod m$ has solution if and only if $g=(a, m)$ divides b. How do we find these solutions?
Case 1: $g=(a, m)=1$. Then invert $a \bmod m$ to get $x \equiv a^{-1} b \bmod m$. Algorithmically, find $a x_{0}+m y_{0}=1$ with Euclidean Algorithm, then $a x_{0} \equiv 1$ mod m so $x_{0}=a^{-1}$, so $x \equiv x_{0} b=a^{-1} b$ solves the congruence. $\left(a x \equiv a\left(x_{0} b\right) \equiv\right.$ $\left.\left(a x_{0}\right) b \equiv b \bmod m\right)$. Conclusion: There is a unique solution $\bmod m$.
Case 2: $g=(a, m)>1$. If $g \nmid b$, there are no solutions. If $g \mid b$, write $a=$ $a^{\prime} g, b=b^{\prime} g, m=m^{\prime} g$ so that $a x \equiv b \bmod m \Rightarrow a^{\prime} x=b^{\prime} \bmod m^{\prime}$ so that $\left(a^{\prime}, m^{\prime}\right)$ is now 1 . The unique solution (found by Case 1) $x \bmod m^{\prime}$ also satisfied $a x \equiv b \bmod m$ so that we have one solution $\bmod m$. We know any solution $\tilde{x} \bmod m$ must be congruent to $x \bmod m^{\prime}$, so \tilde{x} must have form $x+m^{\prime} k$ for some k. As k goes from 0 through $g-1$ we get the g distinct integers mod m : $x, x+m^{\prime}, x+2 m^{\prime} \ldots x+(g-1) m^{\prime}$, which all satisfy $a \tilde{x} \equiv b \bmod m$ because

$$
\begin{aligned}
a\left(x+k m^{\prime}\right) & =a x+a k m^{\prime} \\
& =a x+a^{\prime} g k m^{\prime} \\
& =a x+m\left(a^{\prime} k\right) \\
& \equiv a x \quad(\bmod m) \\
& \equiv b \quad(\bmod m)
\end{aligned}
$$

eg:
$10 x \equiv 5 \quad(6)$

$$
(10,6)=2
$$

$$
\text { But } 2 \nmid 5
$$

No solution

$10 x \equiv 14$ (6)
have it Easy in

$$
4 x=2(6)
$$

$$
\begin{aligned}
& (4,6)=2), 212 \\
& 202 x=1(3)
\end{aligned}
$$

$$
2^{-1}=21
$$

$$
35 x \equiv 14 \quad(\bmod 28)
$$

$(35,28)=g=7$. To solve, first divide through by 7 to get $5 x \equiv 2 \bmod 4$. Solution of $x \equiv 2 \bmod 4$ is $x=2$, which will also satisfy original congruence. $m^{\prime}=\frac{28}{7}=4 \Rightarrow$ all solutions $\bmod 28 \equiv 2,6,10,14,18,22,26$.

Simultaneous System of Congruences to Different Moduli: Given

$$
\begin{gathered}
x \equiv a_{1} \\
\left(\bmod m_{1}\right) \\
x \equiv a_{2} \quad\left(\bmod m_{2}\right) \\
\vdots \\
x \equiv a_{k} \\
\left(\bmod m_{k}\right)
\end{gathered}
$$

Does this system have a common solution? (Not always, eg., $x=3 \bmod 8$ and $x \equiv 1 \bmod 12$) In general, need some compatibility conditions.

$$
\text { (3) } \quad x \equiv 2(3)
$$

$$
x \equiv 2(3) \quad \text { tact } \quad z \cdot 10=20(x) M y
$$

17. $15 x=36(17)$
simplefy: $15 x=2(17) \quad(15.17)=1, \quad(2,17)=1$
Find $15^{-1}(17)$ enter $15^{4(17)-1} \equiv 15^{-1}(17)$ |fard!
of $G C D$

		17	15
17	1	0	
15	0	1	
	2	1	-1
1	-7	8	

$$
\begin{gathered}
17(-7)+15 \cdot(8)=1 \\
2015^{-1} \equiv 8(17) \\
\Rightarrow x \equiv 2 \cdot 8(7) \\
=16
\end{gathered}
$$

unique satuto cis $(15,17) \equiv 1$
2) $a x=b(w)$
2) $4 x \equiv 8(16) \quad(4,16)=4$,

井 if Solutions $=(4,16)=4$
Fha (1) Suatm Fris Slue: $9=\left\{x_{0}+m y_{0}\right.$
(e.) Solve: $4=4 x_{0}+16 y_{0}$

$$
\begin{gathered}
\cos y: \quad x_{0}=(-3), y_{0}=1 \\
\text { byomention }
\end{gathered}
$$

$$
\begin{aligned}
b=b g \equiv b\left(a x_{0}+m n\right) & \equiv b a x_{0} \quad(m) \quad \text { al rave: } \\
& \equiv G\left(b x_{0}\right)(m) \quad \frac{a}{b} \times \frac{b}{g}\left(\frac{m}{4}\right) \\
b=b / g=8 / 4=2 \quad & \Rightarrow \text { Solution } b x_{0}=2 \cdot(-3)(16)
\end{aligned}
$$

Totuly $9=4$

$$
-6,-2,-2+4=2,2+4=6
$$

pugsumansbub in to see if tray are conect.

37: $\quad 6 x \equiv 1+(12) \quad(0,12)=6, \quad 6114 \quad$ Nosin.
$47 \quad 4 x=2(14) \quad(414)=2, \quad 212$

\nless mod 14
4,11 (mol if

$$
\begin{aligned}
x & =Q_{i}(m u l m i) \\
& =1, \ldots k
\end{aligned}
$$

Theorem 25 (Chinese Remainder Theorem). If the moduli are coprime in pairs (ie., (m_{i}, m_{j}) $=1$ for $i \neq j$), then the system has a unique solution mod $m_{1} m_{2} \ldots m_{k}$.

Proof of Uniqueness. Suppose there are two solutions $x \equiv y \equiv a_{1} \bmod m_{1}, x \equiv$ $y \equiv a_{2} \bmod m_{2}$, etc. Then $m_{1}\left|(x-y), m_{2}\right|(x-y)$, etc. Since m^{\prime} 's are relatively prime in pairs, their product $m_{1} m_{2} \ldots m_{k}$ divides $x-y$ as well, so $x \equiv y$ $\bmod m_{1} m_{2} \ldots m_{k}$. So solution, if exists, must be unique $\bmod m_{1} m_{2} \ldots m_{k}$.

Proof of Existence. Write solution as a linear combination of a_{i}

$$
A_{1} a_{1}+A_{2} a_{2}+\cdots+A_{k} a_{k}
$$

Want to arrange so that $\bmod a_{i}$ all the A_{j} for $j \neq i$ are $\equiv 0 \bmod m$, and $A_{i} \equiv 1$ $\bmod m_{i}$. Let

$$
\begin{aligned}
& N_{1}=m_{2} m_{3} \ldots m_{k} \\
& N_{2}=m_{1} m_{3} \ldots m_{k} \\
& \vdots \\
& N_{i}=m_{1} m_{2} \ldots m_{i-1} m_{i+1} \ldots m_{k}
\end{aligned}
$$

 plicative inverse of $N_{i} \bmod m_{i}$, and let $A_{i}=H_{i} N_{i}$. Then, $A_{i} \equiv 0 \bmod m_{j}$ for $j \neq i$ and $A_{i} \equiv 1 \bmod m_{i}$. So now let

$$
\begin{aligned}
a & =A_{1} a_{1}+A_{2} a_{2}+\cdots+A_{k} a_{k} \\
& =H_{1} N_{1} a_{1}+H_{2} N_{2} a_{2}+\cdots+H_{k} N_{k} a_{k}
\end{aligned}
$$

Then if we take $\bmod m_{i}$ all the terms except i th term will vanish (since $m_{i} \mid N_{j}$ for $j \neq i$. So

$$
\begin{aligned}
a & \equiv H_{i} N_{i} a_{i} \quad\left(\bmod m_{i}\right) \\
& \equiv a_{i} \quad\left(\bmod m_{i}\right)
\end{aligned}
$$

Eg.

$$
\begin{aligned}
& x \equiv 2 \bmod 3, \quad N_{1}=5 \cdot 7=35 \equiv 2 \bmod 3, \quad H_{1}=2 \\
& x \equiv 3 \bmod 5, \quad N_{2}=3 \cdot 7=21 \equiv 1 \bmod 5, \quad H_{2}=1 \\
& x \equiv 5 \bmod 7, \quad N_{3}=3 \cdot 5=15 \equiv 1 \bmod 7, \quad H_{3}=1 \\
& X=N_{1} H_{1} H_{1}+N_{2} H_{2} M_{2}+N_{3} H_{3} \quad \text { (mol } m_{1} m_{2} m_{3} \text {) } \\
& \equiv 2.35 \cdot 2+121 \cdot 3+1.15 .5(\bmod 105)=278(105)
\end{aligned}
$$

CRT Chinese Remainder Theorem $2 / 26 / 2015$ Lect. 99
Tho: Solving simultaneously

$$
x \equiv a_{1}\left(m_{1}\right) \quad x \equiv a_{2}\left(m_{2}\right) \cdots \quad x \equiv a_{k}\left(m_{k}\right)
$$

where $\left(m_{1}, \cdots, m_{k}\right)$ —
(7) has a unique solution (mod $m_{1} \cdots m_{k}$)
crutivi to hone (m, \ldots, m_{k})-parrise coprime
Nite, a_{i} 's DONNOT MATEER I for liny a_{i} the system has a unique station $\left(\bmod m_{1} \cdots m_{k}\right)$

Note In number tron, while solving linear congruences.
We really need "uniqueness" or "\# of solutions" up to modulo integers!
The solution hes form: Let $m=\prod_{i=1}^{k} m_{i}, b_{j} i s\left(\frac{m}{m_{j}}\right)^{-1}\left(m_{j}\right)$

$$
x_{0}=\sum_{j=1}^{k} \frac{m}{m_{j}} b_{j} a_{j}
$$

Note : the assunption in CRT is essential.
[Reall: 17 cax $=a y(m) \Leftrightarrow x=y\left(\frac{m}{(a, m)}\right)$
(2) $a x \equiv a y(m),(a, m)=1 \Rightarrow x \equiv y(m)$
(3) $x=y(m i), 1,2, \cdots, r$ if $x=y\left(\left[m_{1} \cdots m_{r}\right]\right)$)
F. Shoid: thene is $n 0 x$ for which both $x \equiv 29(52) \& x \equiv 19(72)$
by (3) abure, $x \equiv 29(52=4.13)$
$\Leftrightarrow \quad x \equiv 29(4) \quad \& \quad x \equiv 29(13)$
$\Leftrightarrow x \equiv 1(4) \quad \& \quad x \equiv 3(13)$

$$
x \equiv 19(72=8.9)
$$

$$
\begin{array}{ll}
x \equiv 19(8) & x \equiv 19(9) \\
x \equiv 3(8) \& & x \equiv 1(9)
\end{array}
$$

for $x \equiv 1(41$ \& $x \equiv 3$ (㵧) No $\operatorname{such} x$!
[可: Beternine if the system, $x \equiv 3(10), x \equiv 8(15), x \equiv 5(44)$
has a solution; if so, find tiwem.
Whe
3

$$
\begin{array}{r|r|r}
x \equiv 3\left(2^{\prime} \cdot 5\right) & x \equiv 8\left(3^{\prime} \cdot 5^{1}\right) & x \equiv 5\left(2^{2} \cdot 3^{\prime} \cdot 7^{\prime}\right) \\
\Leftrightarrow \quad \begin{array}{l}
x \equiv 12) \\
x \equiv 3(5)
\end{array} & x \equiv 2(3) & \Leftrightarrow 3(5) \\
& x \equiv 1\left(2^{2}\right) \\
& & x \equiv 2\left(3^{\prime}\right) \\
& & x \equiv 5(7)
\end{array}
$$

$\sqrt{10}$

Thus we modify the system into: "P" lived congnevaces.
Note trat $\quad(15,84)=3 \quad,(10,84)=2, \quad(10,15)=5$

consiler powers of 2 finst
(1) 2: from $\bmod 10: x \equiv 1$ (2)
(2) $2^{2}:$ firm mod 84: $\quad x=1\left(2^{2}\right)$ consistent 8
(2) Mplies
(1)

50
(1) aunbe dopaped
$5 y+3$
$\Leftrightarrow 4$ conditions:

$$
\begin{array}{ll}
x \equiv 1 & (4) \\
x \equiv 2 & (3) \\
x \equiv 3 & (5) \\
x \equiv 5 & (7)
\end{array}
$$

all different powers of different primis
\Rightarrow must be nel. pinhe!!
so our CRT metnud morks:

$$
x=173(420)
$$

Too Much computetion!

Matiod $2 \quad x \equiv 3(10), \quad x \equiv 8(15), x \equiv 5 / 84)$
stortig from (c): $x \equiv 5(84) \stackrel{\text { defn }}{\Longleftrightarrow} \quad x=5+84 u, u \in \mathbb{Z}$
(B) $\Leftrightarrow \quad 5+8 ⿻ 4=8 \quad(15) \Leftrightarrow 844 \equiv 3(15)$

$$
(8 \quad(84,15)=3 \quad 313
$$

So U is a solu. of $8411 \equiv 3(15)$ (we canslue)
8 \&. Umust jatioftes $U \equiv 2 / 5)$

$$
\Rightarrow u=2+5 v
$$

$90 \quad x$ must be of form: $5+84(2+5 v)$

$$
=173+420 y
$$

(A)

$$
x \equiv 3(10) \quad \rightarrow \quad 173+420 V \equiv 3 \quad(10)
$$

$10 / 420 \Rightarrow$ so for any V, congnoence wolks
\Rightarrow infinily manysulutors: $x=173+420 \mathrm{~V}, N \in \mathbb{Z}$

Note: Assuming we have $m_{1}, m_{2} \ldots m_{k}$ that are relatively prime, the Chinese Remainder Theorem says that any choice of $a_{1} \bmod m_{1}, a_{2} \bmod m_{2}$, etc. gives rise to particular $x\left(a_{1}, a_{2}, \ldots a_{k}, m_{1}, \ldots m_{k}\right) \bmod m_{1} m_{2} \ldots m_{k}$. Number of choices that we have is $m_{1} m_{2} \ldots m_{k}$, which agrees with number of integers $\bmod m_{1} m_{2} \ldots m_{k}$.

Note: Now note that $x\left(a_{1}, a_{2}, \ldots a_{k}, m_{1}, \ldots m_{k}\right)$ is coprime to $m_{1} m_{2} \ldots m_{k}$ if and only if $\left(a_{i}, m_{i}\right)=1$.

$$
x=\sum_{j=1}^{m_{j}} b_{j} \|_{i}
$$

- If x is coprime to $\prod m_{i}$ then it is relatively coprime to each of them, so since $x \equiv a_{i} \bmod m_{i}$ we'll also have $\left(a_{i}, m_{i}\right)=1$.
- Conversely if $\left(a_{i}, m_{i}\right)=1$ for all i, then since $x \equiv a_{i} \bmod m_{i}$, this implies that $\left(x_{i}, m_{i}\right)=1$ holds for all i, so $\left(x, \prod m_{i}\right)=1$ as well.

What is the number of x coprime to $\prod m_{i}$? (by definition this is $\phi\left(m_{1} m_{2} \ldots m_{k}\right)$)

$$
\underbrace{\left(\# \text { of choices of } a_{1}\right)}_{\phi\left(m_{1}\right)} \underbrace{\left(\# \text { of choices of } a_{2}\right)}_{\phi\left(m_{1}\right)} \cdots
$$

with each a_{i} coprime to m_{i}. This gives corollary that if m_{i} coprime in pairs, $\phi\left(\Pi m_{i}\right)=\Pi \phi\left(m_{i}\right)$. We can use this to understand $\phi(n)$ for any n. With m_{i} coprime in pairs,

$$
\begin{aligned}
n & =p_{1}^{\varepsilon_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} \\
m_{1} & =p_{1}^{e_{1}}, \quad m_{2}=p_{2}^{e_{2}} \ldots \quad m_{k}=p_{k}^{e_{k}} \\
\phi(n) & =\phi\left(p_{1}^{e_{1}}\right) \phi\left(p_{2}^{e_{2}}\right) \ldots \phi\left(p_{k}^{e_{k}}\right)
\end{aligned}
$$

ie, for any
$0 \leq a_{1}<m_{1}$

$$
0 \leqslant a_{2}<m_{2}
$$

$$
\begin{gathered}
0 \leq A_{p}<m_{k} \\
\text { if }\left(m_{i}, n_{j}\right)=1 \\
(i \neq j)
\end{gathered}
$$

then we nlwors
hon a solution

$$
m_{1} \cdot m_{2} \cdots m_{k}
$$

 system.

All we need, then, is how to find $\phi\left(p^{e}\right)$.

$$
x=\frac{\sum_{i=1}^{k+}}{\frac{k}{m}} \frac{m}{m_{i}} b_{j} l_{i j}
$$

$$
\begin{aligned}
& \phi\left(p^{e}\right)=\# \text { of }\left\{x \mid 1 \leq x \leq p^{e} \text { and }(x, p)=1 \text { and so }\left(x, p^{e}\right)=1\right\} \\
&=p^{e}-p^{e-1} \\
&=p^{e-1}(p-1) \\
&=p^{e}\left(1-\frac{1}{p}\right) \\
& \text { and so } \\
& \phi(n)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \ldots p_{k}^{e_{k}-1}\left(p_{k}-1\right) \\
&=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right) \\
&=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

Karatsuba Multiplication This is a faster algorithm for multiplication (see http://en, wikipedia.org/wiki/Karatsuba_algorithm\#Algorithm); reduces time to $(\log N)^{\log 3 / \log 2}$

Multiplication can be further improved by using Fast Fourier Transforms to $\log N$ poly $(\log \log n)$.

Exponentiation - we want to compute $a^{b} \bmod N$, with a at most N and b is also small ($\sim N$). Most obvious way would be repeated multiplication for $N \log ^{2} N$, but better to use repeated squaring. Write b in binary as

$$
\begin{aligned}
b & =b_{r} b_{r-1} \cdots b_{0} \\
& =2^{r} b_{r}+2^{r-1} b_{r-1}+\cdots+b_{0}
\end{aligned}
$$

then compute $a^{2^{0}}, a^{2^{1}}, \ldots a^{2^{r}} \bmod N$ by repeatedly squaring the previous one (at most $\log ^{2} N$ for each). Then take

$$
\left(a^{2^{0}}\right)^{b_{0}}\left(a^{2^{1}}\right)^{b_{1}}\left(a^{2^{2}}\right)^{b_{2}} \ldots\left(a^{2^{r}}\right)^{b_{r}}
$$

for a total of $\log b \log ^{2} N \sim \log ^{3} N$ steps.

Thu: $f(x)$ - fixed polynomial in $\mathbb{Z}[x]$, and let $N(m)$ denote the 井 of solutions of $f(x) \equiv 0$ (in).

If $m=m_{1} m_{2}$ where $\left(m_{1}, m_{2}\right)=1$, then $N(m)=N\left(m_{1}\right) N /\left(m_{1}\right)$

For amy int. m, we have proving decomposition.
$m=\prod_{p} p^{\alpha(p)}$ then we have

$$
W(m)=\pi N\left(\rho^{\alpha(\rho)}\right)
$$

Wi. This is a speckle case of Theorem:

$$
\begin{aligned}
x \equiv y\left(m_{i}\right), i=1,2, \cdots, r \ll x=y\left(\left[m_{1}, \cdots, m_{r}\right]\right) \\
f(x) \equiv 0(p(p)), p \mid m \Leftrightarrow f(x) \equiv 0(m)
\end{aligned}
$$

Dg: $f(x)=x^{2}+x+7$. Find Gl mods if fivers ane any for the congruence: $f(x)=0(15)$

A: In $\begin{aligned} x \equiv \pm 1,0 \quad \begin{array}{l}3^{2}+1+7 \equiv 0(3) \\ 0^{2}+0+7 \neq 0(3)\end{array}, r(-1)^{2}-1+7 \neq 4(3) x\end{aligned}$

B:) Try. $x \equiv \pm 1 \pm 20$ (5) NO solution!
(A) (A) No solution
[q] Solve congnences

$$
x^{2}+2 x-3 \equiv 0(\bmod 5)
$$

Note over \mathbb{Z}, we have $x^{2}+2 x-3=(x-1)(x+3)$ works for mod 5 as mell!

So $x=1,-3 \bmod 5$ are solutions.
Then (hodrays $(x-1) \&(x+3)$ is a composite \#
i. $l_{1}(x-1)(x+3) \equiv 0 \quad$ (5)
iff $5 / x-1$ or $5 / x+3$.
So if $5 / x-1$ Hien $x \equiv 1$ (5)
if $5 / x+3$ then $x=3$ (5)
\#n: $X \equiv 1,-3$ (5) are ohy solutions.

Continuation of Proof of Hensel's Lemma. By lemma,

$$
f\left(a+t p^{j}\right)=f(a)+t p^{j} f^{\prime}(a) \quad\left(\bmod p^{j+1}\right)
$$

Now we want to have the right hand side $\equiv 0 \bmod p^{j+1}$.

$$
f(a)+t p^{j} f^{\prime}(a) \equiv 0 \quad \bmod p^{j+1} \leftrightarrow t f^{\prime}(a)+\frac{f(a)}{p^{j}} \equiv 0 \quad \bmod p
$$

this has a unique solution

$$
t \equiv-\left(\frac{f(a)}{p^{j}} \sqrt{\frac{1}{f^{\prime}(a)}}\right) \quad \bmod p \quad \text { Note } \quad f^{\prime /}(a) \pm 0
$$

aced: $a+t p^{j} \equiv a+\left(-f(a) \overline{f^{\prime}(a)}\right) \quad a+t p 1-\operatorname{sol} \cdot\left(p^{j+1}\right)$
Direct formula - start with solution a of $f(x) \equiv 0 \bmod p$, and we want a solution $\bmod p^{*}$. Set $a_{1}=a . \quad \quad x-$ Sone power.

$$
a_{j+1}=a_{j}-f\left(a_{j}\right) \frac{1}{f^{\prime}(a)} \quad\left(\bmod p^{i+1}\right)
$$

where $\overline{f^{\prime}(a)}$ is an integer chosen once at the beginning of the algorithm, which only matters mod p. It's chosen such that $\overline{f^{\prime}(a)} f^{\prime}(a) \equiv 1 \bmod p$. Then $f\left(a_{j}\right) \equiv 0$ $\bmod p^{j}$ for $j \geq 1$ as long as $f^{\prime}(a) \not \equiv 0 \bmod p$.

Eg. Solve the congruence $x^{2} \equiv-1 \bmod 125 .\left(f(x)=x^{2}+1, f^{\prime}(x)=2 x\right)$. Mod 5: $2^{2} \equiv-1 \bmod 5$, so set $a=2 . f^{\prime}(a) \equiv 4 \bmod 5$, so can choose $\overline{f^{\prime}(a)}=-1$.

$$
\begin{aligned}
a_{1} & =2 \quad(\bmod 5) \\
a_{2} & =a_{1}-f\left(a_{1}\right) \overline{f^{\prime}(a)} \quad(\bmod 25) \\
& =2-(5)(-1) \quad(\bmod 25) \\
& =7 \quad(\bmod 25) \\
a_{3} & =a_{2}-f\left(a_{2}\right) \overline{f^{\prime}(a)} \quad(\bmod 125) \\
& =7-(50)(-1) \quad(\bmod 125) \\
& =57 \quad(\bmod 125)
\end{aligned}
$$

Congruences to prime modulus: Assume that all the coefficients of $f(x)=$ $a_{n} x^{n}+a_{n-1} x^{n-1} \cdots+a_{0}$ are reduced $\bmod p$ and also that $a_{n} \neq 0 \bmod p$. By dividing out by a_{n}, can assume that $f(x)$ is monic (ie., highest coefficient is 1). We can also assume degree n of f is less than p. If not, can divide f by $x^{p}-x$ to get

$$
\begin{aligned}
& f(x)=g(x)\left(x^{p}-x\right)+r(x) \text { with } \operatorname{deg}(r(x))<p \\
& f(a)=g(a)\left(a^{p}-a\right)+r(a) \equiv r(a) \bmod p \text { by Fermat }
\end{aligned}
$$

so roots of $f(x) \bmod p$ are the same as the roots of $r(x) \bmod p$.

Theorem 28. A congruence $f(x) \equiv 0 \bmod p$ of degree n has at most n solutions.
Proof. (imitates proof that polynomial of degree n has at most n complex roots)
Induction on n : congruences of degree 0 and 1 have 0 and 1 solutions, trivially. Assume that it holds for degrees $<n(n \geq 2)$

If it has no roots, then we're done. Otherwise, suppose it does have a root α. Dividing $f(x)$ by $x-\alpha$, we get $g(x) \in \mathbb{Z}[x]$ and a constant r such that $f(x)=g(x)(x-\alpha)+r$. Now if we plug in α we get $f(\alpha)=(\alpha-\alpha) g(\alpha)+r=r$, which means that $f(\alpha)=r$ and $f(x)=(x-\alpha) g(\alpha)+f(\alpha)$.

We know that $f(\alpha) \equiv 0 \bmod p$. If β is any other root of $f(x)$ then we plug β into the equation to get $f(\beta)=(\beta-\alpha) g(\beta)+f(\alpha) . \operatorname{Mod} p, f(\beta) \equiv(\beta-\alpha) g(\beta) \bmod$ p, so $0 \equiv(\beta-\alpha) g(\beta)$. We also assume that $\beta \not \equiv \alpha$, so $g(\beta) \equiv 0 \bmod p$.

So β is a root of $g(x)$ as a solution of $g(x) \equiv 0 \bmod p$. We know that $g(x)$ has degree $n-1$, so by induction hypothesis $g(x) \equiv 0 \bmod p$ has at most $n-1$ solutions, which by including α gives $f(x)$ at most n solutions.

Corollary 29. If $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \equiv 0 \bmod p$ has more than n solutions, then all $a_{i} \equiv 0 \bmod p$.

Theorem 30. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$. Then $f(x) \equiv 0 \bmod p$ has exactly n distinct solutions if and only if $f(x)$ divides $x^{p}-\nmid \bmod p$. Ie., there exists $g(x) \in \mathbb{Z}[x]$ such that $f(x) g(x)=x^{p}-x$ mod p as polynomials (all coefficients mod p)

Proof. Suppose $f(x)$ has n solutions. Then $n \leq p$ because only p possible roots $\bmod p\left(\right.$ ie., $\operatorname{deg}(f) \leq \operatorname{deg}\left(x^{p}-x\right)$). Divide $x^{p}-x$ by $f(x)$ to get

$$
x^{p}-x=f(x) g(x)+r(x) ; \quad \operatorname{deg}(r)<\operatorname{deg}(f)=n
$$

Now note, if α is a root of $f(x) \bmod p$ then plug in to get

$$
\begin{aligned}
\alpha^{p}-\alpha & =f(\alpha) g(\alpha)+r(\alpha) \\
& \equiv 0 g(\alpha)+r(\alpha) \\
& \equiv r(\alpha) \quad \bmod p
\end{aligned}
$$

so α must be a solution to $r(x) \equiv 0 \bmod p$. Since $f(x)$ has distinct roots, we see that $r(x) \equiv 0 \bmod p$ has n distinct solutions. But $\operatorname{deg}(r)<n$. So by corollary we must have $r(x) \equiv 0 \bmod p$ as a polynomial (each coefficient is $0 \bmod p$.) Ie., $x^{p}-p=f(x) g(x) \bmod p$, and so $f(x)$ divides $x^{p}-x$.

Now suppose $f(x) \mid x^{p}-x \bmod p$. Write $x^{p}-x \equiv f(x) g(x) \bmod p$, where $f(x)$ is a monic of degree n and $g(x)$ is a monic of degree $p-n$. We want to show that $f(x)$ has n distinct solutions.

By previous theorem, $g(x)$ has at most $p-n$ roots $\bmod p$. If $\alpha \in 0,1, \ldots p-1$ is not a root of $g(x) \bmod p$ then $\alpha^{p}-\alpha \equiv f(\alpha) g(\alpha) \bmod p$, which by Fermat $\equiv 0$. Since $g(\alpha) \not \equiv 0 \bmod p, f(\alpha) \equiv 0 \bmod p$. So since there are at least $p-(p-n)$ such α, we see that $f(x)$ has at least n distinct roots mod p. By the theorem, $f(x)$ has at most n roots $\bmod p \Rightarrow f(x)$ has exactly n distinct roots $\bmod p$.

Corollary 31. If $d \mid p-1$ then $x^{d} \equiv 1 \bmod p$ has exactly d distinct solutions mod p.

Proof. $d \mid p-1$, so $x^{d}-1 \mid x^{p-1}-1$ as polynomials. $p-1=k d$, so $x^{k d}-1=$ $\left(x^{d}-1\right)\left(x^{(k-1) d} \cdots+1\right)$. So $x^{d}-1 \mid x\left(x^{p-1}-1\right)=x^{p}-x$. So has d solutions.

$$
\text { luse Treorem } 30
$$

Corollary 32. Another proof of Wilson's Theorem

Proof. Let p be an odd prime. Let $f(x)=x(x-1)(x-2) \ldots(x-p+1)$. This has $\operatorname{deg} p$ and p solutions $\bmod p$, so it must divide $x^{p}-x \bmod p$. Both polynomials are monic of the same degree (p), so must be equal $\bmod p$.

$$
x(x-1) \ldots(x-(p-1)) \equiv x^{p}-x \quad \bmod p
$$

Coefficient of x on the LHS is just $(-1)(-2) \ldots(-(p-1))=(-1)^{p-1}(p-1)!=$ $(p-1)!$ since p is odd, and so $(p-1)!\equiv-1 \bmod p($ coefficient on RHS $)$.

This tells us much more as well - eg., $1+2+\cdots+p-1 \equiv 0 \bmod p$ for $p \geq 3$, and $(1)(2)+(1)(3)+\ldots(2)(3) \cdots+(p-1)(p-2) \equiv 0 \bmod p$ for $p \geq 5$.

If we have a product $f(x)=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)$ then $f(x)=x^{n}-\sigma_{1} x^{n-1}+$ $\sigma_{2} x^{n-2}+\ldots(-1)^{n} \sigma_{n} . \sigma_{i}$ are elementary symmetric polynomials.

$$
\begin{aligned}
\sigma_{1} & =\sum \alpha_{i} \\
\sigma_{2} & =\sum \alpha_{i<j} \alpha_{j} \\
\sigma_{k} & =\sum\left(\text { all products of } k \text { roots } \alpha_{i}\right)
\end{aligned}
$$

Question - We know by Euler that if $(n, 35)=1$, then $n^{\phi(35)}=n^{24} \equiv 1 \bmod$ 35. Can 24 be replaced by something smaller? Ie., what's the smallest positive integer N such that if $(n, 35)=1$ then $n^{N} \equiv 1 \bmod 35$.
(Definition) Order: If (a, m) = 1 and h is the smallest positive integer such that $a^{h} \equiv 1 \bmod m$ then say h is the order of $a \bmod m$. Written as $h=\operatorname{ord}_{m}(a)$.

Lemma 33. Let $h=\operatorname{ord}_{m}(a)$. The set of integers k such that $a^{k} \equiv 1 \bmod m$ is exactly the set of multiples of h.
$-G C D$ and LCM.
GCD-Greatest common divisor of two integers and $\underline{\underline{b}}$, denoted by (a, b), is the largest divisor among all common divisors a and b

- If $\operatorname{Gap}(a, b)=1$, we say and be veletinely pome or
- $(a, b)=x a+y b$. for some $x y$. (Euchdandigurithone

LCM - Lase common multiple of two integers a \& b. dental by $[a, b]$, is the Lost position. Multiples among all multiples of a \& b.
. If $d=G C D(a, b)$, then $[a, b]=\frac{|a b|}{d}$
160): Find $x, y, \in \mathbb{Z}$ such that $25 x+15 y=(25,15)^{2}$

We con we Endidean Algorthra to find g, h, sue that $25 y+15 h=$

	25	15
25	1	0
15	0	1
10	1	-1
5	-1	2

$$
\begin{aligned}
5 & =(-1) 25+2(15) \\
\Rightarrow 5^{2} & =\left((-1) 25+2(150)^{2}\right. \\
& =\frac{25^{2}+4 \cdot 15^{2}-4 \cdot 15 \cdot 25}{} \\
& =(25-4 \cdot 15) 25+(4 \cdot 15) \cdot 15 \\
& =(-35) \cdot 25+(60) \cdot 15 \\
a t & =(25) \cdot 25+(4 \cdot 15-4 \cdot 25) \cdot 15 \\
& =(25) \cdot 25+(-40) 15
\end{aligned}
$$

$$
(25,15)
$$

- Primetannitaper $P>1$ called a prime number or a pro me if there is no divisor dot P semisfies $1<d<P_{\text {j. A A umber } a>1}$ is NOT a paine, it is called a composite number.
ram's only the for patine 1 If $p \mid a b$, then p / a or p / b
*Two important Theorems
(1) $a^{p} \equiv a(\bmod p)$ for any integer a.
(2) $a^{\phi(m)} \equiv 1(\bmod m)$ for $a \|$ a, such that $(a, m)=1$
- In mod m system, NOT every integer ($\ddagger 0$) has inverse if m is a composite number
 only where a, where $a \equiv 1(6)$ or $a \equiv 5(6)$ have inverse $(\bmod 6)$
For: $\begin{aligned} & \left.a \equiv 1(\bmod 6), a^{-1} \equiv 1(6) \text { i } a \equiv 5(\bmod 6), a^{-1} \equiv 5 \text { (mad } 6\right) \\ : & \{a \equiv 2,3,4,(6) \text { it does for hove inverse }\end{aligned}$
- $\left\{\begin{array}{l}n \equiv 2,3,4,(6) \text { it does not hove inverse } \\ \text { ie. You cannot find int. } b \text {. sh }\end{array}\right.$
- In mod P system, where P is a prime, all integers $N, P t N ;$ hone inverse mol P ie, Given $N \in z$, of $P^{+} N$, then
- For $P=5$, find inverse of all integers N if thar inverses exist $(\bmod P)$
$P=5$. Ginen N, if PIN, then N^{+1} exists $(\bmod 5)$

$$
\begin{cases}N \equiv 1 \text { (5), } & N^{-1} \equiv 1 \text { (5) } \tag{5}\\ N \equiv-1 \text { (5), } & N^{-1} \equiv-1 \text { (5) } \\ N \equiv 2(5), & \text { then } N^{-1} \text { hos to be }-2 \\ N \equiv-2(5), & \text { then } N^{-1} \text { hosto be } 2\end{cases}
$$

So groen an integer N.

1) $N=5 k$ - No hase $k e t \mathbb{Z} \bmod 5$
2) $N=5 k+1$ intere $5(+1,(\bmod 5), k+16 \mathbb{Z}$
3) $N=5 k-1$ inverse $5 l-1)(\bmod 5), k, l \in \mathbb{Z}$
4) $N=5 k+2 \cdots, 5 l-2, \quad(\bmod 5), k, l \in \mathbb{Z}$
5) $N=5 k-2 \cdots-5 l+2,(\bmod 5), k, 16 \pi)$

叹
Use GED \& Inoses to solve if mear system
Chinse Remoider Theorem
$\left.\begin{array}{l}x \equiv a_{1}\left(m_{1}\right) \\ x \equiv a_{2}\left(m_{2}\right)\end{array}\right\}$ sydem of n lnear congruenues, $\left(m_{i}, m_{j}\right) \equiv 1$
$(8)\left\{\begin{array}{l}x \equiv a_{2}\left(m_{2}\right) \\ \vdots \\ x \equiv a_{n}\left(m_{n}\right)\end{array}\right\}$ It has aunique solution $\bmod \left(m_{1}, m_{2}, \cdots m_{n}\right)$ i
[eg: Solve the followhy Ineer congnences: ie, fand all integer solutions.

$$
0 x \equiv 1(2) \text { (2) } 2 x \equiv 2 \text { (3) (3) } x \equiv 1(27) \text { \& } \quad x \equiv 5(7)
$$

Transform the system int finar congnenas form in (t) i.e. coef $\equiv 1(\mathrm{~m})$
© $(x=127, \quad$ (4) $x \equiv 5(7)$
(3) $2 x \equiv 2(3) \Rightarrow 2 \cdot 2 x \equiv 22(3) \Rightarrow x \equiv 1(3)$
(3): $x \equiv 1(37) \Leftrightarrow x \equiv 1\left(3^{3}\right)$
$a_{1} m_{1}$
$\left\{\begin{array}{l}x=1(2) m_{2} \\ x \equiv(1)(27)^{m} \\ x=(5)^{3}(7)^{3}\end{array} \quad\right.$ Let $m=2.27$
Silutlkon: $b=\sum_{i=1}^{n} A_{i} a_{i}, A_{i}=\underline{H_{i} M_{i}}, M=\sum_{i=1}^{n} m_{i} \& M_{i}=\frac{M}{m_{i}}$
unique (mod $\left.m_{1} m_{2} \cdots m_{n}\right) \quad H_{i} \equiv M_{i}^{-i}\left(m_{i}\right)$
So: $M=m_{1} m_{2} m_{3}=2.277378 \quad \mu_{1}=\frac{M_{1}}{m_{11}}=189, \mu_{2}=\frac{M_{1}}{m_{2}}=14, \mu_{3}=\frac{M_{1}}{m_{3}}$ Nacd Find $\mu_{i}^{-1}(\bmod m i)$:
(1) $189^{-1}(\bmod 2)$ or find $\left.18944_{1} \equiv 1(2) \Rightarrow H_{1} \equiv 1 / 2\right)$ (H1=1
(2) $14^{-1} \quad(\bmod 27)$ find $14 H_{2} \equiv 1(27) \Rightarrow H_{2} \equiv 2(27) H_{2}=2$
(3) $54^{-1}(\bmod 7)$ find $54 H_{3} \equiv 1(7) \Longrightarrow H_{3} \equiv 3(7) \quad H_{3}=3$

S0 $b=1 \cdot 189 \cdot 1+2 \cdot 14 \cdot 1+3 \cdot 54 \cdot 5=927$
all sudutions: $\quad g_{2} 7+(2.27 .7) k=927+378 k$
$\stackrel{\text { or }}{=} 171+378 k$

- Hansel's Lemma.
suppose $f(x) \in \mathbb{Z}[x], \quad f(a) \equiv 0\left(\bmod p^{j}\right)$, and $f^{\prime}(a) \neq 0(p)$
Then $\exists!t(\bmod p)$ sit, $f(a+t p i) \equiv 0\left(\bmod p^{j+1}\right)$
Here $t \equiv-\left(\frac{f(p)}{p^{j}}\right) \cdot\left(f^{\prime}(a)\right)^{+1}(\bmod p)$
Application WATVT To find $x=\left(p^{m}\right) \quad$ st $f(b)=0\left(p^{m}\right)$
start $w /$ Find a_{1} sit $f\left(a_{1}\right) \equiv 0(p) \& f^{\prime}\left(a_{1}\right) \neq 0(p)$

$$
\begin{aligned}
\text { set } a_{2} & =a_{1}-f\left(a_{1}\right) \overline{f^{\prime}\left(a_{1}\right)}\left(\operatorname{mol} p^{2}\right) \\
a_{3} & =a_{2}-f\left(a_{2}\right) \overline{f^{\prime}\left(a_{1}\right)}\left(\bmod p^{3}\right) \\
\vdots & \\
a_{m} & =a_{m-1}-f\left(a_{m-1}\right) \overline{f^{\prime}\left(a_{1}\right)}\left(\bmod p^{m}\right)
\end{aligned}
$$

Note we almets have $a_{i} \equiv a_{j}(\bmod p)$
then $f^{\prime}\left(a_{i}\right)=f^{\prime}\left(a_{j}\right)(\bmod (p)$

$$
\Rightarrow \quad f^{\prime}\left(a_{i}\right)^{-1}=f^{\prime}\left(a_{j}\right)^{-1}(\bmod p)
$$

包：Sive congruence，for $f(x)=x^{5}+5 x^{2}-(x+1) f(x)=0$（125）
sten 1 find sdution for $f(x) \equiv 0(5) \& f^{f^{\prime}(x)=5 x^{4}+10 x-1} \begin{aligned} & f^{3}\left(x_{2}\right) \neq 0(5)\end{aligned}$

$$
\begin{equation*}
f(x) \equiv\left(x^{5}-x\right)+x+5 x^{2}-1 x \leq x-1 \quad \text { (5) and } f^{\prime}(x) \equiv 1 \tag{5}
\end{equation*}
$$

Solution：$f(x) \equiv 0(5)$ is $x \equiv(5)=a_{1}$
and $f^{\prime}(1) \neq 0(5)$
and $f^{\prime}(x)=$

$$
\begin{array}{rl}
\begin{array}{c}
x^{5}-5 x^{2} \\
x^{5}
\end{array} & \left(x^{5}-x\right)+x+x^{3}-1 \\
x^{3}-1 & f(x)=x^{5}+x^{3}-1 \\
3+2 \quad f(x) & \equiv\left(x^{5}-x\right)+x+x^{3}+4 \\
2 & \equiv x^{3}+x-4 \quad(5) \\
f^{\prime}(x) & =5 x^{4}+3 x^{2} \quad(5) \\
& \equiv 3 x^{2}
\end{array}
$$

$$
f(x) \equiv x\left(x^{2}-4\right) \equiv x(x-2)(x+2)
$$

Simplify $f(x)$ whan $\bmod p ; \quad f(x)=a_{n} x^{n}+a_{n} n x^{n-1}+a_{0}$
ifturag $A f(x)$

$$
\begin{aligned}
& a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}(\bmod p) \\
& \equiv a_{n}^{*}(\underbrace{N^{n}+a_{n-1} a_{n}^{-1} x^{n-1}+\cdots+a_{1} a_{n}^{-1} x+a_{n} n n_{n}}_{h(x)}) \\
& \text { Ah(x) }\left[\begin{array}{rl}
\text { whe Enclidean Algrithm } \\
\text { If } \quad n & \geqslant p \\
h(x) & =\left(x^{P}-x\right) g(x)+r(x) \\
\& h(x) & r(x) \quad \operatorname{moip} \\
& \\
&
\end{array}\right] \\
& \equiv A_{n} r(x)
\end{aligned}
$$

So To find $5 d u$. for $f(x) \equiv 0(\bmod p)$
\Leftrightarrow find solv for $a_{n} r(x) \equiv 0(\bmod p)$
$\Leftrightarrow \quad-\quad$ for $\quad(x) \equiv 0(\bmod p)$ dey $r<p$
\Leftrightarrow - for monic $\left[\theta_{t}^{-r}(x)=0 \quad(\bmod p)\right.$
wis $r(x)$ to denote the monic polynavial

Thm：A congreance $f(x) \equiv 0 \quad \operatorname{mad}(p)$ hos at most $\operatorname{deg} r(x)$ many solutions．

Thm．A congraence $f(x) \equiv 0$ mal（ p ）hos distanct solutions． $(\bmod p) \Leftrightarrow r(x) \mid x^{p}-x$

Thm if $d \mid p-1$ ，then $x^{d} \equiv 1(\bmod p)$ hos exactily d distinet solutions

Midterm Exam I

Spring 2015 MAT 311 Number Theory

March 9, 2015

- Last Name (print):
- First Name (print):
- ID number (print):

Instructions

- Please answer each question in the space provided, and write full solutions.
- Please show all work, explain your reasons, and state all theorems you appeal to.
- Unless otherwise marked, answers without justification will get little or no partial credit.
- Cross out anything the grader should ignore and circle or box the final answer.
- Do NOT round answers.
- No books, notes, or calculators are allowed while taking the exam.

Problem	Full Points	Scores
1	30	
2	30	
3	20	
4	20	

Question 1: (a) [10 pts] Compute $\operatorname{gcd}(91,112)$ using any algorithm at all (even being psychic, i.e.,no proof required just get the right answer).
(b) $[20$ pts $]$ Find integers x and y such that $112 x-91 y=2 \cdot \operatorname{gcd}(91,112)$.

Question 2: $[30 p t s]$ Determine if the following linear congruence system has a solution. If so, find ALL integer solutions.

$$
\begin{aligned}
3 x & \equiv 7(\bmod 19) \\
x & \equiv 26(\bmod 17) \\
2 x & \equiv 3(\bmod 5) \\
x & \equiv 4(\bmod 10) \\
x & \equiv 1(\bmod 3)
\end{aligned}
$$

Question 3: Let $f(x) \in \mathbb{Z}[x], f(x)=x^{18}+17 x^{3}+16$
(a) $[5 p t s]$ Find all solutions of the congruence $f(x) \equiv 0 \bmod 17$;
(b) $[15 \mathrm{pts}]$ Find one solution of the congruence $f(x) \equiv 0 \bmod 17^{3}$;

Question 4: [20 pts] Let $f(x)=x^{7}-1$. Determine if $f(x) \equiv 0(\bmod 127)$ has distinct solutions $(\bmod 127)$.

Lecture 12 Nimbler Theory

By previous theorem, $g(x)$ has at most $p-n$ roots $\bmod p$. If $\alpha \in 0,1, \ldots p-1$ is not a root of $g(x) \bmod p$ then $\alpha^{p}-\alpha \equiv f(\alpha) g(\alpha) \bmod p$, which by Fermat $\equiv 0$. Since $g(\alpha) \not \equiv 0 \bmod p, f(\alpha) \equiv 0 \bmod p$. So since there are at least $p-(p-n)$ such α, we see that $f(x)$ has at least n distinct roots mod p. By the theorem, $f(x)$ has at most n roots $\bmod p \Rightarrow f(x)$ has exactly n distinct roots $\bmod p$.

Corollary 31. If $d \mid p-1$ then $x^{d} \equiv 1$ mod p has exactly d distinct solutions mod p.
Proof. $d \mid p-1$, so $x^{d-1}-1 \mid x^{p-1}-1$ as polynomials. $p-1=k d$, so $x^{k d}-1=$ $\left(x^{d}-1\right)\left(x^{(k-1) d} \cdots+1\right)$. So $x^{d}-1 \mid x\left(x^{p-1}-1\right)=x^{p}-x$. So has d solutions.

Corollary 32. Another proof of Wilson's Theorem

Proof. Let p be an odd prime. Let $f(x)=x(x-1)(x-2) \ldots(x-p+1)$. This has $\operatorname{deg} p$ and p solutions $\bmod p$, so it must divide $x^{p}-x \bmod p$. Both polynomials are monic of the same degree (p), so must be equal $\bmod p$.

$$
x(x-1) \ldots(x-(p-1)) \equiv x^{p}-x \quad \bmod p
$$

Coefficient of x on the LHS is just $(-1)(-2) \ldots(-(p-1))=(-1)^{p-1}(p-1)!=$ $(p-1)!$ since p is odd, and so $(p-1)!\equiv-1 \bmod p$ (coefficient on RHS).

This tells us much more as well - eg., $1+2+\cdots+p-1 \equiv 0 \bmod p$ for $p \geq 3$, and $(1)(2)+(1)(3)+\ldots(2)(3) \cdots+(p-1)(p-2) \equiv 0 \bmod p$ for $p \geq 5$.
If we have a product $f(x)=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)$ then $f(x)=x^{n}-\sigma_{1} x^{n-1}+$ $\sigma_{2} x^{n-2}+\ldots(-1)^{n} \sigma_{n} . \sigma_{i}$ are elementary symmetric polynomials.

$$
\begin{aligned}
\sigma_{1} & =\sum \alpha_{i} \\
\sigma_{2} & =\sum_{i<j} \alpha_{i} \alpha_{j} \\
\sigma_{k} & =\sum\left(\text { all products of } k \text { roots } \alpha_{i}\right)
\end{aligned}
$$

Question - We know by Euler that if $(n, 35)=1$, then $n^{\phi(35)}=n^{24} \equiv 1 \bmod$ 35. Can 24 be replaced by something smaller? Ie., what's the smallest positive integer N such that if $(n, 35)=1$ then $n^{N} \equiv 1 \bmod 35$.
(Definition) Order: If $(a, m)=1$ and h is the smallest positive integer such that $a^{h} \equiv 1 \bmod m$ then say h is the order of $a \bmod m$. Written as $h=\operatorname{ord}_{m}(a)$.

Lemma 33. Let $h=\operatorname{ord}_{m}(a)$. The set of integers k such that $a^{k} \equiv 1 \bmod m$ is exactly the set of multiples of h.

Proof. $a^{r h} \equiv\left(a^{h}\right)^{r} \equiv 1^{r} \equiv 1 \bmod m$. Suppose we have k such that $a^{k} \equiv 1 \bmod$ m. Want to show $h \mid k$. Write $k=h q+r$ where $0 \leq r<h .1 \equiv a^{k}=a^{h q+r}=$ $a^{h q} a^{r} \equiv 1 a^{r} \equiv a^{r} \bmod m$, so $a^{r} \equiv 1 \bmod m$. But $r<h$. So if $r>0$, contradicts minimality of h, which means that $r=0$, and k is multiple of h.

Lemma 34. If $h=\operatorname{ord}_{m}(a)$ then a^{k} has order $\frac{h_{1}}{(k, h)}$ mod m.

Proof.

$$
\begin{aligned}
a^{k j} & \equiv 1 \bmod m \\
& \leftrightarrow h \mid k j \\
& \left.\leftrightarrow \frac{h}{(h, k)} \right\rvert\, \frac{k}{(h, k)} j \\
& \left.\leftrightarrow \frac{h}{(h, k)} \right\rvert\, j
\end{aligned}
$$

So smallest such positive $j=\frac{h}{(h, k)}$.

Lemma 35. If a has order h mod m and b has order k mod m, and $(h, k)=1$, then ab has order hk mod m.

Proof. We know

$$
\begin{aligned}
(a b)^{h k} & \equiv\left(a^{h}\right)^{k}\left(b^{k}\right)^{h} \\
& \equiv 1^{k} 1^{h} \\
& \equiv 1 \quad \bmod m
\end{aligned}
$$

Conversely suppose that $r=\operatorname{ord}_{m}(a b)$.

$$
\begin{aligned}
(a b)^{r} & \equiv 1 & & \bmod m \\
(a b)^{r h} & \equiv 1 & & \bmod m \\
\left(a^{h}\right)^{r} b^{r h} & \equiv 1 & & \bmod m \\
b^{r h} & \equiv 1 & & \bmod m
\end{aligned}
$$

so $k|r h \Rightarrow k| r$ (since $(k, h)=1$), and similarly $h \mid r$. So $h k \mid r$, and so $h k=$ $\operatorname{ord}_{m}(a b)$.
(Definition) Primitive Root: If a has order $\phi(m) \bmod m$, we say that a is a primitive root $\bmod m$.

Eg. $\bmod 7$:

In mod 7 :

has order	1		
has order	3		$\left(2^{3} \equiv 1 \bmod 7\right)$
has order	6	\checkmark	$(\phi(7)=6)$
has order	3		
has order	6	\checkmark	$(\phi(7)=6)$
has order	2		

Lemma 36. Let p be prime and suppose $q \| p-1$ for some other prime q. Then there's an element mod p of order q^{e}.

Assuming Lemma...

$$
p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{r}^{e_{r}}
$$

Lemma says that $\exists g_{1}$ with $\operatorname{ord}_{p}\left(g_{1}\right)=q_{1}^{e_{1}}, g_{2}$ with $\operatorname{ord}_{p}\left(g_{2}\right)=q_{2}^{e_{2}}$, etc. Set $g=g_{1} g_{2} \ldots g_{r}$. So by previous lemma above, g has order $q_{1}^{e_{1}} q_{2}^{c_{2}} \ldots q_{r}^{e_{r}}=p-1$ because all q_{i} are coprime in pairs. $p-1=\phi(p)$, so g is a primitive root $\bmod p$.

Proof. Consider solutions of $x^{q^{e}} \equiv 1 \bmod p$. Because $q^{e} \mid p-1, x^{q^{e}}-1$ has exactly q^{e} roots $\bmod p$. If α is any such root, then $\operatorname{ord}_{p}(\alpha)$ must divide q^{e}.
So if it's not equal to q^{e}, it must divide q^{e-1}. Then α would have to be root of $x^{q^{e-1}}-1 \equiv 0 \bmod p$, which has exactly q^{e-1} solutions. Since $q^{e}-q^{e-1}>0$, there exists α such that $\operatorname{ord}_{p}(\alpha)=q^{c}$.

Note:

$$
\left.4 x^{q^{e}} \equiv 1 \text { (mod } p\right) \text { \& } q^{e} / p-1 \Rightarrow x^{q^{e}}-1 \text { has }
$$

q e distinct moots mod p;

Lecture 13. Number Freon 03/26/2015.

- Recall: Refmitionof order: in mod system.

If $(a, m)=1$ and h is the smallest positive int. St, $a^{h} \equiv 1(\bmod m)$ then we say h is the order of a. wite $h=\operatorname{ordm}(a)$
eg: Let $m=5$.
for $a \equiv 4(\bmod 5)$
We wont to find ord (4)

$$
\begin{aligned}
& 4^{\prime} \equiv-1(5)- \\
& 4^{2} \equiv 16(5) \\
& \equiv 1(5) \Rightarrow \text { ont of } 4 \bmod 5 \text { is } \\
& 2<(\phi(5)=4) \& 2(\phi(5)
\end{aligned}
$$

- Leto. Primitive Root: If a hos order $\phi(m)(\bmod m)$, then we say a is a primitive root mod
Deg: Let $m=5$. for a 204 (maul)
since $\operatorname{ord}_{5}(4)=2<\phi(5) \Rightarrow a=4(5) \mathrm{nuT}$ for $\left.\begin{array}{rl}a \equiv 3(\bmod 5) & a^{3} \equiv 12(\bmod 5) \\ a^{2} \leq 4(\bmod 5) & \left.a^{4} \equiv 1 / \bmod 5\right)\end{array}\right\} \begin{array}{ll}a \equiv 3(5) & \text { is a } \\ \text { primitive root imide } \\ \text { prints }\end{array}$

In mod 7:

has order	1		
has order	3		$\left(2^{3}=1 \bmod 7\right)$
has order	6	\checkmark	$(\phi(7)=6)$
has order	3		
has order	6	\checkmark	$(\phi(7)=6)$
has order	2		

Lemma 36. Let p be prime and suppose $q^{c} \| p-1$ for some other prime q. Then there's an element mod p of order q^{c}.

Assuming Lemma...

$$
p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{r}^{e_{r}}
$$

Lemma says that $\exists g_{1}$ with $\operatorname{ord}_{p}\left(g_{1}\right)=q_{1}^{e_{1}}, g_{2}$ with $\operatorname{ord}_{p}\left(g_{2}\right)=q_{2}^{e_{2}}$, etc. Set $g=g_{1} g_{2} \ldots g_{r}$. So by previous lemma above, g has order $q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{r}^{e_{r}}=p-1$ because all q_{i} are coprime in pairs. $p-1=\phi(p)$, so g is a primitive root $\bmod p$.

Proof. Consider solutions of $x^{q^{e}} \equiv 1 \bmod p$. Because $q^{e} \mid p-1, x^{q^{e}}-1$ has exactly q^{e} roots $\bmod p$. If α is any such root, then $\operatorname{ord}_{p}(\alpha)$ must divide q^{e}.

So if it's not equal to q^{e}, it must divide q^{e-1}. Then α would have to be root of $x^{q^{e-1}}-1 \equiv 0 \bmod p$, which has exactly q^{e-1} solutions. Since $q^{e}-q^{e-1}>0$, there exists α such that ord $(\alpha)=q^{e}$.

Note:

$$
4 x^{q^{e}} \equiv 1(\text { mod } p) \& q^{e} / p-1 \Rightarrow x^{q^{e}}-1 \text { has }
$$

Lecture \$3
 Primitive Roots (Prime Powers), Index Calculus

Recap - if prime p, then there's a primitive root $g \bmod p$ and it's order $\bmod p$ is $p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{r}^{e_{r}}$. We showed that there are integers $g_{i} \bmod p$ with order exactly $q_{i}^{e_{i}}$ (counting number of solutions to $x^{q_{i}^{e_{i}}}-1 \equiv 0 \bmod p$). Set $g=\prod g_{i}$ has order $\prod q_{i}^{e_{i}}=p-1$.

Number of primitive roots - suppose that m is an integer such that there is a primitive root $g \bmod m$. How many primitive roots $\bmod m$ are there?

We want the order to be exactly $\phi(m)$. If we look at the integers $1, g, g^{2}$, $\ldots g^{\phi(m)-1}$, these are all coprime to m and distinct mod m_{2}. If we had $g^{i} \equiv g^{j}$ $\bmod m(0 \leq i<j \leq \phi(m)-1)$, then wed have $g^{j-i} \equiv 1 \bmod m$ with $0 \leq j-i<\phi(m)$, contradicting the fact that g is a primitive root

Since there are $\phi(m)$ of these integers, they must be all the reduced residue classes $\bmod m$ (in particular if $m=p$, a prime, then $\{1,2, \ldots p-1\}$ is a relabeling of $\left\{1, g, \ldots g^{p-2}\right\} \bmod p$). Suppose that a is a primitive root $\bmod m$, then $a \equiv g^{k}$ $\bmod m$. Recall that order of g^{k} is

$$
\frac{\operatorname{ord}(g)}{(k, \operatorname{ord}(g))}=\frac{\phi(m)}{(k, \phi(m))}
$$

So only way for the order to be exactly $\phi(m)$ is for k to be coprime to $\phi(m)$. Ie., the number of primitive roots mod m is exactly $\phi(\phi(m))$ if there's at least one. In particular, if $m=$ a prime, then number of primitive roots is $\phi(p-1)$

Conjecture 37 (Artin's Conjecture). Let a be a natural number, which is not a square. Then there are infinitely many primes p for which a is a primite root mod p.

This is an open question. Hooley proved this conditional on GRH, and HeathBrown showed that if a is a prime, then there are at most 2 values of a which fail the conjecture
(Definition) Discrete Log: Say p is a prime, and g is a primitive root $\bmod p$ (ie., $1, g, g^{2} \ldots g^{p-2}$ are all the nonzero residue classes $\bmod p$). Say we have $a \not \equiv 0$ $\bmod p$. We know $a \equiv g^{k}$ for some $k(0 \leq k \leq p-2)-k$ is called the index or the discrete \log of a to the base $g \bmod p$. This is a computationally hard problem, and is also used in cryptography.
Index Calculus - Let's say we're trying to solve a congruence $x^{d} \equiv 1 \bmod p$. Any x which satisfied this congruence is coprime to p. So if g is a primitive root

Grad

 ald be $(\bmod p)$

$\bmod p$, we can write $x \equiv g^{k} \bmod p$. New variable is now k :

$$
\begin{aligned}
& d \equiv 1 \bmod p \longleftrightarrow g^{k d} \equiv 1 \bmod p \\
& \longleftrightarrow p-1=\operatorname{ord}(g) \operatorname{divides} k d \\
& \longleftrightarrow \frac{p-1}{(d, p-1)} \operatorname{divides} \frac{d}{(d, p-1)} k \\
& \longleftrightarrow \frac{(p-1)}{(d, p-1)} \operatorname{divides} k \\
& \text { is avo roble }
\end{aligned}
$$

So set of solutions for k is exactly the set of multiples of $\frac{(p-1)}{(d, p-1)}$ (remember k is only modulo $p-1$). So we can get all the solutions x by raising g to the exponent k, where $0 \leq k<p-1$ is a multiple of $\frac{p-1}{(d, p-1)}$. The number of solutions is

$$
\frac{(p-1)}{\frac{p-1}{(d, p-1)}}=(d, p-1)
$$

Similarly, if we're trying to solve the congruence $x^{d} \equiv a \bmod p(a \neq 0 \bmod p)$, we can write $a \equiv g^{l}$ mod p so if $x \equiv g^{k}$ as before then $g^{k d} \equiv g^{l} \bmod p$. This means that $g^{k \overline{d x-l}} \equiv 1 \bmod p \leftrightarrow p-1 \mid k d-l \leftrightarrow k d \equiv l \bmod p-1(k$ is variable $)$,
 $x^{2} \equiv 1(\bmod p)$ which has a solution eff ($d, p-1$) divides l, in which case it has exactly ($d, p-1$) solutions.

Note:

$$
\begin{aligned}
(d, p-1) \text { divides } l & \longleftrightarrow p-1 \text { divides } \frac{l(p-1)}{(d, p-1)} \\
& \longleftrightarrow g^{l \frac{p-1}{(d, p-1)}} \equiv 1 \bmod p \\
& \longleftrightarrow a^{\frac{p-1}{(d, p-1)}} \equiv 1 \bmod p
\end{aligned}
$$

Theorem 38. There's a primitive root mod m iff $m=1,2,4, p^{e}$, or $2 p^{e}$ (where p is an odd prime). Let's assume that p is an odd prime, and $e \geq 2$. Want to show that there's a primitive root mod p^{e}.
Part 1 - There's a primitive root $\bmod p^{2}$
NOE

Payt - There a
\& ord $(g)=p_{-1}$
Hen $\operatorname{ord}_{1}(g)$
$=\frac{p_{1}}{\left(\ell, p_{-1}\right)}$

Proof. Choose g to be a primitive root mod p, and use Hensel's Lemma to show there's a primitive root $\bmod p^{2}$ of the form $g+t p$ for some $0 \leq t \leq p-1$. We know $(g+t p, p)=1$ since $p \nmid g$ and $p \mid t p . \operatorname{ord}_{p^{2}}(g+t p)$ must divide $\phi\left(p^{2}\right)=p(p-1)$.
On the other hand, if $(g+t p)^{k} \equiv 1 \bmod p^{2}$ then $(g+t p)^{k} \equiv 1 \bmod p \Leftrightarrow g^{k} \equiv 1$ $\bmod p \Leftrightarrow p-1 \mid k$.

So $p-1$ divides $\operatorname{ord}_{p}(g+t p)$. Since $\operatorname{ord}_{p}(g+t p)$ is a multiple of $p-1$ and divides $p(p-1)$, it's either equal to $p-1$ or equal to $p(p-1)=\phi\left(p^{2}\right)$. We' ll show that there's exactly one value of t for which the former happens.

Since there are p possible values of $t(0 \leq t \leq p-1)$, any of these remaining ones give a $g+t p$ which is a primitive root $\bmod p^{2}$. Consider $f(x)=x^{p-1}-1$: \bmod p it has the root g. Since $f^{\prime}(x)=(p-1) x^{p-2}$ and $f^{\prime}(g)=(p-1) g^{p-2} \not \equiv 0 \bmod p$, by Hensel's Lemma there is a unique lift $g+t p$ of $g \bmod p^{2}$ satisfying $x^{p-1} \equiv 1$ $\bmod p^{2}$. This is the unique lift for which order is $p-1 \bmod p^{2}$. This proves that there's a primitive root $\bmod p^{2}$.

Part 2 - Let g be a primitive root $\bmod p^{2}$. Then g is a primitive root $\bmod p^{e}$ for every $e \geq 2$.

Proof. Since ord $p_{p^{e}}(g)$ divides $\varphi\left(p^{e}\right)=p^{e-1}(p-1)$ and also that $p-1 \mid \operatorname{ord}_{p^{e}}(g)$ (as in proof of previous part), ord $p_{p^{e}}(g)$ must be $p^{k}(p-1)$ for some $0 \leq k \leq e-1$. We want to show that $k=e-1$. To see that, it's enough to show that $g^{p^{e-2}}(p-1) \not \equiv 1$ $\bmod p^{e}$.

We'll show it by induction (base case is $e=2$). $g^{p-1} \not \equiv 1 \bmod p^{2}$ is true because g is a primitive root $\bmod p^{2}$, so order $=p(p-1)$. So say we know it for e.
We know that $\phi\left(p^{e-1}\right)=p^{e-2}(p-1)$. So $g^{\phi\left(p^{e-1}\right)} \equiv 1 \bmod p^{e-1}$ assuming that $g^{\phi\left(p^{e-1}\right)} \not \equiv 1 \bmod p^{e}$. In other words $g^{\phi\left(p^{e-1}\right)}=1+b p^{e-1}$ with $p \nmid b$. Need to show it for $e+1$ - ie., $g^{\phi\left(p^{e}\right)} \not \equiv 1 \bmod p^{e+1}$.

We know that $g^{p^{e-2}(p-1)}=1+b p^{e-1}$. Raising to power p we get

$$
\begin{aligned}
g^{p^{e-1}(p-1)} & =\left(1+b p^{e-1}\right)^{p} \\
& =1+p b p^{e-1}+\binom{p}{2}\left(b p^{e-1}\right)^{2}+\binom{p}{3}\left(b p^{e-1}\right)^{3}+\ldots \\
& \equiv 1+b p^{e} \bmod p^{e+1}
\end{aligned}
$$

(because for $e \geq 2,3 e-3 \geq e+1$ and $p \left\lvert\,\binom{ p}{2}\right.$ so $\binom{p}{2} b^{2} p^{2 e-2}$ divisible by $p^{2 e-1}$ and $2 e-1 \geq e+1$).

So $g^{p^{e-1}(p-1)} \equiv 1+b p^{e} \bmod p^{e+1}$ with $p \nmid b$, which $\not \equiv 1 \bmod p^{e+1}$. Completes the induction.

Main Proof. Check 1, 2, 4 directly. p odd, $m=p^{e}$ proved. $m=2 p^{e}$ (p odd) $\phi(m)=\phi(2) \phi\left(p^{e}\right)=\phi\left(p^{e}\right)$. Let g be a primitive root $\bmod p^{e}$. If g is odd, it is a primitive root $\bmod m$. If not odd, then add p^{e} to it.

Now show that nothing else works: otherwise, if $n=m m^{\prime}$ with m and m^{\prime} coprime and $m, m^{\prime}>2$, we'll show there does not exist a primitive root mod m. By hypothesis ($m, m^{\prime}>2$) we know $\phi(m)$ and $\phi\left(m^{\prime}\right)$ are even. So for $(a, n)=1$,
we have $(a, m)=1=\left(a, m^{\prime}\right)$. So $a^{\phi(m)} \equiv 1 \bmod m$ and $a^{\phi\left(m^{\prime}\right)} \equiv 1 \bmod m^{\prime}$. So

$$
\begin{aligned}
a^{\phi(m) \phi\left(m^{\prime}\right) / 2} & \equiv\left(a^{\phi(m)}\right)^{\phi\left(m^{\prime}\right) / 2} \\
& \equiv 1 \quad \bmod m \\
a^{\phi(m) \phi\left(m^{\prime}\right) / 2} & \equiv 1 \quad \bmod m^{\prime}
\end{aligned}
$$

$$
\text { Similarly so, } a^{\phi(m) \phi\left(m^{\prime}\right) / 2} \equiv 1 \quad \bmod n
$$

but $\phi(n)=\phi(m) \phi\left(m^{\prime}\right)$ so $\operatorname{ord}_{n}(a)<\phi(n)$. So a can't $^{\prime}$ be a primitive root $\bmod n$.
Only remaining candidate is $n=2^{k}$ for $k \geq 3$. No primitive root $\bmod 8$ since odd $^{2} \equiv 1 \bmod 8($ and $\phi(8)=4)$. So if a is odd, $a^{2}=1+8 k$. Show by induction that $a^{2^{k-2}} \equiv 1 \bmod 2^{k}(k \geq 3)$. Since $\phi\left(2^{k}\right)=2^{k-1}$, we see there does not exist a primitive root $\bmod 2^{k}$.

Lat. 15 Thu. 4/2/2015
Real:

$$
\begin{gathered}
m=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} \\
\phi(m)=\phi\left(p_{1}^{e_{1}}\right) \cdots \phi\left(p_{k}^{e_{k}}\right)
\end{gathered}
$$

17: If g is a primitive root $\bmod p=p_{p_{1}-1}^{e_{1}}\left(p_{1}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)$.
then $\left\{1, g, g^{2}, \cdots, g^{p-2}\right\}_{\bmod p}=\{1,2, \cdots, p-1\}_{\bmod p}$
2): If z primitive root g ($\bmod m$) where m is composite.
then tire are $\phi(m)$ of integers: in $\left\{1, g^{2}, \cdots, g^{\phi(m)-1}\right\}_{\bmod m}$
\& there are $\phi(\phi(m)$ mong
3). $x^{d} \equiv 1$ (mod $\left.p\right)$ hos. ($d, p-1$) many roots.
4). Tho (who proof) There is a primitive not mod m. iff $m=1,2,4, p^{n}(p$-ord, $n \geq 1), 2 p^{m} \quad(p$-ord. $m \geq 1)$
Non-erample: $m=8,1,3,5,7$

$$
1^{2} \equiv 3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1 \bmod 8 .
$$

so none generate.

7: Determine if there are primiture roots $\bmod 18$. If so hooumsin?
$18=2.3^{2} \Rightarrow$ Free ane primitive roots had if)

$$
\text { \# primitue roots } \begin{aligned}
=\phi(\phi(18)) & =\phi\left(\phi(2) \cdot \phi\left(3^{2}\right)\right)=\phi(1 \cdot 3 \cdot(3-1)) \\
& =\phi(3 \cdot 2)=2 \cdot 1=2 .
\end{aligned}
$$

(eg): Determine \#f solutions of $x^{15} \equiv 1 \bmod (7)$.
Note $\quad x^{7} \equiv x(\bmod 7)$
So $\quad x^{15} \equiv\left(x^{7}\right)^{2} \cdot x \equiv x^{3} \equiv 1 \quad \bmod 7$

$$
\text { s. \# of Solumuns }=(3,7-1)=(3,6)=3
$$

Note $(15,7-1)=3$ you con use $(d, p-1)$ dine ty $w / 0$ reduce d to $d^{\prime}<p$

Quadratic Residues, Quadratic Reciprocity

Quadratic Congruence - Consider congruence $a x^{2}+b x+c \equiv 0 \bmod p$, with $a \neq 0 \bmod p$. This can be reduced to $x^{2}+a x+b \equiv 0$, if we assume that p is odd (2 is trivial case). We can now complete the square to get

$$
\left(x+\frac{a}{2}\right)^{2}+b-\frac{a^{2}}{4} \equiv 0 \bmod p
$$

So we may as well start with $x^{2} \equiv a \bmod p$

If $a \equiv 0 \bmod p$, then $x \equiv 0$ is the only solution. Otherwise, there are either no solutions, or exactly two solutions (if $b^{2} \equiv a \bmod p$, then $x= \pm b \bmod p$). $\left(x^{2} \equiv a \equiv b^{2} \bmod p \Rightarrow p\left|x^{2}-b^{2} \Rightarrow p\right|(x-b)(x+b) \Rightarrow x \equiv b\right.$ or $\left.-b \bmod p\right)$. We want to know when there are 0 or 2 solutions.
(Definition) Quadratic Residue: Let p be an odd prime, $a \not \equiv 0 \bmod p$. We say that a is a quadratic residue $\bmod p$ if a is a square $\bmod p($ it is a quadratic non-residue otherwise).

Lemma 39. Let $a \not \equiv 0 \bmod p$. Then a is a quadratic residuemod p iff $a^{\frac{p-1}{2}} \equiv 1$ $\bmod p$

Proof. By FLT, $a^{p-1} \equiv 1 \bmod p$ and $p-1$ is even. This follows from index calculus. Alternatively, let's see it directly

$$
\left(a^{\frac{p-1}{2}}\right)^{2} \equiv 1 \quad \bmod p \Rightarrow a^{\frac{p-1}{2}} \equiv \pm 1 \quad \bmod p
$$

Let g be a primitive root $\bmod p .\left\{1, g, g^{2} \ldots g^{p-2}\right\}=\{1,2, \ldots p-1\} \bmod p$. Then $a \equiv g^{k} \bmod p$ for some k. With that $a=g^{k+(p-1) m} \bmod p$ so k^{\prime} s only defined $\bmod p-1$. In particular, since $p-1$ is even, so we know k is even or odd doesn't depend on whether we shift by a multiple of $p-1$. (ie., k is well defined mod 2).

We know that a is quadratic residue mod p iff k is even (if $k=2 l$ then $a \equiv g^{2 l} \equiv$ $\left(g^{l}\right)^{2} \bmod p$. Conversely if $a \equiv b^{2} \bmod p$ and $b=g^{l} \bmod p$ we get $a \equiv g^{2 l}$ $\bmod p$, so k is even.

Note: this shows that half of residue class mod p are quadratic residues, and half are quadratic nonresidues. Now look at $a^{\frac{p-1}{2}} \equiv\left(g^{k}\right)^{\frac{p-1}{2}} \equiv g^{\frac{k(p-1)}{2}} \bmod p$. $k \equiv 1 \bmod p$ iff $p-1=\operatorname{ord}_{p} g$ divides $\frac{k(p-1)}{2}$ iff $(p-1)\left|\frac{k(p-1)}{2} \leftrightarrow 2\right| k \leftrightarrow a$ is a quadratic residue.
(Definition) Legendre Symbol:

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \bmod p \\ -1 & \text { if } a \text { is a quadratic non-residue } \bmod p\end{cases}
$$

Defined for odd prime p, when $(a, p)=1$. (For convenience and clarity, written (alp)).

We just showed that $(a \mid p) \equiv a^{\frac{p-1}{2}} \bmod p$.
Remark 1. This formula shows us that $(a \mid p)(b \mid p)=(a b \mid p)$.

$$
\mathrm{LHS} \equiv a^{\frac{p-1}{2}} b^{\frac{p-1}{2}} \equiv(a b)^{\frac{p-1}{2}} \bmod p \equiv \text { RHS } \bmod p
$$

and since both sides are $\pm 1 \bmod p$, which is an odd prime, they must be equal Similarly, $\left(a^{2} \mid p\right)=(a \mid p)^{2}=1$

Eg. 1

$$
(-4 \mid 79)=\left(-1 \cdot 2^{2} \mid 79\right)=(-1 \mid 79)(2 \mid 79)^{2}=(-1 \mid 79)=(-1)^{39}=-1
$$

Also, 79 is not $1 \bmod 4$ so -1 is quadratic non-residue.
Well work toward quadratic reciprocity relating ($p \mid q$) to ($q \mid p$). We'll do Gauss's 3rd proof.

Lemma 40 (Gauss Lemma). Let p be an odd prime, and $a \not \equiv 0 \bmod p$. For any integer x, let x_{p} be the residue of $x \bmod p$ which has the smallest absolute value. (Divide x by p, get some remainder $0 \leq b<p$. If $b>\frac{p}{2}$, let $x_{p}=b$, if $b>$ $\frac{p}{2}$, let x_{p} be $b-p$. ie., $\left.-\frac{p}{2}<x_{p}<\frac{p}{2}\right)$ Let n be the number of integers among $(a)_{p},(2 a)_{p},(3 a)_{p} \ldots\left(\left(\frac{p-1}{2}\right) a\right)_{p}$ which are negative. Then $(a \mid p)=(-1)^{n}$.

$$
\frac{\operatorname{kg} 2}{2} \cdot\left(\frac{24}{19}\right)
$$

Proof. (Similar to proof of Fermat's little Theorem)

We claim first that if $1 \leq k \neq l \leq \frac{p-1}{2}$ then $(k a)_{p} \neq \pm(l a)_{p}$. Suppose not true: $(k a)_{p}= \pm(l a)_{p}$. Then, wed have

$$
k a \equiv \pm l a \bmod p \Rightarrow(k \mp l) a \equiv 0 \quad \bmod p \Rightarrow k \mp l \equiv 0 \bmod p
$$

This is impossible because $2 \leq k+l \leq p-1$ and $-\frac{p}{2}<k-l<\frac{p}{2}$ and $k-l \neq 0$ (no multiple of p possible).
So the numbers $\left|(k a)_{p}\right|$ for $k=1 \ldots \frac{p-1}{2}$ are all distinct $\bmod p$ (there's $\frac{p-1}{2}$ of
$\stackrel{\text { by def }}{=}\left\{\begin{array}{l}1 \text { if } \exists c \\ \text { sot. } c^{2} \equiv 24 \\ (19) \\ \text {-1 } \\ \text { if } \neq c \\ \\ \frac{s+1}{c^{2} \equiv 24(c)}\end{array}\right.$

$$
\begin{aligned}
& =\left(\frac{24-19}{19}\right) \\
& =\left(\frac{5}{19}\right)
\end{aligned}
$$

$$
=5^{\frac{19-1}{2}}(19)
$$

$$
=5^{9}(19)
$$

$$
\equiv 1
$$

them) and so must be the integers $\left\{1,3 \ldots \frac{p-1}{2}\right\}$ in some order.

$$
\begin{aligned}
1 \cdot 2 \cdots\left(\frac{p-1}{2}\right) & \equiv \prod_{k=1}^{\frac{p-1}{2}}\left|(k a)_{p}\right| \bmod p \\
& \equiv(-1)^{n} \prod_{k=1}^{\frac{p-1}{2}}(k a)_{p} \bmod p \\
& \equiv(-1)^{n} \prod_{k=1}^{\frac{p-1}{2}} k a \bmod p \\
& \equiv a^{\frac{p-1}{2}}(-1)^{n}\left(1 \cdot 2 \cdots\left(\frac{p-1}{2}\right)\right) \bmod p \\
\Rightarrow 1 & \equiv a^{\frac{p-1}{2}}(-1)^{n} \bmod p \\
a^{\frac{p-1}{2}} & \equiv(-1)^{n} \bmod p \\
(a \mid p) & \equiv(-1)^{n} \bmod p \\
(a \mid p) & =(-1)^{n} \operatorname{since} p>2
\end{aligned}
$$

where the second step follows from the fact that exactly n of the numbers $(k a)_{p}$ are <0.

Theorem 41. If p is an odd prime, and $(a, p)=1$, then if a is odd, we have $\left(a \left\lvert\, \frac{5}{5}\right.\right)=$ $(-1)^{t}$ where $t=\sum_{j=1}^{(p-1) / 2}\left\lfloor\frac{j a}{p}\right\rfloor$. Also, $(2 \mid p)=(-1)^{\left(p^{2}-1\right) / 8}$

Proof. We'll use the Gauss Lemma. Note that we're only interested in $(-1)^{n}$. We only care about $n \bmod 2$.

We have, for every k between 1 and $\frac{p-1}{2}$

$$
\begin{aligned}
k a & =p\left\lfloor\frac{k a}{p}\right\rfloor+(k a)_{p}+ \begin{cases}0 & \text { if }(k a)_{p}>0 \\
p & \text { if }(k a)_{p}<0\end{cases} \\
& \equiv\left\lfloor\frac{k a}{p}\right\rfloor+\left|(k a)_{p}\right|+\left\{\begin{array}{ll}
0 & \text { if }(k a)_{p}>0 \\
1 & \text { if }(k a)_{p}<0
\end{array} \quad \bmod 2\right.
\end{aligned}
$$

Sum all of these congruences mod 2

$$
\begin{aligned}
\sum_{k=1}^{(p-1) / 2} k a & \equiv \sum_{k=1}^{(p-1) / 2}\left\lfloor\frac{k a}{p}\right\rfloor+\sum_{k=1}^{(p-1) / 2}\left|(k a)_{p}\right|+n \bmod 2 \\
\sum_{k=1}^{(p-1) / 2} k a & =a \sum_{k=1}^{(p-1) / 2} k \\
& =\frac{1}{2} a\left(\frac{p-1}{2}\right)\left(\frac{p-1}{2}+1\right) \\
& =\frac{a\left(p^{2}-1\right)}{8}
\end{aligned}
$$

Now $\sum\left|(a)_{p}\right|$. Since $\left\{|a|_{p}, \ldots,\left|\frac{p-1}{2} a\right|_{p}\right\}$ is just $\left\{1 \ldots \frac{p-1}{2}\right\}$,

$$
\begin{aligned}
\sum_{k=1}^{(p-1) / 2}\left|(k a)_{p}\right| & =\sum_{k=1}^{(p-1) / 2} k \\
& =\frac{1}{2}\left(\frac{p-1}{2}\right)\left(\frac{p-1}{2}\right) \\
& =\frac{p-1}{8}
\end{aligned}
$$

Plug in to get

$$
\begin{aligned}
n & \equiv a\left(\frac{p^{2}-1}{8}\right)-\left(\frac{p^{2}-1}{8}\right)+\sum_{k=1}^{(p-1) / 2}\left\lfloor\frac{k a}{p}\right\rfloor \bmod 2 \\
& \equiv(a-1)\left(\frac{p^{2}-1}{8}\right)+\sum_{k=1}^{(p-1) / 2}(k a \mid p) \bmod 2
\end{aligned}
$$

If a is odd, we have $\frac{p^{2}-1}{8}$ is integer and $a-1$ is even, so product $\equiv 0 \bmod 2$, to get

$$
\begin{aligned}
n & \equiv \sum_{k=1}^{(p-1) / 2}\left\lfloor\frac{k a}{p}\right\rfloor \bmod 2 \\
& \equiv t \bmod 2 \\
\text { So }(a \mid p) & =(-1)^{n}=(-1)^{t}
\end{aligned}
$$

When $a=2$,

$$
n \equiv \frac{p^{2}-1}{8}+\sum_{k=1}^{(p-1) / 2}\left\lfloor\frac{2 k}{p}\right\rfloor \bmod 2
$$

So, note that for $k \in\left\{1 \ldots \frac{p-1}{2}\right\}$

$$
2 \leq 2 k \leq p-1
$$

so

$$
0<\frac{2}{p} \leq \frac{2 k}{p} \leq \frac{p-1}{p}<1
$$

So

$$
\left\lfloor\frac{2 k}{p}\right\rfloor=0
$$

so

$$
\sum_{k=1}^{(p-1) / 2}(2 k \mid p)=0
$$

so

$$
n \equiv \frac{p^{2}-1}{8} \bmod \text { and }(2 \mid p)=(-1)^{n}=(-1)^{\frac{p^{2}-1}{8}}
$$

So far,

$$
(-1 \mid p)=(-1)^{\frac{p-1}{2}}=\left\{\begin{array}{lll}
1 & \text { if } p=1 & \bmod 4 \\
-1 & \text { if } p=3 & \bmod 4
\end{array}\right.
$$

Check

$$
(2 \mid p)=(-1)^{\frac{\mathfrak{p}^{2}-1}{8}}=\left\{\begin{array}{lll}
1 & \text { if } p=1,7 & \bmod 8 \\
-1 & \text { if } p=3,5 & \bmod 4
\end{array}\right.
$$

Theorem 42 (Quadratic Reciprocity Law). If p, q are distinct odd primes, then

$$
(p \mid q)(q \mid p)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}= \begin{cases}1 & \text { if } p \text { or } q \equiv 1 \bmod 4 \\ -1 & \text { otherwise }\end{cases}
$$

Proof. Consider the right angled triangle with vertices $(0,0),\left(\frac{p}{2}, 0\right),\left(\frac{p}{2}, \frac{q}{2}\right)$. Note that: no integer points on vertical side, no nonzero integer points on hypotenuse (slope is $\frac{q}{p}$, so if we had integer point (a, b) then $\frac{b}{a}=\frac{q}{p} \Rightarrow p b=q a$, so $p|a, q| b$, and if $(a, b) \neq(0,0)$, then $a \geq p, b \geq q)$. Ignore the ones on horizontal side.
Claim: the number of integer points on interior of triangle is

$$
\sum_{k=1}^{(p-1) / 2}\left\lfloor\frac{q k}{p}\right\rfloor
$$

Proof. If we have a point (k, l), then $1 \leq k \leq \frac{p-1}{2}$ and slope $\frac{l}{k}<\frac{q}{p} \Rightarrow l<\frac{q k}{p}$. Number of points on the segment $x=k$ is the number of possible l, which is just $\left\lfloor\frac{q k}{p}\right\rfloor$.

Add these (take triangle, rotate, add to make rectangle) - adding points in interior of rectangle is

$$
\begin{gathered}
\sum_{l=1}^{(p-1) / 2}\left\lfloor\frac{p l}{q}\right\rfloor+\sum_{k=1}^{(p-1) / 2}\left\lfloor\frac{q k}{p}\right\rfloor=\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right) \\
(q \mid p)=(-1)^{t_{1}} \text { where } t_{1}=\sum\left\lfloor\frac{q k}{p}\right\rfloor \\
(p \mid q)=(-1)^{t_{2}} \text { where } t_{2}=\sum\left\lfloor\frac{p l}{q}\right\rfloor \\
(p \mid q)(q \mid p)=(-1)^{t_{1}+t_{2}} \text { where } t_{1}+t_{2}=\text { total number of points }
\end{gathered}
$$

Defined the Jacobi Symbol - used to compute Legendre Symbol efficiently (quadratic character)

Eg.

$$
\begin{aligned}
& \left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=\left\{\begin{array}{ll}
-1 & p, q \equiv\{(4) \\
1 & \text { el } \varphi
\end{array} \quad(-1 \mid p)=\left\{\begin{array}{ll}
-1 & \text { if } p \equiv 3 \\
1 & \bmod 4
\end{array}\right)=(8 \mid 13)=(2 \mid 13)=-1.13\right) \\
& (2 \mid p)=\left\{\begin{array}{lll}
-1 & \text { if } p \equiv \pm 3 & \bmod 8 \\
1 & \text { if } p \equiv \pm 1 & \bmod 8
\end{array}\right.
\end{aligned}
$$

Lemma 43. If p, q, r are distinct odd primes, and $q \equiv r \bmod 4 p$, then $(p \mid q)=(p \mid r)$.
Proof. We know $(q \mid p)=(r \mid p)$ since $q \equiv r \bmod p$. Also, q and r are both either 1 $\bmod 4$ or both $3 \bmod 4$. So

$$
\begin{aligned}
(-1)^{\frac{p-1}{2} \frac{q-1}{2}} & =(-1)^{\frac{p-1}{2} \frac{r-1}{2}} \\
(p \mid q) & =(q \mid p)(-1)^{\frac{p-1}{2} \frac{q-1}{2}} \\
& =(r \mid p)(-1)^{\frac{p-1}{2} \frac{r-1}{2}} \\
& =(p \mid r)
\end{aligned}
$$

Eg. Characterize the primes p for which 17 is a square mod p. It's clear that 17 is square $\bmod 2$. We see that since $17 \equiv 1 \bmod 4$, so if $q \equiv r \bmod 17$ then $(17 \mid q)=(17 \mid r)$. So we only need to look mod 17 to see when $(17 \mid q)=(q \mid 17)=1$. Go through mod 17: $\pm 1, \pm 2, \pm 4, \pm 8$ mod 17 are nonzero square classes, so 17 is a square $\bmod q$ iff $q=2,17$, or $\pm 1, \pm 2, \pm 4, \pm 8 \bmod 17$.

If we had asked for 19 , we need to look at classes mod ($4 \cdot 19$), since $19 \not \equiv 1$ $\bmod 4$. (If $q=1 \bmod 4$ then $(19 \mid q)=(q \mid 19)$, so we need q to be a square mod 19. If $q=3 \bmod 4$ then $(19 \mid q)=-(q \mid 19)$, we need q to be not square $\bmod 19$)

Euclidean ged Algorithm - Given $a, b \in \mathbb{Z}$, not both 0 , find (a, b)

Alyonithan: Input: p-odd pome ; n-quadratic residue (p)
Output: An integer R. Sis $R^{2} \equiv n(P)$

1. If $a, b<0$, replace with negative
2. If $a>b$, switch a and b
3. If $a=0$, return b

$$
\text { 3) } \text { at } R=n^{\frac{8+1}{3}}, t=n^{8} \text {, } \mu-1
$$

al loup: if t 51 wan n R
4. Since $a>0$, write $b=a q+r$ with $0 \leq r<a$. Replace (a, b) with (r, a) and go to Step 3.

Onlyfor prime moulenlor
-1 Tonelli's Algorithm - To compute square roots mod p (used to solve $x^{2} \equiv a$ $\bmod p)$. Need a quadratic non-residue $\bmod p$, called n. Let g be a primitive root $\bmod p$. Now let $p-1=2^{s} t$, for t odd. We know n is a power of g, say $n \equiv g^{k}$. Set $c \equiv n^{t} \equiv g^{k t}$.
Claim: The order of c is exactly 2^{s}.

Proof.

$$
\begin{aligned}
c^{2^{a}} & \equiv\left(g^{k t}\right)^{2^{a}} \\
& \equiv\left(g^{t 2^{a}}\right)^{k} \\
& \equiv\left(g^{p-1}\right)^{k} \\
& \equiv 1 \quad \bmod p
\end{aligned}
$$

So $\operatorname{ord}(c)$ has to divide 2^{s}, so it's a power of 2 . If we can show that $c^{2^{2-1}} \neq 1$ $\bmod p$ then order has to be 2^{s}.

$$
\begin{aligned}
c^{2^{p-1}} & \equiv\left(g^{k t}\right)^{2^{g-1}} \\
& \equiv\left(g^{t 2^{s-1}}\right)^{k} \\
& \equiv\left(g^{(p-1) / 2}\right)^{k} \quad \bmod p \\
& \equiv(-1)^{k} \quad \bmod p, \text { since } g \text { is a primitive root }
\end{aligned}
$$

Note that k is odd since otherwise $n \equiv g^{k}$ would be a quadratic residue, so we get $c^{2^{s-1}} \equiv-1 \bmod p$, proving claim that $\operatorname{ord}(c)=2^{s}$

Lemma 44. If a, b are coprime to p and have order $2^{j} \bmod p(f o r j>0)$ then $a b$ has order 2^{k} for some $k<j$.

Proof. Since $a^{2^{j}} \equiv 1 \bmod p_{r}\left(a^{2^{j-1}}\right)^{2} \equiv 1 \bmod p$, we have $a^{2 j-1} \equiv \pm 1 \bmod p$. So we must have $a^{2^{j-1}} \equiv-1 \bmod p$, since ord $(a)=2^{j}$. Similarly $b^{2^{j-1}} \equiv-1$ $\bmod p$. Therefore, $(a b)^{2^{j-1}} \equiv 1 \bmod p$, so order has to divide 2^{j-1}, so $k<j$.

Otherwise, find the lowest;
$0<1<R$
sit. $t^{2 i} \equiv 1$.
(iii. repeating squaring)
let $b=c^{2^{\mu-i}-1}$,

$$
\begin{aligned}
& \& R=R b \\
& t \equiv t b^{2} . \\
& C \equiv b^{2} \& M=i
\end{aligned}
$$

Proof of Tonelli's Algorithm. First check (by repeated squaring) if $a^{(p-1) / 2} \equiv 1$ $\bmod p$. If not, terminate with "false." So assume now on that $a^{(p-1) / 2} \equiv 1$ $\bmod p$.

Set $A=a$ and $b=1$. At each step $a=A b^{2}\left(a \equiv A b^{2} \bmod p\right)$ At the end, want $A=1$, so b is square root of $a \bmod p$.
Each step: decrease the power of 2 dividing the order of A. To start with, $A^{(p-1) / 2}=A^{2^{2-1} t} \equiv 1 \bmod p$. Check if $A^{(p-1) / 4} \equiv 1 \bmod p$.
If not, then $A^{2^{a-2} t} \equiv-1 \bmod p\left(\right.$ since $\left(A^{2^{s-2} t}\right)^{2} \equiv 1 \bmod p$). So powers of 2 dividing ord (A) is exactly 2^{s-1}. Same as the power of 2 diving ord $\left(c^{2}\right)=2^{s-1}$. So set $A=A c^{-2}, b=b c \bmod p$. Notice that

$$
\begin{aligned}
\left(A c^{-2}\right)^{2^{a-2} t} & =\frac{A^{2^{s-2} t}}{c^{2^{s-1} t}} \\
& \equiv(-1)(-1)^{t} \\
& \equiv 1 \bmod p
\end{aligned}
$$

ord ($A c^{-2}$) divides $2^{s-2} t$, so power of 2 dividing the order is at most 2^{s-2}, so has decreased by 1.

If yes, (ie., $A^{2^{-2} t} \equiv 1 \bmod p$), do nothing.
Next step: check if $A^{2^{2-3}} t=A^{(p-1) / 8} \equiv 1 \bmod p$.
If no, (ie., $A^{2^{s-3}} t \equiv-1 \bmod p$, set $A:=A c^{-4}, b:=b c^{2}\left(c^{4}\right.$ has order $\left.2^{s-2}\right)$. $\left(A c^{-4}\right)^{2^{-3} t} \equiv 1$.
If yes, do nothing.
After at most s steps we'll reach the stage when $a \equiv A b^{2} \bmod p$ and the power of 2 dividing ord (A) is 1 - ie., $\operatorname{ord}(A)$ is odd. Now we just compute a square root of A as follows: ord (A) odd and divides $p-1 \equiv 2^{s} t$, so divides t. So $A^{t} \equiv 1$ $\bmod p(t o d d)$. Claim $A^{(t+1) / 2}$ is a square root of $A \bmod p$.

$$
\begin{aligned}
\left(A^{(t+1) / 2}\right)^{2} & =A^{t+1} \\
& =A^{t} A \\
& \equiv 1 \cdot A \\
& \equiv A \bmod p
\end{aligned}
$$

So algorithm just returns $b A^{(t+1) / 2}$ as \sqrt{a}
egg: Solve congmence $x^{2} \equiv 10(\bmod 13)$.
(1) Sime $10^{\frac{p-1}{2}} \equiv 10^{6} \equiv 1(\bmod (3)$, 10 is a quad. nesiclue So we have a solution;
(7) Obenc: $\quad P-1=12=2^{2} \cdot 3 \quad$ so $Q=3, S=2>1$
(2) Toke $z=2$ as the Qusetratic nonvesillue (since $2^{\frac{10-1}{2}}=-1(13)-$)

$$
\cos \left(\frac{2}{p}\right)=\left\{\begin{array}{cc}
-1 & \text { if } p \equiv \pm 3(8) \\
1 & \text { if } p \pm 1(81
\end{array}\right)
$$

$\operatorname{Let} 0=2^{3}=8(13)$
(3) $R=10^{\frac{3+1}{2}} \equiv-4(13), \quad t=10^{3} \equiv-1(13) \quad M=2$
(4): Stort loop: $t=-1=1(13) \quad 0<i<2$, then $i=1$

- Let $b \equiv 8^{2^{2-1-1}} \equiv 8(13)$, so $b^{2} \equiv 8^{2} \equiv-1(13)$

Lot $R=-4 \cdot 8 \equiv 7(\bmod 13)$
return $R \equiv 7(13)$
Euler's cititerion

Cyclotomic Polynomials, Primes Congruent to $1 \bmod n$

Cyclotomic Polynomials - just as we have primitive roots $\bmod p$, we can have primitive $n^{\text {th }}$ roots of unity in the complex numbers. Recall that there are n distinct nth roots of unity - ie., solutions of $z^{n}=1$, in the complex numbers. We can write them as $e^{2 \pi i j / n}$ for $j=0,1, \ldots n-1$. They form a regular n-gon on the unit circle.

We say that z is a primitive nth root of unity if $z^{d} \neq 1$ for any d smaller than n. If we write $z=e^{2 \pi i j / n}$, this is equivalent to saying $(j, n)=1$. So there are $\phi(n)$ primitive nth roots of unity.

Eg. 4th roots of 1 are solutions of $z^{4}-1=0$, or $(z-1)(z+1)\left(z^{2}+1\right)=0 \Rightarrow$ $z=1,-1 \pm i$

Now 1 is a primitive first root of unity, -1 is a primitive second root of unity, and $\pm i$ are primtiive fourth roots of unity. Notice that $\pm i$ are roots of the polynomial $z^{2}+1$. In general, define

$$
\Phi_{n}(x)=\prod_{\substack{(j, n)=1 \\ 1 \leq j \leq n}}\left(x-e^{2 \pi i j / n}\right)
$$

This is the nth cyclotomic polynomial.
We'll prove soon that $\Phi_{n}(x)$ is a polynomial with integer coefficients. Another fact is that it is irreducible, ie., cannot be factored into polynomials of smaller degree with integer coefficients (we won't prove this, however).

Anyway, here is how to compute $\Phi_{n}(x)$: take $x^{n}-1$ and factor it. Remove all factors which divide $x^{d}=1$ for some $d \mid n$ and less than n.

Eg. $\Phi_{6}(x)$. Start with $x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)$. Throw out $x^{3}-1$ since $3 \mid 6$ and $3<6 . x^{3}+1=(x+1)\left(x^{2}-x+1\right)$. Throw out $x+1$ which divides $x^{2}-1$, since $2 \mid 6,2<6$. We're left with $x^{2}-x+1$ and it must be $\Phi_{6}(x)$ since it has the right degree $2=\varphi(6)$ (the nth cyclotomic polynomial has degree $\varphi(n)$, by definition). If you write down the first few cyclotomic polynomials you'll notice that the coefficient seems to be 0 or ± 1. But in fact, $\Phi_{105}(x)$ has -2 as a coefficient, and the coefficients can be arbitrarily large if n is large enough.

These polynomials are very interesting and useful in number theory. For instance, we're going to use them to prove that given any n, there are infinitely many primes congruent to $1 \bmod n$.

Eg. $\Phi_{4}(x)=x^{2}+1$ and the proof for primes $\equiv 1 \bmod 4$ used $\left(2 p_{1} \ldots p_{n}\right)^{2}+1$

Proposition 45. 1. $x^{n}-1=\prod_{d} \Phi_{\downarrow}(x)$
2. $\Phi_{n}(x)$ has integer coefficients ${ }^{\text {d }} \mid n$
3. For $n \geq 2, \Phi_{n}(x)$ is reciprocal; ie., $\Phi_{n}\left(\frac{1}{x}\right) \cdot x^{\varphi(n)}=\Phi_{n}(x)$ (ie., coefficients are palindromic)

Proof. 1. is easy - we have

$$
x^{n}-1=\prod_{1 \leq j \leq n}\left(x-e^{2 \pi i j / n}\right)
$$

If $(j, n)=d$ then $e^{2 \pi i j / n}=e^{2 \pi i j^{\prime} / n^{\prime}}$ where $j^{\prime}=\frac{j}{d}, n^{\prime}=\frac{n}{d}$, and $\left(j^{\prime}, n^{\prime}\right)=1$. $\left(x-e^{2 \pi i j^{\prime} / n^{\prime}}\right)$ is one of the factors of $\Phi_{n^{\prime}}(x)$ and $n^{\prime} \mid n$. Looking at all possible j, we recover all the factors of $\Phi_{n^{\prime}}(x)$, for every n^{\prime} dividing n, exactly once. So

$$
x^{n}-1=\prod_{n^{\prime} \mid n} \Phi_{n^{\prime}}(x)
$$

2. By induction. $\Phi_{1}(x)=x-1$. Suppose true for $n<m$. Then

$$
x^{m}-1=\prod_{d \mid m} \Phi_{d}(x)=\underbrace{\left(\prod_{d \mid m} \Phi_{d}(x)\right)}_{\begin{array}{c}
\text { monic (by defn), integer } \\
\text { coefficients (by ind. hypothesis) }
\end{array}} \cdot \Phi_{m}(x)
$$

So $\Phi_{m}(x)$, obtained by dividing a polynomial with integer coefficients, by a monic polynomial with integer coefficients, also has integer coefficients. This completes the induction.
3. By induction. True for $n=2$, since $\Phi_{2}(x)=x+1$.

$$
\text { - } \Phi_{2}\left(\frac{1}{x}\right) x^{\varphi(2)}=\left(\frac{1}{x}+1\right) x=x+1=\Phi_{2}(x)
$$

Suppose true for $n<m$. If we plug in $\frac{1}{x}$ into

$$
\begin{aligned}
x^{m}-1 & =\prod_{d \mid m} \Phi_{d}(x) \\
\left(\frac{1}{x}\right)^{m}-1 & =\prod_{d \mid m} \Phi_{d}\left(\frac{1}{x}\right) \\
& =\left(\prod_{\substack{1<d<m \\
d \mid m}} \Phi_{d}\left(\frac{1}{x}\right)\right) \cdot \Phi_{m}\left(\frac{1}{x}\right) \cdot\left(\frac{1}{x}-1\right)
\end{aligned}
$$

Multiply by $x^{m}=\sum_{x^{d} \mid m} \varphi(d)=\prod_{d \mid m} x^{\varphi(d)}$ - proved before - to get

$$
\begin{aligned}
& 1-x^{m}=\left(\prod_{\substack{1<d<m \\
d \mid m}} \Phi_{d}\left(\frac{1}{x}\right) x^{\varphi(d)}\right) \cdot \Phi_{m}\left(\frac{1}{x}\right) x^{\varphi(m)} \cdot\left(\frac{1}{x}-1\right) x \\
&-\left(x^{m}-1\right)=(\prod_{\substack{1<d<m \\
d \mid m}} \underbrace{}_{\text {by ind hyp }} \Phi_{d}(x) \\
&-\prod_{d \mid m} \Phi_{d}(x)=\left(\Phi_{m}\left(\frac{1}{x}\right) x^{\varphi(m)} \cdot(1-x)\right. \\
&\left.\prod_{\substack{<d<m \\
d \mid m}} \Phi_{d}(x)\right) \cdot \Phi_{m}\left(\frac{1}{x}\right) x^{\varphi(m)} \cdot\left(-\Phi_{1}(x)\right)
\end{aligned}
$$

Cancelling almost all the factors we get

$$
\Phi_{m}(x)=\Phi_{m}\left(\frac{1}{x}\right) x^{\varphi(m)}
$$

completing the induction.

Lemma 46. Let $p \nmid n$ and $m \mid n$ be a proper divisor of n (ie., $m \neq n$). Then $\Phi_{n}(x)$ and $x^{m}-1$ cannot have a common root mod p.

Proof. By contradiction. Suppose a is a common root $\bmod p$. Then $a^{m} \equiv 1$ $\bmod p$ forces $(a, p)=1$. Next,

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)=\underline{\Phi_{n}(x)} \prod_{\substack{d \mid n \\
d<n}} \Phi_{d}(x) \text { has } \begin{aligned}
& \text { rojta }
\end{aligned}
$$

Notice that $x^{m}-1=\prod_{d \mid M^{2}} \Phi_{d}(x)$ has all its factors in the last product. So this shows $x^{n}-1$ has a double root at a, ie., $\left(x^{n}-1\right) \equiv(x-a)^{2} f(x) \bmod p$ for some $f(x)$. Then the derivative must also vanish at $a \bmod p$, so $n a^{n-1} \equiv 0 \bmod p$. But $p \nmid n$ and $p \nmid a$, a contradiction. (k)

Now, we're ready to prove the main theorem.

Theorem 47. Let n be a positive integer. There are infinitely many primes congruent to $1 \bmod n$.

Proof. Suppose not, and let $p_{1}, p_{2}, \ldots p_{N}$ be all the primes congruent to $1 \bmod n$. Choose some large number l and let $M=\Phi_{n}\left(\ln p_{1} \ldots p_{N}\right)$. Since $\Phi_{n}(x)$ is monic, if l is large enough, M will be >1 and so divisible by some prime $p, \quad p \nmid \ell$. First, note that p cannot equal p_{i} for any i, since $\Phi_{n}(x)$ has constant term 1 , and so p_{i} divides every term except the last of $\Phi_{n}\left(\ln p_{1} \ldots p_{n}\right) \Rightarrow$ it doesn't divide M. For the same reason we have $p \nmid n$. In fact, $(p, a)=1$ where $a=\ln p_{1} \ldots p_{N}$.
Now $\Phi_{n}(a) \equiv 0 \bmod p$ by definition, which means $a^{n} \equiv 1 \bmod p$. By the lemma, we cannot have $a^{m} \equiv 1 \bmod p$ for any $m \mid n, m<n$. So the order of a $\bmod p$ is exactly n, which means that $n \mid p-1$ since $a^{p-1} \equiv 1 \bmod p \Rightarrow p \equiv 1$ $\bmod n$, exhibiting another prime which is $\equiv 1 \bmod n$. Contradiction. (文)

Note - we did not even need to assume that there's a single prime $\equiv 1 \bmod n$; if $N=q$ take the empty product, ie., 1 , and we end up looking at $\Phi_{n}(l n)$ for large l.

Arithmetic Functions

Today - Arithmetic functions, the Möbius function
(Definition) Arithmetic Function: An arithmetic function is a function f :
$\mathbb{N} \rightarrow \mathbb{C}$

Eg.

$$
\begin{aligned}
\pi(n) & =\text { the number of primes } \leq n \\
d(n) & =\text { the number of positive divisors of } n \\
\sigma(n) & =\text { the sum of the positive divisors of } n \\
\sigma_{k}(n) & =\text { the sum of the eth powers of divisor } f n \\
\omega(n) & =\text { the number of distinct primes dividing } n \\
\Omega(n) & =\text { the number of primes dividing } n \text { counted with multiplicity } \\
r_{k}(n) & =\eta^{k}
\end{aligned}
$$

$$
\begin{aligned}
& n=10 \\
& \pi(n)=4 \\
& d(n)=4 \\
& \sigma(n)=1+2+5+10=18 \\
& = \\
& T_{2}(10)=\sum_{d(10} d^{2}=1^{2}+2^{2}+5 \\
& \omega(10)=2 \\
& \Omega(10)=2 .
\end{aligned}
$$

Eg.

$$
\begin{aligned}
& \sigma(1)=1 \\
& \sigma(2)=1+2=3 \\
& \sigma(3)=1+3=4 \\
& \sigma(6)=1+2+3+6=12
\end{aligned}
$$

(Definition) Perfect Number: A perfect number n is one for which $\sigma(n)=2 n$ (eg., 6, 28, 496, etc.)

Note: One can show that if n is an even perfect number, then $n=2^{m-1}\left(2^{m}-1\right)$ where $2^{m}-1$ is a Mersenne prime (Euler)
(Definition) Multiplicative: If f is an arithmetic function such that whenever (m, n) $=1$ then $f(m n)=f(m) f(n)$, we say f is multiplicative. If f satisfies the stronger property that $f(m n)=f(m) f(n)$ for all m, n (even if not coprime), we say f is completely multiplicative

Eg.

$$
f(n)= \begin{cases}1 & n=1 \\ 0 & n \neq 1\end{cases}
$$

is completely multiplicative. It's sometimes called $\mathbf{1}$ (we'll see why soon).

Spring 2015 MAT 311 Number Theory

Homework 01, Due 02/12/2015 in class

Letao Zhang
February 4, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems:
Section 1.2:

- 1 (a) (c)
- 3 (a) (e)
- 4 (a)
- 12
- 16
- 23
- 35
- 43

Spring 2015 MAT 311 Number Theory

 Homework 02, Due 02/17/2015 in classLetao Zhang
February 4, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems of Section 1.3:

- 6
- 11
- 20
- 22 (6) (8) (12) (13) (15)
- 16
- 27

Spring 2015 MAT 311 Number Theory

Homework 03, Due 02/24/2015 in class

Letao Zhang
February 17, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems of Section 1.4:

- 4
- 10

Problems of Section 2.1

- 6
- 7
- 10

Spring 2015 MAT 311 Number Theory Homework 04, Due 03/03/2015 in class

Letao Zhang

February 24, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Problems of Section 2.1

- 18
- 23
- 43

Problems of Section 2.2

- 5 (a), (d)
- 6
- 8

Problems of Section 2.3

- 1
- 7
- 8

Spring 2015 MAT 311 Number Theory

Homework 05, Due 03/24/2015 in class
Letao Zhang
March 13, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

1. Solve (by hand) the congruence $x^{3}-9 x^{2}+23 x-15 \equiv 0(\bmod 143)$.
2. What are the last two digits of 2^{100} and of 3^{100} ?
3. Find the number of solutions of $x^{2} \equiv x(\bmod m)$ for any positive integer m.
4. Let property P be : for any a coprime to n, we have $a^{n-1} \equiv 1(\bmod n)$
(a) Show that the number $n=561$ satisfying P
(b) Let n be a squarefree composite number satisfying P . Show that n has at least 3 prime factors
(c) Write down a sufficient condition for $n=p q r$ (where p, q, r are primes) to satisfy property P.
5. Do there exist arbitrarily long sequences of consecutive integers, none of which are squarefree? (i.e. given any positive integer N, does there exist a sequence of integers $x, x+1, \ldots, x+N-1$ such that none of these is squarefree?) Prove your assertion.

Spring 2015 MAT 311 Number Theory

 Homework 05, Due 03/31/2015 in classLetao Zhang
March 26, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Section 2.8

- 1
- 3
- 8
- 12
- 13

Spring 2015 MAT 311 Number Theory

 Homework 05, Due 04/07/2015 in class
Letao Zhang

April 2, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Section 3.1

- 7
- 10
- 15

Section 3.2

- 1
- 3
- 4 (a) (d) (e)

Practice MidtIerm Exam I

Spring 2015 MAT 311 Number Theory

April 8, 2015

- Last Name (print):
- First Name (print):
- ID number (print):

Instructions

- Please answer each question in the space provided, and write full solutions.
- Please show all work, explain your reasons, and state all theorems you appeal to.
- Unless otherwise marked, answers without justification will get little or no partial credit.
- Cross out anything the grader should ignore and circle or box the final answer.
- Do NOT round answers.
- No books, notes, or calculators are allowed while taking the exam.

Question 1: Determine if a is a quadraitic residue $\bmod p$
(a) $a=2, p=13$
(b) $a=5, p=23$
(c) $a=10, p=13$
(d) $a=25, p=23$

Answer:
(a) No
(b) no
(c) yes
(d) yes

Question 2: Determine the number of primitive roots $\bmod m$
(a) $m=4$
(b) $m=6$
(c) $m=7$
(d) $m=101$
(e) $m=100$

Answer
(a) 1
(b) 1
(c) 2
(d) 40
(e) 0

Question 3: Find the order of $a \bmod m$, AND determine if a is primitive.
(a) $a=2, m=27$
(b) $a=5, m=27$
(c) $a=10, m=27$

Answer
(a) 18
(b) 18
(c) 3

Question 4: Can you find a number a such that every number in $\{1,2,3, \ldots, 16\}$ can be expressed as a power of $a \bmod 17$. Justify your answer. Answer: Yes.

Question 5: Find the order of $2,4 \bmod 31$ answer:
(a) $\operatorname{ord}_{31}(2)=5$
(b) $\operatorname{ord}_{31}(4)=5$

Question 6: compute the following Legendre Symbol
(a) $\left(\frac{8}{7}\right)$
(b) $\left(\frac{8}{17}\right)$
answer
(a) 1
(b) 1

Question 7: Determine if the following quadratic residue $\bmod p$ is solvable. If so, find all solutions $\bmod p$
(a) $2 x^{2}+3 x-1 \equiv 0 \bmod 7$
(b) $x^{2}-5 \equiv 0 \bmod 13$
answer
(a) not solvable
(b) not solvable

Spring 2015 MAT 311 Number Theory

 Homework 09, Due Thursday 04/30/2015 in classLetao Zhang

April 23, 2015

Your solution to each problem should be complete, and be written in complete sentences where appropriate. Please show all work.

Textbook: An introduction to the theory of numbers, fifth Edition, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

Section 3.3

- 1
- 3
- 5
- 9

Section 3.4

- 1 (c) (e)
- 4

Practice Final Exam

Spring 2015 MAT 311 Number Theory

May 5, 2015

- Last Name (print):
- First Name (print):
- ID number (print):

Instructions

- Please answer each question in the space provided, and write full solutions.
- Please show all work, explain your reasons, and state all theorems you appeal to.
- Unless otherwise marked, answers without justification will get little or no partial credit.
- Cross out anything the grader should ignore and circle or box the final answer.
- Do NOT round answers.
- No books, notes, or calculators are allowed while taking the exam.

Question 1: Find (2100, 72) and [2100, 72]
Question 2: Find the value of the Legendre symbol

$$
\left(\frac{73}{107}\right)
$$

Question 3: Suppose $(a, b)=d$ and d is not a divisor of g. Prove that the equation $a x^{2}+b y^{2}=g$ has no solutions with integers x, y.

Question 4: Suppose p is an odd prime and a is a quadratic residue of p. Prove that a is not a prmitive root of p

Question 5: Let $a=2^{7} \cdot 3^{4} \cdot 11^{9} \cdot 19$ and $b=2^{17} \cdot 7^{2} \cdot 11$
(a) find (a, b) and $[a, b]$
(b) Find the number of divisors of a
(c) Find $\phi(a)$ and $\phi(b)$

Question 6: Prove that for every integer $n,\left(n, 2 n^{2}+1\right)=1$
Question 7: True or False. Answer True or False.If it's false, please provide explanations, proofs or counterexamples.
(a) Every positive integer has a unique factorization into primes
(b) There are infinitely many primes p such that $p+5$ is also a prime
(c) Every prime has a primitive root.
(d) For all positive integers m, n and all integers a, b the system of congruences has a solution x

$$
\begin{aligned}
& x \equiv a(\bmod m) \\
& x \equiv b(\bmod n)
\end{aligned}
$$

(e) There are infinitely many primes p such that $p+3$ is also a prime
(f) For all positive integers n and for all b such that $(b, n)=1, \operatorname{ord}_{n} b=\phi(n)$

Question 8: For each congruence, determine (with some explanation) if there are solutions or not. (x and y are integers)
(a) $8 x \equiv 2(\bmod 180)$
(b) $x^{7} \equiv 2(\bmod 47)$

