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 Sylvain BONNOT
  

 MAT 311 
 Number
 Theory 
   

 We will meet on MWF : 10:40 am to 11:35 am in Physics P112.

First day of class: Monday January 22, 2006.
Final exam : TBA.

Office hours: 
 every Wedn. from 2:00 pm to 5:00 pm in my office, 5D-148 in the Math Tower.
 My office is in the I.M.S (Institute for Math. Sciences), located on floor 5 and a half.

 How to contact me? 
 the best way is to email me there: bonnot at math dot sunysb dot edu

Our textbook: 
 (added monday 01/22): I confirm that our textbook will be the following: An Introduction to the Theory of Numbers
 (Hardcover), Wiley, Fifth edition (January 1991), by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery 

Link to Current Homework: The Homework is an important part of this class. I will take it from the book or from
 other sources. Click here to go to the homework page.

Course notes and announcements:

The final exam is now graded, and I posted your letter grades on the Solar system, you should be able to view them
 very soon. You did a rather good job for this final, that was not an easy one! Since I know you want to do some more
 number theory in the summer, I give you the correction of the final. I wish you good luck for the rest of your exams,
 and have a great summer!

NEW! Please try the practice final, and if you are stuck read its correction.

The correction for HW9 is available.

Here is a Practice Final that you should try. Ask me questions about it if you need to! The final exam is next week, on
 Wed.9th, 8am to 10:30am, usual room. It covers everything from the beginning.

Here is a beginning: some questions . Of course, you will have more on monday, but you already have to finish a HW,
 I guess?

I promised you the end of the proof of the fact that a periodic continued fraction corresponds to a quadratic irrational
 number. Also, the correction for HW8 is on the HW page.

HW9 is available on the HW page.
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HW8 has been updated: I changed a small error in problem 2, and added some hints for the last problem.

HW8 is available.

You might want to check the correction: scan1, scan2,scan3. I don't give any homework for the break: have a well-
deserved Springbreak and see you in April!

Your midterm will be graded during the break, and will be returned on wed. april 11th. If you need your grade earlier,
 send me an email. The monday class (april 9th) will be given by our grader Caner Koca, about continued fractions. We
 will use them to describe the invertible elements in quadratic fields.

About Midterm II I corrected the practice exam this morning: in case you need it, here is the file of the correction. The
 second midterm exam is this friday, usual room, usual time. Also the correction for HW7 is on the HW page.

You should try this practice exam.You will have a correction of it on monday. Prepare your questions for me! And
 remember that the exam is on friday 30th!!

The correction of HW6 is on the HW page, and HW7 has been posted: please notice that it is a much shorter one, that
 it is due on monday, and also that you are encouraged to ask questions about it!(you are also encouraged to return it)

The correction of the midterm and HW5 are available... correction of the midterm Also HW6 is on the HW page.

Midterm I is graded You did a pretty good job, the average is around 63/100... The next Hw assignment will be given
 this Friday (03/09).

Correction for the practice exam If you tried it, you may want to read its correction ...

Next HW assignment will be given on monday On monday we will review for the exam, so prepare your questions for
 me! The correction for the practice exam will be here very soon...You can bring your HW5 on monday too.

 Midterm I is next week on Wednesday March 7th, usual room, usual time Please read these informations about what
 you should know for next week.

 Brand new practice exam !! Please try this practice midterm 1, and remember that you will have a detailed correction
 available very soon...

 New HW5 is on HW page.

 Please read this proof of the Quadratic reciprocity.Ask me questions if you need!

 The two midterms have been scheduled, please see below.

 The correction for HW3 is available on the HW page.

 Here is a new assignment: HW4.

 The correction of HW2 is now available.

 Here is the third homework assignment: HW3.

 Here is the second homework assignment: HW2.

 The correction of HW1 is now available.

 Here is the first homework assignment: HW1. Don't hesitate to ask me questions if something is not clear for you!

http://www.math.stonybrook.edu/~bonnot/311HW1correction.pdf
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 Quick intro: Number theory is certainly one of the oldest subject within mathematics. Already 36 centuries ago in
 tablets written in Babylone, there were examples of such problems. Some mathematicians like to say that it occupies
 within mathematics the same place as mathematics within science...Some people like to see it as the purest domain in
 mathematics, and yet some others like to see all its applications to cryptography, computer science,etc... 
 Number theory has the remarkable advantage of being able to formulate extremely deep problems almost without
 prerequisites. A model for this is certainly Fermat's last theorem, that can be stated in one line but that resisted all the
 efforts of mathematicians for centuries... For this reason, I think it is an excellent "entry point" to mathematics: we will
 start with very simple material like divisibility properties, congruences, continue with simple Diophantine equations,
 and slowly progress towards deeper questions like Quadratic reciprocity. 
 I will not hesitate to provide introductions to much recent material, like one and two-dimensional representations, or
 even the Absolute Galois group, which is nowadays one of the most mysterious objects of contemporary mathematics,
 and one that is certainly the center of a tremendous mathematical activity.

Prerequisites:
 For this class you need to have taken MAT 312 or 313 or 318.

Link to Current Homework: Regularly you will have to consult this homework page to know what has been assigned.

Syllabus :

Day of Sections Covered

Week 1:January
 22,24,26

Divisibility, prime numbers,repartition of primes, rational points on circle

Week 2:Jan.
 29,31,Feb. 02

Congruences, Euclid algorithm, linear equations

Week 3:Feb. 5,7,9 Euler's phi function, summary about groups,rings,Chinese remainder theorem

Week 4:February
 12,14,16

Structure of the multiplicative group, existence of square roots

Week 5:Feb.
 19,21,23

Quadratic reciprocity theorem

Week 6:Feb.
 26,28,March 02

The RSA cryptosystem, Rabin's system, basic attacks on RSA

Week 7:March
 5,7,9

Review,exam: midterm 1

Week 8:March
 12,14,16

Ideals, quotient of a ring by an ideal, quadratic extensions

Week 9:March
 19,21,23

Prime ideals (continued), basic intro to topological spaces,Spec of a ring

Week 10:March
 26,28,30

 Review, midterm II

Week 11:April
 9,11,13

 Continued fractions and approximations of real numbers

Week 12:April  Intro to elliptic functions and cryptography
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 16,18,20

Exams: 

Midterm 1  Wed. March 7th Usual room

Midterm 2  Fr. March 30th Usual room  

Final  Wed May 9,2007, 8:00 am to 10:30 am  Usual room

Homework and grading policy: Here is how your final grade will be computed. of the following:

Exam I 25%

Exam II 25% 

Final Exam 35%

Homework 15%

 Late homework will not be accepted.

DSS advisory:

 If you have a physical, psychological, medical, or learning disability that may affect your course work, please contact
 Disability Support Services (DSS) office: ECC (Educational Communications Center) Building, room 128, telephone
 (631) 632-6748/TDD. DSS will determine with you what accommodations are necessary and appropriate.
 Arrangements should be made early in the semester (before the first exam) so that your needs can be accommodated.
 All information and documentation of disability is confidential. Students requiring emergency evacuation are
 encouraged to discuss their needs with their professors and DSS. For procedures and information, go to the following
 web site http://www.ehs.sunysb.edu and search Fire safety and Evacuation and Disabilities.
  

http://www.ehs.sunysb.edu/
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MAT 311 Homework Assignments
Fall 2006

 Link to main page for MAT 311.
Mathematics department

# Problems Due Date

1  HW1 
 Complete correction: correctionHW1 Friday 02/02/2007

2  HW2 
 Complete correction: correctionHW2 Friday 02/09/2007

3  HW3 
 Complete correction: correctionHW3 Friday 02/16/2007

4  HW4 
 Complete correction: correctionHW4 Friday 02/23/2007

5  HW5 
 Complete correction: correctionHW5 Friday 03/02/2007

6  HW6 
 Complete correction: correctionHW6 Monday 03/19/2007

7  HW7 
 Complete correction: correctionHW7 Monday 03/26/2007

8  HW8 
 Complete correction: correctionHW8 Wed. 04/18/2007

9  HW9 
 Complete correction: correctionHW9 Fr. 04/27/2007

http://www.math.sunysb.edu/html/index.shtml


MAT 311 05/09/2007

Correction of Final Exam

Name:

Student I.D:

Problem 1. (30 points)

1. How many solutions (x, y)∈Z×Z does have the equation: 4x2 + 3y2 =1 ?

2. How many solutions (x, y)∈Z×Z does have the equation: 2x2− 3y2 =1 ?

3. How many solutions (x, y, z)∈Z3 does have the equation: x2 + y2 = 4z +3 ?

Correction:

1. No solution: Because (x, y)� (0, 0) implies 4x2 + 3y2 > 3 > 1.

2. No solution: in Z/3Z, the only possible values for 2x2 are 0, 2 so 2x2 − 3y2 which is con-
gruent to 2x2

modulo 3 cannot be congruent to 1.

3. No solution: by working modulo 4, one realizes that the only possible values for x2 + y2

modulo 4 are 0,1,2, and not 3.

Problem 2. (35 points) An elliptic curve with no integer points
In this problem we want to show that the curve E: y2 = x3 + 7 has no points (x, y) with coor-

dinates in Z2.

1. Suppose that (x, y) is a solution in integers. Show that x must be odd.

2. Show that y2 +1 = (x +2).(x2− 2x +4).

3. Show that x2− 2x + 4 must be congruent to 3 modulo 4.Explain why x2− 2x + 4 must be
divisible by some prime q satisfying q≡ 3 (mod 4).

4. Reduce the original equation modulo q and deduce from it that (− 1) must have a square
root in Z/qZ. Show that this is impossible, thus proving that the equation has no solu-
tions in integers.

Correction:

1. If x is even then y2 would be of the form 8k + 7, but by writing them down, one sees that
squares of integers can only be congruent to 0,1,4 modulo 8.Thus x is odd.

2. Just expand the product.

3. We proved that x is odd = 2k + 1, thus x2 − 2x + 4 = (2k + 1)(2k − 1) + 4 ≡ 4k2 + 3 must

be congruent to 3 mod 4. Now the prime numbers dividing x2 − 2x + 4 cannot be all of
type 4k + 1(because the product of their powers would be of same type, which is not the
case).

4. Since q divides x2 − 2x + 4, it must divide y2 + 1, which means that y would be a square

root of − 1 mod q. Since (− 1)
q−1

2 =− 1, this is a contradiction.

1



Problem 3. (20 points) Let p be an odd prime such that p = 8n + 1 for some integer n.We
have seen in class that the non-zero elements of Z/pZ form a group for the multiplication law,
and that this group is cyclic of order p − 1 = 8n. We consider one generator, called r, of this
multiplicative group (Z/pZ−{0},× ).

Show that the solutions of the congruence x2≡ 2 (mod p) are given by

x≡± (r7n + rn)(mod p)

Correction:
Since Z/pZ is a field, there are at most 2 solutions for the polynomial equations, so if the

proposed numbers are solutions, they will constitute the complete set of solutions.
Let’s set x= (r7n + rn). Then x2 = (r7n + rn)2 = r14n + 2r8n + r2n = r6n + 2 + r2n = 2+ r2n(1 +

r4n), because r8n = 1. For the same reason, one must have r4n = − 1, which implies the conclu-
sion.

Problem 4. (45 points)
Let p be an odd prime. We want to show the following: p ≡ 1, 3(mod 8) if and only if p can

be written as p = x2 + 2y2 for some choice of integers x and y. For the rest of the problem, you
can use (without proving it) the following result coming from quadratic reciprocity:
if p≡ 1, 3(mod 8) then there exists an integer r such that r2≡− 2 modulo p.

1. Show that if p = x2 + 2y2 for some integers x and y, then p is not congruent to 5, nor 7
modulo 8. (Hint: what are the possible values modulo 8 taken by squares of integers?)
Conclude that necessarily p must be congruent to 1 or 3 in this case.

2. Show the following lemma (independent of the rest of the problem):

Lemma. If x ∈R, n ∈ N, then there exists a fraction
a

b
in lowest terms such that

0 <b 6 n and
∣

∣

∣

∣

x− a

b

∣

∣

∣

∣

6
1

b(n + 1)
.

(Hint: approximation by continued fractions...)

3. Apply the lemma to x =
− r

p
(where r is a square root of ( − 2) in Z/pZ), and n =

⌊

p
√ ⌋

(this means the integer part of p
√

). Letting c = r.b + p.a, show the following:

a) c2 + 2b2≡ 0 modulo p.

b) 0 <c2 +2b2 < 3p.

c) Both cases c2 +2b2 = 2.p and c2 + 2b2 = p give a solution to the initial problem.

4. Conclude.

Correction:

1. Squares of integers modulo 8 can only take the values 0,1,4, therefore 2y2 can only take
the values 0,2 modulo 8, and the sum x2 + 2y2 can only take the values 0,1,2,3,4,6, but
not 5,7. Thus the odd prime p must be congruent to 1 or 3 modulo 8.

2. From the theory of continued fractions, we know the existence of approximations
∣

∣

∣

∣

x− pi

qi

∣

∣

∣

∣

6
1

qi.qi+1
,

2



where the qi form an unbounded increasing sequence of integers.Thus for any integer
n + 1, there exists an integer i such that qi < n + 1 6 qi+1, and this implies the result
because 1/qi+1 6 1/(n +1) and at the same time 0 < qi 6 n.

3.

a) First one has c2≡ r2.b2≡− 2b2 mod p, hence the result.

b) Now one has
∣

∣

∣

a.p + b.r

p.b

∣

∣

∣
=

∣

∣

∣

− r

p
− a

b

∣

∣

∣
6

1

b(n +1)
, so c2 6

p2

(n +1)2
< p.

Moreover one has b 6 n 6 p
√

, so 2b2 6 2p. Putting everything together, one
gets the desired inequality.

c) The quantity c2 + 2b2 must be a multiple of p, strictly between 0 and 3p, so it can
be p or 2p. If it is p then we are done.

Suppose it is now equal to 2p, then this would imply that c2 is even, so c itself
would be even equal to 2d, but then our equation would become 4d2 + 2b2 = 2.p
which implies 2d2 + b2 = p, a solution to our problem.

4. If p is congruent to 1 or 3 modulo 8, then we can find a solution in integers to the equa-
tion p = x2 +2y2, and these two conditions are equivalent.

Problem 5. (40 points)

1. Show that the ring of Gaussian integers Z[i] is isomorphic to Z[X ]/I, where I is the ideal
generated by X2 + 1.

2. Find an explicit isomorphism between Z[X ]/(X − 3) and Z.

3. Is the ring Z[X ]/(3X − 1) isomorphic to Z?

4. Show that if ε ∈ Z[i] has an inverse in Z[i] (we call such an element a unit of Z[i]) then
necessarily ε5 = ε.(Hint: use the norm N(a + b.i) = a2 + b2 and its properties).

5. Show that Q[X ]/(X2 +X + 1) is a field and find the inverse of the element

X +2 (mod X2 + X + 1).

Correction:

1. Consider the ring morphism
ϕ: Z[X] � Z[i]

P (X) 	 P (i)

This is clearly surjective (a + b.i can be obtained as ϕ(a + b.X)). The kernel contains

(X2 + 1). Moreover, if one writes the euclidean division of P (X) by X2 + 1, one obtains a
remainder of degree 1, a + b.X , which is zero if and only if a + b.i = ϕ(P (X)) is zero, so
the kernel is the ideal (X2 + 1).One concludes with the isomorphism theorem.

2. Just consider
ϕ: Z[X ] � Z

P (X) 	 P (3)

This is surjective of kernel (X − 3), hence the result.

3. Let’s consider X̄ (or if you prefer X mod (3X − 1)) in Z[X]/(3X − 1). It’s an element
that has the property that 3.X̄ = 1, so 3 is invertible in that ring.Now in Z, we know that
3 is not invertible, therefore the two rings cannot be isomorphic.

4. Invertible elements in Z[i] are the elements with norm=1. It’s easy to check that only the
4th roots of unity are invertible, and they satisfy the required equation.

5. The polynomial is irreducible (roots are j , j2), so we get a field. Now (X + 2)(X − 1)≡−
3 so the inverse of X + 2 is (− 1/3)(X − 1).

3



Problem 6. (30 points)

1. Find the solutions (x, y)∈Z2 to the equation 7x− 12y = 4.

2. Find the continued fraction expansion of
41

15
.

Correction:

1. You’ll find x = 4+ 12k, y = 2+ 7k, where k is an arbitrary integer.

2. You get 41/15= [2; 1, 2, 1, 3]

4
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Problem 1. The curve
y2 = x3 + 8

contains the point (1,−3) and (−7/4, 13/8). The line through these two points intersects
the curve in exactly one other point. Find it and explain why its coordinates are rational
numbers.

Answer. The equation of the line joigning the 2 points is given by : y+3
x−1 = 13/8+3

−7/4−1 =
− 37

22 , so it is y = −37
22 x− 25

22 . Plug this into the equation of the curve:

x3 + 8 = (−37
22

x− 25
22

)2.

This is a cubic equation x3 + ax2 + bx + c. Since we know already three roots, we
know that there is a third one. Moreover, the sum of the three roots must be (−a) =
(37/22)2 = 1369/484.Because of this property we know that the third root α must
be a rational number (it’s a sum of rational numbers). Thus 1 + (−7/4) + α =
1369/484.So α = 1732/484. Plug this into the equation of the line to find the y coor-
dinate.

Problem 2. Solve x39 ≡ 3 (mod 13) .

Answer. By Fermat’s theorem, you know that x12 ≡ 1 modulo 13.Therefore x39 ≡
x36.x3 ≡ x3, and we are reduced to the resolution of x3 ≡ 3 modulo 13. You can do it
by hand and realize that there is no solution.

Problem 3. Find all integers n such that φ(n) = n/6.(Remember that φ(n) is the number
of integers k such that 1 ≤ k ≤ n and GCD(k, n) = 1).

Answer. Use the formula we had: φ(n) = n.(1 − 1/p1) . . . (1 − 1/pk), where the
pi are the prime factors appearing in the decomposition of n. Thus we must have
1/6 = (1− 1/p1) . . . (1− 1/pk). Because of the denominator 6, both prime factors 2,3
must appear. But then (1− 1/2).(1− 1/3) = 1/2.And among all the other possible
factors (1− 1/pi), none of them can produce a denominator multiple of 3, therefore
the equation has no solution.

Problem 4. Let d1, . . . , dr be the numbers dividing n, including 1 and n. The tth power
sigma function σt(n) is equal to the sum of the tth powers of the divisors of n,

σt(n) = dt
1 + . . . + dt

r.

For example, σ2(10) = 12 + 22 + 52 + 102 = 130.

1. Compute the values of σ3(10), σ0(18).

2. Show that if GCD(m, n) = 1, then σt(mn) = σt(m)σt(n).



Math 311 Correction of the Practice Final

Answer. 1. σ3(10) = 13 + 23 + 53 + 103 = 1134, σ0(18) = 1 + 1 + 1 + 1 + 1 + 1 = 6.

2. GCD(m, n) = 1, then σt(mn) = σt(m)σt(n).

When m, n are coprime, we proved in the first midterm that there is a bijection
between the set of divisors of mn and the set of ordered pairs (d, d′), where d
is a divisor of m, and d′ is a divisor of n (the correspondance being given by
(d, d′) 7→ d.d′). Now if we expand the product σt(m)σt(n), we get a sum over
all the ordered pairs (d, d′) (d divisor of m, d’ divisor of n), of the tth power of
(d.d′). By the remark above, we then get the sum of the tth powers of all the
divisors of mn, and this is σt(mn).

Problem 5. Suppose that a has a square root in Z/pZ, for p prime, and suppose further that
p ≡ 5 (mod 8) .

Show that one of the values x = ap+3/8 or x = (2a).(4a)(p−5)/8 is a solution to the
congruence x2 ≡ a (mod p) .

Answer. We know that a has a square root, therefore necessarily one has a(p−1)/2 = 1.
Observe that p = 8k + 5 implies p− 1 is a multiple of 4. Now there are two cases:

1. First case: a
p−1

4 = +1, but then, by multiplying by a both sides one gets: a
p+3

4 =
+a. But since p + 3 is a multiple of 8, one can consider x = a

p+3
8 and this will be

a square root of a.

2. Second case: a
p−1

4 = −1.But then a.x2 = ((2a).(4a)(p−5)/8)2 = a2.4(p−1)/4.a(p−1)/4 =
a2.(−1).(2(p−1)/2). In the proof of the quadratic reciprocity, we proved that
when p ≡ 5 (mod 8) we have 2(p−1)/2 = −1, therefore we have a.x2 = a2, and
then x is a square root of a.

Problem 6. 1. If N is not a perfect square, find a specific value for K so that the inequality
K/b2 < |a/b−√N| holds for every rational number a/b. The value of K will depend
on N but not on a or b.)

2. Use the above result to find all rational numbers a/b satisfying |a/b−√7| ≤ 1/b3.

Answer. Consider the quadratic polynomial f (X) = X2 − N. Then on the interval
[0, 2

√
N], one has | f ′(x)| = |2x| ≤ 4

√
N, so one gets 1

b2 < | f (a/b) − f (
√

N)| ≤
4
√

N.| a
b −

√
N|.Now if a/b is larger than 2

√
N, then | a

b −
√

N| ≥ √
N which is larger

than 1/(4
√

N.b2), so our lower bound works in every case.
Suppose now that you have, |a/b−√7| ≤ 1/b3, then you would deduce K/b2 ≤

1/b3, and therefore 1
4
√

7
< 1

b , so b < 4
√

7, and then b < 11, so b ≤ 10.Now we can try
by hand the possible fractions: we find that the only possible solutions are a/b = 3/1,
and a/b = 8/3.
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Problem 7. Let p be a prime number such that p ≡ 1 (mod 4) , and assume that u2 ≡
−1 (mod p) . Write u/p as a continued fraction [a0, a1, . . . an], and let i be the largest integer
such that qi ≤ √

p (remember that the qi are the denominators of the continued fractions
[a0, . . . , ai])

1. Show that |pi/qi − u/p| < 1/(qi
√

p) and hence that |pi p− uqi| < √
p.

2. Put x = qi, y = pi p − uqi. Show that 0 < x2 + y2 < 2p, and that x2 + y2 ≡
0 (mod p) .Deduce that x2 + y2 = p.

Answer. 1. First, we know from the theory of continued fractions that |pi/qi −
u/p| ≤ 1/(qiqi+1) but this implies the result, because necessarily one has qi+1 >√

p (by definition of qi).Multiply by the denominators to get the other identity.

2. One has 0 < x2 + y2 < q2
i + p ≤ 2p. Now x2 + y2 = q2

i + (pi p − uqi)2 ≡
q2

i (1 + u2) ≡ 0 (mod p) .And now the conclusion comes from the fact that p is
the only multiple of p strictly between 0 and p.

Problem 8. Prove that 11 + 2
√

6 is a prime in Q(
√

6).(We recall that a prime in a quadratic
number field Q(

√
m) is an element α that is divisible only by invertible elements, and by

elements that are products of α by some invertible element).

Answer. As seen before, we use the Norm map, where N(a + b
√

6) = a2 − 6b2.
The invertible elements in Q(

√
6) are the one with norm equal to ±1. Since N(11 +

2
√

6) = 121− 6.4 = 97 is prime, so is 11 + 2
√

6 (otherwise one could write 11 + 2
√

6
as a product (a + b

√
6).(c + d

√
6) with norms different from ±1).
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Problem 1. The curve
y2 = x3 + 8

contains the point (1,−3) and (−7/4, 13/8). The line through these two points intersects
the curve in exactly one other point. Find it and explain why its coordinates are rational
numbers.

Problem 2. Solve x39 ≡ 3 (mod 13) .

Problem 3. Find all integers n such that φ(n) = n/6.(Remember that φ(n) is the number
of integers k such that 1 ≤ k ≤ n and GCD(k, n) = 1).

Problem 4. Let d1, . . . , dr be the numbers dividing n, including 1 and n. The tth power
sigma function σt(n) is equal to the sum of the tth powers of the divisors of n,

σt(n) = dt
1 + . . . + dt

r.

For example, σ2(10) = 12 + 22 + 52 + 102 = 130.

1. Compute the values of σ3(10), σ0(18).

2. Show that if GCD(m, n) = 1, then σt(mn) = σt(m)σt(n).

Problem 5. Suppose that a has a square root in Z/pZ, for p prime, and suppose further that
p ≡ 5 (mod 8) .

Show that one of the values x = ap+3/8 or x = (2a).(4a)(p−5)/8 is a solution to the
congruence x2 ≡ a (mod p) .

Problem 6. 1. If N is not a perfect square, find a specific value for K so that the inequality
K/b2 < |a/b−√N| holds for every rational number a/b. The value of K will depend
on N but not on a or b.)

2. Use the above result to find all rational numbers a/b satisfying |a/b−√7| ≤ 1/b3.

Problem 7. Let p be a prime number such that p ≡ 1 (mod 4) , and assume that u2 ≡
−1 (mod p) . Write u/p as a continued fraction [a0, a1, . . . an], and let i be the largest integer
such that qi ≤ √

p (remember that the qi are the denominators of the continued fractions
[a0, . . . , ai])

1. Show that |pi/qi − u/p| < 1/(qi
√

p) and hence that |pi p− uqi| < √
p.

2. Put x = qi, y = pi p − uqi. Show that 0 < x2 + y2 < 2p, and that x2 + y2 ≡
0 (mod p) .Deduce that x2 + y2 = p.

Problem 8. Prove that 11 + 2
√

6 is a prime in Q(
√

6).(We recall that a prime in a quadratic
number field Q(

√
m) is an element α that is divisible only by invertible elements, and by

elements that are products of α by some invertible element).



Math 311 Some practice problems

I suggest that for monday you finish the HW, and that you try these 3 questions.
On monday, you will have online a full practice final... Read the corrections of the
midterms, HWs and make sure to prepare questions for me during the week!

Problem 1. Solve the congruence x2 + x + 7 ≡ 0 (mod 27) .

Problem 2. If p is an odd prime, how many solutions are there to xp−1 ≡ 2 (mod p) ?

Problem 3. Prove that if a3 ≡ 1 modulo a prime p, then 1 + a + a2 ≡ 0 modulo p, and
(1 + a)6 ≡ 1 modulo p.

More problems are on the way...



Math 311 Notes on continued fractions

I would like to finish the proof of the following (we already proved the ”if” state-
ment):

Theorem. A number α ∈ R−Q is quadratic irrational if and only if its continued fraction
expansion is eventually periodic.

Proof of the theorem, taken from Hardy-Wright.

Lemma. If α = a0 + 1
a1+ 1

...+ 1
an−1+αn

, then one has α = αn pn−1+pn−2
αnqn−1+qn−2

.

This is not too difficult to prove (a proof by induction works: see the book if you
need help).

Assume now that α is a root of an irreducible polynomial P(X) = aX2 + bX + c
with integer coefficients. After substituting the value for α, one gets that

Anα2
n + Bnαn + Cn = 0

with explicit formulas An = ap2
n−1 + bpn−1qn−1 + cq2

n−1, Bn = 2apn−1 pn−2 + b(pn−1qn−2 +
pn−2qn−1) + 2cqn−1qn−2, and also Cn = ap2

n−2 + bpn−2qn−2 + cq2
n−2.

Notice that An 6= 0 (otherwise pn−2/qn−2 would be a root of P(X)). Also notice
the following:

B2
n − 4AnCn = (b2 − 4ac).(pn−1qn−2 − pn−2qn−1) = ±(b2 − 4ac).

Now you need to remember that we had proven in class that α = pn−1
qn−1

+ xn−1
qn−1

, with
|xn−1| < 1/qn−1 and thus pn−1 = qn−1α + xn−1.

Therefore,

An = a(qn−1α + xn−1)2 + bqn−1(qn−1α + xn−1) + cq2
n−1,

but this is also

An = (aα2 + bα + c)q2
n−1 + 2aαxn−1.qn−1 + ax2

n−1 + bxn−1.qn−1

, and since α is a root of P(X), one gets

An = 2aαxn−1.qn−1 + ax2
n−1 + bxn−1.qn−1,

which implies |An| < 2|aα|+ |a|+ |b|. Now Cn = An−1, so the same estimate holds.
Using the relation on the discriminant, one gets also B2

n ≤ 4|AnCn| + |b2 − 4ac| ≤
4(2|aα|+ |a|+ |b|)2 + |b2 − 4ac|.

All these upper bounds do not depend on n, therefore there is only a finite possible
number of values for An, Bn, Cn.Thus one can find a triple (A, B, C) of values that is
taken three times, for αn1 , αn2 , αn3 . Thus one has three roots of the same quadratic
polynomial AX2 + BX + C, therefore two of them must be equal, say αn1 = αn2 . Thus
the integers in the expansion must satisfy an1 = an2 , an1+1 = an2+1, . . .
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Math 311 Correction of Practice Midterm II

Problem 1. Let ε = 1 +
√

2. Write εn = un + vn
√

2. Show that u2
n − 2v2

n = ±1.

Answer. As in the first midterm, by hand,you can prove that N(a + b
√

2) = a2 − 2b2

is a multiplicative function. Therefore N(εn) = (N(ε))n = (1− 2)n = ±1.

Problem 2. Structure of the invertible elements in Z[
√

2].

1. Show that there is no invertible element α ∈ Z[
√

2] such that 1 < α < 1 +
√

2.

2. Deduce that any invertible element (greater than 0) of Z[
√

2] is a power of 1 +
√

2.

Answer. 1. If there is such an α = a + b
√

2 then a− b
√

2 = ±α−1 (because (a +
b
√

2).(a− b
√

2) = ±1) and therefore −1 < a− b
√

2 < 1. If you add the two
inequalities together, you find 0 < 2a < 2 +

√
2 < 3.5, and thus one must have

a = 1. But now there doesn’t exist any integer b such that 1 < 1 + b
√

2 <

1 +
√

2.

2. It is enough to prove the result for invertible elements larger than 1. Such an
invertible element β will land between two consecutive powers (! +

√
2)n ≤

β < (1 +
√

2)n+1 and therefore 1 ≤ β

(1+
√

2)n < 1 +
√

2. Since the strict inequality

is impossible, one must have β = (1 +
√

2)n.

Problem 3. Let R be the ring Q[α] (meaning all the P(α), where P is a polynomial with
coefficients in Q), where α is a number satisfying α3 − α2 + α + 2 = 0.

1. express (α2 + α + 1).(α2 − α) in the form aα2 + bα + c, where a, b, c are in Q.

2. express (α− 1)−1 in the form aα2 + bα + c, where a, b, c are in Q.

Answer. 1. expand the polynomial. Whenever you see a high power of α, replace
it with a smaller one using the identity α3 = α2 − α− 2.

2. The equality α3 − α2 + α + 2 = 0 can be rewritten as α2.(α− 1) + α− 1 + 3 = 0
which gives (α− 1)(α2 + 1) = −3, so the inverse will be −1

3 α2 − 1
3 .

Problem 4. Let f : A → B be a ring morphism. Show that for any prime ideal P in B, then
f−1(P) is a prime ideal of A.

Answer. Showing that f−1(P) is an ideal has been done in class. Let’s prove it is a
prime ideal: if x.y ∈ f−1(P) then f (x). f (y) ∈ P . Since P is prime then necessarily
f (x) ∈ P or f (y) ∈ P , implying that x or y is in f−1(P).



Math 311 Practice Midterm II

The actual midterm II will be shorter than the first one (it doesn’t mean easier...)!
There might be 3 problems.

Problem 1. Let ε = 1 +
√

2. Write εn = un + vn
√

2. Show that u2
n − 2v2

n = ±1.

Problem 2. Structure of the invertible elements in Z[
√

2].

1. Show that there is no invertible element α ∈ Z[
√

2] such that 1 < α < 1 +
√

2.

2. Deduce that any invertible element (greater than 0) of Z[
√

2] is a power of 1 +
√

2.

Problem 3. Let R be the ring Q[α] (meaning all the P(α), where P is a polynomial with
coefficients in Q), where α is a number satisfying α3 − α2 + α + 2 = 0.

1. express (α2 + α + 1).(α2 − α) in the form aα2 + bα + c, where a, b, c are in Q.

2. express (α− 1)−1 in the form aα2 + bα + c, where a, b, c are in Q.

Problem 4. Let f : A → B be a ring morphism. Show that for any prime ideal P in B, then
f−1(P) is a prime ideal of A.



MAT 311 03/06/2007

Correction of Midterm i

Problem 1. (20 points) Assume that a, m are two integers such that G.C.D(a, m)= 1.

1. Why does there exist an integer x1 such that a.x≡ 1(modm)?

2. For s = 1, 2, � let xs =
1

a
− 1

a
(1 − a.x1)

s. Prove that xs is an integer and that it is a solu-

tion of a.x≡ 1(modms).

Proof.

1. Since G.C.D.(a, m)= 1 there exist integers x, y such that a.x + m.y =1, therefore a.x≡ 1.

2. Expand (1 − a.x1)
s = 1 +

∑

k=1
s

(

s
k

)

.( − a.x1)
k, but all the (a.x1)

k, k > 1 are multiples of

a, therefore
1

a
.
∑

k=1
s

(

s
k

)

.(− a.x1)
k is an integer xs.

Problem 2. (30 points) Let R be the ring
{

a + b 3
√ /

a, b∈Z
}

. We define a function N by:

N : R � Z

a + b 3
√ 	 a2− 3b2

(Notice that N is not the square of the distance from 0 to α).

1. Show that N(α.β)= N(α).N(β) for every α, β in R.

2. If α has an inverse in R for the multiplication, show that N(α) = 1.(Hint: first show that
N(α) must be ± 1, and then show that it can’t be − 1).

3. Conversely, show that if N(α) =1 then α has an inverse in R.

4. Find 4 distinct examples of invertible elements in R.

Proof.

1. If α = a + b 3
√

, β = c + d 3
√

then α.β = (ac + 3bd) + (ad + bc) 3
√

, so

N(α.β)= (ac+ 3bd)2− 3(ad+ bc)2 = a2c2 + 6abcd+ 9b2d2− 3a2d2− 6abcd− 3b2c2,

whereas N(α).N(β)= (a2− 3b2).(c2− 3d2)= a2c2− 3a2d2 +9b2d2− 3b2c2, the same.

2. (α.β =1)⇒N(α).N(β) =1, where N(α), N(β)∈Z, so necessarily N(α) =± 1.

Now a2− 3b2 =− 1 is impossible because a2 +1 (mod 3) takes only the values 1 or 2.

3. N(α)= 1⇒ a− 3
√

b∈R is the inverse of α, because (a + b 3
√

).(a− b 3
√

)= a2− 3b2 = 1

4. 1,-1,2+ 3
√

,2− 3
√

are examples, but then are lots of other examples.

Problem 3. (20 points) You probably remember that in class we proved that the (multiplica-
tive) group of invertible elements of Z/pZ is cyclic (for p prime).

1. Show that (Z/8Z)× (this means the multiplicative group of invertible elements in Z/8Z)
is not cyclic. (Hint: what are the orders of the elements of (Z/8Z)×?)

2. (Extra credit: 15 points) Can you deduce from above that the same result is true for
higher powers (I mean in Z/2nZ, for n > 3)? (try 24 or 25, because a general proof is
harder to obtain).

Proof.
Just realize that (Z/8Z)× = {1, 3, 5, 7} and that all these elements are of order 2 (their

squares are ≡ 1(mod 8)).
You can do the same for Z/16Z. In class I might indicate a general proof.

1



Problem 4. (30 points) We call σ(n) the sum of all the divisors of the integer n. For example
σ(6)= 1+ 2 +3 + 6= 12, and σ(5)= 1+ 5= 6.

1. For any prime p, any integer k > 1, show that σ(pk) =
pk+1

− 1

p − 1
.

2. If G.C.D(m, n) =1 prove that σ(m.n)= σ(m).σ(n). If you can’t prove this then prove the
simpler case σ(p.q)= σ(p).σ(q), when p, q are two distinct primes.

3. Give a general formula for σ(n) in terms of its decomposition in prime factors

n = p1
k1� pn

kn

Proof.

1. The only divisors of pk are 1, p, p2,� , pk. Their sum is
∑

i=1
k

pi =
pk+1

− 1

p − 1
.

2. Let’s write m = p1
r1� pk

rk, and n = q1
s1� ql

sl where the pi and the qj are distinct. Then each

divisor of m.n can be written in a unique way as
(

∏

pi
ti

)

.
(

∏

qj
tj

)

, therefore these divi-

sors of m.n are in bijection with the ordered pairs (a, b) where a is a divisor of m, and b

a divisor of n.Since σ(m).σ(n) is the sum of all products (divisor of m).(divisor of n), we
get the result.

3. From above, one derives σ(n) =
∏

i=1
n p

i

ki+1
− 1

pi − 1
.

Remark.
One could solve the whole problem in one step, by expanding the product

S = (1 + p1 +� + pk)� (1 + pn +� + pn
kn)

and noticing that one gets exactly the sum of all divisors of n

2



Math 311 Practice Midterm I

Since you will have only one hour for the exam, the actual exam should be shorter
than that...I include more problems so that you can practice!

Problem 1. Solve the congruence x3 + 4x + 8 ≡ 0 (mod 15) .

Answer. Using the Chinese remainder theorem, we see that this congruence has a
solution if and only if it has one solution modulo 3 and one solution modulo 5. Now
by hand one can realize that the congruence modulo 5 has no solution, so the problem
has no solution.

Problem 2. Show that φ(nm) = nφ(m) if every prime that divides n also divides m.

Answer. Just write n = pr1
1 . . . . prk

k and m = ps1
1 . . . . psk

k .m′ where m′ is coprime with n.
Now one has

φ(n.m) = φ(pr1+s1
1 . . . . prk+sk

k .m′) = (pr1+s1
1 − pr1+s1−1

1 ) . . . (prk+sk
k − prk+sk−1

k ).φ(m′),

but this is also (pr1
1 . . . . prk

k ).(ps1
1 − ps1−1

1 ) . . . (psk
k − psk−1

k ).φ(m′) = n.φ(m).

Problem 3. How many square roots of 1 are there in Z/3Z? in Z/5Z? in Z/15Z? in
Z/p.qZ (where p,q are two distinct primes)?

Answer. Since Z/3Z, Z/5Z are fields, the equation X2− 1 = 0 has exactly two roots
±1. Now because of the chinese remainder theorem, we know the existence of the
isomorphism

Z/15Z −→ Z/3Z×Z/5Z.

Since this map is a ring morphism there is a bijection between the roots of X2 −
1 mod 15 and the ordered pairs (a, b) ∈ Z/3Z×Z/5Z, where a2 − 1 ≡ 0 mod 3,
and b2 − 1 ≡ 0 mod 5. So we get 4 such roots. The same thing is true for Z/p.qZ

Problem 4. Let p be an odd prime.Assume that x ∈ Z/pZ is a generator of the (cyclic)
multiplicative group of (Z/pZ). Does x have a square root in Z/pZ?

Answer. If there is such a square root y of x, then one could write it as y = xk for
some 1 ≤ k ≤ p − 1 because x is a generator. But then one has x = y2 = x2k,
so x2k−1 − 1 ≡ 0. Since the order of x is p − 1 this implies p − 1|2k − 1, but since
2k− 1 < 2p− 1 < 2(p− 1), the only possibility is 2k− 1 = p− 1 (absurd: p must be
odd).

Problem 5. Show that if p is an odd prime and G.C.D.(a, p) = 1 then x2 ≡ a( mod pα)
(where α is an integer ≥ 1) has exactly 1 + ( a

p ) solutions, where ( a
p ) is equal to +1 if the

integer a has a square root modulo p, and is equal to −1 otherwise.

Answer. • If ( a
p ) = −1, then clearly x2 = a mod pα has no root (otherwise it

would have a root modulo p);



Math 311 Practice Midterm I

• now assume ( a
p ) = +1: if the equation x2 = a mod pα has one solution b, then

automatically it has also the solution −b (just because (−1)2 = 1 !). Let’s show
that it can’t have a third root c with c 6= b and c 6= −b. Indeed one would have
b2 = a = c2, and therefore pα|(b− c).(b + c). But since modulo pα one has c 6= b
and c 6= −b, this would imply that p divides both b − c, b + c and therefore
p would divide b and also a (impossible because a and p are coprime). At this
point we have proved that if there is one solution, then there are actually exactly
two solutions. So it remains to prove the existence of one solution modulo pα,
knowing that there is a solution modulo p. Here the integer a is fixed, and we
can assume that it is less than pα. By successive euclidian divisions by the power
of p, one can write it as a = a0 + pa1 + . . . + pα−1.aα−1. (Replace p by 10 and this
is just the usual form of an integer in base 10...).There is a solution modulo p, so
there is an x, x ≤ p such that x2 ≡ a mod p. As an integer one has x2 = c + p.d.
Necessarily c = a0. Now replace x by x + b.p, where b < p: then (x + p.b)2 =
x2 + 2b.x.p + b2.p2. Since 2.b.x can take all the possible values modulo p, one
can find a b such that x2 ≡ a modulo p2. Let’s prove by induction that one can
find a solution modulo pα: Assume one has a solution x modulo pk, with x < pk.
Then x2 = a0 + . . . + ak−1 pk−1 + C.pk, where C can be expanded in powers of p
as a finite sum C0 + pC1 + . . .. The only thing we have to do is to replace x by
x′ = x + t.pα, so that now x′2 = a0 + . . . + ak−1pk−1 + ak.pk + C′.pk+1. But again,
just write x′ = x + t.pk, notice that since 2x is prime with p, the multiples 2t.x
can take any value modulo p, and therefore x2 + 2t.x.pk + t2.p2k can be made
congruent to a modulo pk+1. Thus we proved that if there is one square root
modulo p then there are exactly two (2 = 1 + ( a

p )) square roots modulo pα.

Problem 6. We write j = e
2iπ

3 and consider the set R = {a + bj|a, b ∈ Z}.

• Show that R is a subring of C;

• What are the invertible elements of R? (Hint: show that the square of the modulus of
such an element z, which is |z|2 = z.z̄, must be 1).

Answer. The only thing to realize is that the product j.j = j2 = −1− j is in the ring.
Now the square of the modulus of a + b.j is a2 + b2 − ab and it must be a positive
invertible integer, so it must be 1. Now a ≥ 2, b ≥ 2 are impossible, so a, b must be in
{−1, 0− 1}. This leaves only six possibilities : {1,−1, j, j2, 1 + j,−1− j}.

Problem 7. bonus problem Can you prove that R in the previous problem is a ”principal
ideal domain” (meaning that any ideal I can be written as the set of all multiples of one single
element)? You can use results of the HWs...

Answer. You just need to prove that around the origin there is a disk containing only
the origin as a point of R, and that there exists for any complex number z in the plane
an element λ of R such that |z− λ| < 1.



1 ReviewMidterm1Here are some informations about what you should know for the test...Feel free to ask meany questions about that during the week (even outside the regular office hours)!1 Basicarithmetic
• Notion of divisibility, prime numbers, G.C.D.
• Euclidian division in Z, the Euclidian algorithm (for the determination of a G.C.D.)
• Proof of: ``The additive subgroups of Z are the nZ''
• Definition of G.C.D(m,n) as the positive integer d such that dZ= mZ+ nZ.
• Proof of : `` 2

√ � Q.
• Definition of φ(n), φ(m.n)= φ(m).φ(n) if G.C.D.(m, n)= 1.2 Congruences
• The ideals of the ring Z are the nZ

• definition of the ring (Z/nZ, + ,× ) and how to compute with congruences.
• (Z/nZ, + ) is an additive cyclic group.
• (Z/pZ, , + ,× ) is a field if and only if p is prime (you need to know how to prove this).
• The multiplicative group (Z/pZ×,× ) is cyclic of order p− 1, when p is prime.
• Little Fermat's theorem.3 Ringsandideals
• Definition of a ring, of a ring morphism, kernel and image of a ring morphism
• Definitions: of an ideal, sum of two ideals (I + J), intersection, product of two ideals
• Quotient of a ring by an idealTheorem 1. (Chinese Remainder Theorem) Let I , J be two ideals of the ring R, such that I + J = R,then there is an isomorphism

R/(I.J)≃R/I ×R/Jgiven by
rmod I.J	 (rmod I , rmod J)

• Definition of the characteristic of a field
• In a field of characteristic p, one has (x+ y)p = xp + yp.

Rings and ideals 1



• If f : R → S is a ring morphism, then f : R → im f is surjective, and f̄ : R/ker f → im fdefined by rmodker f	 f(r) is well defined and is an isomorphism.
• R[X ]/(X2 +1)≃C as an example of the theorem just above.4 QuadraticreciprocityDefinition 2. The Legendre symbol ( a

p

), where p is an odd prime, and a is any integer is equal to + 1if a has a square root in Z/pZ, and − 1 otherwise.I would like you to know the following result and to have a vague idea of the proofTheorem 3. (Legendre, Gauss) If p and q are two odd primes, then
(

p

q

).( q

p

)

=(− 1)
p−1

2
.
q−1

2 .
•

(

a

p

)

= a
p−1

2 mod p and how to prove it.5 Basiccryptography
• just know the R.S.A system (as it is explained at the beginning of the HW5).
• understand why there are 4 square roots of 1 in Z/p.qZ, when p, q are two distinctprimes (answer: chinese remainder theorem).

2 Section 5



Math 311 Practice Midterm I

Since you will have only one hour for the exam, the actual exam should be shorter
than that...I include more problems so that you can practice!

Problem 1. Solve the congruence x3 + 4x + 8 ≡ 0 (mod 15) .

Problem 2. Show that φ(nm) = nφ(m) if every prime that divides n also divides m.

Problem 3. How many square roots of 1 are there in Z/3Z? in Z/5Z? in Z/15Z? in
Z/p.qZ (where p,q are two distinct primes)?

Problem 4. Let p be an odd prime.Assume that x ∈ Z/pZ is a generator of the (cyclic)
multiplicative group of (Z/pZ). Does x have a square root in Z/pZ?

Problem 5. Show that if p is an odd prime and G.C.D.(a, p) = 1 then x2 ≡ a( mod pα)
(where α is an integer ≥ 1) has exactly 1 + ( a

p) solutions, where the symbol ( a
p ) is equal to

+1 if a has a square root modulo p, and −1 otherwise.

Problem 6. We write j = e
2iπ

3 and consider the set R = {a + bj|a, b ∈ Z}.

• Show that R is a subring of C;

• What are the invertible elements of R? (Hint: show that the square of the modulus of
such an element z, which is |z|2 = z.z̄, must be 1).

Problem 7. bonus problem Can you prove that R in the previous problem is a ”principal
ideal domain” (meaning that any ideal I can be written as the set of all multiples of one single
element)? You can use results of the HWs...



1 Quadraticreciprocity1 Proof(inspiredbySerre)Definition 1. The Legendre symbol ( a

p

), where p is an odd prime, and a is any integer is equal to + 1if a has a square root in Z/pZ, and − 1 otherwise.Our goal isTheorem 2. (Legendre, Gauss) If p and q are two odd primes, then
(

p

q

).( q

p

)

=(− 1)
p−1

2
.
q−1

2 .Proof. Write ζ = e
2πi

p ∈C. We will work in the subring Z[ζ]⊆C. This is just the ring made of allpolynomials in ζ.Let's consider the so-called ``Gauss sum''
τ =

∑

a∈(Z/pZ)×

(

a

p

)

ζaIt has many nice properties:
• First property: ( − 1

p

)

.τ2 = pIndeed, one has ( − 1

p

)

.τ2 =
(

− 1

p

)

.
∑

a,b

(

a.b

p

)

ζa+b =
∑

a,b

(

a.(− b)

p

)

ζa+b,because ( c

p

)

.
(

d

p

)

=
(

c.d

p

). One also has that ( c

p

)

=
(

c−1

p

) (because c has a square rootif and only if its inverse has one.Thus ∑
a,b

(

a.(− b)

p

)

ζa+b =
∑

a,b

(

a.b

p

)

ζa−b =
∑

a,b

(

a.b−1

p

)

ζa−b =
∑

c,b

(

c

p

)

ζb.c−b,just thanks to the change of variables c = a.b−1.At this point, one can break the last sum in two groups (c= 1) and (c� 1) and get
(

− 1

p

)

.τ2 =

(

1

p

)

.
∑

b

1+





∑

c� 1

(

c

p

)



.
∑

b� 0

(ζc−1)b = (p− 1) + (− 1).(− 1)= p.Indeed: ( 1

p

)

= 1, always, and ∑
c

(

c

p

)

= 0, because there are as many elements that havea square root as elements that do not have a square root (multiply the first set by one ele-ment in the second set to get everybody in the second set!), and so 1 +
∑

c� 1

(

c

p

)

= 0.Now the last part is well-known to you: the sum of the n − th roots of unity is alwayszero.
• Second property: τ q = τ .(τ2)

p−1

2 = τ .(− 1)
p−1

2
.
q−1

2 .p
q−1

2 mod p.Just use the first property and remember that ( a

p

)

= (− 1)
p−1

2 (We saw that earlier).
• Third property: τ q =

(

q

p

)

.τ mod qIndeed if you remember that in Z/qZ one has (x+ y)q ≡xq + yq, then
τ q =

∑

a

(

a

p

)q

.ζa.q =
∑

a

(

a

p

)

.ζa.q =
∑

a

(

a.q2

p

)

.ζa.q =

(

q

p

)

.
∑

a

(

a.q

p

)

.ζa.q =

(

q

p

)

.τ

Proof (inspired by Serre) 1



Basically, ( q2

p

)

= 1, and since q is odd, ( a

p

)q

= ( ± 1)q = ± 1 which explains the lineabove.Now we are done! Just put together property 2 and 3 (and remember that p
q−1

2 =
(

p

q

)).
�

2 Section 1



Math 311 Homework 4 due on Fr. 02/23

Problem 1. Let R be a subring of the complex numbers C having the following two properties:

1. There is a disk D around the origin 0 ∈ C, such that D ∩ R = {0};

2. For any z ∈ C there exists an element λ ∈ R such that |z− λ| < 1.

Show that any ideal I of R is the set of the multiples of an element a ∈ R.

Hint: Show that, in any ideal I of R, there exists one element b ∈ I that is different
from 0, and that is at minimal distance from the origin. Show that the ideal I coincides
actually with the set of multiples of b (namely show that I = b.R).

Problem 2. Let p be an odd prime and let d = b2 − 4ac. Show that the congruence

ax2 + bx + c ≡ 0 (mod p)

is equivalent to the congruence y2 ≡ d (mod p) , where y = 2ax + b. Conclude that if
d ≡ 0 (mod p) , then there is exactly one solution modulo p; if d has a square root in Z/pZ,
then there are two (non congruent) solutions; and if d has no square root in Z/pZ, then there
are no solutions. What about the case p = 2 ?

Problem 3. Consider Z[X], the set of polynomials with coefficients in Z. Show that there
are ideals in Z[X] that cannot be written as the set of multiples of a single polynomial.

Hint: consider the ideal generated by 2 and X (meaning: the ideal made of all the possible
sums of one multiple of 2 and one multiple of X).

Problem 4. Go on the web and find a short description of the ”ElGamal cryptosystem”. Write
a short (< 10 lines) description of this algorithm used for encryption.

Problem 5. Let p be an odd prime. Assume that in Z/pZ there exists a nonzero element ζ
such that

• ζ has no square root in Z/pZ;

• the order of ζ in the multiplicative group of Z/pZ is exactly 4.

Show that 2 has no square root in Z/pZ.



Math 311 Correction Homework 2

Problem 1. Find all the solutions in integers of 71x− 50y = 1.

Answer. First we notice that 71 and 50 are coprime (indeed 71 is prime, and 50 is not
a multiple of it). Therefore we know that the problem has an infinity of solutions.
Let’s find one of it by Euclid’s algorithm:

71 = 1.50 + 21
50 = 2.21 + 8

21 = 2.8 + 5
8 = 1.5 + 3
5 = 1.3 + 2
3 = 1.2 + 1

And then we undo what we did:

1 = 3− 2 = 3− (5− 3)
= 2.3− 5
= 2.(8− 5)− 5
= 2.8− 3.5
= 2.8− 3.(21− 2.8)
= 8.8− 3.21
= 8.(50− 2.21)− 3.21
= 8.50− 19.21
= 8.50− 19.(71− 50)
= 27.50− 19.71

Therefore we know that the solutions are exactly of the form

{(x, y)/x = −19 + 50t, y = −27 + 71t, t ∈ Z}.

Problem 2. If a and b are any positive integers > 2, then prove that 2a + 1 is not divisible
by 2b − 1.

Answer. By Euclidian division, one can write a = b.s + r. So if we write m = 2b − 1,
one has

2a + 1 ≡ 2r.(2b)s + 1 ≡ 2r + 1(mod m)

Now notice that b > 2 implies that m > 3 therefore if r = 0, 1 then 0 ≤ 2r + 1 < m
and m does not divide 2r + 1. Thus we can assume r ≥ 2. Since we know r + 1 ≤ b
we deduce 2.2r ≤ 2b and so 2r + 1 ≤ 2b − 2r + 1 ≤ 2b − 2 because r ≤ 2 implies
1− 2r ≤ −2.

Problem 3. Show that if G.C.D(a, b) = 1 then G.C.D.(a + b, a2 − a.b + b2) = 1 or 3.
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Answer. Let’s call d the G.C.D.(a + b, a2− a.b + b2). Then d must also divide (a + b)2

and a2 − a.b + b2, so it must divide their difference 3ab. I claim that d and ab are
relatively prime: indeed if p was a prime factor common to ab and d, then p should
divide a or b, but also a + b, so it would divide both a and b (absurd). Therefore d
must divide 3, which means that d is ±1 or ±3.

Problem 4. Using congruences, show that 7 divides (32n+1 + 2n+2) for all n > 1.

Answer. It’s simply a matter of seeing that

(32n+1 + 2n+2) ≡ 3.2n + 4.2n ≡ 7.2n ≡ 0( mod 7)

because (32 ≡ 2).

Problem 5. Find all the solutions of the congruence x2 + 4x + 2 ≡ 0(mod7).

Answer. There are many different ways of solving this. One way is to compute the
values taken by the polynomial X2 + 4X + 2 at the points {0, . . . , 6}, and find out
when this is 0 mod 7. Or you can notice that x2 + 4x + 2 ≡ x2 − 3x + 2 ≡ (x− 1)(x−
2). But since Z/7Z is a field (x− 1)(x− 2) ≡ 0 is equivalent to x ≡ 1 or x ≡ 2, which
is the answer.

Problem 6. Consider a polygon centered on the origin and that is regular with m sides
(regular means that all the sides have same length). You can go in the counterclockwise
direction and number all the vertices from 1 to m. Consider now a counterclockwise rotation
(with center the origin) that brings the vertex 1 to the vertex 1 + k, where k and m are coprime.
Can you show that by iterating this same rotation you will visit all the vertices of the polygon?

Answer. By a rotation-dilation centered at the origin, one can bring the vertices of
our regular polygon to the m−th roots of the unity {1, ei 2π

m , . . . , ei 2π
m (m−1)}. Therefore

the rotation we consider corresponds to the multiplication by ei 2π
m (k). Now we have

seen that G.C.D(k, m) = 1 implies that there exists integers s, t such that 1 = s.k + t.m.
Therefore

ei 2π
m = (ei 2π

m (k))s.(ei 2π
m (m))t = (ei 2π

m (k))s

But we are done now because we know that by multiplying by 2π
m we can get all the

m−th roots of the unity.



Math 311 Homework 3 due on Fr. 02/16

Problem 1. Characterize the set of positive integers n such that φ(2n) > φ(n).

Problem 2. What are the last two digits, that is the tens and units digits of 21000, 31000?

Problem 3. Prove that for n ≥ 2 the sum of all the positive integers less than n and coprime
with n is n

2 .φ(n).

Problem 4. Find all the primes p such that p divides 2p + 1.

Problem 5. Show that x2 − 2y2 + 8z = 3 has no solutions (x, y, z) ∈ Z3. (Hint: reduce
modulo 8).

Problem 6. For any n show that φ(n) = n.(1− 1
p1

) . . . (1− 1
pk

) where the pi are the prime
factors present in the prime decomposition of n. (Hint:: compute first φ(ps), for any prime
p.)



HW 2

Due on Friday 02/09

Exercise 1. Find all the solutions in integers of 71x− 50y = 1.

Exercise 2. If a and b are any positive integers > 2, then prove that 2a + 1 is not divisible by 2b
− 1.

Exercise 3. Show that if G.C.D(a, b)= 1 then G.C.D.(a + b, a2
− a.b + b2)= 1 or 3.

Exercise 4. Using congruences, show that 7 divides (32n+1 + 2n+2) for all n> 1.

Exercise 5. Find all the solutions of the congruence x2 + 4x+ 2≡ 0(mod 7).

Exercise 6. Consider a polygon centered on the origin and that is regular with m sides (regular means that

all the sides have same length). You can go in the counterclockwise direction and number all the vertices

from 1 to m. Consider now a counterclockwise rotation (with center the origin) that brings the vertex 1 to

the vertex 1 + k, where k and m are coprime. Can you show that by iterating this same rotation you will visit

all the vertices of the polygon?

HW 2 1



HW 1

This is due Friday February 2nd.

1. Show that the map f :N2→N given by:

f(x, y)= x+
(x+ y).(x+ y +1)

2

is surjective. (We already proved it was injective, therefore it will be bijective).

2. Is the number 2
√

+ 3
√

a rational number?

3. Prove by induction that
∑

i=1

n

k3 =

[

n.(n + 1)

2

]2

.

4. Prove that n5−n is divisible by 30, for any integer n.

5. We have seen examples of “twin primes” p, q (their difference is equal to ± 2). Let p and q
be two primes: show that pq + 1 is the square of an integer if and only if p and q are twin
primes.

6. Draw the hyperbola H:
{

(x, y) ∈ R2
/

x2 − y2 = 1
}

. Find all the points on H that have
rational coordinates.

Hint: Take the half-lines starting from ( − 1, 0) and having a rational slope and see where
they intersect the hyperbola.

HW 1 1



Math 311 Correction Homework 1

Problem 1. Show that the map f : N2 → N given by:

f (x, y) = x +
(x + y).(x + y + 1)

2

is surjective. (We already proved it was injective, therefore it will be bijective).

Answer. The sequence M 7→ M.(M+1)
2 is strictly increasing. Therefore for any natural

number L, there exists a unique M such that:

M.(M + 1)
2

6 L <
(M + 1).(M + 2)

2
.

Notice now that 0 6 L− M.(M+1)
2 < (M+1).(M+2)

2 − M.(M+1)
2 = M + 1.

Therefore we can set: 0 6 x = L− M.(M+1)
2 and y = M− x. The key fact is that

the inequality above implies that M− x > 0. Now by construction we have

L = x +
M.(M + 1)

2
= f (x, y).

Problem 2. Is the number
√

2 +
√

3 a rational number?

Answer. If this number was rational then its square 5 + 2
√

6 would be rational and
therefore

√
6 would also be rational. So we would have

√
6 = p

q where we can assume
that the fraction is simplified (meaning that G.C.D(p, q) = 1).

But then
6.q2 = p2

so 6 would divide p (thus p = 6.t), and therefore 6.q2 = 36.t2 implying that 6|q
(absurd because the fraction was simplified).

Problem 3. Prove by induction that

n

∑
k=1

k3 =
n2.(n + 1)

4

2

Answer. 1. True for n = 1 because 1 = 1;

2. Assume that
n

∑
k=1

k3 =
n2.(n + 1)

4

2

,

Then we have:

n+1

∑
k=1

k3 =
n2.(n + 1)

4

2

+ (n + 1)3 =
(n + 1)2

4
.(n2 + 4.(n + 1)) =

(n + 1)2

4
.(n + 2)2



Math 311 Correction Homework 1

Problem 4. Prove that n5 − n is divisible by 30, for any integer n.

Answer. One has N = n5 − n = n.(n− 1).(n + 1).(n2 + 1). Since n− 1, n, n + 1 are
three consecutive numbers, one of them at least is even, and one of them is a multiple
of 3.

Now, if n = 5k, or5k + 1, or5k − 1 then one of these consecutive numbers is a
multiple of 5. The only other possibilities are n = 5k± 2, but then n2 + 1 = 25k2 ±
20k + 4 + 1 which is a multiple of 5.

Thus we know that the prime factors 2, 3, 5 are present in the decomposition of N,
so N is a multiple of 30.

Problem 5. We have seen examples of “twin primes” p, q (their difference is equal to ±2).
Let p and q be two primes: show that pq + 1 is the square of an integer if and only if p and q
are twin primes.

Answer. If p, q are twin primes, then, say, q = p + 2 and then p.q + 1 = p2 + 2p + 1 =
(p + 1)2.

In the other direction:
if p.q = n2 − 1 = (n − 1).(n + 1), since p, q are primes we know that n2 − 1 >

p.q > 2.2 = 4, so n2 > 5 and this implies that n is at least 3, so n− 1 > 1. Therefore
each factor n− 1, n + 1 has at least one prime number in its decomposition. It can’t
have two factors (necessarily equal to p and q), because none of n− 1, n + 1 is equal
to 1. Therefore each of the two numbers n− 1, n + 1 is equal to one and only one of
the primes p, q, therefore these two primes differ by ±2.

Problem 6. Draw the hyperbola

H : {(x, y) ∈ R2/x2 − y2 = 1}.

Find all the points on H that have rational coordinates.
Hint: Take the half-lines starting from (−1, 0) and having a rational slope and see where

they intersect the hyperbola.

Answer. Claim: The points on the hyperbola with rational coordinates are exactly the
points of intersection of the hyperbola with the lines Lt := {y = t.(x + 1)}, where
t ∈ Q.

If (x, y) is in H∩Lt, then necessarily x2 = t2(x + 1)2 + 1, which is equivalent to

0 = (t2 − 1)x2 + 2t2x + t2 + 1

Two cases: if t = ±1, then the only solution is (x, y) = (−1, 0); if t is not in {−1, 1}
then the above equation is equivalent to 0 = (x + 1).(x − t2+1

t2−1), so besides (−1, 0)

there is only one other intersection point ( t2+1
t2−1 , t.(1 + t2+1.

t2−1 )). Moreover, we see that
if t is rational then this point has rational coordinates.
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Therefore, we have a mapQ−{−1, 1} → {points of Hwith rational coordinates}
defined by associating to Lt the unique point of intersection with the hyperbola that
is not (−1, 0). By construction this map is injective (because a line is determined by 2
points!). It is also surjective, because the line joining (−1, 0) to a point with rational
coordinates has a rational slope, and this slope cannot be in {−1, 1} (because the two
lines through (−1, 0) with those slopes do not have another intersection point with
the hyperbola).



Math 311 Correction of Homework 3

Problem 1. Characterize the set of positive integers n such that φ(2n) > φ(n).

Answer. If n is odd then φ(2n) = φ(2).φ(n) = φ(n). If n is even, it can be written
as n = 2k.m with m odd. Thus φ(2n) = φ(2k+1.m) = φ(2k+1).φ(m) = (2k+1 −
2k).φ(m) = 2.φ(n) > φ(n).Therefore the set of positive integers such that φ(2n) >
φ(n) coincides with the set of even integers.

Problem 2. What are the last two digits, that is the tens and units digits of 21000, 31000?

Answer. For the first one, you can notice that 212 ≡ −4( mod 100) so 212.12 ≡ 24.
Therefore 21000 ≡ 26.144+136 ≡ 26.4.2136 ≡ 212.12+16 ≡ 24.216 = 212+8 ≡ (−4).28 ≡
−24 ≡ 76 Therefore the last two digits are 76. For 3, things are much simpler:
3φ(100) ≡ 1 so 340 ≡ 1. Thus 31000 ≡ 340.25 ≡ 1, so the last digits are 01.

Problem 3. Prove that for n ≥ 2 the sum of all the positive integers less than n and coprime
with n is n

2 .φ(n).

Answer. The answer I proposed to you was a bit long (you can still ask me if you
tried it). Instead here is a simpler one, by one of you, Kevin Donahue. First, realize
that n/2 is never coprime with n. Then if you pick any integer a coprime with n
and less than n/2, the integer n− a is coprime with n too and is between n/2 and n.
Therefore the φ(n) integers that are coprime with n and less than n can be partitioned
into two collections A and B with the same number of elements (φ(n)/2), and each
a ∈ A can be paired with n − a ∈ B.Thus when you sum all of these pairs you get
n.φ(n)

2 , which is the answer.

Problem 4. Find all the primes p such that p divides 2p + 1.

Answer. The prime 2 has not the property, so we can assume now that p is odd, but
then Fermat’s theorem implies that 2p + 1 ≡ 3 modulo p, therefore p must divide 3.
Now 3 actually divides 9, so 3 is the only prime with this property.

Problem 5. Show that x2 − 2y2 + 8z = 3 has no solutions (x, y, z) ∈ Z3. (Hint: reduce
modulo 8).

Answer. Clearly x must be odd (therefore congruent to 1, 3, 5, 7 whose squares are
all congruent to 1). So necessarily, 2y2 ≡ −2. But this is impossible because 2t2 only
takes the values 0 or 2 modulo 8

Problem 6. For any n show that φ(n) = n.(1− 1
p1

) . . . (1− 1
pk

) where the pi are the prime
factors present in the prime decomposition of n. (Hint:: compute first φ(ps), for any prime
p.)
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Answer. First, φ(ps) = ps − ps−1 = ps(1− 1
p ) because the only integers less than ps

and not coprime to ps are the multiples of p. Since we proved that (G.C.D.(m, n) =
1 ⇒ φ(m.n) = φ(m).φ(n)), we can consider the decomposition of n in prime factors,
n = pr1

1 . . . . prk
k and thus obtain

φ(n) = φ(pr1
1 ). . . . φ(prk

k ) = (pr1
1 .(1− 1

p1
)). . . . .(prk

k .(1− 1
pk

)).



Math 311 Homework 4 due on Fr. 02/23

Problem 1. Let R be a subring of the complex numbers C having the following two properties:

1. There is a disk D around the origin 0 ∈ C, such that D ∩ R = {0};

2. For any z ∈ C there exists an element λ ∈ R such that |z− λ| < 1.

Show that any ideal I of R is the set of the multiples of an element a ∈ R.

Hint: Show that, in any ideal I of R, there exists one element b ∈ I that is different
from 0, and that is at minimal distance from the origin. Show that the ideal I coincides
actually with the set of multiples of b (namely show that I = b.R).

Answer. Pick any r ∈ I different from the origin. If it is at minimal distance from the
origin, then we are done. Otherwise, find one that is at strictly smaller distance from
the origin. By continuing this process you get a sequence of decreasing positive real
numbers. It has a limit l which is > 0 (because there is a small disk around the origin
that contains only the element 0 in the ring). I claim that there is indeed an element
b ∈ I that is exactly at distance |b| = l from the origin. If not I could find an infinite
number of ai ∈ I with distance from the origin between l and l + ε (for an arbitrary
ε. Among these ai, two of them at least , say a1, a2 would be at distance less than
2ε. If you shift them to the origin (by substracting a1, you would contradict the first
condition. Now pick any c ∈ I. By the second condition, there exists λ ∈ I such that
| c

b − λ| < 1. But this implies |c− λ.b| < |b|. By the definition of b this implies that
necessarily c = λ.b, and we are done: the ideal I is the set of multiples of the element
b.

Problem 2. Let p be an odd prime and let d = b2 − 4ac. Show that the congruence

ax2 + bx + c ≡ 0 (mod p)

is equivalent to the congruence y2 ≡ d (mod p) , where y = 2ax + b. Conclude that if
d ≡ 0 (mod p) , then there is exactly one solution modulo p; if d has a square root in Z/pZ,
then there are two (non congruent) solutions; and if d has no square root in Z/pZ, then there
are no solutions. What about the case p = 2 ?

Answer. Here I should have said: ”assume that a is not zero”, otherwise the question
is not correct. We have y2 − d ≡ 4a2.x2 + 4a.b.x + b2 − b2 + 4.a.c ≡ 4a.(a.x2 + b.x +
c) ≡ 0. Therefore a.x2 + b.x + c ≡ 0 implies y2− d ≡ 0. Conversely: if y2− d ≡ 0 then
4a.(a.x2 + b.x + c) ≡ 0. Since p is odd and a is not zero, this implies the first condition.
Now if d ≡ 0, then necessarily y ≡ 0 and there is only one solution x = (−b).(2a)−1.If
d has a square root y, then −y is the only other solution to y2 ≡ d, and we get two
solutions x = (2a)−1(±y − b). If d has no square root then the initial equation has
no solution. For p = 2: the equation is equivalent to (a + b).x ≡ −c and this has a
unique solution if and only if (a + b) is not zero.



Math 311 Homework 4 due on Fr. 02/23

Problem 3. Consider Z[X], the set of polynomials with coefficients in Z. Show that there
are ideals in Z[X] that cannot be written as the set of multiples of a single polynomial.

Hint: consider the ideal generated by 2 and X (meaning: the ideal made of all the possible
sums of one multiple of 2 and one multiple of X).

Answer. Consider the ideal I made of all the polynomials that can be written as
2k + X.Q(X). Assume I = P(X).Z[X]. Since 2 ∈ I we see that P must be of degree
0, so it is a constant a. Now X ∈ I so we must have X = a.bX for some b ∈ Z.
Therefore we must have a = ±1 and then I = Z[X]. But clearly 3 is not in I so there
is a contradiction.

Problem 4. Go on the web and find a short description of the ”ElGamal cryptosystem”. Write
a short (< 10 lines) description of this algorithm used for encryption.

Answer. See for example this article: http://en.wikipedia.org/wiki/Elgamal

Problem 5. Let p be an odd prime. Assume that in Z/pZ there exists a nonzero element ζ
such that

• ζ has no square root in Z/pZ;

• the order of ζ in the multiplicative group of Z/pZ is exactly 4.

Show that 2 has no square root in Z/pZ.

Answer. Since ζ is of order exactly 4, we know that ζ2 ≡ −1. This implies (ζ +
1)2 ≡ 2.ζ. If 2 had a square root x (meaning x2 ≡ 2, then you would have ζ ≡
(ζ + 1)2.(x−1)2 (a square), but this is a contradiction.



Math 311 Homework 5 due on Fr. 03/02

The R.S.A system. For the following problems, the same notations will be kept.
First, the sender takes two large primes p, q, and forms n = p.q.He also picks an
integer e such that e and φ(n) are coprime.The message to be sent is an integer P (less
than n, and coprime with n). The encrypted message C is given by C ≡ Pe mod n . At
this point, p, q are only known to the sender, but n, e, C are public. Now the recipient
of the message has a key, that is not public: the key d is an integer such that d.e ≡
1 mod φ(n), or equivalently such that e.d = k.φ(n) + 1, for some k. Now deciphering
the encrypted message C is easy: the recipient of the message just needs to perform
Cd ≡ Pe.d ≡ Pφ(n).k.P ≡ P mod n , thanks to Fermat’s theorem. For these problems,
you need also to remember than factorizing a large number is really hard, but finding
a G.C.D. is not...

Problem 1. Show that if the message P is not coprime with n, then just knowing C = Pe

and n, one can recover p, q. If both p, q have 100 digits, what is the probability of producing
such a message P that is not coprime with n?

Problem 2. Suppose that you have two groups of recipients. Both of them use the same
number n, but use two different exponents e1, e2 such that G.C.D.(e1, e2) = 1.Assume that
the same message P is sent to the two groups. Therefore you have two public crypted messages
C1 ≡ Pe1 and C2 ≡ Pe2 . Show that knowing these two encrypted messages one can recover
the initial message P.

Problem 3. Here we suppose that we have three senders, using different integers n1, n2, n3,
but using the same exponent e1 = e2 = e3 = 3. Show that if these three senders encrypt the
same message P (thus producing three public crypted messages Ci ≡ P3 mod ni), then one
can recover the initial message P.

Problem 4. Assume you are a bit paranoid and you encrypt your message P using n, e1 to
produce C = Pe1 mod n , and then encrypt one more time, using n, e2 (same n) to produce the
final (public) crypted message D = Ce2 mod n .Show that in reality you will not gain much
by doing this.

Problem 5. Read the proof of the quadratic reciprocity that I gave on the web page.Ask me
(at least) one question about it in class next week.
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The R.S.A system.

Problem 1. Show that if the message P is not coprime with n, then just knowing C = Pe

and n, one can recover p, q. If both p, q have 100 digits, what is the probability of producing
such a message P that is not coprime with n?

Answer. If the message P is not coprime with n, then it must be a multiple of one of
the prime factors, say p. Since the message is smaller than n it can’t be a multiple of
n. Thus G.C.D.(n, Pe) = p, and therefore we can retrieve the factors of n. There are
φ(n) = n.(1− 1

p ).(1− 1
q ) integers coprime with n and less than n so the probability

of being coprime with n is φ(n)
n = (1− 1

p).(1− 1
q ) ' 1− 2

10100 , and the probability of

not being coprime is really low (of order 2
10100 ).

Problem 2. Suppose that you have two groups of recipients. Both of them use the same
number n, but use two different exponents e1, e2 such that G.C.D.(e1, e2) = 1.Assume that
the same message P is sent to the two groups. Therefore you have two public crypted messages
C1 ≡ Pe1 and C2 ≡ Pe2 . Show that knowing these two encrypted messages one can recover
the initial message P.

Answer. Since G.C.D.(e1, e2) = 1 we know the existence of integers a, b such that
ae1 + be2 = 1. We can assume a > 0 and b < 0, therefore ae1 = 1− be2 (equality
between positive integers). But now Ca

1 = Pae1 = P.Pe2.(−b) = P.C−b
2 , so we can find

P, because C1, C2 are known.

Problem 3. Here we suppose that we have three senders, using different integers n1, n2, n3,
but using the same exponent e1 = e2 = e3 = 3. Show that if these three senders encrypt the
same message P (thus producing three public crypted messages Ci ≡ P3 mod ni), then one
can recover the initial message P.

Answer. • If one of the pairs (ni, nj) is not made of coprime integers, then we
can easily compute the G.C.D. of the pair which would be one factor in the
factorisation of ni (and therefore we would be done);

• We assume now that all the pairs are coprime: we can apply the chinese remain-
der theorem which says that the following map is an isomorphism

Z/n1n2n3 → Z/n1 ×Z/n2 ×Z/n3

and therefore one can find an integer C such that C 7→ (C1, C2, C3) = (P3, P3, P3),
therefore C ≡ P3 mod n1n2n3. But since P3 is an integer less than n1n2n3, we
can simply compute its cubic root (as a real number!), and get the answer.
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Problem 4. Assume you are a bit paranoid and you encrypt your message P using n, e1 to
produce C = Pe1 mod n , and then encrypt one more time, using n, e2 (same n) to produce the
final (public) crypted message D = Ce2 mod n .Show that in reality you will not gain much
by doing this.

Answer. If you encrypt twice, your crypted message becomes (Pe1)e2 mod n. So it
is the same as using (n, e1e2) for the encryption. But now the problem of finding an
inverse of e1e2 mod φ(n) has exactly the same difficulty as the problem of finding an
inverse for e1, e2.

Problem 5. Read the proof of the quadratic reciprocity that I gave on the web page.Ask me
(at least) one question about it in class next week.

”Is it on the test?”



Math 311 Homework 6 due on Monday 03/19

Problem 1. Let τ(n) be equal to the number of divisors of n. Show that τ(m.n) = τ(m).τ(n)
if m and n are coprime.

Problem 2. Is the ring Z[X] a euclidian ring? Is it a Principal Ideal Domain?

Problem 3. Show that Q[
√−5] (which is by definition {a + b(i

√
5) | a, b ∈ Q}) is isomor-

phic to Q[X]/(X2 + 5).

Problem 4. Show that if p is prime and a is an integer not divisible by p, then there exists
integers x and y such that a.x ≡ y (mod p) , with 0 < |x| < √

p and 0 < |y| < √
p.

(Hint: consider all the integers of the form au− v with 0 ≤ u ≤ [√p], 0 ≤ v ≤ [√p]
where [.] denotes the integer part, and show that there must be two of them that are congruent
modulo p, then form the difference of these two integers).

Problem 5. In order to do this problem you need the results of the previous exercise. One
would like to know whether a prime integer like 3, stays a prime when we pass from Z to
the Gaussian integers Z[i]. In other words, can we have a non trivial factorization 3 =
(a + bi).(c + di)? By taking the square of the modulus, one finds 3 = (a2 + b2).(c2 + d2).
Therefore one is reduced to the problem of determining when a prime integer is the sum of two
squares.

1. Show that if a prime number p 6= 2 can be written as a sum a2 + b2 then necessarily
one has p ≡ 1( mod 4 ).

2. Explain why (−1) has a square root in Z/pZ, when p is a prime of the form 4n + 1.

3. Use the previous question together with the previous problem to show that if p prime is
congruent to 1 modulo 4, then p can be written as the sum of two squares.

4. If p ≡ 1 (mod 4) then show that p can be written as a product of two elements in Z[i]
that are not invertible.(Hence we proved that such a prime p is not anymore a prime in
Z[i]. . . )



Math 311 Homework 6 due on Monday 03/19

Problem 1. Let τ(n) be equal to the number of divisors of n. Show that τ(m.n) = τ(m).τ(n)
if m and n are coprime.

Answer. See the correction of the midterm, where we proved that all the products
a.b where a divides m and b divides n coincide exactly with the set of divisors of m.n
when m, n are coprime.

Problem 2. Is the ring Z[X] a euclidian ring? Is it a Principal Ideal Domain?

Answer. In some previous HW, we proved that the ideal generated by 2 and X is not
principal, therefore our ring is not a principal ideal domain, and therefore it isn’t a
euclidian ring either.

Problem 3. Show that Q[
√−5] (which is by definition {a + b(i

√
5) | a, b ∈ Q}) is isomor-

phic to Q[X]/(X2 + 5).

Answer. Consider the surjective map φ : Q[X] −→ Q[
√−5] given by P(X) 7→

P(i.
√

5). We know that Q[X]/kerφ is isomorphic to imφ = Q[
√−5], so we have

to prove that kerφ = (X2 + 5).Q[X]. One inclusion is easy: if a polynomial R(X) is
a multiple of X2 + 5, then P(i.

√
5) = 0. Conversely, take S(X) in ker φ, then write

the euclidian division of this polynomial by X2 + 5: S(X) = (X2 + 5).R(X) + bX + a.
Since S(X) is in ker φ, one must have b(i

√
5) + a = 0, but this implies b = a = 0 and

therefore S(X) must be a multiple of X2 + 5.

Problem 4. Show that if p is prime and a is an integer not divisible by p, then there exists
integers x and y such that a.x ≡ y (mod p) , with 0 < |x| < √

p and 0 < |y| < √
p.

(Hint: consider all the integers of the form au− v with 0 ≤ u ≤ [√p], 0 ≤ v ≤ [√p]
where [.] denotes the integer part, and show that there must be two of them that are congruent
modulo p, then form the difference of these two integers).

Answer. Since each of u, v can take [√p] + 1 >
√

p values, there exist at least p =√
p.
√

p integers of the form au− v. But there are only p possible values modulo p,
therefore two at least of these integers must be congruent modulo p, say au − v ≡
au′ − v′. But then ax ≡ y if one writes x = u − u′, y = v − v′.Now x,y satisfy 0 ≤
|x| <

√
p and 0 ≤ |y| <

√
p. If one of them is zero, then the other one must be zero

modulo p, and therefore must be zero in Z (because 0 is the only multiple of zero in
this range of possible values for x, y).

Problem 5. In order to do this problem you need the results of the previous exercise. One
would like to know whether a prime integer like 3, stays a prime when we pass from Z to
the Gaussian integers Z[i]. In other words, can we have a non trivial factorization 3 =
(a + bi).(c + di)? By taking the square of the modulus, one finds 3 = (a2 + b2).(c2 + d2).
Therefore one is reduced to the problem of determining when a prime integer is the sum of two
squares.
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1. Show that if a prime number p 6= 2 can be written as a sum a2 + b2 then necessarily
one has p ≡ 1( mod 4 ).

2. Explain why (−1) has a square root in Z/pZ, when p is a prime of the form 4n + 1.

3. Use the previous question together with the previous problem to show that if p prime is
congruent to 1 modulo 4, then p can be written as the sum of two squares.

4. If p ≡ 1 (mod 4) then show that p can be written as a product of two elements in Z[i]
that are not invertible.(Hence we proved that such a prime p is not anymore a prime in
Z[i]. . . )

Answer. 1. The only possible values taken by squares modulo 4 are 0 and 1. So
sums of two squares can only take the values 0, 1, 2, and never 3.(Remember
that an odd prime is congruent to 1 or 3 modulo 4).

2. When we studied quadratic reciprocity we proved that −1 is a square modulo
p if and only if p−1

2 is even.

3. From the previous question, we know the existence of an integer a with square
≡ −1 modulo p. From the previous exercise we know the existence of x, y
such that a.x ≡ y and 0 < |x| <

√
p and 0 < |y| <

√
p. But this implies

−x2 ≡ a2x2 ≡ y2, so p divides 0 < x2 + y2 < 2p, therefore x2 + y2 must be p
and we are done.

4. Just notice that p = x2 + y2 = (x + iy).(x− iy), and that none of x + iy, x− iy
is invertible because |x ± iy| = p, and we know that invertible elements must
have a norm equal to 1.



Math 311 Homework 7 due on Monday 03/26

Problem 1. Consider the map f : Z[X] → Z×Z, given by P(X) 7→ (P(1), P(2)). Is it a
surjective map? What is the kernel of it?

Problem 2. As in the class, given a ring R, we define SpecR as the set of all prime ideals
of R, distinct from R itself. SpecR is a topological space, once we define the closed sets as
follows: the closed sets are all the sets of prime ideals of the form V(I), where I is an ideal and
V(I) is the set of all prime ideals in SpecR that contain I.

1. show that if Z1 = V(I1), Z2 = V(I2) are two closed sets, then Z1 ∩ Z2 = V(I1 + I2)
and Z1 ∪ Z2 = V(I1 ∩ I2);

2. prove that the intersection of any collection of closed sets Zi is still a closed set.

Problem 3. Let A be a ring and I, J two ideals in A. Let’s write the ”reduction map”
ρ : A −→ A/I that takes any a ∈ A and returns amodI (it can be written as ā if you prefer).

1. Show that ρ(J) is an ideal in A/I.

2. Show that A/(I + J) is isomorphic to (A/I)/(ρ(J)).

3. Application: show that Z[X]/((3) + (X2 + 5)) is isomorphic to (Z/3Z)[
√−5].
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Problem 1. Consider the map f : Z[X] → Z×Z, given by P(X) 7→ (P(1), P(2)). Is it a
surjective map? What is the kernel of it?

Answer. The map is clearly surjective: if you pick any (a, b) ∈ Z × Z, then one
preimage is P(X) = b(X − 1) − a(X − 2). The map is certainly not injective: for
example S(X) = (X − 1)(X − 2) is in the kernel. Let’s find the kernel: by euclidian
division, one can write: P(X) = (X − 1)(X − 2).Q(X) + aX + b for any polynomial
P(X) ∈ Z[X].But one can do more, actually aX + b = P(2)(X − 1) − P(1)(X − 2)
(just notice that P(1) = a + b, P(2) = 2a + b). Therefore immediately one knows that
ker f is the principal ideal generated by (X− 1)(X− 2).

Problem 2. As in the class, given a ring R, we define SpecR as the set of all prime ideals
of R, distinct from R itself. SpecR is a topological space, once we define the closed sets as
follows: the closed sets are all the sets of prime ideals of the form V(I), where I is an ideal and
V(I) is the set of all prime ideals in SpecR that contain I.

1. show that if Z1 = V(I1), Z2 = V(I2) are two closed sets, then Z1 ∩ Z2 = V(I1 + I2)
and Z1 ∪ Z2 = V(I1 ∩ I2);

2. prove that the intersection of any collection of closed sets Zi is still a closed set.

Answer. 1. If a prime ideal P is in Z1 ∩ Z2, then it contains both I and J, hence
it contains their sum I + J, hence it is in V(I + J). Conversely a prime ideal
containing the sum must contain each of the two ideals. Now if P is in Z1 ∪ Z2
then it contains either I1 or I2, and in both cases it contains I1 ∩ I2, so it is in
V(I1∩ I2). Now assume that you have a proper prime idealP in V(I1∩ I2): then
either it contains I1 (and then we are done because P will be in V(I1) ∪V(I2)),
or it doesn’t contain I1, therefore there exists i ∈ I1 that is not in P . Now pick
any j ∈ I2: the product i.j ∈ I1 ∩ I2, so it is in P , but this ideal is prime and
doesn’t contain i, therefore it must contain j, for any j ∈ I2 hence P contains I2
and we are done.

2. The same argument works for any family of ideals: the intersection of any fam-
ily of V(Iα) is simply V(∑α Iα), where the sum of any family of ideals is defined
as the set of all finite sums of elements taken in these ideals.
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Problem 3. Let A be a ring and I, J two ideals in A. Let’s write the ”reduction map”
ρ : A −→ A/I that takes any a ∈ A and returns amodI (it can be written as ā if you prefer).

1. Show that ρ(J) is an ideal in A/I.

2. Show that A/(I + J) is isomorphic to (A/I)/(ρ(J)).

3. Application: show that Z[X]/((3) + (X2 + 5)) is isomorphic to (Z/3Z)[
√−5].

Answer. 1. We can notice that ρ(J) is just J mod I: it’s clearly an additive group
(because j1 + j2 = j1 + j2) and if you multiply any j by a (where a is any element
of A), then you get a.j which is in ρ(J) because J is an ideal and therefore a.j ∈ J.

2. Consider the map A → A/I → (A/I)/(ρ(J)).It is surjective (composition of
two surjective maps). What about the kernel? Well the kernel is the set of all
elements a ∈ A such that a mod I = j mod I for some j ∈ J, but this means
that a − j ∈ I so a − j = i for some i ∈ I, or if you prefer a = i + j. Thus
the kernel of the map is included in I + J. Conversely I + J is in the kernel.
By the isomorphism theorem we know that A/(I + J) is then isomorphic to
(A/I)/(ρ(J)).

3. Application: replace I by (3) and J by (X2 + 5).



Math 311 Homework 8 due on Wed. 04/18

Problem 1. Expand in continued fractions the following rational numbers: 67
41 , 111

19 .

Problem 2. We write a continued fraction a0 + 1
a1+ 1

a2+...
as 〈a0, a1, . . .〉. You can truncate the

continued fraction in order to get 〈a0, a1, . . . , an〉 and reduce the result to a fraction rn = pn
qn

.
For n ≥ 1, prove that qn+1

qn
= 〈an, an−1, . . . , a2, a1〉. Find and prove a similar continued

fraction expansion for pn
pn−1

, assuming a0 ≥ 0.

Problem 3. Let u0/u1 be a rational number in its lowest terms, and write u0/u1 = 〈a0, a1, . . . , an〉.
Show that if 0 ≤ i < n, then |ri − u0/u1| ≤ 1/(qiqi+1), with equality if and only if
i = n− 1.(Here ri = pi/qi is the truncated fraction equal to 〈a0, a1, . . . , ai〉).
Problem 4 (Geometric interpretation of the denominators qn). For an irrational number
ζ (this greek letter is called ”zeta”), consider the point on the unit circle λ = e2πiζ (this greek
letter is called ”lambda”).We study the orbit 1 7→ λ 7→ λ2 7→ . . . under the rotation z 7→ λz
of the circle. We say that a point λq on this orbit is a closest return to 1 if

|λq − 1| < |λm − 1|
for every m with 0 < m < q, so that λq is closer to 1 than any preceding point on the orbit.

Show that the point λq = e2πiζq is a closest return to 1 along the orbit

1 7→ λ 7→ λ2 7→ . . .

if and only if q is one of the denominators 1 = q1 ≤ q2 < q3, . . . in the continued fraction
approximations to ζ. Furthermore, if q = qn with n ≥ 2 then the order of magnitude of the
distance |λq − 1| is given by

2
qn+1

< |λqn − 1| < 2π

qn+1

Some hints for that: prove that |λm − 1| = 2 sin(π << mζ >>), where << x >>
represents min|x + n|, n ∈ Z (the distance from the point x to the closest integer).Then use
the fact that 4 < 2 sin(πt)/t < 2π for t ∈ (0, 1/2). Also notice that qnζ ≡ xn mod Z, and
remember that we proved that |xn| < 1/2 for n larger than 2.
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Problem 1. Expand in continued fractions the following rational numbers: 67
41 , 111

19 .

Answer. You will find 67/41 = 〈1, 1, 1, 1, 2, 1, 3〉 and 111/19 = 〈5, 1, 5, 3〉.
Problem 2. We write a continued fraction a0 + 1

a1+ 1
a2+...

as 〈a0, a1, . . .〉. You can truncate the

continued fraction in order to get 〈a0, a1, . . . , an〉 and reduce the result to a fraction rn = pn
qn

.
For n ≥ 1, prove that qn

qn−1
= 〈an, an−1, . . . , a2, a1〉. Find and prove a similar continued

fraction expansion for pn
pn−1

, assuming a0 ≥ 0.

Answer. Prove it by induction:

1. For n = 1, one has q0 = 1, q1 = a1 so one gets q1/q0 = a1;

2. Assume the result is true for n: then one has 〈an+1, an, . . . , a2, a1〉 = an+1 +
1

〈an, . . . , a2, a1〉 = an+1 + qn−1/qn = an+1qn+qn−1
qn

= qn+1
qn

(remember how we

get the expansion using Euclid’s algorithm). A similar proof will show that
pn/pn−1 = 〈an, . . . , a1, a0〉.

Problem 3. Let u0/u1 be a rational number in its lowest terms, and write u0/u1 = 〈a0, a1, . . . , an〉.
Show that if 0 ≤ i < n, then |ri − u0/u1| ≤ 1/(qiqi+1), with equality if and only if
i = n− 1.(Here ri = pi/qi is the truncated fraction equal to 〈a0, a1, . . . , ai〉).
Answer. The inequality has been proved in class. Now if i = n − 1, one has | pn

qn
−

pn−1
qn−1

| = 1
qnqn−1

because we know that pnqn−1 − pn−1qn = ±1.
Assume now that one has equality: since we know that the even terms p2k/q2k

are strictly increasing towards the limit pn/qn, that the odd terms strictly decrease,
and that the difference between consecutive terms is ±1/qiqi+1, we deduce that the
equality is possible only when the initial fraction is exactly one of the approximants
(and this happens only with the last one).

Problem 4 (Geometric interpretation of the denominators qn). For an irrational number
ζ (this greek letter is called ”zeta”), consider the point on the unit circle λ = e2πiζ (this greek
letter is called ”lambda”).We study the orbit 1 7→ λ 7→ λ2 7→ . . . under the rotation z 7→ λz
of the circle. We say that a point λq on this orbit is a closest return to 1 if

|λq − 1| < |λm − 1|
for every m with 0 < m < q, so that λq is closer to 1 than any preceding point on the orbit.

Show that the point λq = e2πiζq is a closest return to 1 along the orbit

1 7→ λ 7→ λ2 7→ . . .
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if and only if q is one of the denominators 1 = q1 ≤ q2 < q3, . . . in the continued fraction
approximations to ζ. Furthermore, if q = qn with n ≥ 2 then the order of magnitude of the
distance |λq − 1| is given by

2
qn+1

< |λqn − 1| < 2π

qn+1

Answer. As in the class, let’s prove that a best approximation to ζ is necessarily of
the form pn/qn, and that for n ≥ 1, qn is the smallest integer q > qn−1 such that
‖qζ‖ < ‖qn−1ζ‖. Let’s consider a/b a best approximation to ζ.

First, suppose a/b < p0/q0 = a0/1, then |ζ − a0| < |ζ − a/b| ≤ |bζ − a| (contra-
diction with the fact that a/b is a best approximation). Second, suppose a/b > p1/q1,
then |a/b− ζ| > |a/b− p1/q1| ≥ 1

bq1
and therefore one would have |bζ − a| > 1

q1
=

1
a1
≥ |ζ − a0|. (contradiction). Finally assume that a/b is strictly between pn−1

qn−1
and

pn+1
qn+1

, then
1

bqn−1
≤ | a

b
− pn−1

qn−1
| < | pn

qn
− pn−1

qn−1
| = 1

qnqn−1
,

from which we deduce that qn < b. On the other hand we know that

1
bqn+1

≤ | a
b
− pn+1

qn+1
| ≤ |ζ − a

b
|,

which implies

|qnζ − pn| < 1
qn+1

≤ |bζ − a|,

and together with qn < b, this is a contradiction to the fact that a/b is a best approxi-
mation.

Now let’s prove by induction on n the second part of the theorem (that qn is the
smallest integer q > qn−1 such that ‖qζ‖ < ‖qn−1ζ‖):

For n = 0, there is nothing to prove ( because q0 = 1), assume the property is true
for n ≥ 0. Let q be the smallest integer > qn such that ‖qζ‖ < ‖qnζ‖ and let p be such
that ‖qζ‖ = |qζ − p|. Then by induction pn/qn is a best approximation, so p/q is also
a best approximation., therefore it must be of the form pn′/qn′ , but q is chosen as the
smallest such that ‖qζ‖ < ‖qnζ‖, so q = qn+1, and then automatically p = pn+1 and
we are done.



Math 311 Homework 9 due on Fr 04/27

Problem 1. Expand in continued fraction
√

2 and
√

15.

Problem 2. Diophantine conditions
Given some fixed real number k ≥ 2, let us say that an irrational number ζ satisfies a

Diophantine condition of order k if there is some ε > 0 (depending on ζ) so that

|ζ − p
q
| > ε

qk ,

for every rational number p
q .We write Dk the set of all irrational numbers ζ which satisfy

such a condition.
Now let f be a polynomial of degree d with integer coefficients, and suppose that f (α) = 0

where α is irrational. If every other root of this equation has distance at least ε from α, and if
| f ′(x)| < K in the open interval (α− ε, α + ε), show that

K.|α− p/q| ≥ | f (p/q)| ≥ 1/qd

for every rational number p/q in (α − ε, α + ε). Conclude that α ∈ Dd, and hence that
all irrational numbers in the complement of the union of all the Dd are transcendental (this
means that they cannot be roots of a polynomial with integer coeffients).

Problem 3. Example of transcendental numbers:(due to Liouville). Show that the number

α =
∞

∑
n=0

1
10n!

is transcendental.
Hint: Look at the partial sum pk

qk
= ∑∞

n=0
1

10n! , with qk = 10k!. Then try to find a constant

S such that |α− pk
qk
| ≤ S

qk+1
k

. Conclude with the previous problem.

Problem 4. Find two rational numbers a/b such that

|
√

2− a
b
| < 1√

5b2
.
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Problem 1. Expand in continued fraction
√

2 and
√

15.

Answer. For sqrt2, just notice that it is the solution of (x− 1).(x + 1) = 1, so it satisfies
x = 1 + 1

1+x . So if you plug again x in this you get the expansion 1 + 1
2+ 1

2+...
. For

sqrt15 = 3.87298 . . ., one possible thing is to expand it from its decimal expansion,
and then realize that there is a pattern, namely that x = 3 + 1

1+ 1
6+ 1

1+1/6...

. Then you

need to verify the pattern you found: set y = x− 3, and verify that y = 1
1+ 1

6+y
.

Problem 2. Diophantine conditions
Given some fixed real number k ≥ 2, let us say that an irrational number ζ satisfies a

Diophantine condition of order k if there is some ε > 0 (depending on ζ) so that

|ζ − p
q
| > ε

qk ,

for every rational number p
q .We write Dk the set of all irrational numbers ζ which satisfy

such a condition.
Now let f be a polynomial of degree d with integer coefficients, and suppose that f (α) = 0

where α is irrational. If every other root of this equation has distance at least ε from α, and if
| f ′(x)| < K in the open interval (α− ε, α + ε), show that

K.|α− p/q| ≥ | f (p/q)| ≥ 1/qd

for every rational number p/q in (α − ε, α + ε). Conclude that α ∈ Dd, and hence that
all irrational numbers in the complement of the union of all the Dd are transcendental (this
means that they cannot be roots of a polynomial with integer coeffients).

Answer. Let’s write f (x) = adxd + . . . + a0 First, one notices that if p/q ∈ (α −
ε, α + ε) then it’s not a root of f (x) and one has f (p/q) = ad(p/q)d + . . . + a0 =
nonzero integer

qd so the absolute value is ≥ 1/qd. Now using calculus, we know that

| f (p/q)| = | f (α)− f (p/q)| = | f ′(c)|.|α− p/q| for some c between α and p/q. But
we know that for such a c, one has | f ′(c)| < K. An immediate consequence is that
α ∈ Dd. Now an irrational number that is not in any of the Dd cannot be a root of a
polynomial with integer coefficients, and hence it is transcendental (by definition).

Problem 3. Example of transcendental numbers:(due to Liouville). Show that the number

α =
∞

∑
n=0

1
10n!

is transcendental.
Hint: Look at the partial sum pk

qk
= ∑k

n=0
1

10n! , with qk = 10k!. Then try to find a constant

S such that |α− pk
qk
| ≤ S

qk+1
k

. Conclude with the previous problem.
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Answer. One has |α− pk
qk
| = | 1

10(k+1)! + 1
10(k+2)! + . . . | < 1

10(k+1)! .(1 + 1
10 + 1

102 + . . .) =
1

10(k+1)! .
10
9 = S

qk+1
k

with S = 10/9. (geometric series)

Now imagine that α ∈ Dd for some d ≥ 2. Then there would exist an ε > 0 such
that for any fraction p/q one would have |ζ − p/q| > ε

qd . In particular, one would

have |ζ pk
qk
| > ε

qd
k
. Therefore one would have

ε

qd
k

<
S

qk+1
k

for any k. Now for k really large, this is impossible (the sequence 10k!(k+1−d) is un-
bounded and therefore is not bounded by S/ε).

Problem 4. Find two rational numbers a/b such that

|
√

2− a
b
| < 1√

5b2
.

Answer. We use approximations coming from the continued fractions. The first one
is 1/1. It is easy to check that |√2 − 1| < 1/

√
5. Let’s try the next approximant

1 + (1/2) = 1.5. Do we have |√2− 1.5| < (1/sqrt5). 1
22 ?The answer is yes (check it

with a calculator and then prove it by hand)
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