
MAT 401: The Geometry of Physics
Spring 2009

Department of Mathematics
SUNY at Stony Brook

Welcome to The Geometry of Physics

    In this class we will develop the mathematical
language needed to understand Einstein's field equations.
The
infinitesimal structure of any space, even curved space, is
Euclidean, and so is described with linear
algebra. Calculus, in the
form of continuity and differentiability properties of paths and
surfaces, can express
the connectedness of space. The synthesis of
these points of view, of the infinitesimal with the global, of
linear algebra with calculus, yields the powerful language of
differential geometry, which Einstein used to
express the physics of
General Relativity.

Course Content    

Before studying the field equations we must develop the language
of geometry.  We will try to integrate
intuitive content with hard
mathematics, and some of the topics will be partly review for many
students. But
hard work will be required... it took Einstein more than 2
years to understand the mathematics we will cover
in a semester.

Homework assignment page                    Class notes                    Quiz Prep (including final exam info)

Announcements

Final Exam: Wed May 13, from 11am-1:30pm, will take place in the usual classroom.
There will be a makeup class on Monday (May 11) in P-131 in the
math building, at 11am. We will go
over the gravitational field equations.
I'll be in my office on Tuesday the 12th, from 2-4pm and 5-7pm

Course Information:

Check out the topics we will cover...

Here is a link to the syllabus.

Textbook

A first Course in General Relavity by Bernard F. Schutz

Supplimentary books / Recommended reading



The Geometry of Physcis by Theodore Frankel, Second Edition
The Large Scale Structure of Space-Time by G. Ellis and S. Hawking
General Relativity by Robert Wald

Course Grading

One homework assugnment will be due each Wednesday.

Homeworks:          10% of total grade
Quizes:                   10% of total grade
Test 1:        10% of total grade (Friday Feb 13)
Test 2:        20% of total grade (Friday Mar 6)
Test 3:        10% of total grade (Friday Mar 20)
Test 4:        10% of total grade (Friday April 17)
Final Exam:   30% of total grade

Your instructor is Brian Weber,
Office: 3-121 Math Tower

Course Prerequisites

Calculus IV, Math 305 or equivalent (differential equations)
Linear Algebra, Math 310 or equivalent

 

Americans with Disabilities Act

If you have a physical, psychological, medical or learning
disability that may impact your course work, please contact
Disability
Support Services, ECC (Educational Communications Center) Building, room
128, (631) 632-6748 or
http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are
necessary and
appropriate. All information and documentation is confidential.
Students who requiring assistance during emergency
evacuation are encouraged to discuss their
needs with their professors and Disability Support Services. For procedures
and
information, go to the following web site:
http://www.www.ehs.stonybrook.edu/fire/disabilities.asp
 

http://www.math.stonybrook.edu/~brweber/401s09/coursewebpage/Lec2.html
http://studentaffairs.stonybrook.edu/dss/
http://www.ehs.stonybrook.edu/fire/disabilities.asp


Homework Assignments

Homework 1            Due Wed., Feb. 4

Homework 2            Due Wed., Feb. 11

Homework 3            Due Wed, Feb. 25

Homework 4            Due Wed, Mar. 4

Homework 5            Due Wed, Mar. 18

Homework 6            Due Wed, Mar 25

Homework 7            Due Wed, Apr 15

Spring Break Special:     Notes on Electrodynamics        Problems in Electrodynamics

Homework 8            Due Wed, Apr 22

The Hopf fibration and the Berger spheres

Homework 9            Due Wed, May 6



Class Notes

Lecture 1 - Algebraic Special Relativity (Mon, Jan 26)

Lecture 2 - Geometric Special Relativity (Wed, Jan 28)

Lecture 3 - Groups and Symmetry (Fri, Jan 30)

Lecture 4 - Orthogonal and Lorentz transformations (Mon, Feb 2)

Lecture 5 - Geometry of Minkowski space (Fri, Feb 6)

Lecture 6 - Vector spaces, linear maps, and dual spaces (Mon, Feb 9)

Lecture 7 - More on Dual Spaces (Mon, Feb 16)

Lecture 8 - More on Dual Spaces II (Wed, Feb 18)

Lecture 9 - Tensor Products (Fri, Feb 20)

Lecture 10 - The Tensor algebra (Mon, Feb 23)

Lecture 11 - Tensors as maps, dual spaces, transformation properties, alternating tensors, and wedge products
(Wed, Feb 25)

Lecture 12 - Metric linear algebra (Mon, Mar 2)

Lecture 13 - Vectors as directional derivatives (Mon, Mar 9)

Lecture 14 - Covectors (Wed, Mar 11)

Lecture 15 - Tensor fields and the metric (Fri, Mar 13)

Lecture 16 - Lie brackets and the d-operator (Mon, Mar 16)

Lecture 17 - Relation between the classical vector operations and the d-operator, 4-velocity and 3-velocity,
and 4-momentum

Lecture 18 - The Einstein equation and conservation of energy-momentum

Lecture 19 - Stereographic projection

Lecture 20 - The classical Maxwell equations, and the covariant derivative. (Mon, Mar 30)

Lecture 21 - Warped products (Wed, Apr 1)

Lecture 22 - Gauge invariance,  wave equations in electrodynamics, and variation of pathlength (Fri, Apr 3)

Lecture 23 - The parallel transport equation, the Riemann curvature tensor, and the Jacobi equation (Wed,
Apr 15)



Lecture 24 - The Riemann Curvature tensor in compents (Fri, Apr 17)

Lecture 25 - The Stress-Energy-Momentum tensor (Mon, Apr 20)

Lecture 26 - Traces and Norms (Mon, Apr 27)

Lecture 27 - Covariant Derivatives (Wed, Apr 29)

Lecture 28 - Curvature Identities (Fri, May 1)

Lecture 29 - Conservation laws (Mon, May 4)

Lecture 30 - Equations of motion for relativistic fluids, and Poisson's equaiton (Wed, May 6)

Lecture 31 - The relativistic Maxwell equations, and the gravitiational field equations (Mon, May 11)



Quiz (and test) prep material

Quiz 1, Feb. 6

Quiz 2, Feb. 20

Quiz 3, Feb. 27

Test 2, March 6

Test 3, March 27

Test 4, April 24

Final Exam



The Geometry of Physics
Topics

Special Relativity (2 weeks)
Euclidean space and Minkowski space
Path integrals and worldlines
The Galilean, Orthogonal, and Poincare groups
Force, momentum, and Newtonian mechanics in Minkowski space
Curved spaces and intuitive GR: Equivalence principle; matter = divergence of space-time itself

Linear algebra (3 weeks)
Vector spaces, linear maps, matrices, and matrix groups
Dual spaces
Tensors, tensor products, wedge products
Vector fields and directional derivatives
Covectors
The d-operator
Electromagnetism in Minkowski space

Geometry I (2 weeks)
How can you tell if the space around you is curved?
Paths, parallel transport, and geodesics
Variation
The principle of least action

Geometry II (3 weeks)
The metric: the mathematical quantification of space
The connection: an absolute derivative
Curvature
Application: the geometry of surfaces, Gaussian curvature, the Theorema Egregium.

Physics (3 weeks)
The equivalence principle, general covariance
Newtonian gravity and curved space
Einstein's Field Equations
Special solutions to Einstein's equations
Principle of least action and the Einstein-Hilbert action (time permitting!)



Syllabus for Math 401, The Geometry of
Physics Spring 2009

Instructor Brian Weber, brweber at math dot sunysb dot edu
Office 3-121 Math Tower

Course Text A First Course in General Relativity, Bernard F. Schutz

Additional Texts
The Geometry of Physics, Theodore Frankel
General Relativity, Robert M. Wald
The Large-Scale Structure of Space-Time, S.W. Hawking and G.F.R. Ellis

Prerequisites
Grade of C or higher in Math 303 or 305 or equivalent, and Math 310 or equivalent.

Unofficially, if you are comfortable with partial derivatives, path integrals, vector spaces,
and linear transformations, you should be okay.

Course outline
Starting with special relativity, we will develop the mathematical language necessary

for understanding General Relativity and the invariant Maxwell equations. Along the way
we will learn enough math and physics that students can start understanding the modern
research in these areas. The material will be divided into 5 topics:

• Special relativity

• Linear algebra, Tensor analysis

• Global geometry: geodesics, energy, and variation

• Infinitesimal geometry: metrics, connections, and curvature

• The mathematics of General Relativity

We will have regular quizzes and homework assignments to make sure everyone stays current
with the material. We will have a test after we conclude each topic.

Exams We will have 4 in-class tests and a final exam.
Test 1: Friday Feb 13 (10% of grade)
Test 2: Friday Mar 6 (20% of grade)
Test 3: Friday Mar 20 (10% of grade)
Test 4: Friday April 17 (10% of grade)
Final: TBA (30% of grade)

Homework (10% of grade)
One problem set will be due each week. The problems will be turned in at the beginning

of class each Wednesday. As a fair warning, you will have to work hard to be successful in
this class. If you fall seriously behind on the homework, you will not be able to keep up in
class and will not be prepared for the exams. You are encouraged to work in groups, but
you must write up your own solutions.

Quizzes (10% of grade)
There will be a short quiz at the beginning of class each Friday (except the Fridays of

scheduled tests). The purpose is to help everyone stay current with the mathematical tech-
niques introduced during the prior week.
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Makeup policy
All of your responsibilities for this class have been announced well ahead of time, namely

in the first week of classes. Thus almost no requests for makeup homeworks or exams will
be granted. The only exceptions, assuming evidence is provided, will be for serious illness,
family emergency, or an unforeseeable catastrophe (tornado, car wreck, etc).

Academic Integrity
Each student must pursue his or her academic goals honestly and be personally account-

able for all submitted work. Representing another person’s work as your own is always
wrong. Faculty are required to report any suspected instances of academic dishonesty to the
Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology &
Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required
to follow their school-specific procedures. For more comprehensive information on academic
integrity, including categories of academic dishonesty, please refer to the academic judiciary
website at http://www.stonybrook.edu/uaa/academicjudiciary/.

Course Withdrawals
The academic calendar, published in the Undergraduate Class Schedule, lists various

dates that students must follow. Permission for a student to withdraw from a course af-
ter the deadline may be granted only by the Arts and Sciences Committee on Academic
Standing and Appeals or the Engineering and Applied Sciences Committee on Academic
Standing. The same is true of withdrawals that will result in an underload. A note from the
instructor is not sufficient to secure a withdrawal from a course without regard to deadlines
and underloads.
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The Hopf Fibration and the Berger
Spheres

Due —

Introduction R4 is the set of ordered quadruples of real numbers (x1, x2, x3, x4), along
with the Euclidean distance function:

dist
(
(x1, x2, x3, x4), (y1, y2, y3, y4)

)
= (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2.

One can identify R4 with C2, the set of ordered pairs or complex numbers: a point

(z1, z2) = (x1 + iy1, x2 + iy2) ∈ C2

can be identified with the point

(x1, y1, x2, y2) ∈ R4.

If (z1, z2), (w1, w2) are two points in C2, the distance between then is

dist
(
(z1, z2), (w1, w2)

)
= |z1 − w1|2 + |z2 − w2|2.

Recall that if z ∈ C then |z|2 = zz̄.

Let S3 ⊂ R4 denote the unit 3-sphere, defined to be

S3 ,
{

(x1, x2, x3, x4) ∈ R4 s.t. (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1
}

=
{

(z1, z2) ∈ C2 s.t. |z1|2 + |z2|2 = 1
}
.

1 The Hopf action

Problem 1) If p, q ∈ C2, the distance dist(p, q) can be calculated in the C2 sense or the R4

sense. Prove that the distance is the same regardless of which distance function is used.

Def Given any θ ∈ R, let ψθ : C2 → C2 be the map

ψθ(z1, z2) =
(
eiθz1, eiθz2

)
.

Note that ψθ is the identity map if and only if θ is a multiple of 2π.

Problem 2) Given any θ ∈ R, prove that ψθ is an isometry that fixes the origin (0, 0) ∈ C2.
Prove that, unless θ is a multiple of 2π, then (0, 0) is the only fixed point of ψθ. Finally,
prove that if (z1, z2) ∈ S3 then also ψθ(z1, z2) ∈ S3.

Remark Thus ψθ : S3 → S3 is an isometric action: this is known as the Hopf action.
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Problem 3) If p = (z1, z2) ∈ S3, the orbit of p under the Hopf action is defined to be the
set of all ψθ(p) as θ varies. Prove that the orbit of any point p ∈ S3 is a circle of radius 1.

Remark Each orbit of ψθ is a circle, and of course each point of S3 lies in an orbit. Thus
the union of the orbits (each a copy of S1) comprises S3. One says that S3 is fibered by
S1; one calls the S1 orbits the fibers. The fibration of S3 by copies of S1 is called the Hopf
fibration.

Problem 4) Considering S3 ⊂ R4 (instead of S3 ⊂ C2), prove that

ψθ(x1, x2, x3, x4) =
(
x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ, x3 cos θ − x4 sin θ, x3 sin θ + x4 cos θ

)
.

The Hopf action ψθ produces an action field, which is just the velocity field of the rotation.
Letting d

dθ denote the action field, compute d
dθ in terms of the coordinate fields

{
∂
∂xi

}
.

2 The Hopf map

Def The Hopf map Ψ : S3 → S2 is a continuous map defined as follows. Regard S2 to be
C∪{∞} (via stereographic projection). If p ∈ S3 is an arbitrary point, then p = (z1, z2)
with |z1|2 + |z2|2 = 1. Define

Ψ(p) ∈ C∪{∞}

Ψ
(
(z1, z2)

)
=

z1

z2
.

In contrast to the lower dimensional situation, there are NO (topologically nontrivial) con-
tinuous maps from S2 to S1.

Problem 5) Prove that Ψ : S3 → S2 is onto. Which point in S3 maps to the ‘point at
infinity’ on S2?

Problem 6) Prove that p, q ∈ S3 belong to the same Hopf fiber if and only if Ψ(p) = Ψ(q).

3 The Berger spheres

Remark The Hopf map S3 → S2 is an example of a submersion: a map from a higher
dimensional space into (in this case onto) a lower dimensional space. As we have seen, Ψ
takes the 3-sphere and collapses the Hopf circles (1-dimensional objects) to points. What is
left is a 2-sphere (a 2-dimensional object). The purpose of this section is to see the process
occurring dynamically: we will construct a family of metrics that shrinks the Hopf circles
to points.
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Problem 7) Let X, Y , and Z be vector fields given by

X =
d

dθ
= −x2 ∂

∂x1
+ x1 ∂

∂x2
− x4 ∂

∂x3
+ x3 ∂

∂x4

Y = −x3 ∂

∂x1
+ x4 ∂

∂x2
+ x1 ∂

∂x3
− x2 ∂

∂x4

Z = x4 ∂

∂x1
+ x3 ∂

∂x2
− x2 ∂

∂x3
− x1 ∂

∂x4
.

Prove that X, Y , and Z are all tangent to S3. Also prove that |X|2 = |Y |2 = |Z|2 = 1, and
that X, Y , and Z are mutually orthogonal.

Problem 8) Prove that

[X, Y ] = 2Z
[Y, Z] = 2X
[Z, X] = 2Y.

This also proves that X, Y , Z cannot be considered coordinate fields.

Def We shall define the Berger metric on S3 as follows. Let η1 , X[, η2 , Y[, and η3 , Z[.
Given α ∈ R, let

gα = α2η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3.

If α = 1, then this is precisely the metric that S3 inherits from the ambient space R4.

Problem 9) Each of the metrics gα has an associated covariant derivative ∇α. Find

∇αXY ∇αY Z ∇αZX.

(It is best to use the Koszul formula directly). Note that the values of ∇αYX, ∇αZY , ∇αXZ
are now automatic.

Problem 10) Compute the sectional curvatures

sec(X, Y ) sec(Y, Z) sec(X, Z).

As measured in the metric gα, the Hopf fibers are circles of radius α. As α → 0 and the
fibers contract to points, the sectional curvatures remain bounded. This is a process known
as collapse with bounded curvature.
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Notes on Electrodynamics

1 The classical Maxwell equations

∇ · ~B = 0 no magnetic sources
∇× ~E + ∂ ~B

∂t = 0 Faraday′s law
∇× ~B − εµ∂

~E
∂t = 4πµ ~J Ampere−Maxwell law

∇ · ~E = 4π
ε ρ Gauss′ Law

2 The Riemannian duality operator

Let M be an n-dimensional Riemannian space, with coordinates {x1, . . . , xn} and Rie-
mannian metric gij . The duality operator ∗ : Ωp(M) → Ωn−p(M) is defined (implicitly)
according to the rule(

dxi1 ∧ · · · ∧ dxik
)
∧ ∗
(
dxi1 ∧ · · · ∧ dxik

)
=
√

det(gij)dx1 ∧ · · · ∧ dxn,

and extended linearly. The n-form
√

det(gij)dx1 ∧ · · · ∧ dxn is known as the volume form.

3 The Lorentzian duality operator

Let {x0, . . . , x3} be standard coordinates on Minkowski (1 + 3)-space. Without resorting to
complex numbers, it is not possible to define the ∗ operator as naturally for Minkowsi space
as it is for Riemannian spaces. The Lorentzian ∗ operator is defined, in a seemingly rather
ad hoc way, to be the linear operator ∗ : Ωp(M)→ Ω4−p(M) given as follows:

∗ : Ω0(M)→ Ω4(M) ∗1 =
1
c3
dx0 ∧ dx1 ∧ dx2 ∧ dx3

∗ : Ω1(M)→ Ω3(M) ∗dx0 =
1
c3
dx1 ∧ dx2 ∧ dx3

∗dx1 =
1
c
dx0 ∧ dx2 ∧ dx3

∗dx2 = −1
c
dx0 ∧ dx1 ∧ dx3

∗dx3 =
1
c
dx0 ∧ dx1 ∧ dx2
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∗ : Ω2(M)→ Ω2(M) ∗(dx0 ∧ dx1) = −1
c
dx2 ∧ dx3

∗(dx0 ∧ dx2) =
1
c
dx1 ∧ dx3

∗(dx0 ∧ dx3) = −1
c
dx1 ∧ dx2

∗(dx1 ∧ dx2) = cdx0 ∧ dx3

∗(dx1 ∧ dx3) = −cdx0 ∧ dx2

∗(dx2 ∧ dx3) = cdx0 ∧ dx1

∗ : Ω3(M)→ Ω1(M) ∗(dx1 ∧ dx2 ∧ dx3) = c3dx0

∗(dx0 ∧ dx2 ∧ dx3) = cdx1

∗(dx0 ∧ dx1 ∧ dx3) = −cdx1

∗(dx0 ∧ dx1 ∧ dx1) = cdx1

∗ : Ω4(M)→ Ω0(M) ∗(dx0 ∧ dx1 ∧ dx2 ∧ dx3) = −c3.

4 The divergence operator

Associated to the operator d : Ωp(M) → Ωp+1(M) is its adjoint operator, δ : Ωp(M) →
Ωp−1(M).

In the Riemannian setting, it is defined by δ = (−1)pn+p+1 ∗ d∗.

In the Lorentzian setting, it is defined by

δ : Ω1(M)→ Ω0(M) δ = ∗d ∗
δ : Ω2(M)→ Ω1(M) δ = − ∗ d ∗
δ : Ω3(M)→ Ω2(M) δ = ∗d ∗
δ : Ω4(M)→ Ω3(M) δ = ∗d ∗

5 Gauge invariance

One of Maxwell’s equations is ∇ · ~B = 0, which means ~B is a pure curl: ~B = ∇ × ~A.
Replacing ~A by ~A+∇f does not change the fact that ~B = ∇× ~A, so there is considerable
freedom in choosing the vector potential ~A.
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Now consider Faraday’s law, ∇× ~E + ∂
∂t
~B = 0. Putting ∇× ~A in for ~B this reads

∇×

(
~E +

∂ ~A

∂t

)
= 0

so that ~E + ∂
∂t
~A is a pure gradient:

~E +
∂

∂t
~A = ∇ϕ.

The quantity∇ϕ is called the generalized electrical potential or the electrical pseudopotential.
Once ~A is chosen, ϕ is defined up to a constant.

A particular choice of (ϕ, ~A) is known as a choice of gauge.

6 The Coulomb Gauge

We prove that it is possible to choose ~A so that ∇ · ~A = 0; this is known as the Coulomb

gauge. The problem is to choose a function f so that ∇ ·
(
~A+∇f

)
= 0. This is equivalent

to finding a function f so that 4f = −∇ · ~A. This is a Laplace equation for f , which is
known to be solvable. (QED)

Due to Gauss’ law ∇ · ~E = 4π
ε ρ, in the Coulomb gauge we have 4ϕ = 4π

ε ρ (if ρ is
given, this is known as the Poisson equation in the unknown ϕ).

The Coulomb gauge is useful in solving electrostatic problems, where it makes calcu-
lating ~A easy. It is not very useful in electrodynamic problems.

7 The Lorentz Gauge

Again let ~A be the magnetic vector potential: ~B = ∇ × ~A. Again we have the electric
pseudopotential ϕ, defined (up to constant addition) by

~E +
∂ ~A

∂t
= ∇ϕ

This time, we choose (ϕ, ~A) so that

∇ · ~A − 1
c2
∂ϕ

∂t
= 0.

The Lorentz gauge is useful is solving electrodynamic problems.
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8 Units for the classical quantities

SI base units are kilograms kg, meters m, seconds s, and Amperes A.

1V =
1kg ·m2

A · s3
1C = 1A · s

ε ∼ As

V m
=

Farads

m
µ ∼ V s

Am
=

Henrys

m

~E ∼ V

m
~B ∼ V s

m2

ρ ∼ As

m3
=

Coulombs

m3
~J ∼ A

m2
.

The symbol ∼ here means “has units”.
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Problems in Electrodynamics
Due —

1 Problems in Classical Electrodynamics

In this section, ~E, ~B, etc. will al be considered “classical” vector fields, that is, lists of 3
numbers attached to each point of 3-space.

Problem 1) Write out the Lorentz force law in components.

Problem 2) Write out the four Maxwell equations in components.

Problem 3) Using the charge- and current-free Maxwell equations, derive the following
wave equations when ~A is the Lorentz gauge:

4 ~A − 1
c2
∂2 ~A

∂t2
= 0 4φ − 1

c2
∂2φ

∂t2
= 0

Hint: You will need the classical vector identity ∇×∇× ~A = ∇(∇ · ~A) − 4 ~A.

2 Problems in Minkowski Analysis

Problem 1) Given a 1-form A = Aidx
i (0 ≤ i ≤ 3), find δA.

Problem 2) Given a function f , prove that δdf = �f , where

� =
(

∂

∂x0

)2

−
(
c
∂

∂x1

)2

−
(
c
∂

∂x2

)2

−
(
c
∂

∂x3

)2

is the D’Alembertian (the Lorentzian analog of the Laplacian).

Problem 3) Given an arbitrary 2-form F , find dF .

Problem 4) Given an arbitrary 2-form F , find δF .

3 Problems in Relativistic Electrodynamics

In this section, E, B, and A will be 1-forms: E = E1dx
1 + E2dx

2 + E3dx
3, B = B1dx

1 +
B2dx

2 +B3dx
3.
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Problem 1) Put F = E ∧ dx0 + c ∗
(
B ∧ dx0

)
. This is called the Faraday tensor. Write

out the tensor F = Fij = Fijdx
i ⊗ dxj in matrix form.

Problem 2) Prove that the Faraday tensor has units V olt · s.

Problem 3) Let γ(τ) be a path in Minkowski space. If v = vi = d
dτ is its velocity vector,

prove that the Lorentz force law is

dpi
dτ

= qFijv
j ,

where p = −mc2v[ is the momentum. (Also, check that the units are consistent).

Problem 4) Using Faraday’s law and ∇ · ~B = 0, prove that dF = 0.

Problem 5) If ρ is charge density and ~J = (J1, J2, J3) is current density, define the current
4-vector to be

J = ρ
∂

∂x0
+ J1 ∂

∂x1
+ J2 ∂

∂x2
+ J3 ∂

∂x3
.

Show that the current 4-vector J has (consistent) units Ampere/m3. Show that the 1-form
4πε−1c2J[ has (consistent) units V olt/s.

Using the Maxwell-Ampere law and Gauss’ law, prove that

δF = −4πε−1c2J[.

Recall that εµ = 1
c2 .

Problem 6) Since dF = 0, there is a 1-form A such that F = dA. As before, there is
considerable freedom in choosing A: it can be modified into A+ df , where f is any 0-form,
without changing the equation F = dA. Prove that the choice of A so that δA = 0 is
equivalent to working in the Lorentz gauge.

Problem 6) Prove that the source-free Maxwell equations: dF = 0, δF = 0 imply a wave
equation for A: �A = 0. (That is, prove δdA = �A when δA = 0).

2



Review for final

May 9, 2009

You must be familiar with the following concepts from Special Relativity:

• Euclidean space, Minkowski space, orthogonal transformation, Lorentz transformation

• Notation: Rn, Rk,n.

• Geometry of Lorentz space: Space-like, time-like, and null intervals. Pathlength. Path
energy. Light cone. Pseudospheres.

• Orthogonal group, Euclidean group, Lorentz group, Poincare group.

• Notation: O(n), E(n), O(k, n), P (k, n).

• Relation between classical and relativistic velocity: v = (γ, γ~v).

• Momentum of a particle, and its relation with classical energy and momentum:

p = −mc2v[ = (−E, γ~p).

• Conservation of energy-momentum for interacting particles.

• The Cauchy stress tensor.

• The Stress-energy-momentum tensor, and the conservation law.

You must be familiar with the following concepts from linear algebra:

• Vector space, covector space, tensor spaces.

• Linear algebras, linear operators.

• Linear maps as tensors, and vice-versa.

• Wedge products.
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• Notation: V , V ∗,
⊗r,s

V ,
∧r

V ∗.

You must be familiar with the following concepts from differential calculus:

• Coordinates, vectors, covectors, tensors, alternating tensors.

• The d-operator.

• The ∗-operator.

• Covariant derivatives of vector and tensor fields, and Christoffel symbols.

• The geodesic equation, and its derivation.

• The Riemann curvature operator.

• The Jacobi equation, and its derivation.

• Sectional curvature, Ricci curvature and scalar curvature.

• The two Bianchi identities.

You must be familiar with the following concepts from electromagnetics:

• The Classical Maxwell equations.

• The magnetic vector potential and the electrical pseudopotential.

• Wave equations for ~E, ~B, ~A and ϕ.

• The relativistic Maxwell equations.

• The electromagnetic 4-potential.

• The 4-potential wave equation.

You must be familiar with the following concepts from General relativity:

• The interpretation of gravity.

• Newton’s law of gravitation, and the gravitational potential.

• The ‘plausibility argument’ for the field equations.

• The field equations.
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Lecture 1 - Algebraic Special Relativity

January 27, 2009

From a mathematical point of view, special relativity is three postulates: 1) the ex-
istence of inertial reference frames, 2) the constancy of the speed of light in any reference
frame, and 3) the conservation of energy-momentum. Today we will concern ourselves with
deductions from the first two postulates, and leave the third for after we geometrize SR.

1 Inertial reference frames and Galilean relativity

We want to say that an inertial reference frame is the view of the universe (ie, the way
of measuring space and time) of an unaccelerated observer. This is problematic however:
an astronaut orbiting in a windowless spaceship would say he is unaccelerated, though
most other observers would disagree. We will simply define, then accept as a postulate the
existence of inertial reference frames, and leave aside the question of whether, and to what
degree, any exist in the universe. We define an inertial reference frame to be a representation
(more precisely, an isomorphism) of space-time as R4, the set of coordinates (x0, x1, x2, x3),
so that any constant-time (ie constant x0) slice is ordinary Euclidean 3-space, and so that
time progresses uniformly (local clocks mark time, namely the progress of the x0 coordinate,
uniformly).

If you accept basic Newtonian concepts of conservation of energy and momentum, it
is simple to argue that such a choice of coordinates is impossible for the astronaut in the
example. Thus we must accept that in physical reality, inertial reference frames exist, at
best, only approximately and only locally.

In Galilean relativity, we accept the notion of inertial reference frame, but postulate
(as common-sense would have it) that time as measurements by different clocks coincide
perfectly, and measurements of spatial displacements are identical regardless of the observer.
This implies that light travels at different speeds in different frames. But that violates
Maxwell’s equations, which should hold regardless of frame. Possibly one could discard
Maxwell’s equations or discard the principle that physics be the same regardless of frame.
Instead we discard the Galilean postulate that time and displacement measurements are
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frame-independent, and adopt the postulate of the constancy of the speed of light, as implied
by Maxwell’s equations.

2 Time Dilation

Consider the following thought experiment. You are in a spaceship, floating freely in space
so that you perceive yourself motionless. Another spaceship is approaching on a collision
course with speed v. It just misses you, but at the instant of closest approach a member of
that ship’s crew turns on a flashlight, whose beam hits the spaceship’s ceiling a short time
later.

Considering the two events: the release of a photon from the flashlight, and its subse-
quent absorption by the ceiling. From the crewmember’s viewpoint, the light travels l meters
with speed c, so the time between events is 4τ = l/c. From your viewpoint the light travels
a distance of

√
l2 + v4t with speed c, so the time between events is 4t =

√
l2 + v4t/c.

Eliminating l from these equations we get

4t =
1√

1 − v2

c2

4τ.

Thus the time interval between events is longer according to your view of the universe (your
inertial reference frame), by a factor of

γ = γv ,
1√

1 − v2

c2

,

than from the point of view of the whizzing-by crewmember.

3 Space dilation

This time imagine that the crewmember shone the flashlight toward the front of the ship.
The two events under consideration are the emission of a photon from the flashlight and it
subsequent absorption by the wall at a distance (measured by the crewmember) of 4ξ. The
crewmember measures the time in transit to be 4τ = 4ξ/c.

By time dilation, we measure the time between events to be 4t = γ4τ , so the
distance traveled is

4x = c4t
= cγ4τ
= γ4ξ.
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4 Simultaneity

Assume we are standing at the center of an iron truss of length 2l with a light at either end.
Each light emits a photon, which meet at precisely the center of the beam. We conclude
that each photon has been traveling for 4t = l/c seconds.

Now consider another observer, whizzing past at speed v, who happens to be directly
overhead at the instant the two photons meet. The oncoming photon (photon A) has been
in transit for a time of 4τA and so was emitted when the end of the beam was a distance
of l

γ + v4τA away, so the travel time was

4τA =
(
l

γ
+ v4τA

)
/c

4τA =
l/γ

c + v

The photon that caught up to us from behind (photon B) has been in transit for a time of
4τB and so was emitted when the end of the beam was a distance of l

γ − v4τB away, so
the travel time was

4τB =
(
l

γ
− v4τB

)
/c

4τB =
l/γ

c − v

We are forced to conclude that the photons have been in transit for different periods of time,
so were not released simultaneously.

5 Formulas

Assume (t, x1, x2, x3) is a space-time coordinate system, and (τ, ξ1, ξ2, ξ3) is a space-time
coordinate system of an observer moving with speed ~v = (v1, v2, v3) with respect to the
original coordinate system.

If p and q are events in space-time, then the time between events as measured in the
first system and the second system is related by

4t = γv4τ =
1√

1 − |~v|2
c2

4τ
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and the displacement between the two events as measured the two systems are related by

4x1 = γv14ξ1 =
1√

1 − (v1)2

c2

4ξ1

4x2 = γv2 4ξ2 =
1√

1 − (v2)2

c2

4ξ2

4x3 = γv3 4ξ3 =
1√

1 − (v3)2

c2

4ξ3.
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Lecture 2 - Geometric Special Relativity

Jan 28, 2009

1 Euclidean analytic geometry

Euclidean n-space has no natural origin and so is not naturally a vector space, despite how
we are often taught to regard it. It makes no sense, intrinsically, to speak of a “position
vector.”

Nevertheless, when working in 3-space say, we often choose an origin and post x-, y-,
and z-coordinate axes, and regard it as a vector space with basis (1, 0, 0), (0, 1, 0), and
(0, 0, 1). It is important to remember that Euclidean space is a purely geometric object
and does not come equipped with axes. Supplying space with axes is a purely arbitrary
construction.

Euclidean space does however come with notions of angles, distances, and lines. Once
an orthonormal coordinate system is chosen, we may regard the geometric object of Eu-
clidean n-space as the algebraic object Rn, which does happen to be a vector space, and is
easier to work with on paper.

1.1 Paths, pathlength, and path integrals

Consider Euclidean n-space, and choose an orthonormal coordinate system (x1, . . . , xn),
thereby identifying it with Rn.

Consider a path Γ(t) = (x1(t), . . . , xn(t)) through n-space. The path’s velocity is

dΓ
dt

(t) =
(
dx1

dt
, . . . ,

dxn

dt

)
(x1(t),...,xn(t))

.
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It’s speed is the velocity vector’s length:

∣∣∣dΓ
dt

∣∣∣ =

√〈
dΓ
dt

,
dΓ
dt

〉

=

√(
dx1

dt

)2

+ . . . +
(
dxn

dt

)2

.

If s is the arclength, we have ds = |dΓ| = |dΓ/dt| dt. To find the length of the path Γ(t)
between t = t1 and t = t2, you integrate the path’s arclength:∫

ds =
∫ t2

t1

∣∣∣dΓ
dt

∣∣∣ dt.
Given a function f(x1, . . . , xn) defined on Rn, it is possible to integrate f along the path Γ:∫

Γ

f ds =
∫ t2

t1

f
(
x1(t), . . . , xn(t)

) ∣∣∣dΓ
dt

∣∣∣ dt.
Finally, it is possible to take the derivative of f along the path Γ. Using the chain rule, we
get

df

dt
=

dx1

dt

∂f

∂x1
+
dx2

dt

∂f

∂x2
+ . . . +

dxn

dt

∂f

∂xn
.

This indicates that we can write

d

dt
=

dx1

dt

∂

∂x1
+
dx2

dt

∂

∂x2
+ . . . +

dzn

dt

∂

∂xn
.

2 Minkowski analytic geometry

2.1 Minkowski’s Pythagorean theorem

Consider the spaceships from the previous lecture. From our perspective, the crewmember
traveled 4x meters between when the light left the flashlight and when it struck the ceiling,
and did so in 4t seconds. The crewmember’s own experience is that no distance was
traveled, but that 4τ seconds passed. Using the time-dilation equation 4t = γv4τ , let’s
compute

(4t)2 − 1
c2

(4x)2 = (4t)2
(

1 − v2

c2

)
= γ2

v(4τ)2γ−2
v

= (4τ)2.
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Graphically, 4t and 4x form the legs of a right triangle with hypotenuse 4τ , so this
gives a new pythagorean theorem. If p and p are points in space-time (“events”), then the
“distance” (rather, proper time) between then is given by

p =
(
x0, x1, x2, x3

)
p =

(
x̄0, x̄1, x̄2, x̄3

)
∣∣pp̄∣∣2 =

(
4x0

)2 − 1
c2
(
4x1

)2 − 1
c2
(
4x2

)2 − 1
c2
(
4x3

)2
=

(
x0 − x̄0

)2 − 1
c2
(
x1 − x̄1

)
− 1
c2
(
x2 − x̄2

)
− 1
c2
(
x3 − x̄3

)2
.

Four-space that obeys this version of the Pythagorean theorem is called Minkowski space.

The distinction between R4 and R1,3. After choosing a coordinate system for space-time
(a.k.a. inertial frame of reference) with coordinates (x0, x1, x2, x3), space-time becomes
identified with R4. But notice that the time and space dimensions are treated differently
due to our new Pythagorean theorem: the square of the time-dimension has a coefficient
of +1, whereas the squared space-dimensions have coefficients −1/c2 (giving these terms,
by the way, units of time-squared). Because the geometry Minkowski space is so radically
different from the geometry of Euclidean space, we usually call it R1,3 instead of R4, or
sometimes “1+3 dimensional space” rather than “4 dimensional space.”

Notice that proper time (i.e. distance in 1+3-space) can either be real and positive,
zero, or imaginary. Respectively, these are called “time-like”, “light-like” or “null”, and
“space-like” distances.

2.2 Paths in Minkowski space

Given an arbitrary path

Γ(t) =
(
x0(t), x1(t), x2(t), x3(t)

)
through space-time, it’s four-velocity is

dΓ
dt

=
(
dx0

dt
,
dx1

dt
,
dx2

dt
,
dx3

dt

)
.

The meaning of this vector is not the same as for paths through Euclidean space: indeed, the
4-velocity is the path’s velocity through proper time. Note that the path’s speed through
proper time is

∣∣∣dΓ
dt

∣∣∣ =

√(
dx0

dt

)2

− 1
c2

(
dx1

dt

)2

− 1
c2

(
dx2

dt

)2

− 1
c2

(
dx3

dt

)2
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This could be well imaginary! At points where the speed is positive the path is called “time-
like”, at points where the speed is 0 the path is called “light-like” or “null”, and at points
where the speed is imaginary the path is called “space-like”.

If s is the arclength parameter (perhaps the term “arctime parameter” is better)
along the path Γ and ds the arclength element, the infinitesimal Pythagorean theorem
for Minkowski space gives

(ds)2 =
(
dx0
)2 − 1

c2
(
dx1
)2 − 1

c2
(
dx2
)2 − 1

c2
(
dx3
)2
.

Thus the Minkowski arclength is∫
Γ

ds =
∫
Γ

√
(dx0)2 − 1

c2
(dx1)2 − 1

c2
(dx2)2 − 1

c2
(dx3)2

=
∫ t2

t1

√(
dx0

dt

)2

− 1
c2

(
dx1

dt

)2

− 1
c2

(
dx2

dt

)2

− 1
c2

(
dx3

dt

)2

dt

This is the total time measured along the path from Γ(t1) to Γ(t2).

Path of a physical particle In the case where the path Γ(t) represents the motion of a phys-
ical particle through space-time, we impose a physicality condition: that the rate of passage
of proper time measured by the particle is unity. Namely, we impose the condition:∣∣∣dΓ

dt
(t)
∣∣∣ = 1.

3 Formulas

Given a frame (x0, x1, x2, x3) for R1,3 and a line segment of length4s, we have the following
relationship between proper time and space-time measurements:

(4s)2 =
(
4x0

)2 − 1
c2
(
4x1

)2 − 1
c2
(
4x2

)2 − 1
c2
(
4x3

)2
.
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Lecture 3 - Groups and Symmetry

Jan 30, 2009

1 Groups

It will be necessary for us to understand the basics of group theory, although we will not
delve too deeply into this vast subject.

Def A group is a set G with an operation ∗, that satisfies the following three conditions:

• Existence of an identity element: there exists an element, commonly denoted 1 or e,
so that whenever a ∈ G, we have a ∗ e = e ∗ a = a.

• Existence of inverses: Given any element a ∈ G, there is an element b ∈ G (often
denoted a−1) so that a ∗ a−1 = a−1 ∗ a = e.

• Associativity: if a, b, c ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c).

1.1 The integers

The simplest example of a group is the integers, with the operation being addition. This
is denoted (Z,+). In this case, the identity element (the “1”) is the number 0. Inverses
clearly exist: given a number n ∈ Z, it inverse element is the number −n. Addition is clearly
associative. It is also commutative, so (Z,+) is what is known as an abelian group.

1.2 The cyclic groups

In this case, the underlying set is the set of the first n whole numbers, {0, 1, . . . , n−1}. The
operation, denoted +n or just +, is given by adding two numbers together in the ordinary
way, then subtracting as many multiples of n as required to place the result back in the
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original set. If the group is (Z7,+7), we have, for example,

1 +7 1 = 2
1 +7 6 = 0
2 +7 6 = 1
5 +7 6 = 4.

As another example, the group (Z12,+12) is the ordinary arithmetic of 12 hour clocks:

11 (o′clock) + 2 (hrs) = 1 (o′clock)
3 + 10 = 1
9 + 7 = 4
etc.

1.3 The Dihedral groups

Group are often used to encode geometric symmetries. The dihedral groups (denoted
(Dn, ◦)) are the first examples: the set underlying the nth dihedral group is defined to
be the set of symmetries of the regular n-gon. The operation is on group elements is simply
composition. We use exponential notation as a shorthand: α2 = α ◦ α, for example.

The group Dn is generated by just two elements: let α ∈ Dn be rotation by 2π/n,
and let β ∈ Dn be reflection about a pre-chosen axis of symmetry. The identity element,
denoted 1 or e, is simply rotation by 0 radians. Clearly αn = e, so that α−1 is just the
element αn−1. Also, β2 = e, so that β−1 = β (β is its own inverse).

Reflections about other axes of symmetry can be constructed from these two elements.
For example, reflection about the axis tilted at 2π/n from the original axis is given by
αβα−1. Reflection about the axis tilted at 2kπ/n (k an integer) from the original axis is
given by αkβα−k.

2 Symmetries of Euclidean space

Given a space with some notion of distance (for example Euclidean space or Minkowski
space), an isometry is defined to be a transformation of that space which preserves distances
between points. Given a space V , its isometries form a group, often denoted Iso(V ). The
elements of the group are the isometries themselves, and the product is simply composition
of isometries.

If V is n-dimensional Euclidean space, the group of isometries is called the Euclidean
group. It is generated by translations, rotations, and reflections1, and is denoted E(n).

1Actually any rotation or translation can be decomposed into a pair of reflections, so the Euclidean group
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Within the full Euclidean group is a distinguished subgroup, called the orthogonal
group, denoted O(n). This is defined to be the group of isometries that fix a predetermined
distinguished point (an “origin”). If o is the origin, the group O(n) is generated by the
rotations that fix o and the reflection that fix o2

is actually generated by the reflections alone.
2Again, any rotation that fixes o can be decomposed into two reflections that fix o, so O(n) is in fact

generated by the reflections that fix o.
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Lecture 4 - Lorentz transformations

Feb 2, 2009

1 Vector space transformations

If V is some vector space, a map A : Rn → Rn is called a linear operator, or a linear
map, if it preserves the vector space operations of multiplication by constants and the
addition/subtraction of vectors:

α ∈ R, v, w ∈ Rn =⇒ A(αv ± w) = αA(v) ± A(w).

These transformations form a group called the linear group.

If V is an n-dimensional vecvtor space, then after a basis is chosen for V any operator
A : V → V can be represented as an n× n matrix. It is also possible to express any vector
v ∈ V as an ordered n-tuple, usually arranged as a column-matrix of length n. Given a
basis

{e1, e2, . . . , en}

for V , any element v ∈ V is given by

v = a1 e1 + a2 e2 + . . . + an en

for some unique set of numbers a1, . . . , an. It is typical to write v in column-vector notation:
writing

v =


a1

a2

...
an


{ei}

means precisely

v = a1e1 + . . . + anen.
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Once a basis has been chosen for a vector space V , it is possible to express any linear
map A : V → V as a matrix. To do this, one must only record where A sends the basis
vectors. We can define the numbers Aij implicitly as follows:

A(ej) = A1
j e1 + A2

j e2 + . . . + Anj en

=
n∑
i=1

Aij ei.

It is then possible to regard A as a matrix

A =
(
Aij
)

=


A1

1 A1
2 . . . A1

n

A2
1 A2

2 . . . A2
n

...
. . .

...
An1 An2 . . . Ann


{ei}

1.1 Example - Rotation of the plane by θ

Consider Euclidean 2-space, with a distinguished point o. Let A = Aθ be the transformation
that rotates the plane by θ about o.

Exercise Choose a basis, and express A as a matrix.
Solution Draw some coordinate axes, so we can consider Euclidean 2-space to be the coor-
dinate plane. Let

{e1, e2}

be the usual unit vectors in the x and y directions, respectively. Using basic geometry, we
know a rotation of θ has the following effects:

Aθ(e1) = cos(θ) e1 + sin(θ) e2

Aθ(e2) = − sin(θ) e1 + cos(θ) e2

Therefore

A =
(
A1

1 A1
2

A2
1 A2

2

)
{ei}

=
(

cos θ − sin θ
sin θ cos θ

)
{ei}

Exercise: Prove that indeed AθAα = Aθ+α. You will have to use sum/difference formulas
from trigonometry.

Exercise Choose another basis, and express Aθ as a matrix.
Solution Let

f1 = e1 + e2

f2 = −e1
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be a new basis for R2. Using the previous results, we get

A(f1) = A(e1 + e2) = (cos(θ)− sin(θ))e1 + (cos(θ) + sin(θ))e2

= (cos(θ)− sin(θ))(−f2) + (cos(θ) + sin(θ))(f1 + f2)
= (cos θ + sin θ) f1 + 2 sin(θ)f2

A(f2) = −A(e1) = − cos(θ)e1 − sin(θ)e2

= cos(θ)f2 − sin(θ)(f1 + f2)
= − sin(θ)f1 + (cos θ − sin θ) f2

Thus we have

Aθ =
(

cos θ + sin θ − sin θ
2 sin θ cos θ − sin θ

)

Exercise: Check that indeed AθAα = Aθ+α.

2 Orthogonal transformations

Let’s consider Rn with the usual orthonormal basis {e1, . . . , en}. Recall that the vector
space Rn has an inner product. It is defined as follows: if v, w ∈ Rn are expressed as column
vectors using the basis {ei}, we define 〈v, w〉 = vTw. A map A : Rn → Rn is called an
orthogonal transformation if it preserves distances on Rn. Due to the law of cosines:

|pq|2 = |op− oq|2

= 〈op, op〉 + 〈oq, oq〉 − 2 〈op, oq〉

where p, q are arbitrary point in Rn and o is the origin, a transformation that fixes o will
preserve distances if and only if it preserves the inner product. That is to say, A is in O(n)
if and only if

〈Av, Aw〉 = 〈v, w〉
vT AT Aw = vT w.

Since this must hold for any v, w, we have the following criterion:

A ∈ O(n) if and only if AT A = Id .

3 The Lorentz group

Since Minkowski space R1,3 has a notion of distance, we can consider its group of isometries.
Let

{e0, e1, e2, e3}
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be an orthonormal basis for R1,3, meaning that they form an inertial reference frame. In
particular,

|e0|2 = 1 |e1|2 = − 1
c2

|e2|2 = − 1
c2

|e3|2 = − 1
c2
.

If v, w ∈ R1,3 are expressed as column vectors using this basis, we can define the Minkowski
inner product

〈v, w〉1,3 = vT I1,3 w

where

I1,3 =


1 0 0 0
0 − 1

c2 0 0
0 0 − 1

c2 0
0 0 0 − 1

c2

 .

Thus a transformation A is in O(1, 3) if and only if

〈Av, Aw〉1,3 = 〈v, w〉

vT AT I1,3Aw = vT I1,3 w

for any v, w ∈ R1,3. This means that

A ∈ O(1, 3) if and only if AT I1,3A = I1,3.

The group O(1, 3) is called the Lorentz group.

Similarly, this construction works for any of the spaces Rk,n, using

Ik,n =



1
1 0

. . .
1
− 1
c2

− 1
c2

0
. . .

− 1
c2


where there are k many 1’s and n many − 1

c2 ’s along the diagonal. We say that a transfor-
mation A is in O(n, k) if

AT Ik,nA = Ik,n.
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4 Generators of the Lorentz group

For convenience (and practicality) we shall only work with R1,3 (not Rk,n), with orthonormal
basis {e0, . . . e3}.

There are three basic types of Lorentz transforms. First there are the boosts, which
combine time with a space coordinate:

K1(v) =


γv − v

c2 γv 0 0
−vγv γv 0 0

0 0 1 0
0 0 0 1



K2(v) =


γv 0 − v

c2 γv 0
0 1 0 0
−vγv 0 γv 0

0 0 0 1



K3(v) =


γv 0 0 − v

c2 γv
0 1 0 0
0 0 1 0
−vγv 0 0 γv


Second there are the spatial rotations, which do not involve the time coordinate:

P23(θ) =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ



P13(θ) =


1 0 0 0
0 cos θ 0 − sin θ
0 0 1 0
0 sin θ 0 cos θ



P12(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 .

These are just the orthogonal transformations of the the 3 spatial coordinates. Finally there
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are the space-reflection and time-reflection (ie, time reversing) transformations:

N0 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



N1 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



N2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1



N3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

5 The orthochronos group

Physically, one rotates one’s space-time coordinates by changing one’s spatial orientation,
and performs a “boost” by changing speed. Thus is makes sense to restrict the Lorentz
group, and consider just the boosts, rotations, and space-inversion matrices without the
time-inversion matrix. This is called the orthochronous group, or O+(1, n). Likewise, it
is not physically possible to exchange left with right, forward with backwards, or up with
down. The special orthochronous group, SO+(1, n) is the group generated by just the boosts
and the rotations, without the time- or space-inversion matrices.

6 The Poincare group

We have treated Minkowski space like a vector space with some fixed origin o, and considered
points in Minkowski space to be “position vectors.” But it is important to recognize that
Minkowski space is not a vector space, and choosing an origin and a basis is an arbitrary
choice.

The full set of isometries of Minkowski space consists of the the Lorenz group O(1, 3)
along with the translations. This group is called the Poincare group, denoted P (1, 3).
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Lecture 5 - Geometry of Minkowski space

Feb 6, 2009

1 Geometry of R1,1

We define R1,1 as the set of ordered pairs of real numbers, equipped with the Minkowski
distance: dist((a, b), (α, β))2 = (a−b)2 − 1

c2 (b−β)2. The set of isometries of R1,1, denoted
O(1, 1), is generated by the boosts and the time- and space-reflections:

K(v) =
(

γv − v
c2 γv

−vγv γv

)
N0 =

(
−1 0
0 1

)
N1 =

(
1 0
0 −1

)
.

The principle invariant subsets are the light cone and the pseudospheres. The light cone is
defined to be the points x = (x0, x1)T of distance 0 from the origin, given by solutions of

|x|2 = 0 (x0)2 − 1
c2

(x1)2 = 0.

This has the appearance of an “X”, and is invariant under elements of O(1, 1). Sometimes
it is useful to talk about the “future light cone,” the part of the light cone with x0 ≥ 0, or
the “past light cone,” the part of the light cone with x0 ≤ 0.

The pseudosphere of radius r > 0 is defined to be the set of points x = (x0, x1)T of
distance r from the origin, given by solutions of

|x|2 = r2 (x0)2 − 1
c2

(x1)2 = r2.

This has the appearance of a hyperbola, with two disconnected components. One may talk
of the future and past parts of the pseudosphere.
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2 Geometry of R1,2

We define R1,2 as the set of ordered triples of real numbers, equipped with the Minkowski
distance: dist((a, b, c), (α, β, γ))2 = (a−b)2 − 1

c2 (b−β)2 − 1
c2 (c−γ)2. The set of isometries

of R1,2, denoted O(1, 2), is generated by the boosts

K1(v) =

 γv − v
c2 γv 0

−vγv γv 0
0 0 1


K2(v) =

 γv 0 − v
c2 γv

1 0
−vγv 0 γv


The (Euclidean) rotations in the x1 − x2 coordinates

P12(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and the time- and space-reflections:

N0 =

 −1 0 0
0 1 0
0 0 1


N1 =

 1 0 0
0 −1 0
0 0 1


N2 =

 1 0 0
0 1 0
0 0 −1


The principle invariant subsets are the light cone and the pseudospheres. The light cone is
defined to be the points x = (x0, x1, x2)T of distance 0 from the origin, given by solutions
of

|x|2 = 0 (x0)2 − 1
c2

(x1)2 − 1
c2

(x2)2 = 0.

This is a surface of revolution: it is the standard cone. It is invariant under elements of
O(1, 2). Sometimes it is useful to talk about the “future light cone,” the part of the light
cone with x0 ≥ 0, or the “past light cone,” the part of the light cone with x0 ≤ 0.

The pseudosphere of radius r > 0 is defined to be the set of points x = (x0, x1, x2)T of
distance r from the origin, given by solutions of

|x|2 = r2 (x0)2 − 1
c2

(x1)2 − 1
c2

(x2)2 = r2.

This has the appearance of a two-sheeted hyperboloid of revolution. One may talk of the
future and past parts of the pseudosphere.
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3 Geometry of R1,3

We define R1,3 as the set of ordered quadruples of real numbers, equipped with the Minkowski
distance: dist((a, b, c, d), (α, β, γ, δ))2 = (a−b)2 − 1

c2 (b−β)2 − 1
c2 (c−γ)2 − 1

c2 (d−δ)2. The
set of isometries of R1,3, denoted O(1, 3), is generated by the boosts K1(v), K2(v), K3(v),
by the Euclidean rotations P12(θ), P13(θ), P23(θ), and by the time- and space-reflections
N0, N1, N2, N3 (these matrices were given in lecture 4).

The principle invariant subsets are the light cone and the pseudospheres. The light
cone is defined to be the points x = (x0, x1, x2, x3)T of distance 0 from the origin, given by
solutions of

|x|2 = 0 (x0)2 − 1
c2

(x1)2 − 1
c2

(x2)2 − 1
c2

(x2)3 = 0.

This is a 3-dimensional surface in 4-space, and has spherical symmetry, which is to say it
symmetric under any rotation of the x1−x2−x3 coordinates. It is also invariant under the
boosts and reflections, so is invariant under O(1, 3). Sometimes it is useful to talk about
the “future light cone,” the part of the light cone with x0 ≥ 0, or the “past light cone,” the
part of the light cone with x0 ≤ 0.

The pseudosphere of radius r > 0 is defined to be the set of points x = (x0, x1, x2, x3)T

of distance r from the origin, given by solutions of

|x|2 = r2 (x0)2 − 1
c2

(x1)2 − 1
c2

(x2)2 − 1
c2

(x3)2 = r2.

This is again a two-sheeted hyperboloid, but of spherical symmetry (not just circular sym-
metry as in the R1,2 case). One may talk of the future and past parts of the pseudosphere.
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Lecture 6 - Vector spaces, linear maps, and dual spaces

February 9, 2009

1 Vector spaces

A vector space V with scalars F is defined to be a commutative ring (V,+) so that the
scalars form a division ring with identity, and operate on the V in a way satisfying (here
α, β ∈ F and v,w ∈ V ):

• (α + β)v = αv + βv

• α(v + w) = αv + αw

• α(βv) = (αβ)v

• 1v = v where 1 ∈ F is the identity element

If o ∈ V is the identity of the group (V,+) (ie, the ‘origin’ of the vector space V ), it is an
exercise to show that these axioms imply 0v = o and αo = o.

In our class, we will exclusively be concerned with real vector spaces, meaning F is the
field R.

2 Linear maps

If V and W are vector spaces with the same field of scalars, a linear map A is defined to be
a map A : V →W satisfying

A(αv1 + βv2) = αA(v1) + βA(v2)

where α, β are scalars and v1,v2 ∈ V . After bases {v1, . . . ,vn} for V and {v1, . . . ,vm} for
W are chosen, it is possible to express A as a matrix. Specifically, we define the numbers
Aj

i implicitly by

A(vi) = A1
i w1 + A2

i w2 + . . . + Am
i wm.
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Then if v = α1v1 + . . . + αnvn, we have

A(v) = A(α1v1 + α2v2 + . . . + αnvn)
= α1A(v1) + α2A(v2) + . . . + αnA(vn)
= α1

(
A1

1w1 + A2
1w2 + . . . + Am

1 wm

)
+α2

(
A1

2w1 + A2
2w2 + . . . + Am

2 wm

)
+ . . .

+αn
(
A1

nw1 + A2
nw2 + . . . + Am

n wm

)
=

(
α1A1

1 + α2A1
2 + . . . + αnA1

n

)
w1

+
(
α1A2

1 + α2A2
2 + . . . + αnA2

n

)
w2

+ . . .

+
(
α1Am

1 + α2Am
2 + . . . + αnAm

n

)
wm.

Thus if we write v and A(v) in vector notation, then by our calculations we have:

v =


α1

α2

...
αn


{vi}

A(v) =


α1A1

1 + α2A1
2 + . . . + αnA1

n

α1A1
1 + α2A1

2 + . . . + αnA1
n

...
α1Am

1 + α2Am
2 + . . . + αnAm

n


{wi}

which means that A is an n×m matrix:

A =


A1

1 A2
1 . . . Am

1

A1
2 A2

2 . . . Am
2

...
. . .

...
A1

n A2
n . . . Am

n


{wi}←{vi}

and the action of A is given by matrix multiplication on the left.

Example

Let V be the vector space of quadratic polynomials with basis e1 = 1, e2 = x, e3 = x2,
and let W be the vector space of cubic polynomials with basis f1 = 1, f2 = x, f3 = x2, and
f4 = x3. Let A : V →W be the map A(P ) = (1 + 2x)P .

To express A as a matrix, we see where it send the basis vectors:

A(e1) = (1 + 2x)1 = f1 + 2f2
A(e2) = (1 + 2x)x = f2 + 2f3
A(e3) = (1 + 2x)x2 = f3 + 2f4

Thus

A =


1 0 0
2 1 0
0 2 1
0 0 2


{fi}←{ei}

.
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3 Dual spaces

Assume V is a vector space with scalar field F (in our class, F will almost always be just the
reals, R). A linear functional on a vector space V is a linear map f : V → F. It is simple to
prove that A(o) = 0 whenever A is a linear operator:

A(o) = A(0 · v) = 0 ·A(v) = 0.

The space of linear operators on a vector space V is called its dual vector space, denoted
V ∗. If V is finite dimensional and a basis {v1, . . . ,vn} for V has been chosen, there is a
procedure for choosing a basis {v∗1, . . . ,v∗n} for V ∗, called the basis dual to {v1, . . . ,vn}.
The procedure is very simple: define v∗i : V → R by setting v∗i (vj) = δij and extending
linearly. To be more explicit, if v = α1v1 + · · ·+ αnvn, then

v∗i (v) = v∗i
(
α1v1 + . . . + αnvn

)
= α1v∗i (v1) + . . . + αiv∗i (vi) + . . . + αnv∗i (vn)
= α1 · 0 + . . . + αi + . . . + αn · 0
= αi.

It is easy to verify that v∗i is linear.

Theorem 3.1 If dim(V ) = n < ∞, then also dim (V ∗) = n.

Pf We only have to prove that what we called the “dual basis” (which consists of n many
elements) is indeed a basis. Let {v1, . . . ,vn} be a basis for V , and {v∗1, . . . ,v∗n} its “dual
basis.” We must prove that the v∗i are linearly independent, and that they indeed span V ∗.
First, if 0 = β1v∗1 + · · ·+ βnv∗n for some constants βi, then by plugging in vj to both sides
we get

0 = βj .

Since j was arbitrary, this proves that all the coefficients are 0. Thus the v∗i are independent.
To prove that the v∗i span V ∗, let A ∈ V ∗. We can define the numbers Ai by

A(vi) = Ai.

It follows that A = A1v∗1 + A2v∗2 + . . . + Anv∗n: for let v = α1v1 + · · ·+αnvn be a generic
element in V ; then

A(v) = A(α1v1 + . . . + αnvn) = α1A(v1) + . . . + αnA(vn) = α1A1 + . . . + αnAn

(A1e
∗
1 + . . . + Ane

∗
n) (v) = A1v∗1(v) + . . . + Anv∗n(v) = A1α

1 + . . . + Anα
n.

�

In the proof, note how we were able to write A as A = A1v∗1 + · · · + Anv∗n. This
violates the usual motif of summing over upper-lower index pairs, indicating that the dual
basis should probably be written with upper indices. From now on we will do this:

we will write vi , not v∗i .
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Thus the basis dual to {v1, . . . ,vn} will be written {v1, . . . ,vn}, with the same definition:

vi : V → R
vi(vj) = δi

j .

Note that this means dual vectors (elements of V ∗) should be written in row form: if
v = α1v1 + · · ·+ αnvn and A = A1v1 + · · ·+Anvn, then we can write

v =


α1

α2

...
αn


{vi}

A = (A1 A2 . . . An){vi} .

As usual, we can express the action of A on v via matrix multiplication;

A(v) = A
(
α1 v1 + . . . + αn vn

)
= α1A(v1) + . . . + αnA(vn)

= α1A1 + α2A2 + . . . + αnAn =
n∑

i=1

αiAi

= (A1A2 . . . An)


α1

α2

...
αn



4 The Einstein summation convention

In all cases so far considered, upper indices are summed over lower indices whenever a
sum is required; two lower indices are never summed, likewise for two upper indices. For
example, letting V be a vector space with basis {vi}, if A =

(
Ai

j

)
is a linear operator and

v = α1v1 + α2v2 + · · ·+ αnvn a vector, we have

A(v) =


A1

1 A1
2 . . . A1

n

A2
1 A2

2 A2
n

...
. . .

...
An

1 An
2 . . . An

n




α1

α2

...
αn


{vi}

=


α1A1

1 + α2A1
2 + · · ·+ αnA1

n

α1A2
1 + α2A2

2 + · · ·+ αnA2
n

...
α1An

1 + α2An
2 + · · ·+ αnAn

n


{vi}

4



This is a lot of writing. But we can express the same information more compactly:

v =
n∑

i=i

αivi , A(vi) =
n∑

j=1

Aj
ivj ,

A(v) = A

(
n∑

i=1

αivi

)
=

n∑
i=1

αiA (vi) =
n∑

i=1

αi

 n∑
j=1

Aj
ivj

 =
n∑

i=1

n∑
j=1

αiAj
ivj .

If we just leave off the summation symbol, we can write this even more compactly:

v = αivi , A(v) = A(αivi) = αiA(vi) = αiAj
ivj .

This is the Einstein summation convention: the summation symbol is left off, and any
repeated upper and lower indices are summed over.
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Lecture 7 - Vector spaces and their Duals

2/16/09

This lecture elaborates on some elements from lecture 6.

Throughout, we will use V to denote a vector space of dimension n <∞, and we will
use V ∗ to denote the dual of V . As always in this class, we assume that scalar field is R.
Recall that V ∗ is defined to to be the space of linear functionals, that is to say, A ∈ V ∗
whenever A is a linear map A : V → R. It is important to note that V ∗ is not just a set,
but is in fact a vector space.

1 Choosing bases for V and V ∗

Given a vector space V , the choice of a basis is fundamentally an arbitrary procedure,
though in some cases the choice is more-or-less natural.

In any case, in order to make calculations concrete, one must choose a basis by one
means or another. Once a basis {v1,v2, . . . ,vn} has been chosen, it is possible to express
any vector v ∈ V as a linear combination of basis vectors:

v = α1v1 + . . . + αnvn or v = αivi or v =

 α1

...
αn


{vi}

(these three equations are precisely equivalent). Once a basis {vi} for V has been chosen,
it is possible to choose a basis for the vector space V ∗. We define linear functionals vi by
requiring that

vi (vj) = δi
j ,
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and then extending linearly. That is to say, vi : V → R is the linear map

vi (v) = vi
(
α1v1 + . . . + αivi + . . . + αnvn

)
= α1vi (v1) + . . . + αivi (vi) + . . . + αnvi (vn)
= α1 · 0 + . . . + αi · 1 + . . . + αn · 0
= αi.

Using Einstein notation, the same computation can be done with much less writing:

vi (v) = vi
(
αjvj

)
= αjvi (vj)
= αjδi

j

= αi.

2 The matrix δij

Just now we claimed that αjδi
j = αi. Here we will prove this, and hopefully give some

insight into the object δi
j . Of course δi

j can be expressed as a matrix:

δ =


δ11 δ12 . . . δ1n
δ21 δ22 . . . δ2n
...

...
. . .

...
δn
1 δn

2 . . . δn
n

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = In.

Given v ∈ V , obviously In(v) = δ(v) = v. Letting v = αivi and expressing this fact in
matrix form, we have

v = αivi =

 α1

...
αn

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




α1

α2

...
αn

 =


δ11 δ12 . . . δ1n
δ21 δ22 . . . δ2n
...

...
. . .

...
δn
1 δn

2 . . . δn
n




α1

α2

...
αn



=


δ11α

1 + δ12α
2 + . . . + δ1nα

n

δ21α
1 + δ22α

2 + . . . + δ2nα
n

...
δn
1α

1 + δn
2α

2 + . . . + δn
nα

n

 =


δ1jα

j

δ2jα
j

...
δn
j α

j

 = δi
j α

j vi.

Therefore we have proven that δi
jα

j = αi.
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3 Examples

If {vi} is a basis of V , the basis {vi} of V ∗ is called the basis dual to {vi}. The fact that
the choice of the dual basis depends on the original choice of basis is illustrated by the two
following examples. In the examples, we will use V = R3 with standard basis î, ĵ, k̂.

Example 1 Let V = R3, and let v1 = î, v2 = ĵ, v3 = k̂. be the standard basis. Determine
the action of the dual basis v1, v2, v3 on a generic vector v = aî+ bĵ + cĵ ∈ R3.

Solution. This is very simple: we can express v = av1 + bv2 + cv3, so

v1(v) = v1(av1 + bv2 + cv3) = a

v2(v) = v2(av1 + bv2 + cv3) = b

v3(v) = v3(av1 + bv2 + cv3) = c.

Example 2 Let V = R3 and let w1 = î+ ĵ, w1 = î− ĵ, w1 = î+ ĵ+ k̂ be a basis. Determine
the action of the dual basis w1, w2, w3 on a generic vector v = aî+ bĵ + cĵ ∈ R3.

Solution. You should check that we can express

v = aî+ bĵ + ck̂ =
(
a

2
+
b

2
− c
)

w1 +
(
a

2
− b

2

)
w2 + cw3.

Therefore

w1 (v) = w1

((
a

2
+
b

2
− c
)

w1 +
(
a

2
− b

2

)
w2 + cw3

)
=

(
a

2
+
b

2
− c
)

w1 (w1) +
(
a

2
− b

2

)
w1 (w2) + cw1 (w3)

=
a

2
+
b

2
− c

w2 (v) = w2

((
a

2
+
b

2
− c
)

w1 +
(
a

2
− b

2

)
w2 + cw3

)
=

(
a

2
+
b

2
− c
)

w2 (w1) +
(
a

2
− b

2

)
w2 (w2) + cw2 (w3)

=
a

2
− b

2

w3 (v) = w3

((
a

2
+
b

2
− c
)

w1 +
(
a

2
− b

2

)
w2 + cw3

)
=

(
a

2
+
b

2
− c
)

w3 (w1) +
(
a

2
− b

2

)
w3 (w2) + cw3 (w3)

= c.

3



Lecture 8 - Vector spaces and their Duals, II

2/18/09

This lecture completes our formal discussion of dual spaces.

1 The double dual, V ∗∗

The space V ∗ is defined to be the space of linear operators on V . Of course, V ∗ is a vector
space itself, so also has a dual, denoted V ∗∗, called the “double-dual” of V .

But as a matter of fact, one can consider elements of V to acto on elements of V ∗:
there is an map

N : V ↪→ V ∗∗

given by

N (v) ∈ V ∗∗

N (v) (f) , f (v) for any f ∈ V ∗.

Theorem 1.1 If V is a finite dimensional vector space, then the map N : V → V ∗∗ is a a
vector space isomorphism.

Pf Homework problem 3.6. �

Often we drop the “N” from the notation, and just consider elements v ∈ V to act on
elements f ∈ V ∗ directly:

v ∈ V ∗∗ acts on V ∗ by

v (f) , f (v) for any f ∈ V ∗.

1



2 Change-of-basis matrices

Consider two bases {e1, . . . , en} and {f1, . . . , fn} for the vector space V . Any vector v ∈ V
can be expressed as a column vector in either system, though the column vector will be
different. If one knows the vector for v in the ei system, how can v be expressed in the fi
system?

One has to know the relation between the two systems. Define the numbers Ai
j implic-

itly by

ej = Ai
jfi.

Then, for example,

e1 =


1
0
...
0


{ei}

=


A1

1

A2
1

...
An

1


{fi}

ej =



0
...
0
1
0
...
0


{ei}

=



A1
j

...
Aj−1

j

Aj
j

Aj+1
j
...
An

j


{fi}

Therefore, a vector v = αiei can be expressed

v = αjej = αjAi
jfi =


A1

jα
j

A2
jα

j

...
An

j α
j


{fi}

.

The final vector is just the matrix multiplication
A1

jα
j

A2
jα

j

...
An

j α
j


{fi}

=


A1

1 A1
2 . . . A1

n

A2
1 A2

2 . . . A2
n

...
...

. . .
...

An
1 An

2 . . . An
n


{fi}←{ei}


α1

α2

...
αn


{ei}

Notice the subscript {fi} ← {ei} on the matrix. It is used to indicate what bases A
transitions between. The transformation from the fi to the ei basis is given by the inverse
matrix:

A{ei}←{fi} =
(
A{fi}←{ei}

)−1
.

2



3 Active vs. Passive transformations

There are always two ways to think about an operator A : V → V . A so-called active
transformation uses a fixed coordinate system, and performs a transformation of the under-
lying space. A so-called passive transformation just changes the basis vectors and leaves the
underlying space fixed. However these are conceptual differences only: any given operator
can be interpreted in either way.

Let’s illustrate this with an example. Let V = R2 with standard basis e1 = î, e2 = ĵ.
Let A be given by

A =
(

cos θ − sin θ
sin θ cos θ

)
.

Thought of as an active transformation, this is a rotation of space counterclockwise through
an angle of θ.

On the other hand, consider another basis f1 = cos(θ)̂i− sin(θ)ĵ, f2 = sin(θ)̂i+cos(θ)ĵ.
Then A is just the change-of-basis matrix from the ei to the fi bases.

A =
(

cos θ − sin θ
sin θ cos θ

)
{fi}←{ei}

.

Note that the new basis fi is a rotation of the old basis ei through a clockwise angle of θ.

Thus the matrix A can be considered to be either a transformation of the underlying
space (an active transformation, in this case counterclockwise rotation by θ) or as a change
of basis that leaves the vector space unchanged (a passive transformation, in this case a
clockwise rotation of the basis vectors by θ).

4 Actions on the dual space

Let A : V → V be a linear operator. We have not defined any kind of action of A on the
dual space V ∗. But, as we shall see, there should be such an action.

To see this, consider A to be a passive transformation, changing from, say, the {ei} ⊂ V
to the {fi} ⊂ V basis. Let f ∈ V ∗ be a linear functional, and let w ∈ V be a vector. Let
w{ei}, f{ei} be their expressions in the {ei} (respectively {ei}) basis, and w{fi}, f{f i} be
their expressions in the {fi} (respectively {f i}) basis. We have

w{fi} = A{fi}←{ei}w{ei}.

Now, since f{ei} and f{f i} are the same covector regardless of its expression in either basis,
it must have the same action on w, regardless of basis. Letting A(f) indicate the action of

3



A on f , we therefore must have

A(f)(A(w)) = f(w).
(A(f)){f i} · (Aw){fi} = (A(f)){f i} ·A{fi}←{ei}w{ei}. (Matrix multiplication)

Thus it must be the case that

(A(f)){f i} = f{ei} ·
(
A{fi}←{ei}

)−1 (Matrix multiplication)

Expressing this abstractly (that is, without necessarily choosing a basis),

Given f : V → R, we have A(f) : V → R, given by
A(f)(v) = f(A−1v) for any v ∈ V.

4



Lecture 9 - Tensor Products

Feb 18, 2009

1 Direct sum

If V and W are vector spaces and v ∈ V , w ∈ W are vectors, the direct sum of v and w is
defined to be their formal sum, denoted

v ⊕ w.

This is subject to the linearity conditions

α(v ⊕ w) = αv ⊕ αw

(v ⊕ w) + (v′ ⊕ w′) = (v + v′) ⊕ (w + w′),

where α ∈ R and v, v′ ∈ V and w,w′ ∈ W . The space of all such sums is denoted V ⊕W ,
the direct sum of the vector spaces V and W . That is,

V ⊕W = {v ⊕ w | v ∈ V, w ∈W}.

Example Let V = R and W = R. Describe the direct sum V ⊕W .
Solution We resort to choosing basis vectors. Let v ∈ V and w ∈ W be basis vectors.

The space V ⊕W is the set of “formal sums” of elements of V and W , meaning

x ∈ V ⊕W

if and only if

x = αv ⊕ βw.

Clearly, therefore, V ⊕W is just a 2-dimensional vector space, so is isomorphic to R2.

Theorem 1.1 Rn⊕Rm is isomorphic to Rn+m.

Pf Choose bases {ei}ni=1 for Rn and {fi}mi=1 for Rm. Let {gi}n+m
i=1 be a basis for Rn+m. A

generic element of Rn⊕Rm has the form

v =
(
α1e1 + . . . + αnen

)
⊕

(
β1f1 + . . . + βmfm

)
.

1



Let v ∈ Rn⊕Rm be another vector, given by

v =
(
α1e1 + . . . + αnen

)
⊕

(
β

1
f1 + . . . + β

m
fm

)
.

Then the addition v + v is given by

v + v =
(
(α1 + α1)e1 + . . . + (αn + αn)en

)
⊕

(
(β1 + β

1
)f1 + . . . + (βm + β

m
)fm

)
;

Let A : Rn⊕Rm → Rn+m be defined by

A(ei) = gi

A(fi) = gi+n

and extending linearly. That is,

A(v) = A
((
α1e1 + . . . + αnen

)
⊕

(
β1f1 + . . . + βmfm

))
= α1g1 + . . . + αngn + β1gn+1 + . . . + βmgn+m.

It is simple to verify that A is linear:

αA(v) +A(v) = αα1g1 + . . . + ααngn + αβ1gi+n + αβmgn+m

+α1g1 + . . . + αngn + β
1
gi+n + β

m
gn+m

= (αα1 + α1)g1 + . . . + (ααn + αn)gn + (αβ1 + β
1
)g1+n + . . . + (αβm + β

m
)gn+m

= A(αv + v).

It is also simple to verify that Ker(A) = {0}:

A(v) = 0 implies

α1g1 + . . . + αngn + β1g1+n + . . . + βmgn+m = 0g1 + . . . + 0gn+m implies

α1 = 0, . . . , αn = 0, β1 = 0, . . . , βm = 0 implies

v = 0.

Finally, we can verify that A is onto: if w = γ1g1 + . . . + γn+mgn+m is an element of
Rn+m, then the element v ∈ Rn⊕Rm given by

v =
(
γ1e1 + . . . + γnen

)
⊕

(
γ1+nf1 + . . . + γn+mfm

)
satisfies A(v) = w. �

As a side note, the direct sum is also sometimes called the “cross product”.

2 Tensor products

2.1 Definition of V ⊗W

The tensor product is formal multiplication of vectors, which is required to obey the linearity
relations. If V,W are two vector spaces and v ∈ V , w ∈ W are vectors, we denote their
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tensor product by

v ⊗ w.

The linearity relations are the following:

v ⊗ (αw) = α(v ⊗ w)
(αv)⊗ w = α(v ⊗ w)
v ⊗ (w + w′) = v ⊗ w + v ⊗ w′

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w

where α ∈ R and v, v′ ∈ V , w,w′ ∈W are vectors. The tensor product V ⊗W of two vector
spaces is defined to be the linear span of elements of the form v ⊗ w. That is,

V ⊗W = {v ⊗ w | v ∈ V, w ∈W}.

2.2 A basis for V ⊗W

If bases for V and W are chose, it is possible to write down a basis for the vector space
V ⊗W . Let {vi} ⊂ V be a basis for V and {wi} ⊂W be a basis for W . The various tensor
products vi⊗wj are elements of V ⊗W . A typical element of V ⊗W is a linear combination
of the vi ⊗ wj :

αijvi ⊗ wj

where the various coefficients αij ∈ R.

Example Let V = R2 and W = R2, with bases {v1, v2} and {w1, w2}. Find a basis for
V ⊗W , and describe a typical element.

Solution V ⊗W is the 4-dimensional space spanned by

v1 ⊗ w1, v1 ⊗ w2, v2 ⊗ w1, v2 ⊗ w2.

A typical element T ∈ V ⊗W can be written

T = α11v1 ⊗ w1 + α12v1 ⊗ w2 + α21v2 ⊗ w1 + α22v2 ⊗ w2,

where α11, α12, α21, α22 ∈ R.

Theorem 2.1 The vector space Rn⊗Rk is isomorphic with Rnk.

Pf Homework assignment! �
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Lecture 10 - Tensor Products

Feb 23, 2009

1 The Tensor algebra over V

If V is a vector space with scalar field R, we use the notation

R ,
⊗0

V , V ⊗0

V ,
⊗1

V , V ⊗1

V ⊗ V ,
⊗2

V , V ⊗2

V ⊗ V ⊗ V ,
⊗3

V , V ⊗3

etc.

Elements of the space
⊗i

V are called (homogeneous) tensors of degree i.

Theorem 1.1 If v1, . . . ,vn is a basis for V , then the ni many elements of the form

vi1 ⊗ vi2 ⊗ · · · ⊗ vin

constitute a basis for the vector space
⊗i

V .

�

The (infinite dimensional) algebra(⊗0
V

)
⊕
(⊗1

V

)
⊕
(⊗2

V

)
⊕ . . . .

is called the tensor algebra over V . A tensor is just an element of the tensor algebra. A
tensor T is called homogeneous of degree i if T ∈

⊗i
V . A tensor T is called decomposable

if T ∈
⊗i

V can be written in the form

T = v(1) ⊗ · · · ⊗ v(i),

1



where the v(j) are elements of V . Otherwise T is called indecomposable.

Examples. Let v1, . . . ,vn be a basis for V . A typical element T ∈
⊗2

V is a linear
combination of elements of the form vi ⊗ vj , namely

T = T ijvi ⊗ vj ,

where, of course, summation takes place in both the i and j indices.

A typical element T ∈
⊗3

V is a linear combination of elements of the form vi⊗vj⊗vk,
namely

T = T ijkvi ⊗ vj ⊗ vk.

The tensor T = v1 ⊗ v1 + v2 ⊗ v2 ⊗ v2 is not homogeneous. The tensor S = v1 ⊗
v2 + 2v1 ⊗ v3 is homogeneous and decomposable. The tensor U = v1 ⊗ v2 + 2v3 ⊗ v4 is
homogeneous and indecomposable.

2 The bigraded tensor algebra

It is possible to tensor with the dual space V ∗. We define⊗r,s
V = V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗

(r many copies of V , s many copies of V ∗). The tensor product is not commutative, meaning
that V ⊗W is not the same space as W ⊗ V . However, these spaces are isomorphic in a
natural way:

T : V ×W →W ⊗ V
T (v ⊗ w) = w ⊗ v.

This is called the transpose map. Applying this as many times as necessary, we can see that

V ⊗ V ∗ ⊗ V ∗ ⊗ V ≈ V ⊗ V ⊗ V ∗ ⊗ V ∗

V ⊗ V ∗ ⊗ V ⊗ V ∗ ⊗ V ∗ ⊗ V ≈ V ⊗ V ⊗ V ⊗ V ∗ ⊗ V ∗

etc ,

so that any tensor product of r many V ’s and s many V ∗’s, no matter what the order, is
isomorphic to

⊗r,s
V .

The (infinite dimensional) bigraded tensor algebra is commonly denoted⊗∗,∗
V.

An element T ∈
⊗∗,∗

V is called homogeneous of bidegree (r, s) if T ∈
⊗r,s

V .

2



As examples, a typical element T of
⊗1,1

V is given by

T = T i
jvi ⊗ vj .

A typical element T of
⊗1,2

V is given by

T = T i
jkvi ⊗ vj ⊗ vk.

a typical element T of
⊗2,3

V is given by

T = T ij
klmvi ⊗ vj ⊗ vk ⊗ vl ⊗ vm.

3 Tensors as bilinear maps and as operators

We give two concrete examples of uses for tensors.

Let V = span{v1,v2} be a 2-dimensional vector space, with dual V ∗ and dual basis
v1,v2. It is possible to consider elements of

⊗0,2
V to be bilinear maps of the form V ×V →

R, given by

v∗ ⊗ w∗(ṽ, w̃) = v∗(ṽ)w∗(w̃),

were v∗, w∗ ∈ V ∗ and ṽ, w̃ ∈ V . If T ∈
⊗0,2

V , is is simple to prove that T is bilinear,
meaning it is linear in each entry:

T (αv + v̄, w) = αT (v, w) + T (v̄, w)
T (v, αw + w̄) = αT (v, w) + T (v, w̄).

For example, let

T ∈
⊗0,2

V be given by T = v1 ⊗ v1 − 2v1 ⊗ v2

3



(notice that T is both homogeneous and decomposable). Then

T (v1,v1) = v1 ⊗ v1(v1,v1) − 2v1 ⊗ v2(v1,v1)
= v1(v1)v1(v1) − 2v1(v1)v2(v1)
= 1

T (v1,v2) = v1 ⊗ v1(v1,v2) − 2v1 ⊗ v2(v1,v2)
= v1(v1)v1(v2) − 2v1(v1)v2(v2)
= −2

T (v2,v1) = v1 ⊗ v1(v2,v1) − 2v1 ⊗ v2(v2,v1)
= v1(v2)v1(v1) − 2v1(v2)v2(v1)
= 0

T (v2,v2) = v1 ⊗ v1(v2,v2) − 2v1 ⊗ v2(v2,v2)
= v1(v2)v1(v2) − 2v1(v2)v2(v2)
= 0

Notice that T is not symmetric: for example T (v1,v2) 6= T (v2,v1).

4



An inner product on a vector space V is a map V × V → R (commonly denoted g(·, ·)
or 〈·, ·〉) that satisfies

• Bilinearity: g(αv+v̂, w) = αg(v, w) + g(v̂, w) and g(v, αw+ŵ) = αg(v, w) + g(v, ŵ)

• Symmetry: g(v, w) = g(w, v)

• Nondegeneracy: given v ∈ V , there is at least one vector w ∈ V so that g(v, w) 6= 0.

The Euclidean inner product on Rn is given by

g = v1 ⊗ v1 + v2 ⊗ v2 + . . . + vn ⊗ vn.

The Minkowski inner product is given by

g = v1 ⊗ v1 − 1
c2

v2 ⊗ v2 − . . . − 1
c2

vn ⊗ vn.

As another example, the tensor

g = v1 ⊗ v2 + v2 ⊗ v1

is an inner product. But the tensor

g = v1 ⊗ v2

is not an inner product for two reasons, namely it is not symmetric, and it is degenerate:
g(v2, ·) ≡ 0 no matter what goes in the second slot.

A second application of tensor products is to linear operators. After choosing a basis
vi and a dual basis vi, a tensor A ∈

⊗1,1
V is given by a linear combination of elements of

the form vi ⊗ vj :

A = Ai
jvi ⊗ vj .

This tensor can be considered to be a linear map V → V , as follows: given v ∈ V ,

A(v) ∈ V
A(v) = Ai

jvi vj(v).

Is is simple to verify that A : V → V is linear.

For example, let V = span{v1,v2}, and let A be the tensor

A ∈
0,2⊗

V

A = v1 ⊗ v1 − 2v2 ⊗ v1 + 3v1 ⊗ v2 + 10v2 ⊗ v2

5



Then

A(v1) = v1v1(v1) − 2v2v1(v1) + 3v1v2(v1) + 10v2v2(v1)
= v1 − 2v2

A(v2) = v1v1(v2) − 2v2v1(v2) + 3v1v2(v2) + 10v2v2(v2)
= 3v1 + 10v2.

This is equivalent to our old notation, where take the numbers Aj
i to be implicitly defined

by

A(vi) = Aj
ivj .

In either case, we have

A1
1 = 1, A2

1 = −2, A1
2 = 3, A2

2 = 10.

6



Lecture 11 - Tensors as maps, dual spaces, transformation

properties, alternating tensors, and wedge products

Feb 25, 2009

1 Tensors as maps

Let V be a vector space. We define V ∗ to be the vector space of linear maps V → R,
but we also know that (in the finite dimensional case at least) the space V is the space
of maps V ∗ → R. Likewise, we can consider elements of

⊗0,k
V to be k-fold linear maps

V × · · · × V → R:

T ∈
⊗0,k

V given by T = Ti1i2...ikv
i1 ⊗ vi2 ⊗ · · · ⊗ vik

T (v(1), . . . , v(k)) = Ti1i2...ikv
i1 ⊗ vi2 ⊗ · · · ⊗ vik

(
v(1), . . . , v(k)

)
= Ti1i2...ikv

i1(v(1))vi2(v(2)) . . .vik(v(k)),

and elements of
⊗k,0

V to be k-fold linear maps V ∗ × · · · × V ∗ → R:

T ∈
⊗k,0

V given by T = T i1i2...ikvi1 ⊗ vi2 ⊗ · · · ⊗ vik

T (v(1), v(2), . . . , v(k)) = T i1i2...ikvi1 ⊗ vi2 ⊗ · · · ⊗ vik
(
v(1), . . . , v(k)

)
= T i1i2...ikvi1(v(1))vi2(v(2)) . . .vik(v(k)).

Finally, it is possible to regard any element T ∈
⊗r,s

V as a map T : V ∗ × · · · × V ∗ ×
V × · · · × V → R. For example, an element T ∈

⊗1,2
V , given by

T = T ijk vi ⊗ vj ⊗ vk

can be considered to be a map V ∗ × V × V → R:

T (v∗, w, x) = T ijk vi(v∗)vj(w)vk(x),

where v∗ ∈ V ∗ and w, x ∈ V .

1



2 An addition to the Einstein notation

We introduce another feature of Einstein notation. Recall that we defined isomorphisms
V ∗⊗V ⊗V ∗ ≈ V ⊗V ∗⊗V ∗, etc. However, it is sometimes important to preserve the order
of the tensor products. As a point of fact,

T = v∗ ⊗ w ⊗ x∗ and S = w ⊗ v∗ ⊗ x∗

are different tensors. This is encoded in the Einstein notation by preserving the ordering of
the indices:

T = Ti
j
k vi ⊗ vj ⊗ vk

and

S = Sjik vj ⊗ vi ⊗ vk

are in different tensor spaces. In fact,

T : V × V ∗ × V → R,

whereas

S : V ∗ × V × V → R .

3 Dual spaces

If V ∗ is dual to V and V is dual to V ∗, what is the dual to
⊗r,s

V ? It is
⊗s,r

V .

Given a tensor T r,s ∈
⊗r,s

V , we can consider it to be a linear map
⊗s,r

V → R. On
decomposable elements of

⊗s,r
V we define this by

T
(
v(i1) ⊗ v(i2) ⊗ · · · ⊗ v(is) ⊗ v(j1) ⊗ v(j2) ⊗ · · · ⊗ v(jr)

)
, T

(
v(j1), v(j2), . . . , v(jr), v

(i1), v(i2), . . . , v(is)
)
,

and extending linearly.

4 Transformation properties

Let {e1, . . . , en} and {f1, . . . , fn} be different bases for V , with A = A{fi}←{ei} the the
transition matrix between them. Let {ei, . . . , en} and {f1, . . . , fn} be the respective dual
bases, with transition maps B = B{fi}←{ei}. We have

fi = Ajiej and f i = Bije
j .
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As was discussed in Lecture 8, section 4, we have the relation B = A−1. That is to say,

BikA
k
j = δij and AikB

k
j = δij .

A tensor T ∈
⊗1,1

V , for instance, may have the expression

T = T ij ei ⊗ ej

in the {ei} − {ei} basis. Its expression in the {fi} − {f i} basis is given by

T = T ij ei ⊗ ej

= T ij
(
Akifk

)
⊗
(
Bj lf

l
)

=
(
AkiB

j
lT
i
j

)
fk ⊗ f l.

Likewise for elements of any of the spaces
⊗r,s

V .

5 Symmetric and alternating tensors

A tensor T : V × · · · × V → R (r many V ’s) is called a symmetric tensor if

T
(
v(1), . . . , v(i), v(i+1), . . . , v(r)

)
= T

(
v(1), . . . , v(i+1), v(i), . . . , v(r)

)
.

That is, if you interchanging any two consecutive entries leaves the tensor unchanged. A
tensor T : V × · · · ×V → R (r many V ’s) is called an alternating or antisymmetric tensor if

T
(
v(1), . . . , v(i), v(i+1), . . . , v(r)

)
= −T

(
v(1), . . . , v(i+1), v(i), . . . , v(r)

)
.

That is, if interchanging any two consecutive entries introduces a minus sign.

This leads us to two new definitions.
Definition The space

⊙s
V ∗ ⊂

⊗0,s
V is the space of symmetric tensors of the type

V × · · · × V → R (s many V ’s).
Definition The space

∧s
V ∗ ⊂

⊗0,s
V is the space of alternating tensors of the type

V × · · · × V → R (s many V ’s).

Example Let V be a vectors space with basis {vi} and dual basis {vi}. Let

T = v1 ⊗ v2 + v2 ⊗ v1

S = v1 ⊗ v2 − v2 ⊗ v1

U = v1 ⊗ v2

W = v1 ⊗ v1.

Then T and W are symmetric tensors, S is an antisymmetric tensor, and U is neither
symmetric nor antisymmetric.

3



6 The Alt map and the wedge product

There is a canonical way of transforming any tensor T ∈
⊗0,s

V into an alternating tensor,
given by the Alt map:

Alt :
⊗0,s

V �
∧s

V ∗

Alt(T )(v(1), . . . , v(s)) =
1
s!

∑
π∈Sym(s)

(−1)|π|T (v(π1), . . . , v(πs)).

For instance, if T ∈
⊗0,2

V , then

Alt(T )(v, w) =
1
2

(T (v, w) − T (w, v)) .

If T ∈
⊗0,3

V , then

Alt(T )(v, w, x) =
1
6

(T (v, w, x) − T (v, x, w) − T (w, v, x) + T (w, x, v) + T (x, v, w) − T (x,w, v)) .

Since Alt(T ) is itself a tensor, we should be able to express in terms of a basis. For
instance if T = v1 ⊗ v2 then

Alt(T ) =
1
2

(v1 ⊗ v2 − v2 ⊗ v1)

and if T = v1 ⊗ v2 ⊗ v3, then

Alt(T ) =
1
6

(v1 ⊗ v2 ⊗ v3 − v1 ⊗ v3 ⊗ v2 − v2 ⊗ v1 ⊗ v3 + v2 ⊗ v3 ⊗ v1 + v3 ⊗ v1 ⊗ v2 − v3 ⊗ v2 ⊗ v1) .

Theorem 6.1 The map Alt :
⊗0,s

V →
∧s

V ∗ is onto, and linear (meaning Alt(αT +S) =
αAlt(T ) +Alt(S)). If T ∈

⊗0,s
V , then Alt(Alt(T )) = Alt(T ).

�

Given two alternating tensors, T ∈
∧n

V ∗ and S ∈
∧m

V ∗, the wedge product T ∧ S
of T and S is defined to be

T ∧ S , Alt(T ⊗ S).

Notice that T ∧ S ∈
∧n+m

V ∗.

Theorem 6.2 If T ∈
∧n

V ∗ and S ∈
∧m

V ∗, then T ∧ S = (−1)nmS ∧ T .

Example. Express v1 ∧ v2 as a tensor.
Solution:

v1 ∧ v2 = Alt(v1 ⊗ v2) =
1
2
(
v1 ⊗ v2 − v2 ⊗ v1

)
.
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Lecture 12 - Metric linear algebra

March 2, 2009

1 Metrics

Let V be a vector space with basis {v1, . . . ,vn}. Assume V is endowed with an inner product

g ∈
⊗2

V ∗. That is, g is given by

g = gijvi ⊗ vj

where g satisfies

• Symmetry: g(v, w) = g(w, v) for any v, w ∈ V . In other words, the matrix gij is
symmetric: gij = gji.

• Nondegeneracy: if 0 6= v ∈ V , then there is some v̄ ∈ V so that g(v, v̄) 6= 0.

An inner products is often called a metric.

2 The musical isomorphisms

Given a basis {vi} ⊂ V , we have discussed the existence of a dual basis {vi} ⊂ V ∗. One
might be tempted to think that this leads to an isomorphism V → V ∗, but any such attempt
to define such an isomorphism will be dependent on the basis that has been chosen.

If the vector space has a metric g, there is a natural (that is, basis-independent)
isomorphism

[ : V → V ∗.

This is defined by

[(v) ∈ V ∗

[(v)(w) = g(v, w).

1



Usually this is denoted more simply by

v ∈ V 7→ v[ ∈ V ∗

v[(·) = g(v, ·)
v[(w) = g(v, w) for w ∈ V.

and the like. The fact that this is an isomorphism is equivalent to the nondegeneracy of the
metric (homework problem). The inverse of the “[” isomorphism is the “]” isomorphism

] : V ∗ → V is given by ] = [−1.

Given f ∈ V ∗, we have

](f) ∈ V, often denoted f ] ∈ V.

It is easy to show (homework problem) that f ] ∈ V is characterized by

g(f ], v) = f(v).

3 The metric on the dual space

If g = gijvi ⊗ vj is a metric on V , we can define, in a natural (that is to say, basis-free)
way, a metric on the dual space V ∗. Given f, g ∈ V ∗, we define

g(f, g) = g(f ], g])

(recalling that f ], g] ∈ V and g : V × V → R). Considering g as a map V ∗ × V ∗ → R, we
can write

g = gijvi ⊗ vj .

It is possible to prove that the matrix gij is the inverse of the matrix gij (homework problem).
That is to say, it holds that

gikgkj = δi
j .

4 The musical isomorphisms in component form (rais-
ing and lowering indices)

Given a basis {vi} ⊂ V and its dual basis {vi} ⊂ V ∗, how can we express the musical
isomorphisms? Assume

v = αi

2



is a vector (recall this is shorthand for v = αivi). How can we find the components of the
covector v[ = αi? (We are NOT assuming that the numbers αi are the same as the numbers
αi.) By the definition of [, we have

v[(vj) = g(v,vj) = αig(vi,vj)
= αigklvk ⊗ vl(vi,vj) = αigklδ

k
iδ

l
j

= αigij

But of course also

v[(vj) = αivi(vj)
= αiδ

i
j = αj .

Therefore αj = αigij .

This procedure is often called lowering the index.

Now we describe the ] isomorphism in components. Let f = fi be a covector (recall
that this means f = fivi). We define the numbers f i by f ] = f i. Using the definition of
f ], we have

f(vj) = g(f ], vj) = g(f ivi, vj) = f igij

f(vj) = fivi(vj) = fiδ
i
j = fj .

Thus we can implicitly define f i by the relationship

f igij = fj .

Recalling that gij is the inverse of gij , we have

f igijg
jk = fjg

jk

f iδk
i = fjg

jk

fk = fjg
jk.

This means that f ] = fkvi ∈ V . This procedure is often called raising the index.

5 Raising and lowering tensor indices

Given an arbitrary tensor, for example T = T i
j ∈

⊗1,1
V , we can raise or lower its indices.

For example, the corresponding Tij ∈
⊗0,2

V is given by

Tij = T k
jgki

and the corresponding tensor T ij ∈
⊗2,0

V is given by

T ij = T i
kg

kj .

3



Lecture 13 - Vectors as directional derivatives

March 9, 2009

1 Coordinates

Let M be some space, say Euclidean n-space, Minkowski 1+n-space, or the like. Coordinates
are functions on the space M that assign to each point some unique set of numbers. It is
important to understand that a given space M is not a vector space, and coordinates are
not basis vectors of any kind. Coordinates are functions, pure and simple.

2 Vectors, tangent spaces, and the tangent bundle

Intuitively, a vector is a magnitude and a direction. This is not a rigorous definition,
however. A concept that can be made precise is the notion of the derivative of a function
along a curve. To define this concept, let p ∈ M be a point, let f : M → R be a function,
and let γ : (−ε, ε) → M be a curve parameterized by τ ∈ (−ε, ε) with γ(0) = p. Then the
derivative of f along γ at p is defined to be

d

dτ

∣∣∣
p
f , lim

h→0

f(γ(h)) − f(γ(0))
h

.

One computes this expression using partial derivatives: if {x1, . . . , xn} are coordinates on
M , we can write f = f(x1, . . . , xn) and compute

d

dτ
f =

dx1

dτ

∂

∂x1
f + . . . +

dxn

dτ

∂

∂xn
f,

that is, the operator d
dτ is a linear combination of the operators ∂

∂xi

We have not defined the term “vector” yet, but intuitively two paths γ(τ) and γ̃(τ̃)
which pass through the point p posses the same velocity vector at p if dxi

dτ = dxi

dτ̃ , which is
to say that d

dτ = d
dτ̃ .

1



Our intuitive notion of vectors seems to coincide with the mathematically precise notion
of directional derivatives. Thus we say v is a vector based at p ∈ M if vp is a linear
combination of the directional derivatives ∂/∂xi:

v = vi
∂

∂xi

∣∣∣
p
.

Note that we are justified in say that the partials ∂/∂xi are directional derivatives: ∂/∂xi

is obtained by varying xi and fixing all other coordinates.

The tangent space at p, denoted TpM , is defined to be the vector space of all vectors
based at p.

The tangent bundle of M , denoted TM , is defined to be the collection of all tangent
spaces TpM based at all points p of M .

3 Change of coordinates

If the coordinate functions are changed, it is important to know how to change the basis
vectors of each tangent space TpM . Let {x1, . . . , xn} and {y1, . . . , yn} be two coordinate
systems on M . We have the relationship

∂

∂xi
=

∂yj

∂xi
∂

∂yj
.

For example, if r, θ are the so-called polar coordinates on the Euclidean plane and x = r cos θ,
y = r sin θ are the corresponding rectangular coordinates, we have

∂

∂r
=

∂x

∂r

∂

∂x
+

∂y

∂r

∂

∂y

= cos(θ)
∂

∂x
+ sin(θ)

∂

∂y

=
x√

x2 + y2

∂

∂x
+

y√
x2 + y2

∂

∂y

∂

∂θ
=

∂x

∂θ

∂

∂x
+

∂y

∂θ

∂

∂y

= −r sin(θ)
∂

∂x
+ r cos(θ)

∂

∂y

= −y ∂

∂x
+ x

∂

∂y

2



Lecture 14 - Covectors

March 11, 2009

1 Covectors

To each point p of a space M is associated a tangent space, TpM , which is a vector space.
From our study of vector spaces, we know that for each of the tangent spaces TpM there
exists a dual space, called T ∗

pM . This is an entirely abstract construction however.

It is possible to determine the nature of the dual space directly. We begin by defining
the d-operator: if f is a function on M and X ∈ TpM is a vector, we can define the action
of f on X by

df(X) , X(f).

Let’s see how df operators on the basis vectors ∂/∂xi:

df

(
∂

∂xi

)
=

∂f

∂xi
.

Since the coordinates {xi} are functions, it makes sense to apply d to them as well:

dxi

(
∂

∂xj

)
,

∂xi

∂xj
= δi

j .

Since (
∂f

∂xj
dxj

) (
∂

∂xi

)
=

∂f

∂xj

∂xj

∂xi
=

∂f

∂xj
δj

i =
∂f

∂xi
,

we can write

df =
∂f

∂xj
dxj .

Thus clearly dx1, . . . , dxn is the basis dual to ∂/∂x1, . . . , ∂/∂xn. Thus we can take

T ∗
pM = span{dx1, . . . , dxn}.

1



Lecture 15 - Tensor Fields and the Metric tensor

March 13, 2009

1 Tensor fields

Let M be a space. One may define vector fields, covector fields, and, more generally, tensor
fields on M .

A vector field is the assignment of a vector to each point of M ; likewise a covector field
is the assignment of a covector to each point of M . For example, if M is Euclidean 2-space
with standard x-y coordinates, then

X = X(x, y) = −y ∂

∂x
+ (x − y2)

∂

∂y

is a vector field, and

ω = ω(x, y) = (x2y − x) dx − xy dy

is a covector field.

There is no obstruction to having fields of higher order tensors. For instance

T = T i
j
k ∂

∂xi
⊗ dxj ⊗ ∂

∂xk
,

where each T i
j
k = T i

j
k(x1, . . . , xn) is a function of the coordinates {x1, . . . , xn}.

2 The metric tensor

The most important tensor is the metric tensor. A metric on M is the assignment of an inner
product to each tangent space TpM of M . A metric gives a space its notion of distance.
The length or magnitude of a vector v ∈ TpM is defined to be

|v| =
√
g(v, v).

1



If γ : [a, b]→M is a path parameterized by τ (ie, γ = γ(τ), a ≤ τ ≤ b), the vector tangent
to γ is

d

dτ
=

dxi

dτ

∂

∂xi
.

The speed of γ is given by∣∣∣ d
dτ

∣∣∣ =

√
g

(
d

dτ
,
d

dτ

)
=

√
gij
dxi

dτ

dxj

dτ
.

The length of the path γ for τ ∈ [a, b] is given by

Lb
a(γ) =

∫ b

a

∣∣∣ d
dτ

∣∣∣ dτ.
Example Let M be Euclidean 2-space with standard x-y coordinates. Define a tensor field
g by

g =
4

(1 + x2 + y2)2
dx⊗ dx +

4
(1 + x2 + y2)2

dy ⊗ dy.

It is simple to check that g is an inner product at each point of M (that is, it is symmetric
and nondegenerate at each point). This metric is explored in the homework.

Example Let M be the following subset of R2:

M = {(x, y) |x2 + y2 < 1 }.

Namely M is the interior of the unit ball. Let g be a metric defined on M by

g =
4

(1 − x2 − y2)2
dx⊗ dx +

4
(1 − x2 − y2)2

dy ⊗ dy.

Note that g “blows up” (goes to infinity) on the boundary of M , so in particular it cannot
be (continuously) continued beyond M . Let

γ(τ) = (τ, τ), 0 ≤ τ ≤ b

be a path in M (it must be that 0 < b < 1/
√

2 for the path to remain in M). The length
of γ is

d

dτ
=

dx

dτ

∂

∂x
+
dy

dτ

∂

∂y
=

∂

∂x
+

∂

∂y

Lb
0(γ) =

∫ b

0

∣∣∣ d
dτ

∣∣∣ dτ =
∫ b

0

∣∣∣ ∂
∂x

+
∂

∂y

∣∣∣ dτ =
∫ b

0

√
8

(1− x2 − y2)2
dτ

=
∫ b

0

2
√

2
1− 2τ2

dτ = 2 tanh−1(
√

2τ)
∣∣∣b
0

= 2 tanh−1(
√

2b).

Notice that the pathlength Lb
0(γ) approaches ∞ as b approaches 1/

√
2, as expected.

2



Lecture 16 - Lie brackets and the d-operator

March 16, 2009

1 The Lie Bracket

Let X and Y be vector fields on a space M . We define the Lie bracket (sometimes called
the commutator or just the bracket) [X,Y ] to be the operator

[X, Y ](f) = X(Y (f)) − Y (X(f)).

Usually we just write [X,Y ] = XY −Y X. As it turns out, the bracket of two vector fields is
again a vector field, meaning it is a first-order differential operator. In components, letting
X = Xi ∂

∂xi and Y = Y i ∂
∂xi , we have

[X, Y ](f) = X(Y (f)) − Y (X(f))

= Xi ∂

∂xi

(
Y j ∂f

∂xj

)
− Y i ∂

∂xi

(
Xj ∂f

∂xj

)
= Xi ∂Y

j

∂xi

∂f

∂xj
+ XiY j ∂2f

∂xi∂xj
− Y i ∂X

j

∂xi

∂f

∂xj
− Y iXj ∂2f

∂xi∂xj
.

By the commutativity of second partial derivatives, the two terms with second partials
cancel out. We are left with

[X, Y ](f) =
(
Xi ∂Y

j

∂xi

∂

∂xj
− Y i ∂X

j

∂xi

∂

∂xj

)
(f)

=
(
X(Y j)

∂

∂xj
− Y (Xj)

∂

∂xj

)
(f)

Thus [X,Y ] is the vector field:

[X, Y ] = Xi ∂Y
j

∂xi

∂

∂xj
− Y i ∂X

j

∂xi

∂

∂xj
= X(Y j)

∂

∂xj
− Y (Xj)

∂

∂xj

In a sense, the bracket is a kind of derivative operation, which measures how two vector
fields mutually change with respect to one another.

1



2 Forms

Given a space M , let Ωp(M) denote the collection of all fields of alternating p-tensors. An
alternating p-tensor field is known as a form. For example,

f = f(x1, . . . , xn) is a 0− form
ω = ωidx

i where ωi = ωi(x1, . . . , xn) is a 1−form
η = ηijdx

i ∧ dxj where ηij = ηij(x1, . . . , xn) is a 2−form
etc.

Example Let {x1, x2, x3} be coordinates on the 3-dimensional space M . Let

ω =
(
(x1)2 − x2

)
dx1 ∧ dx2 + (x1 − x2)dx1 ∧ dx3 + (x1x3)dx2 ∧ dx3

be a 2-form, and let

X = x1x3 ∂

∂x1
− x2 ∂

∂x3
and Y = (x2)2

∂

∂x2

be vector fields. Compute ω(X,Y ).
Solution

ω(X,Y ) =
(
(x1)2 − x2

)
dx1 ∧ dx2(X,Y ) + (x1 − x2)dx1 ∧ dx3(X,Y ) + (x1x3)dx2 ∧ dx3(X,Y )

=
(
(x1)2 − x2

)
· 1

2
·
(
x1x3(x2)2 − 0

)
+ (x1 − x2) · 1

2
· (0 − 0) + (x1x3) · 1

2
·
(
0 + (x2)3

)
=

1
2

(x1)3(x2)2x3 − 1
2
x1(x2)3x3 +

1
2
x1(x2)3x3

�

3 The d-operator

Given a function f , we have defined df to be the covector given by

df(X) = X(f).

If {xi} are coordinates on M , then we can express

df =
∂f

∂xi
dxi.

Since f is a 0-form and df is a 1-form, we can consider d to be a map

d : Ω0(M)→ Ω1(M).

2



It is possible to extend the d-operator to an operation

d : Ωp(M)→ Ωp+1(M)

as follows. In the {xi} coordinate system, any decomposable p-form ω can be written

ω = f dxi1 ∧ dxi2 ∧ · · · ∧ dxip .

Then we define dω to be the (p+ 1)-form

dω = df ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip

=
∂f

∂xj
dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip .

Ostensibly the definition of dω depends on the coordinates used. If we had used different
coordinates, say {yi} coordinates, how do we know we would end up with the same tensor?

As a point of fact, the definition of the d-operator is independent of the coordinate
system, and is therefore and intrinsic operator. This is proved in the homework.

Example Consider the two coordinate systems {r, θ} (polar coordinates) and {x, y}
(rectangular coordinates) on Euclidean 2-space, where (as usual) r2 = x2 + y2, tan θ = y/x.
Let

ω = rdθ

be a 1-form. Simple computations give

dr =
∂r

∂x
dx +

∂r

∂y
dy dθ =

∂θ

∂x
dx +

∂θ

∂y
dy

dr =
x√

x2 + y2
dx +

x√
x2 + y2

dy dθ =
−y

x2 + y2
dx +

x

x2 + y2
dy

and

dx =
∂x

∂r
dr +

∂x

∂θ
dθ dy =

∂y

∂r
dr +

∂y

∂θ
dθ

dx = cos(θ) dr − r sin(θ) dθ dy = sin(θ) dr + r cos(θ) dθ.

Therefore we can express ω in rectangular coordinates as

ω = r dθ =
−y√
x2 + y2

dx +
x√

x2 + y2
dy

Prove that dω is the same 2-form, regardless of how it is computed

Solution We compute dω in the two different coordinate systems.
In the {r, θ} coordinate system:

dω = d(r dθ) =
∂r

∂r
dr ∧ dθ +

∂r

∂θ
dθ ∧ dθ

= dr ∧ dθ.

3



In the {x, y} coordinate system:

dω = d

(
−y√
x2 + y2

dx +
x√

x2 + y2
dy

)

=
∂

∂y

(
−y
(
x2 + y2

)−1/2
)
dy ∧ dx +

∂

∂x

(
x
(
x2 + y2

)−1/2
)
dx ∧ dy

=
(
−
(
x2 + y2

)−1/2
+ y2

(
x2 + y2

)−3/2
)
dy ∧ dx +

((
x2 + y2

)−1/2 − x2
(
x2 + y2

)−3/2
)
dx ∧ dy

=
1√

x2 + y2
dx ∧ dy.

Now, is dr ∧ dθ the same tensor as (x2 + y2)−1/2dx ∧ dy? We compute:

dr ∧ dθ =

(
x√

x2 + y2
dx +

x√
x2 + y2

dy

)
∧
(
−y

x2 + y2
dx +

x

x2 + y2
dy

)
=

x2

(x2 + y2)3/2
dx ∧ dy − y2

(x2 + y2)3/2
dy ∧ dx

=
1√

x2 + y2
dx ∧ dy.

Therefore, the tensor dω is the same whether computed in the {r, θ} coordinate system of
the {x, y} coordinate system.

4 Four properties of the d-operator

In this section we demonstrate that the d-operator (which is defined in terms of a given
coordinate system {xi}) satisfies four properties. Assuming ω, η ∈ Ω∗(M) and f ∈ Ω0(M),
then

• d(ω + η) = dω + dη (linearity)

• df(X) = X(f)

• ddf ≡ 0

• d(ω ∧ η) = (dω) ∧ η + (−1)|ω|ω ∧ (dη) (generalized Leibnitz rule).

Now to prove these conditions: the first condition is implicit in the definition of d : Ωp(M)→
Ωp+1(M); the second is the explicit definition of d : Ω0(M)→ Ω1(M).

To prove that ddf = 0, we use two facts: 1-forms anticommute and second partial
derivatives commute. In coordinates, we get

ddf = d

(
∂f

∂xi
dxi

)
=

∂2f

∂xj∂xi
dxj ∧ dxi.

4



Now we compute

∂2f

∂xj∂xi
dxj ∧ dxi =

∂2f

∂xi∂xj
dxj ∧ dxi partials commute

= − ∂2f

∂xi∂xj
dxi ∧ dxj 1− forms anticommute

= − ∂2f

∂xj∂xi
dxj ∧ dxi relabel i and j

Thus ddf = −ddf so therefore ddf = 0.

Next we prove the Leibnitz rule. First note that the Leibnitz rule is just the product
rule, when dealing with 1-forms:

d(fg) =
∂(fg)
∂xi

dxi = g
∂f

∂xi
dxi + f

∂g

∂xj
dxj = g df + f dg.

By the linearity condition, without loss of generality we can assume ω and η are de-
composable. Let ω ∈ Ωp(M) and η ∈ Ωq(M) be given by

ω = f dxi1 ∧ dxi2 ∧ · · · ∧ dxip

η = g dxj1 ∧ dxj2 ∧ · · · ∧ dxjq

then

d(ω ∧ η) = d
(
fg dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

)
= g df ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq + f dg ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= df ∧ dxi1 ∧ · · · ∧ dxip ∧ (gdxj1) ∧ · · · ∧ dxjq + (−1)p f dxi1 ∧ · · · ∧ dxip ∧ dg ∧ dxj1 ∧ · · · ∧ dxjq

= dω ∧ dη + (−1)pω ∧ dη.

This completes the proof that the above four properties hold for the d-operator. In the
homework, it is proven that these properties in fact characterize the d-operator completely.
Since these properties are stated independent of any coordinates, the d-operator is therefore
also independent of coordinates, despite the fact that the original definition appears to be
coordinate-dependent.
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Lecture 17 - Relation between the classical vector

operations and the d-operator. Also 4-velocity and

3-velocity, and 4-momentum.

March 18, 2009

1 Classical Vector Analysis

In classical 3-dimensional vector analysis, we always work with standard orthonormal coor-
dinates (x, y, z) (never polar or cylindrical coordinates) and we consider a vector at a point
p to be an assignment of a list of 3 numbers to p. A vector field is an assignment of a list of
3 numbers to each point of a region of space. Typically vector fields are denoted in capitals:
X, Y , W , etc.

Two algebraic operations
Let X = (a, b, c) and Y = (α, β, γ) be two vectors based at a point p. We define their

inner product and their cross product to be

〈X, Y 〉 = aα + bβ + cγ

= |X||Y | cos θ
X × Y = (bγ − cβ, cα− aγ, aβ − bα)

= n̂|X||Y | sin θ,

where θ is the angle between x and Y , and n̂ is the unique unit vector normal to both X
and Y obtained using the right-hand rule.

Three analytic operations
Let X = (a, b, c) be a vector, and let f be a function. We define the gradient of f to

be the vector field

∇f =
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

It is interpreted to be the vector whose direction at each point is that of maximum increase
of the function f , and whose length indicates the rate of that increase.

1



We define the divergence of the vector field X to be the function

∇ ·X =
∂a

∂x
+

∂b

∂y
+

∂c

∂z
.

The divergence of a vector field at a point is interpreted to be its tenancy to rarify or
accumulate at that point.

We define the curl of the vector field X to be the vector field

∇×X =
(
∂c

∂y
− ∂b

∂z
,
∂a

∂z
− ∂c

∂x
,
∂b

∂x
− ∂a

∂y

)
.

The curl of a vector field at a point is interpreted to be the tenancy of the vector field to
rotate about a point, where the direction of ∇×X is the axis of rotation (according to the
right-hand rule) and the length of ∇×X is the magnitude of the rotation.

Two identities

The following two identities are theorems of classical analysis:

∇× (∇f) = 0
∇ · (∇×X) = 0.

2 The d-operator and the classical vector operations

The classical vector operations all have equivalents in the language of forms. The three
analytic operations can be recovered using the d-operator in various ways.

The dot product
This is just the inner product: if X = Xi ∂

∂xi and Y = Y i ∂
∂xi , then

〈X, Y 〉 = gijX
iY j .

Note that if gij = δij is the Euclidean inner product, then this is the classical dot product.

The cross product
Let X = adx1 + bdy + cdz and Y = αdx + βdy + γdz be 1-forms. Then X ∧ Y is the

2-form given by

X ∧ Y = (adx+ bdy + cdz) ∧ (αdx+ βdy + γdz)
= (bγ − cβ) dy ∧ dz + (aγ − cα) dz ∧ dx + (aβ − bα) dx ∧ dy

The gradient
Let f be a 0-form (a function). Then

df =
df

dx
dx +

df

dy
dy +

df

dz
dz.
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The curl
Let ω = adx+ bdy + xdz be a 1-form. Then by the definition of dω we have

dω = d(a) ∧ dx + d(b) ∧ dy + d(c) ∧ dz

=
da

dx
dx ∧ dx +

da

dy
dy ∧ dx +

da

dz
dz ∧ dx

+
db

dx
dx ∧ dy +

db

dy
dy ∧ dy +

db

dz
dz ∧ dy

+
dc

dx
dx ∧ dz +

dc

dy
dy ∧ dz +

dc

dz
dz ∧ dz

=
(
dc

dy
− db

dz

)
dy ∧ dz +

(
da

dz
− dc

dx

)
dz ∧ dx +

(
db

dx
− da

dy

)
dx ∧ dy.

The divergence
Let ω = ady ∧ dz + bdz ∧ dx + cdx ∧ dy be a 2-form. We compute dω:

dω =
da

dx
dx ∧ dy ∧ dz +

da

dy
dy ∧ dy ∧ dz +

da

dz
dz ∧ dy ∧ dz

+
db

dx
dx ∧ dz ∧ dx +

db

dy
dy ∧ dz ∧ dx +

db

dz
dz ∧ dz ∧ dx

+
dc

dz
dz ∧ dx ∧ dy +

dc

dy
dy ∧ dx ∧ dy +

dc

dz
dz ∧ dx ∧ dy

=
(
da

dx
+

db

dy
+

dc

dz

)
dx ∧ dy ∧ dz.

Two identities in one
In our new notation, the two vector identities ∇×∇f = 0 and ∇·(∇×X) = 0 coalesce

into the single fact that dd = 0.

Given a function f , the 1-form df is equivalent to the classical gradient. Given a 1-form
ω, the 2-form dω is equivalent to the classical curl. This means ddf is the classical analog
of the curl of the gradient, and the fact that ddf = 0 is equivalent to the classical theorem
∇×∇f = 0.

Given a 2-form η, the 3-form dη is equivalent to the classical divergence. If ω is a
1-form, then ddω is equivalent to the divergence of the curl, and the fact that ddω = 0 is
equivalent to the classical theorem ∇ · (∇×X) = 0.

3 A comment on notation

In the context of Minkowski space, indices i, j, k, etc will sum from 0 to 3. Indices a, b,
c, etc will sum from 1 to 3 (ie, only over the space-dimensions, not time). For instance, in

3



coordiantes a 4-vector v will be denoted

v = vi
∂

∂xi
= v0 ∂

∂x0
+ v1 ∂

∂x1
+ v2 ∂

∂x2
+ v3 ∂

∂x3
,

and a 3-vector ~v will be denoted

~v = ~va
∂

∂xa
= ~v1 ∂

∂x1
+ ~v2 ∂

∂x2
+ ~v3 ∂

∂x3
.

4 4-velocity and 3-velocity

Let γ(τ) be a path through space-time, parameterized by τ . Typically γ represents a
particle’s worldline, its path through space-time. Given coordinates {xi}, the velocity vector
of γ is

v =
d

dτ
=

dxi

dτ

∂

∂xi
.

If the coordinates {xi} constitute an inertial reference frame, we can define the particle’s
3-velocity:

~v =
dxa

dx0

∂

∂xa

=
dx1

dx0

∂

∂x1
+
dx2

dx0

∂

∂x2
+
dx3

dx0

∂

∂x3

=
dx1/dτ

dx0/dτ

∂

∂x1
+
dx2/dτ

dx0/dτ

∂

∂x2
+
dx3/dτ

dx0/dτ

∂

∂x3

This indicates the rate of change of the particle’s position with respect to coordinate time.

Recall the Minkowski metric:

g11 = 1, g22 = − 1
c2
, g22 = − 1

c2
, g33 = − 1

c2

Given a 4-vector v = vi ∂
∂xi , we define its norm-square is

|v|2 = gijv
ivj = v0v0 − 1

c2
v1v1 − 1

c2
v2v2 − 1

c2
v3v3

(recall that this can be positive, negative, or zero).

We will indicate 3-vectors by using an over-arrow: ~v means ~v is a 3-vector. If ~v is a
3-tensor, we define its norm-square to be the Euclidean norm-square:

|~v|2 = δabv
avb = v1v1 + . . . + vnvn.

We impose the following physicality condition on timelike paths:
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• If γ(τ) represents the path of a massive particle through space-time, its velocity vector
v = d

dτ is time-like and |v|2 = +1.

Using the physicality condition, we can compute the component dx0

dτ for time-like paths:

1 =
∣∣∣ d
dτ

∣∣∣2
=

(
dx0

dτ

)2

− 1
c2

(
dx1

dτ

)2

− 1
c2

(
dx2

dτ

)2

− 1
c2

(
dx3

dτ

)2

1(
dx0

dτ

)2 = 1 − 1
c2

(
dx1/dτ

dx0/dτ

)
− 1

c2

(
dx2/dτ

dx0/dτ

)
− 1

c2

(
dx3/dτ

dx0/dτ

)
= 1 − 1

c2

(
dx1

dx0

)
− 1

c2

(
dx2

dx0

)
− 1

c2

(
dx3

dx0

)
(
dx0

dτ

)2

=
1

1 − |~v|2
c2

dx0

dτ
= γ|~v|

Using this, we have

v = vi
∂

∂xi

~v = ~va
∂

∂xa

where v0 = γ, va = γ~va. A shorthand way to write this is to use “classical” vector
notation:

~v ,

(
dx1

dx0
, . . . ,

dxn

dx0

)
=

(
~v1, . . . , ~vn

)
v ,

(
dx0

dτ
,
dx1

dτ
, . . . ,

dxn

dτ

)
=

(
v0, v1, . . . , vn

)
=

(
γ, γ~v1, . . . , γ~vn

)
= (γ, γ~v) .

5 Momentum

If v = vi = vi ∂
∂xi is a velocity vector, we define the corresponding momentum (or conjugate

momentum) covector to be

p = −mc2v[,

5



or, in components,

pi = −mc2gijvj .

Recall the Minkowski metric

g00 = 1 g11 = − 1
c2

g22 = − 1
c2

g33 = − 1
c2
.

Then we have

v = v0 ∂

∂x0
+ v1 ∂

∂x1
+ v2 ∂

∂x2
+ v3 ∂

∂x3

p = −mc2v0dx0 + mv1dx1 + mv2dx2 + mv3dx3.

Using vector notation

v = (γ, γ~v) ∂

∂xi

p = −mc2
(
γ, − 1

c2
γ ~v

)
dxi

=
(
−mc2 γ, mγ ~v

)
dxi =

(
−mc2γ, ~p

)
.

Note the space-components:

~p = mγ~v.

This closely resembles the classical 3-momentum ~p = m~v.
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Lecture 18 - Conservation of energy-momentum and the

Einstein equation

March 20, 2009

1 Taylor expansion of γ

Let γ = γ(v) =
(

1 − v2

c2

)−1/2

. This is a fairly complicated expression in terms of v,
involving a square root and an inversion. A good way to simplify any function into a more
workable form is to expand it into its Taylor series. Using the formula

γ(v) = γ(0) + γ′(0)v +
1
2!
γ′′(0)v2 + . . . +

1
i!
γ(i)vi + . . .

and the computations

γ′(v) =
v

c2

(
1 − v2

c2

)− 3
2

γ′′(v) =
1
c2

(
1 − v2

c2

)− 3
2

+ 3
v2

c4

(
1 − v2

c2

)− 5
2

γ′′′(v) = 9
v

c4

(
1 − v2

c2

)− 5
2

+ 15
v3

c6

(
1 − v2

c2

)− 7
2

γ′′′′(v) =
9
c4

(
1 − v2

c2

)− 5
2

+ 90
v2

c6

(
1 − v2

c2

)− 7
2

+ 105
v4

c8

(
1 − v2

c2

)− 9
2

etc

gives

γ(v) = 1 +
1
2
v2

c2
+

9
24
v4

c4
+ . . . .

1



2 The Relativistic Conservation Law

The Law of Conservation of Energy-Momentum states that the sum of all momenta remains
constant in time.

For instance, assume one has k many particles, with momenta p(1), . . . , p(k). After an
interaction, there are l many particles, with momenta p̃(1), . . . , p̃(l). The conservation law
states that

k∑
i=1

p(i) =
l∑
i=1

p̃(i).

3 Energy

Letting γ(τ) be a particle’s path through 4-space, its velocity is v = ∂
∂τ , and we have defined

its momentum to be

p = −mc2v[.

In components, we have

p = −mc2 dx
0

dτ
dx0 + m

dx1

dτ
dx1 + m

dx2

dτ
dx2 + m

dx3

dτ
dx3

= −mc2γdx0 + mγ~v1dx1 + mγ~v2dx2 + mγ~v3dx3

=
(
−mc2γ, mγ~v

)
.

So the 3-momentum can be written

~p = mγ~v,

which approximates the classical momentum at speeds v << c.

So much for the p1, p2, p3 components. How do we interpret the p0 component? Using
the Taylor series from above, we get

−p0 = mc2γ

= mc2 +
1
2
m|~v|2 +

9
24
m
|~v|4

c2
+ . . . .

In the classical limit where v << c, all higher terms are negligible and we have

−p0 ≈ mc2 +
1
2
m|~v|2.

This is the classical kinetic energy plus the term mc2. Following Einstein, we interpret p0

as the particle’s energy

E = −p0.
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Thus, the 4-momentum covector has components

p =
(
−mc2γ, mγ~v

)
= (−E, ~p)

where E = mc2γ is the particle’s energy and ~p = mγ~v is the particle’s 3-momentum.

4 The Einstein Equation

Using the physicality condition |v|2 = |v[|2 = 1, we get

|p|2 = | −mc2v[|2 = m2c4.

But on the other hand,

|p|2 = |(−E, ~p)|2 = E2 − |~p|2c2,

so we get the Einstein equation:

m2c4 = E2 − |~p|2c2.

This is the relativistic relationship between mass, energy, and momentum.

If the 3-velocity ~v is zero, this reads E = mc2. On the other hand, in the case of
massless particles (for instance photons), we have E = |~p|c.

Note that, in the case of light, we also have the equation E = hf where f is the light’s
frequency.
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Lecture 19 - Stereographic projection

March 25, 2009

1 The sphere

Coordinates on Rn+1 will be denoted {x1, x2, . . . , xn, xn+1} We define the n-sphere to be
the subset of Rn+1 given by

Sn = { (x1, x2, . . . , xn) | (x1)2 + (x2)2 + . . . + (xn+1)2 = 1 }.

2 Stereographic projection Sn → Rn

We consider Rn ⊂ Rn+1 to be the plane given by xn+1 = 0. For convenience, we will let
(x1, . . . , xn, xn+1) be coordinates on Rn+1 and (ξ1, . . . , ξn} be coordinates on Rn ⊂ Rn+1.

We define the map φ : Sn → Rn to be

φ
(
x1, . . . , xn, xn+1

)
=

(
x1

1− xn+1
, . . . ,

xn

1− xn+1

)
.

This is defined only for (x1)2 + · · ·+ (xn+1)2 = 0, and when xn+1 6= 1. The inverse map is
given by

φ−1
(
ξ1, . . . , ξn

)
=

(
2ξ1

(ξ1)1 + · · ·+ (ξn)2 + 1
, . . . ,

2ξn

(ξ1)1 + · · ·+ (ξn)2 + 1
,

(ξ1)2 + · · ·+ (ξn)2 − 1
(ξ1)2 + · · ·+ (ξn)2 + 1

)
.

This sets us an association between coordinates (x1, . . . , xn, xn+1) on Sn and coordi-
nates (ξ1, . . . , ξn) on Rn, given by

ξ1 =
x1

1 − xn+1

...

ξn =
xn

1 − xn+1

1



and

x1 =
2ξ1

(ξ1)2 + . . . + (ξn)2 + 1
...

xn =
2ξn

(ξ1)2 + . . . + (ξn)2 + 1

xn+1 =
(ξ1)2 + . . . + (ξn)2 − 1
(ξ1)2 + . . . + (ξn)2 + 1

.

3 Examples

Example: S1 → R1 We use coordinates (x, y) on R2 and a on R1. The 1-sphere (aka
the circle) is defined by the equation x2 + y2 = 1. We have

φ(x, y) =
x

1− y

φ−1(a) =
(

2a
a2 + 1

,
a2 − 1
a2 + 1

)
.

That is to say, we have the association

a =
x

1− y

x =
2a

a2 + 1

y =
a2 − 1
a2 + 1

(one easily checks that x2 + y2 = (2a)2

(a2+1)2 + (a2−1)2

(a2+1)2 = 1, as required).

Example: S2 → R2 We use coordinates (x, y, z) on R3 and (a, b) on R2. The 2-sphere
is defined by the equation x2 + y2 + z2 = 1. We define the map φ : S2 → R2 by

φ(x, y, z) =
(

x

1− z
,

y

1− z

)
φ−1(a, b) =

(
2a

a2 + b2 + 1
,

2b
a2 + b2 + 1

,
a2 + b2 − 1
a2 + b2 + 1

)
.

That is to say, we have the association

a =
x

1− z
b =

y

1− z

x =
2a

a2 + b2 + 1
y =

2b
a2 + b2 + 1

z =
a2 + b2 − 1
a2 + b2 + 1

2



(one easily checks that x2 +y2 +z2 = (2a)2

(a2+b2+1)2 + (2b)2

(a2+b2+1)2 + (a2+b2−1)2

(a2+b2+1)2 = 1, as required).

Example: S3 → R3 We use coordinates (x, y, z, w) on R4 and (a, b, c) on R3. The 3-
sphere S3 ⊂ R4 is defined by the equation x2 + y2 + z2 + w2 = 1. We define the map
φ : S3 → R3 by

φ(x, y, z, w) =
(

x

1− w
,

y

1− w
,

z

1− w

)
φ−1(a, b, c) =

(
2a

a2 + b2 + c2 + 1
,

2b
a2 + b2 + c2 + 1

,
2c

a2 + b2 + c2 + 1
,
a2 + b2 + c2 − 1
a2 + b2 + c2 + 1

)
.

That is to say, we have the association

a =
x

1− w
b =

y

1− w
c =

z

1− w

x =
2a

a2 + b2 + c2 + 1
y =

2b
a2 + b2 + c2 + 1

z =
2c

a2 + b2 + c2 + 1
z =

a2 + b2 + c2 − 1
a2 + b2 + c2 + 1

.

4 Vectors on S2

From now on, we specialize to the case of the 2-sphere.

Under the association S2 → R2, there is an association between vectors on R2 (given
generically by v1 ∂

∂a + v2 ∂
∂b ) and vectors in R3 tangent to S2. We compute

∂

∂a
=

∂x

∂a

∂

∂x
+
∂y

∂a

∂

∂y
+
∂z

∂a

∂

∂z

=
(
1 − z − x2

) ∂

∂x
− xy

∂

∂y
+ (x − xy)

∂

∂z

∂

∂b
=

∂x

∂b

∂

∂x
+
∂y

∂b

∂

∂y
+
∂z

∂b

∂

∂z

= −xy ∂
∂x

+
(
1 − z − y2

) ∂

∂y
+ (y − yz)

∂

∂z
.

5 The metric

The plane R2 serves as a representation of S2 under stereographic projection. How should
distances be measured on R2 in order that they correspond to distances on S2?

To answer this question, we must determine the inner product on R2 that corresponds
to the inner product on S2.
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The geometry of S2 is determined by its embedding in R3, on which the metric is
g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz. Thus we compute

g

(
∂

∂a
,
∂

∂a

)
= g

((
1− z − x2

) ∂

∂x
− xy

∂

∂y
+ (x − xy)

∂

∂z
,
(
1 − z − x2

) ∂

∂x
− xy ∂

∂y
+ (x− xz) ∂

∂z

)
=

(
1− z + x2

)2
+ (−xy)2 + (x− xz)2 = (1 − z)2 =

4
a2 + b2 + 1

g

(
∂

∂a
,
∂

∂b

)
= g

((
1− z − x2

) ∂

∂x
− xy

∂

∂y
+ (x − xy)

∂

∂z
, −xy ∂

∂x
+

(
1− z − y2

) ∂

∂y
+ (y − yz) ∂

∂z

)
=

(
1− z − x2

)
(−xy) + (−xy)

(
1− z − y2

)
+ (x− xz)(y − yz) = 0

g

(
∂

∂b
,
∂

∂b

)
= g

(
−xy ∂

∂x
+

(
1− z − y2

) ∂

∂y
+ (y − yz) ∂

∂z
, −xy ∂

∂x
+

(
1− z − y2

) ∂

∂y
+ (y − yz) ∂

∂z

)
= (−xy)2 +

(
1− z − y2

)2
+ (y − yz)2 = (1 − z)2 =

4
(a2 + b2 + 1)2

.

Thus

g

(
∂

∂a
,
∂

∂a

)
=

4
(a2 + b2 + 1)2

g

(
∂

∂a
,
∂

∂b

)
= h

(
∂

∂a
,
∂

∂b

)
= 0

g

(
∂

∂b
,
∂

∂b

)
=

4
(a2 + b2 + 1)2

,

so that therefore the metric is

g =
4

(a2 + b2 + 1)2
da⊗ da +

4
(a2 + b2 + 1)2

db⊗ db.
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Lecture 20 - The classical Maxwell equations, and the

covariant derivative

March 30, 2009

1 The classical Maxwell equations

In classical electrodynamics, the electric field ~E and the magnetic field ~B (each being 3-
vector fields) satisfy

∇ · ~B = 0 no magnetic sources
∇× ~E + ∂ ~B

∂t = 0 Faraday′s law
∇× ~B − εµ∂

~E
∂t = 4πµ ~J Ampere−Maxwell law

∇ · ~E = 4π
ε ρ Gauss′ Law

The equation ∇ · ~B = 0 implies that ~B is a pure curl, meaning ~B = ∇ × ~A. The
vector field ~A is called the vector potential. It is defined up to a gradient, meaning that if
~A is replaced by ~A + ∇f where f is any function, then the equation ~B = ∇ × ~A remains
unchanged.

In the electrostatic case (where ∂ ~B
∂t = 0), we have ∇ × ~E = 0, which implies ~E is a

pure gradient. This means E = ∇ϕ for some function ϕ, called the electrostatic potential.
Note that ϕ is defined up to a constant: replacing ϕ by ϕ+ c does not change the equation
~E = ∇φ.

2 The Lorentz force law

A particle of charge q moving with velocity ~v experiences the force

~F = q
(
~E + ~v × ~B

)
.

1



3 The covariant derivative and the Koszul formula

As we argued in class, there is a need for a new notion of the derivative of a vector field,
which interacts with the space’s metric.

Let X and Y be vector fields. The symbol ∇XY denotes the derivative of the vector
field Y along trajectories of the vector field X. The operator ∇ is called the covariant
derivative. How should we define this derivative? We require the following four properties:

• ∇ is linear in the first variable and additive in the second:

∇fX+hY Z = f∇XZ + h∇Y Z

∇X(Y + Z) = ∇XY + ∇XZ

where f, h are functions and X,Y are vector fields.

• ∇ obeys the Leibnitz rule in the second variable:

∇X(fY ) = X(f)Y + f∇XY

• ∇ is compatible with the metric (a.k.a. Leibnitz rule for inner products):

X 〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y, ∇XZ〉

where 〈·, ·〉 means the same thing as g(·, ·)

• ∇ is torsion free:
∇XY − ∇YX = [X,Y ]

But does there really exist an operator ∇ that satisfies these properties? Is it unique? The
answer to both questions is yes: ∇ is uniquely (though implicitly) defined by the Koszul
formula

2 〈∇XY, Z〉 = X 〈Y, Z〉 + Y 〈X, Z〉 − Z 〈X, Y 〉 + 〈[X,Y ], Z〉 − 〈[Y,Z], X〉 + 〈[Z,X], Y 〉 .

The operator ∇ is also called the connection.

4 The Christoffel symbols

Let M be a space with metric g. Let {xi} be coordinates, and ∂
∂xi the coordinate fields. Since

∇∂/∂xi
∂
∂xj is a vector field, it can be expressed as a linear combination of the coordinate

fields: we take

∇ ∂

∂xi

∂

∂xj
, Γkij

∂

∂xk

2



to be the (implicit) definition of the functions Γkij . These are called the Christoffel symbols.

Let’s compute them. Before we start, notice that the brackets
[
∂/∂xi, ∂/∂xj

]
are zero:[

∂

∂xi
,
∂

∂xj

]
f =

∂2f

∂xi∂xj
− ∂2f

∂xj∂xi
= 0.

Therefore the Koszul formula gives

2
〈
∇ ∂

∂xi

∂

∂xj
,
∂

∂xk

〉
=

∂

∂xi

〈
∂

∂xj
,
∂

∂xk

〉
+

∂

∂xj

〈
∂

∂xi
,
∂

∂xk

〉
− ∂

∂xk

〈
∂

∂xi
,
∂

∂xj

〉
2

〈
Γlij

∂

∂xl
,
∂

∂xk

〉
=

∂

∂xi

〈
∂

∂xj
,
∂

∂xk

〉
+

∂

∂xj

〈
∂

∂xi
,
∂

∂xk

〉
− ∂

∂xk

〈
∂

∂xi
,
∂

∂xj

〉
.

Since
〈
∂/∂xi, ∂/∂xj

〉
, g(∂/∂xi, ∂/∂xj) = gij , this directly simplifies to

2Γlijglk =
∂

∂xi
gjk +

∂

∂xj
gik −

∂

∂xk
gij .

We can multiply both sides by gkm to eliminate the glk on the left side:

2Γlijglkg
km =

(
∂

∂xi
gjk +

∂

∂xj
gik −

∂

∂xk
gij

)
gkm

2Γlijδ
m
l =

(
∂

∂xi
gjk +

∂

∂xj
gik −

∂

∂xk
gij

)
gkm

2Γmij =
(

∂

∂xi
gjk +

∂

∂xj
gik −

∂

∂xk
gij

)
gkm.

Changing the index labels, we have the formula

Γkij =
1
2

(
∂gjl
∂xi

+
∂gil
∂xj

− ∂gij
∂xl

)
glk.
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Lecture 21 - Warped Products

April 1, 2009

1 Warped Products

Consider the graph of a function y = f(x), α < x < β. Rotate around the x-axis, to obtain
a surface of revolution in 3-space. Let M denote the surface; it has coordinates ξ, θ, where
ξ = x and θ is the rotation parameter.

Of course any point on M has a location in terms of (x, y, z) coordinates. The associ-
ation is (x, y, z) = (ξ, f(ξ) cos θ, f(ξ) sin θ).

2 First expression of the metric on M

Let’s find expressions for the vector fields ∂
∂ξi and ∂

∂θ in terms of the rectangular fields
∂
∂x ,

∂
∂y ,

∂
∂z of the ambient space R3:

∂

∂ξ
=

∂x

∂ξ

∂

∂x
+
∂y

∂ξ

∂

∂y
+
∂z

∂ξ

∂

∂z

=
∂

∂x
+ f ′(ξ) cos θ

∂

∂y
+ f ′(ξ) sin θ

∂

∂z

∂

∂θ
=

∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
+
∂z

∂θ

∂

∂z

= − f(ξ) sin θ
∂

∂y
+ f(ξ) cos θ

∂

∂z
.

1



Thus we can compute the inner products

g

(
∂

∂ξ
,
∂

∂ξ

)
= g

(
∂

∂x
+ f ′(ξ) cos θ

∂

∂y
+ f ′(ξ) sin θ

∂

∂z
,
∂

∂x
+ f ′(ξ) cos θ

∂

∂y
+ f ′(ξ) sin θ

∂

∂z

)
= 1 + (f ′(ξ))2

g

(
∂

∂θ
,
∂

∂θ

)
− g

(
− f(ξ) sin θ

∂

∂y
+ f(ξ) cos θ

∂

∂z
, − f(ξ) sin θ

∂

∂y
+ f(ξ) cos θ

∂

∂z

)
= f2(ξ).

Therefore the metric on M reads

g =
(
1 + f ′(ξ)2

)
dξ ⊗ dξ + (f(ξ))2 dθ ⊗ dθ.

3 Second expression of the metric on M

Consider again the graph y = f(x), α < x < β. We can express a location on this curve by
giving the x-coordinate, but we can also express a location by giving the arclength between
that point and the curve’s starting position. That is, we can define the arclength variable r
to be

r =
∫ ξ

α

√
1 + (f ′(t)) dt.

Notice that

dr =
√

1 + (f ′(ξ))2 dξ.

Therefore

g =
(
1 + f ′(ξ)2

)
dξ ⊗ dξ + (f(ξ))2 dθ ⊗ dθ

=
(√

1 + + (f ′(ξ))2 dξ
)
⊗
(√

1 + + (f ′(ξ))2 dξ
)

+ (f(ξ)) dθ ⊗ dθ.

So we arrive at

g = dr ⊗ dr + (φ(r))2 dθ ⊗ dθ,

where φ(r) = f(ξ(r)). This is the most usable form of the warped product metric.
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4 Covariant derivatives

As an example computation, let’s show how to compute the covariant derivative ∇∂/∂θ ∂∂r .
In order to use index notation, put x1 = r, x2 = θ. Then

∇∂/∂θ
∂

∂r
= ∇∂/∂x2

∂

∂x1
= Γk12

∂

∂xk

= Γ1
12

∂

∂x1
+ Γ2

12

∂

∂x2
= Γ1

12

∂

∂r
+ Γ2

12

∂

∂θ
.

We use the formula

Γkij =
1
2

(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
glk

and the metric components

g11 = 1, g12 = g21 = 0, g22 = (φ(r))2 g11 = 1, g12 = g21 = 0, g22 = 1/ (φ(r))2

to compute

Γ1
12 =

1
2

(
∂g11
∂x2

+
∂g21
∂x1

− ∂g12
∂x1

)
g11 +

1
2

(
∂g12
∂x2

+
∂g22
∂x1

− ∂g12
∂x2

)
g21 = 0

Γ2
12 =

1
2

(
∂g11
∂x2

+
∂g21
∂x1

− ∂g12
∂x1

)
g12 +

1
2

(
∂g12
∂x2

+
∂g22
∂x1

− ∂g12
∂x2

)
g22

= 0 +
1
2
(
0 + 2φ(x1)φ′(x1) − 0

) 1
(φ(x1))2

=
φ′(r)
φ(r)

.

Thus

∇ ∂
∂θ

∂

∂r
=

φ′(r)
φ(r)

∂

∂θ
.
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Lecture 22 - Gauge invariance, wave equations, and

variation of curves

April 3, 2009

1 Wave equations

Consider again Maxwell’s equations

∇ · ~B = 0 no magnetic sources
∇× ~E + ∂ ~B

∂t = 0 Faraday′s law
∇× ~B − εµ∂

~E
∂t = 4πµ ~J Ampere−Maxwell law

∇ · ~E = 4π
ε ρ Gauss′ Law

Recall the classical vector identity, valid for any vector field ~A:

∇×∇× ~A = ∇(∇ · ~A) − 4 ~A.

Now consider the charge-free (i.e. free space) situation, in which ρ = 0, ~J = 0. Taking the
curl of both side of the Ampere-Maxwell equation, we get

∇×∇× ~B − εµ
∂

∂t

(
∇× ~E

)
= 0

∇(∇ · ~B) − 4 ~B +
1
c2
∂2

∂t2
~B = 0

4 ~B − 1
c2
∂2

∂t2
~B = 0

In the second line we used Faraday’s law, and in the third line we used ∇ · ~B = 0. Note
also that c2 = 1

εµ . This is the classic wave equation. Similarly, had one taken the curl of
both sides of the Faraday equation to start with, then used to Ampere-Maxwell equation to
simplify the result, one would get the corresponding wave equation for the ~E-field:

4 ~E − 1
c2
∂ ~E

∂t2
= 0.

1



2 Gauge invariance

Electromagnetics is an example of what is known as a gauge theory. We shall describe what
this means in this section.

Maxwell’s first equation ∇ · ~B = 0 implies that ~B is a pure curl, so that ~B = ∇ × ~A
for some vector field ~A. We have previously noted that there is considerable freedom in
choosing ~A, namely ~A can be replaced by ~A+∇f for any (differentiable) function f .

In the electrostatic case, ∇ × ~E = 0 implies that ~E is a pure gradient: ~E = ∇φ for
some function φ, called the static electric potential.

In the general case, we have ∇× ~E + ∂
∂t∇× ~A = 0, so that ~E+ ∂ ~A

∂t is a pure gradient.
Thus there exists a function ϕ so that

~E +
∂ ~A

∂t
= ∇ϕ.

This function ϕ is called the electric pseudopotential.

Since there is some freedom in the choice of ~A, there will be freedom in choosing ϕ
as well. A particular choice of ( ~A, ϕ) is called a choice of gauge. If f is any function,
then replacing ( ~A, ϕ) with

(
~A+∇f, ϕ+ ∂f

∂t

)
does not change the equations ~B = ∇× ~A or

~E + ∂ ~A
∂t = ∇ϕ. This is known as gauge invariance.

To solve an electrodynamical problem, one usually chooses a propitious gauge (some-
thing that leads to a lot of cancelation), and then works with the more ‘primitive’ quantities
( ~A, ϕ) instead of ~E, ~B.

3 Path variation

Let γ(τ), 0 < τ < a be a path, with velocity vector d
dτ . Our aim is to discover the conditions

under which γ(τ) is a geodesic, which is to say, under what conditions it is the shortest path
between its endpoints p = γ(0) and q = γ(a).

Recall the pathlength and the energy functionals

L(γ) =
∫ a

0

√〈
d

dτ
,
d

dτ

〉
dτ

E(γ) =
∫ a

0

〈
d

dτ
,
d

dτ

〉
dτ.

These are closely related, although the energy functional E is easier to work with since there
is no square-root.

2



Let γs(τ) be a smoothly family of paths, parametrized by s ∈ (−b, b), with γ0(τ) = γ(τ)
being the original path. Assume also that each path γs has the same endpoints as γ:
γs(0) = γ(0) and γs(a) = γ(a) for all s. This is called a variation of γ.

There are two vector fields involved. First is d
dτ , created by fixing s and varying τ

is called the direction field. Second, it is possible to fix τ and vary s. This leads to the
variation field d

ds .

If γ is indeed a geodesic, then is must be the case that L(γ0) ≤ L(γs), or likewise, that
E(γ0) ≤ E(γs). Since E(γs), the energy the path γs, can be considered a function of s, this
means that

d

ds

∣∣∣
s=0
E(γs) = 0.

The key is this: This must hold true not just for one variation, but for any conceivable
variation of γ. What property of γ could possibly lead to this?

We compute:

d

ds

∣∣∣
s=0
E(γs) =

d

ds

∫ a

0

〈
d

dτ
,
d

dτ

〉
dτ

=
∫ a

0

d

ds

〈
d

dτ
,
d

dτ

〉
dτ

= 2
∫ a

0

〈
∇ d

ds

d

dτ
,
d

dτ

〉
dτ.

The last line comes from the axiom that the connection ∇ is compatible with the metric.
Now we work some switcheroo magic. From the connection’s torsion-free axiom, we have

∇ d
ds

d

dτ
= ∇ d

dτ

d

ds
+
[
d

dτ
,
d

ds

]
But the bracket in this case actually vanishes! (why?) Thus

∇ d
ds

d

dτ
= ∇ d

dτ

d

ds
.

and we can continue our computation

d

ds

∣∣∣
s=0
E(γs) = 2

∫ a

0

〈
∇ d

dτ

d

ds
,
d

dτ

〉
dτ

= 2
∫ a

0

d

dτ

〈
d

ds
,
d

dτ

〉
dτ − 2

∫ a

0

〈
d

ds
, ∇ d

dτ

d

dτ

〉
dτ

The first term is a total derivative; by the fundamental theorem of calculus, we have

d

ds

∣∣∣
s=0
E(γs) = 2

〈
d

ds
,
d

dτ

〉 ∣∣∣τ=a
τ=0
− 2

∫ a

0

〈
d

ds
, ∇ d

dτ

d

dτ

〉
dτ

= − 2
∫ a

0

〈
d

ds
, ∇ d

dτ

d

dτ

〉
dτ.
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If γ is indeed the minimizing path between its endpoints, we must therefore have

0 = − 2
∫ a

0

〈
d

ds
, ∇ d

dτ

d

dτ

〉
dτ

for ANY variation field d
ds . The only way this is possible is if ∇ d

dτ

d
dτ = 0.

Therefore we can write down the geodesic equation:

γ is a geodesic ⇐⇒ ∇ d
dτ

d

dτ
= 0

4



Lecture 23 - The parallel transport equation, the

Riemann curvature tensor, and the Jacobi equation

April 15, 2009

1 Parallel transport

Given a path γ(τ) (not necessarily a geodesic), a vector field X is called parallel, or constant,
along γ if

∇ ∂
∂τ
X = 0.

In coordinates we can write
d

dτ
=

dxi

dτ

∂

∂xi
X = Xj ∂

∂xj
.

Using the axioms of covariant differentiation, we compute

∇ ∂
∂τ
X = ∇ dxi

dτ
∂

∂xi

(
Xj ∂

∂xj

)
=

dxi

dτ
∇ ∂

∂xi

(
Xj ∂

∂xj

)
=

dxi

dτ

∂

∂xi
(
Xj

) ∂

∂xj
+
dxi

dτ
Xj∇ ∂

∂xi

∂

∂xj

=
dXj

dτ

∂

∂xj
+
dxi

dτ
XjΓkij

∂

∂xk

=
(
dXk

dτ
+
dxi

dτ
XjΓkij

)
∂

∂xk
.

The Christoffel symbols Γkij , the path γ, and the derivatives dxi

dτ are known. Therefore the
parallel transport equation is a system of n first order linear differential equations in the
unknowns Xk:

∇ d
dτ
X = 0 if and only if

dXk

dτ
+ Xj dx

i

dτ
Γkij = 0 for all 1 < k < n.

This means that given a single vector X ∈ Tγ(0)M , it can be transported along the curve γ
by solving this system of equations.

1



2 The Riemann tensor

Given three vector field X, Y , and Z, the Riemann tensor R is defined as follows:

R(X, Y )Z , ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z.

Essentially the Riemann tensor measures the failure of commutativity of mixed second partials
when applied to vector fields. Note the obvious fact that R is anti-symmetric in the first
two variables:

R(X, Y )Z = −R(Y, X)Z.

The Riemann tensor is also called the curvature tensor. Although at this point it is
not immediately clear why, this tensor captures all of the geometric information of the space
under consideration.

3 The Jacobi equation

Here we shall lay out the first geometric interpretation of the Riemann tensor: it governs
variations of geodesics.

Let p ∈ M be a point, let γ(τ) be a geodesic, and let γs(τ) be a variation consisting
of a family of geodesics emanating from p. Again we have the directional field d

dτ and the
variational field d

ds . We want to compute the second derivative of the variational field along
the geodesic:

∇ d
dτ
∇ d

dτ

d

ds
.

The strategy will be to move the d
ds to the leftmost position. First use the torsion-free axiom

to make the swap

∇ d
dτ
∇ d

dτ

d

ds
= ∇ d

dτ
∇ d

ds

d

dτ
+ ∇ d

dτ
[
d

dτ
,
d

ds
].

However, [d/dτ, d/ds] = 0, by the commutativity of partial derivatives. Now using the
definition of the curvature tensor (and again using [d/dτ, d/ds] = 0):

R

(
d

dτ
,
d

ds

)
d

dτ
= ∇ d

dτ
∇ d

ds

d

dτ
− ∇ d

ds
∇ d

dτ

d

dτ

we can make another switch:

∇ d
dτ
∇ d

dτ

d

ds
= ∇ d

dτ
∇ d

ds

d

dτ

= ∇ d
ds
∇ d

dτ

d

dτ
+ R

(
d

dτ
,
d

ds

)
d

dτ

2



However, we had assumed that the variation consists of geodesics, meaning ∇ d
dτ

d
dτ = 0.

Thus

∇ d
dτ
∇ d

dτ

d

ds
= R

(
d

dτ
,
d

ds

)
d

dτ
.

This is most commonly written in the following form (recalling the anti-symmetry of R)

∇ d
dτ
∇ d

dτ

d

ds
+ R

(
d

ds
,
d

dτ

)
d

dτ
= 0.

The tensor R(·, X)X is known as the tidal curvature operator in the direction X.

4 Examples of Jacobi equations

Example: Flat space. In flat (Euclidean) space, the Riemann tensor is precisely zero.
Thus the Jacobi equation yields

∇ d
dτ
∇ d

dτ

d

ds
= 0,

Which means that d
ds is a linear field.

Example: Positively curved space. In a positively curved space, the tidal curvature

R

(
d

ds
,
d

dτ

)
d

dτ
∼ α2 d

ds
+ other terms

is, roughly speaking, proportional to a positive multiple of the variation field. Thus the
Jacobi equation yields

∇ d
dτ
∇ d

dτ

d

ds
+ α2 d

ds
+ other terms = 0

which is an equation of the form

f ′′(τ) + α2f(τ) = 0,

the solution to which is f(τ) = sin(ατ) (initial condition is f(τ) = 0). Thus geodesics tend
to curve in toward one another.

Example: Negatively curved space. In a negatively curved space, the tidal curvature

R

(
d

ds
,
d

dτ

)
d

dτ
∼ −α2 d

ds
+ other terms

3



is, roughly speaking, proportional to a negative multiple of the variation field. Thus the
Jacobi equation yields

∇ d
dτ
∇ d

dτ

d

ds
− α2 d

ds
+ other terms = 0

which is an equation of the form

f ′′(τ) − α2f(τ) = 0,

the solution to which is f(τ) = sinh(ατ) (initial condition is f(τ) = 0). The function sinh
is initially nearly linear, but later is nearly exponential. Thus geodesics tend to bend away
from one another.

5 Sectional Curvature

Given two vectors X and Y located at a point p, in the infinitesimal sense they span a plane.
The section curvature of this plane is given by

sec(X, Y ) =
〈R(X, Y )Y, X〉

〈X, X〉 〈Y, Y 〉 − 〈X, Y 〉2
.
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Lecture 24 - The curvature tensor in components

April 20, 2009

1 The Riemann curvature tensor in components

We have defined

R(X, Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z,

so that R is a map that absorbs three vector fields and spits out a vector field. Thus R is a
(1, 3)-tensor and can therefore be expressed in the form

R = Rijk
l dxi ⊗ dxj ⊗ dxk ⊗ ∂

∂xl
.

To compute the functions Rijk
l we have to plug in the coordinate fields:

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
= Rijk

l ∂

∂xl
.

Thus we compute

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
= ∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
− ∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

= ∇ ∂

∂xi

(
Γs

jk

∂

∂xs

)
− ∇ ∂

∂xj

(
Γs

ik

∂

∂xs

)
=

∂Γs
jk

∂xi

∂

∂xs
+ Γs

jk∇ ∂

∂xi

∂

∂xs
− ∂Γs

ik

∂xj

∂

∂xs
− Γs

ik∇ ∂

∂xj

∂

∂xs

=
∂Γs

jk

∂xi

∂

∂xs
+ Γs

jkΓl
is

∂

∂xl
− ∂Γs

ik

∂xj

∂

∂xs
− Γs

ikΓl
js

∂

∂xl
.

Changing the index labels somewhat, we have

Rijk
l ∂

∂xl
= R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
=

(
Γs

jkΓl
is − Γs

ikΓl
js +

∂Γl
jk

∂xi
− ∂Γl

ik

∂xj

)
∂

∂xl
.

1



Therefore

Rijk
l = Γs

jkΓl
is − Γs

ikΓl
js +

∂Γl
jk

∂xi
− ∂Γl

ik

∂xj
.

Note the complexity of this formula. The Christoffel symbols are nonlinear first-order
expressions in terms of the metric, and the curvature components Rijk

l involve derivatives
and nonlinear combinations of the Christoffel symbols. Thus the curvature components
Rijk

l are nonlinear second-order expressions in terms of the metric. In fact the curvature
tensor is essentially as nonlinear as it is possible to be.
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Lecture 25 - The stress-energy-momentum tensor

April 22, 2009

1 The Cauchy stress tensor

The Cauchy stress tensor ~T is a construct of classical physics. It is a (0, 2)-tensor, and can
be written essentially as a 3× 3 matrix:

~T = ~Tab =

 ~T11
~T12

~T13

~T21
~T22

~T23

~T31
~T32

~T33

 .

It’s meaning is as follows: if n̂ and v̂ are unit vectors, then
~T (n̂, v̂) is the force communicated across the ~n-plane in the ~v-direction.

We can interpret the components ~Tab as follows:
The diagonal elements are the pressures: ~T11, for instance, is the force communicated

across the x1-plane in the x1-direction, that is, the pressure across the x1-plane.
The off-diagonal elements are the shear forces: ~T12, for instance, is the x2-force com-

municated across the x1-plane.

The Cauchy stress tensor has many applications in classical physics and particularly in
engineering applications. The notation ~T is meant to indicated that ~T is a classical (tensor)
quantity, not meant to indicate that it is a vector.

2 The stress-energy-momentum tensor

The entries in the Cauchy stress tensor depend on the choice of reference frame, and is there-
fore inadequate for relativistic applications. We require a fully Lorentz-invariant version of
this tensor.

1



First note that force is the same as the time-derivative of momentum:

f = ma

= m
dv

dt

=
dp

dt
where p = mv is classical momentum

Thus force across a boundary can be regarded as momentum flux across a boundary.

The 4-dimensional stress-energy-momentum tensor (or energy-momentum tensor or
stress-energy tensor) is

T = Tij =


T00 T01 T02 T03

T10

T20
~T

T30

 .

The space-components are just the components of the Cauchy stress tensor as seen in the
observers rest-frame. The other components have the following interpretation:

T00 is energy (aka mass) density
Ti0 (i 6= 0) is momentum density
T0i (i 6= 0) is energy (aka mass) flux
Tij = ~Tij (i, j 6= 0) are the various momenta fluxes (aka pressures and shear forces).

The stress-energy tensor can be computed from detailed knowledge of the distribution
of matter, energy, and forces is some region of space-times.
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Lecture 26 - Traces and norms

April 27, 2009

1 Traces and norms for classical vectors and matrices

If Aij is a square matrix, its trace Tr(A) is Aii = A1
1 + · · · + Ann, the sum of the diagonal

elements. The trace obeys the following properties: if A and B are n× n matrices and c is
a scalar then

• Commutativity invariance: Tr(AB) = Tr(BA)

• Transpose invariance: Tr(AT ) = Tr(A)

• Linearity: Tr(cA+B) = cTr(A) + Tr(B)

As a consequence of the commutativity invariance, we can prove

Theorem 1.1 If λ1, . . . , λn are the eigenvalues of the n× n matrix A, then Tr(A) = λ1 +
· · ·+ λn.

Pf Let A = C−1JAC, where JA is the Jordan canonical form for A. Recall that JA is a
matrix with the eigenvalues of A along its diagonal, has some 1’s on the off-diagonal, and
has 0’s everywhere else. Clearly Tr(JA) = λ1 + · · ·+ λn. Then using commutativity

Tr(A) = Tr(C−1JAC) = Tr(JACC−1) = Tr(JA) = λ1 + · · ·+ λn.

�

It is possible to use the trace operation as an inner product. Consider vectors v = vi

and w = wi. We have

wT v =
(
w1, . . . , wn

) v1

...
vn

 =


w1v1 w2v1 . . . wnv1

w1v2 w2v2 wnv2

...
. . .

...
w1vn w2vn . . . wnvn


Tr(wT v) = w1v1 + w2v2 + . . . + wnvn = 〈w, v〉 .

1



If A = Aij is a matrix, how should the norm |A|2 be defined? One the one hand, we
want |A|2 = 0 if and only if Aij = 0 for every i, j. On the other, it should be the case that
|cA|2 = c2|A|2 for any scalar c. The expressions

|A|2 = (A1
1)2 + (A1

2)2 + (A2
1)2 + . . . + (Ann)2

=
n∑

i,j=1

AijA
i
j .

meets both criteria. Now we compute

AAT = Aik(AT )kj =
∑
k=1

nAikA
j
k

Tr(AAT ) = Tr

(∑
k

AikA
j
k

)
=
∑
l

∑
k

AlkA
l
k = |A|2.

It therefore makes sense to define an inner product

〈A, B〉 = Tr
(
ABT

)
.

One must check that this is bilinear (obvious), that it is symmetric (Tr(ABT ) = Tr((ABT )T ) =
Tr(BAT )), and that it is nondegenerate (Tr(AAT ) = 0 iff A is the zero matrix).

2 Contractions of tensors

There is an analogy between classical matrix operations and tensor operations. If v = vi =
vi ∂
∂xi is a vector, the classical ‘transpose’ operation is analogous to the ‘lowering of index’

or ‘flattening’ operation:

v[ = vidx
i

vi = vjgij .

There is another operation, known as the contraction, or {-operation. It is defined whenever
a covector is tensored with a vector. It replaces tensoring with evaluation:

{ (ω ⊗X) , ω(X)

where ω is a covector and X a vector.

It turns out that { is the analog of the classical trace. Let A = Aj
idxj ⊗ ∂

∂xi be a
(1, 1)-tensor. Then

{(A) = {

(
Aj

idxj ⊗ ∂

∂xi

)
= Aj

idxj
(

∂

∂xi

)
= Aj

iδji

= Ai
i.
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3 Contractions as norms

Just as traces can be used to define norms of matrices, contractions can be used to define
norms of tensors. To start with, consider the norm of a vector v = vi. Normally we have

|v|2 = g(v, v) = gijv
ivj = vivi

recalling that vi = gijv
j . We can get the same result another way however:

v ⊗ v → v[ ⊗ v → {(v[ ⊗ v)

vivj
∂

∂xi
⊗ ∂

∂xj
→ viv

jdxi ⊗ ∂

∂xj
→ viv

jdxi
(

∂

∂xj

)
= viv

jδij = viv
i.

This same procedure works with other kinds of tensors as well. For instance if T = T ij is a
(2, 0)-tensor, we can form the tensor product

T ⊗ T = T ijT kl
∂

∂xi
⊗ ∂

∂xj
⊗ ∂

∂xk
⊗ ∂

∂xl
,

then lower the indices on the first tensor

T[[ ⊗ T = TijT
kldxi ⊗ dxj ⊗ ∂

∂xk
⊗ ∂

∂xl

(recall that Tij = gisgjtT
st). Then it is possible to make two contractions

{{ (T[[ ⊗ T ) = TijT
kldxi

(
∂

∂xk

)
dxj

(
∂

∂xl

)
= TijT

klδikδ
j
l = TijT

ij .

Therefore we define

|T |2 = TijT
ij = gikgjlT

klT ij .

This can be done for any tensor of any type. If T = Tab...c
ij...k, then

|T |2 , Tab...c
ij...kTαβ...γ

ιυ...κgaαgbβ . . . gcγgiιgjυ . . . gkκ

= Tab...c
ij...kT ab...cij...k.

That is, corresponding indices are ‘contracted’ using the metric tensor.

4 Norms and contractions of the curvature tensor

The norm |R| of the Riemann curvature tensor R = Rlijk is given by

|R|2 = Rijk
lRmno

pgimgjngkoglp

= Rijk
lRijkl.

3



It is possible to contract the curvature tensor in other ways however. Contracting the
first and fourth position, we get

{1,4

(
Rijk

ldxi ⊗ dxj ⊗ dxk ⊗ ∂

∂xl

)
= Rijk

ldxi
(
∂

∂xl

)
dxj ⊗ dxk

= Rijk
lδildx

j ⊗ dxk = Rljk
ldxj ⊗ dxk.

This is known as the Ricci curvature tensor:

Ricjk = Rljk
l.

In the case where the two indices are the same, the interpretation is as follows:

Ricjj = Rljj
l =

〈
R

(
∂

∂xl
,
∂

∂xj

)
∂

∂xj
,
∂

∂xl

〉
=

n∑
l=1

const · sec
(
∂

∂xl
,
∂

∂xj

)
.

The rightmost expression is a multiple of the average of sectional curvatures of the planes
that contain the vector ∂

∂xj .
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Lecture 27 - Covariant derivatives

April 29, 2009

1 Leibnitz rules

Since covector fields can be nonconstant, there should be a way of taking their covariant
derivatives. This is accomplished by imposing a new Leibnitz rule.

If X,Y are tensors and ω a covector, then ω(Y ) is a function, so X (ω(Y )) is the
derivative of this function in the X direction. We define ∇Xω implicitly by

X (ω(Y )) = (∇Xω) (Y ) + ω (∇XY ) .

We know that ∇ ∂

∂xi

∂
∂xj = Γk

ij
∂

∂xk , and we know how to compute the symbols Γk
ij .

From the above Leibnitz rule, we should be able to compute ∇ ∂

∂xi
dxj . We have

∂

∂xi

(
dxj

(
∂

∂xl

))
=

(
∇ ∂

∂xi
dxj

) (
∂

∂xl

)
+ dxj

(
∇ ∂

∂xi

∂

∂xl

)
∂

∂xi

(
δj

l

)
=

(
∇ ∂

∂xi
dxj

) (
∂

∂xl

)
+ dxj

(
Γk

il

∂

∂xk

)
0 =

(
∇ ∂

∂xi
dxj

) (
∂

∂xl

)
+ Γj

il

−Γj
il =

(
∇ ∂

∂xi
dxj

) (
∂

∂xl

)
.

This implies that

∇ ∂

∂xi
dxj = −Γj

ikdx
k.

If T and S are tensors, we define another Leibnitz rule by

∇X (T ⊗ S) = (∇XT )⊗ S + T ⊗∇XS.

1



This allows us to take covariant derivatives of any tensor. For example, let T = T i
j

∂
∂xi⊗dxj .

Then

∇XT = ∇X

(
T i

j
∂

∂xi
⊗ dxj

)
= X(T i

j)
∂

∂xi
⊗ dxj + T i

j

(
∇X

∂

∂xi

)
⊗ dxj + T i

j
∂

∂xi
⊗

(
∇Xdx

j
)
.

Another way to express this Leibnitz rule is as follows:

∇X (T (Y1, . . . , Yn, ω1, . . . , ωn)) = (∇XT ) (Y1, . . . , Yn, ω1, . . . , ωn) + T (∇XY1, . . . , Yn, ω1, . . . , ωn) + . . . + T (Y1, . . . , Yn, ω1, . . . ,∇Xωn) .

For example, if R is the Riemann tensor then

(∇WR)(X,Y )Z = ∇W (R(X,Y )Z) − R(∇WX,Y )Z − R(X,∇WY )Z − R(X,Y )∇WZ.

2 Covariant derivatives as tensors

The covariant derivative ∇XT is tensorial in the first variable, meaning ∇fXT = f∇XT . If
T is an (n, k)-tensor, the tensor ∇T accepts one additional vector field, meaning ∇T is an
(n, k + 1)-tensor.

A comma is used to indicate a derivative: if T = Tij is a (0, 2)-tensor for instance, then
∇T = Tij,k is a (0, 3)-tensor.

For example, let X = Xi be a vector field, ie a (1, 0)-tensor. Then ∇X = Xi
,j is a

(1, 1)-tensor. Let’s compute the components Xi
,j .

∇X = ∇
(
Xi ∂

∂xi

)
= d(Xi)⊗ ∂

∂xi
+ Xi∇ ∂

∂xi

=
dXi

dxj
dxj ⊗ ∂

∂xi
+ Xi Γk

li dx
l ⊗ ∂

∂xl

=
(
dXi

dxj
+ Xs Γi

js

)
dxj ⊗ ∂

∂xi
.

Therefore

Xi
,j =

dXi

dxj
+ Xs Γi

js

As another example, let η = ηi be a covector field, ie a (0, 1)-tensor. Then ∇η = ηi,j

2



is a (0, 2)-tensor. Let’s compute the components η,ij .

∇η = ∇
(
ηidx

i
)

= d(etai)⊗ dxi + ηi∇dxi

=
∂ηi

∂xj
dxj ⊗ dxi − ηiΓi

kldx
k ⊗ dxl

=
(
∂ηj

∂xi
− ηsΓs

ij

)
dxi ⊗ dxj .

Therefore

ηi,j =
dηi

dxj
− ηs Γs

ij .

3



Lecture 28 - Curvature identities

May 1, 2009

1 Four notions of curvature

Here we collate all our definitions of curvature operators into one place.

We have the Riemann curvature tensor

R (X, Y ) Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X, Y ]Z,

an (1, 3)-tensor. In a coordinate system {xi} the components are

R = Rijk
ldxi ⊗ dxj ⊗ dxk ⊗ ∂

∂xl

Rijk
l = Γs

jkΓl
is − Γs

ikΓl
js +

∂Γl
jk

∂xi
− ∂Γl

ik

∂xj

Of course it is possible to lower the final index to obtain a (0, 4)-tensor

R(X, Y, Z, W ) = 〈R(X, Y )Z, W 〉
Rijkl = Rijk

sgsl.

The full curvature operator is extremely complex and its direct geometric meaning is difficult
to interpret. The first simplification is the sectional curvature, which indicated the ‘bending’
of some specified 2-plane in an infinitesimal region around a point:

sec(X, Y ) =
R(X, Y, Y, X)

|X|2|Y |2 − 〈X, Y 〉2

is the sectional curvature of the 2-plane spanned by X and Y . Note that the sectional
curvature operator is NOT a tensor.

Contracting the first and final indices of the Riemann tensor gives the Ricci curvature
tensor

Ricij , Rsij
s = Rkijlg

kl.

1



If X is a unit vector, then Ric(X, X) is essentially a multiple of the average of sectional
curvatures of all planes that contain X.

Contracting again, we get the scalar curvature

s , Ricijg
ij .

The scalar curvature is essentially the sum of all sectional curvatures at a point.

2 Curvature Identities

In class and in the homeworks, we proved the following curvature identities

R(X, Y, Z, W ) = −R(Y, X, Z, W )
R(X, Y, Z, W ) = −R(X, Y, W, Z)
R(X, Y, Z, W ) = R(Z, W, X, Y )
R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0 (first Bianchi identity)
(∇W R)(X, Y )Z + (∇XR)(Y, W )Z + (∇Y R)(W, X)Z = 0 (second Bianchi identity)

In components, these read

Rijkl = −Rjikl

Rijkl = −Rijlk

Rijkl = Rklij

Rijkl + Rjkil + Rkijl = 0
Rijkl,s + Rjskl,i + Rsikl,j = 0.

Further identities can be derived by ‘mixing and matching’ these identities. For instance
the second Bianchi identity is frequently presented

Rijkl,s + Rijls,k + Rijsk,l = 0,

which can be derived from our second Bianchi identity and the rule Rijkl = Rklij .

2



Lecture 29 - Conservation

May 4, 2009

1 The stress-energy tensor is symmetric

In class we gave an argument for the symmetry of the Cauchy stress tensor, which goes as
follows. An “infinitesimal” volume element (side length l) has the following forces perpen-
dicular to the z-axis:

−l2 ~T12 − l2 ~T12 + l2 ~T21 + ~T21.

Thus the torque τz about the z-axis is l
2

(
l2 ~T21 − l2 ~T12

)
(torque=force×lever arm). Angu-

lar acceleration θz about the z-axis is related to torque about the z-axis τz and the second
moment of inertia about the z-axis Iz as follows:

τz = Iz θ̈z

(note the formal similarity to Newton’s second law). The second moment of inertia is roughly
a constant times mass times (linear dimension)2, so Iz = α · ρl3 · l2 where ρ is the material’s
density. Thus

θ̈z =
~T21 − ~T12

αρl2
.

Since l was assumed to be very small, it follows that ~T12 = ~T21. Repeating the argument
using torque about the x- and y-axes gives ~T13 = ~T31 and ~T23 = ~T32. Thus the Cauchy
stress tensor is symmetric.

The full stress-energy-momentum tensor is also symmetric, as can be seen by the
equivalence of momentum density and energy flux density.

2 Conservation of energy

Imagine again the infinitesimal volume element of sidelength l. The total energy (aka mass)
inside the volume element is l3T00. The energy (aka mass) leaving or entering the volume

1



element must be related to the energy flux density (the elements T01, T02, and T03 of the
stress-energy tensor).

The total energy leaving the volume element in the x-direction is

−l2T01

∣∣
x=l/2

+ l2T01

∣∣
x=−l/2

.

The total energy leaving the volume element in the y-direction is

−l2T02

∣∣
y=l/2

+ l2T02

∣∣
y=−l/2

.

The total energy leaving the volume element in the x-direction is

−l2T03

∣∣
z=l/2

+ l2T03

∣∣
z=−l/2

.

The law of conservation of energy states that the time rate-of-change of energy in a
volume equals the rate of flow of energy entering or leaving the volume. Restating this
mathematically, we get

l3
∂T00

∂t
= −l2

(
T01

∣∣
x=l/2

− T01

∣∣
x=−l/2

)
− l2

(
T02

∣∣
y=l/2

− T02

∣∣
y=−l/2

)
− l2

(
T03

∣∣
z=l/2

− T03

∣∣
z=−l/2

)
∂T00

∂t
= −

T01

∣∣
x=l/2

− T01

∣∣
x=−l/2

l
−

T02

∣∣
y=l/2

− T02

∣∣
y=−l/2

l
−

T03

∣∣
z=l/2

− T03

∣∣
z=−l/2

l
.

Since l is considered ‘infinitesimally small” (which is essentially to say that we are taking a
limit as l goes to zero), the right-hand side consists of derivatives. We get

∂T00

∂t
= −∂T01

∂x
− ∂T02

∂y
− ∂T03

∂z
.

3 Conservation of momentum

Thus conservation of energy can be restated

∂T00

∂x0
+
∂T01

∂x1
+
∂T02

∂x2
+
∂T03

∂x3
= 0.

Conservation of momentum is as important to physics as conservation of energy. The above
argument can be repeated from the point of view of total momentum contained in a volume
element instead of total energy, and by looking at momentum fluxes instead of energy fluxes.
One obtains the statement of conservation of momentum:

∂Ti0

∂x0
+
∂Ti1

∂x1
+
∂Ti2

∂x2
+
∂Ti3

∂x3
= 0.

where i is either 1, 2, or 3.
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4 Conservation of energy-momentum in arbitrary (ie
curved) spacetimes

The arguments above are valid whenever it makes sense to take partial derivatives of ten-
sors, namely, when considering flat space-time. If the space-time metric is not flat (which,
according to the Einstein equations it essentially never is), then the operation of taking
partial derivatives of tensors is dependent on the particular coordinate system.

To make differential expressions make sense in curved space-times, one must replace
partial derivatives by covariant derivatives. Thus

∂Tij

∂xk

is replaced by

Tij,k ,
(
∇ ∂

∂xk
T

) (
∂

∂xi
,
∂

∂xj

)
.

Thus the statement of conservation of energy-momentum is

gjkTij,k = 0

or equivalently

Ti
k
,k = 0 or even T ik

,k = 0.

3



Lecture 30 - Equations of motion for relativistic fluids,

and Poisson’s equation

May 4, 2009

1 Explicit stress-energy-momentum tensors

First consider the example of dust. This is defined to be a ‘fluid’ comprised of noninteracting
particles. Thus it can sustain no pressure and no shear. If ρ is the density and U = U i is
the velocity of the dust, the stress-energy-momentum tensor is

T = ρU[ ⊗ U[

Tij = ρUiUj .

If a frame is chosen so that U = ∂
∂x0 (ie, if you are working in the frame in which the dust

appears stationary) then

Tij =


ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Now consider the case of ‘ideal fluids’, namely fluids with no viscosity. Such fluids can
sustain pressure, but no shear (hence no viscosity). If ρ is density, P is pressure, and U = U i

is the fluid’s velocity, thee stress-energy-momentum tensor is

T = (ρ + P )U[ ⊗ U[ − Pg

Tij =
(
ρ +

P

c2

)
UiUj −

P

c2
gij

T ij =
(
ρ +

P

c2

)
U iU j − P

c2
gij .

1



Working in the frame in which the fluid appears stationary, then

T ij =


ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 .

2 Directional derivatives

If X = Xi is a vector field, then it “gradient” is denoted

∇X = Xi
,j = Xi

,j
∂

∂xi
⊗ dxj .

If U i is a vector, the derivative of X in the direction of U is

∇UX = (∇X)(U) =
(
Xi

,j
∂

∂xi
⊗ dxj

)(
Uk ∂

∂xk

)
= Xi

,jU
k ∂

∂xi
dxj

(
∂

∂xk

)
= Xi

,jU
k ∂

∂xi
δj
k

= Xi
,kU

k ∂

∂xi
.

3 Conservation laws imply the equations of motion

Recall that conservation of energy-momentum can be restated

gjkTij,k = 0,

which can also be written Ti
j
,j = 0 or T ij

,j = 0.

Consider the case of the perfect fluid from above. In addition to conservation of mass-
energy, a fluid preserves the number of particles it contains. If n is the particle density,
consider the flux number N i = nU i. The conservation of particle number is

N i
,i = 0

(
nU i

)
,i

= 0.

2



Conservation of energy-momentum yields

0 = T ij
,j =

(
(ρ+ P )U iU j

)
,j
−
(
Pgij

)
,j

=
(
ρ+ P

n
U inU j

)
,j

−
(
Pgij

)
,j

=
(
ρ+ P

n
U i

)
,j

nU j +
ρ+ P

n
U i
(
nU j

)
,j
− P,jg

ij − Pgij
,j

= n

(
ρ+ P

n
U i

)
,j

U j − P ,i

In invariant language, we cen state this

n∇U

(
ρ+ P

n
U

)
= ∇P.

This is precisely analogous to the classical Euler equation in Fluid mechanics:

ρ

(
d~v

dt
+ ~v · ∇~v

)
= ∇P.

4 Poisson’s equation

Consider the equation

∇ · ~E = 4πε−1ρ.

In the electrostatic case, we have E = ∇ϕ, so this equation reads

4ϕ = 4πε−1ρ,

where

4 = ∇ · ∇ =
∂

∂x

∂

∂x
+

∂

∂y

∂

∂y
+

∂

∂z

∂

∂z

is called the Laplace operator, aka the Laplacian.

By physical reasoning, it is clear that a given distribution distribution of charge (as
encoded by the charge density ρ) will lead to a definite electrical potential ϕ (at least up
to an additive constant). Mathematically, this means that if the function ρ is specified (at
least in a ‘physically reasonable’ fashion), then the equation

4ϕ = αρ

can be solved for ϕ. The equation of the prescribed Laplacian is called Poisson’s equation.
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Notice that 4 is the trace of the Hessian. Given a function f , the Hessian is defined
to be the matrix of second derivatives:

∇2f = f,ij =


f,11 f,12 . . . f,1n

f,21 f,22 . . . f,2n

...
. . .

...
f,n1 f,n2 . . . f,nn

 .

The Laplacian is the trace of the Hessian

tr
(
∇2f

)
= gijf,ij .

When gij = δij , ie we are in Euclidean space, this is clearly just the classical Laplacian.

In Minkowski space, we have g00 = 1 but gii = −c2 for i 6= 1. In this case

tr
(
∇2f

)
= gijf,ij = f,00 − c2f,11 − c2f,22 − c2f,33

so that tr
(
∇2f

)
is the D’Alembertian, the Lorentzian analogue of the Laplacian.

Notice that this is a wave operator: �f = 0 is the wave equation for f .
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Lecture 30 - The relativistic Maxwell equations, and the

gravitational field equations

May 11, 2009

1 Maxwell’s equations

In the Lorentzian context, the fundamental object of electromagnetics is the Faraday 2-form,
F . Only after a frame is chosen is it possible to tease apart the ~E and ~B fields.

Let’s first consider the classical equations

∇ · ~B = 0

∇× ~E +
∂ ~B

∂t
= 0.

As we have described, these equations imply the existence of the two potentials of classical
electrodynamics: the electrical pseudopotential ϕ and the magnetic vector potential ~A.

Switching to the relativistic context, it was shown in the homeworks that these two
equations lead to the single equation

dF = 0.

As we discussed in class, though we did not prove it, the equation dF = 0 implies that
F = dA for some 1-form A = Aidx

i1. This is called the electromagnetic 4-potential. Note
the following: if A is changed by adding df where f is any function, then the equation
F = dA is unchanged:

d(A + df) = dA + ddf = dA = F.

This is the new (and simpler!) statement of gauge invariance: the 4-potential (called the
gauge) can by modified by adding df .

1Actually the assertion “dF = 0 implies F = dA” is valid only when a certain topological obstruction is
not present. In the case of space-time, the obstruction is indeed not present.

1



Next let’s consider the classical equations

∇ · ~E =
4π
ε
ρ

∇× ~B − εµ
∂ ~E

∂t
= 4πµ ~J.

As we have described, these lead to wave equations for the quantities ~E and ~B, and, once
an appropriate gauge has been chosen, for φ and ~A as well.

Switching to the relativistic context, it was shown in the homeworks that these two
equations lead to the single equation

δF = −4π
ε
c2J[

where J is the 4-current.

Before moving on, let’s discuss a bit of mathematics. Recall from the homework that
if f is a function, then δdf = �f where � is the D’Alembertian. If ω is any k-form, then
the D’Alembertian is no longer just δd. It turns out that (dδ + δd)ω = �ω. Note that, for
functions, δf = 0 so this equation holds for functions as well.

Returning to electromagnetics, we have F = dA so that

δF = −4πε−1c2J[

δdA = −4πε−1c2J[.

This is ‘half’ of a wave equation for A. If we work in the Lorentz gauge (meaning we choose
A so that δA = 0), then

�A = dδA+ δdA = δdA = −4πε−1c2J[

is a wave equation for A, with source J[. Of course if J[ = 0, then we have just the wave
equation: �A = 0.

2 Comments on electromagnetics

Classically one studies two (semi)independent objects: the ~E-field and the ~B-field. The
relativistic field theory is a unification of electromagnetics: one studies the single field F .

The new Maxwell equations dF = 0 and δF = αJ[ reduce back to the old equations
only when a reference frame is chosen. However, if ~E and ~B are the fields as observed in
the lab-frame, particles in different frames do not see the electric and magnetic fields the
same way, and one will get incorrect results by applying the ~E and ~B fields to such moving
particles.
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In the low-energy situation, where velocities are small compared to c, the different
particles under consideration all exist (approximately) in the same reference frame and
observe (approximately) the same electrical and magnetic fields ~E and ~B. In this situation
we say that ~E and ~B freeze out from the Faraday 2-form, and the classical theory applies.

3 Traced Bianchi identities

The second Bianchi identity has consequences for Ricci and scalar curvatures. Recall that

Rijkl,m + Rijlm,k + Rijmk,l = 0.

If we trace along jk (that means multiply both sides by gjk and sum), we get

gjkRijkl,m − gjkRjilm,k + gjkRijmk,l = 0
Ricil,m − Rkilm,k − Ricim,l = 0
Ricil,m − Ricim,l = Rkilm,k.

This is the traced second Bianchi identity. Tracing again along il, we get

gilRicil,m − gilRicim,l = gilRkilm,k

Ricll,m − Riclm,l = Rickm,k
s,m = 2Rickm,k.

In schematic form, this reads gradScal = 2 div Ric. This is known as the doubly-traced
second Bianchi identity.

4 Gravity

Einstein argued from the equivalence principle. Varied ‘interpretations’ of the equivalence
principle are possible, but one may consider it to be the principle that particles are not ac-
celerated by gravity, rather mass curves space-time, and particles move along unaccelerated
paths in a curved space-time.

Second, there is no true ‘derivation’ of the gravitational field equations; strictly speak-
ing the field equations are axiomatic. However if relativistic gravity is to reduce to New-
tonian gravity in the low-energy case, then we should be able to garner some ‘hints’ by
carefully examining Newton’s law of gravity.

In the Newtonian theory, one has a gravitational potential ϕ, which is related to force
via ~F = −∇ϕ. Or in Einstein notation

~Fα = −ϕ,α.
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The potential is ‘generated’ by mass via Newton’s law of gravity

4ϕ = 4πGρ

where G is the gravitational constant and ρ is mass density.

Now consider a geometric ‘thought experiment’, where a number of particles situated
different distances from a massive body are allowed free gravitational fall. The situation in
4-dimensional space-time shows we may consider this a variation of paths, with direction
field ∂

∂t and variation field ∂
∂s (sorry I am not good enough with latex to be able to draw

nice pictures here). Let us compute the Jacobi equation:

∂

∂s
=

∂xi

∂s

∂

∂xi

∂

∂t

∂

∂t

∂

∂s
=

∂

∂t

∂

∂t

∂xi

∂s

∂

∂xi

=
∂

∂s

∂

∂t

∂xi

∂t

∂

∂xi
,

because mixed partials commute. Now note that ∂2xi

∂t2 is the ith component of acceleration,
which is related to force: ~Fi = − ∂ϕ

∂xi . Thus

∂

∂t

∂

∂t

∂

∂s
= − ∂

∂s

∂ϕ

∂xi
∂

∂xi

= −∂x
j

∂s

∂

∂xj
∂ϕ

∂xi
∂

∂xi

= −∂x
j

∂s

∂2ϕ

∂xj∂xi
∂

∂xi
.

So much for the classical situation. Now consider the covariant situation, obtained by
replacing partial derivatives with covariant derivatives. The Jacobi equation gives us

∇ ∂
∂t
∇ ∂

∂t

∂

∂s
= −R

(
∂

∂s
,
∂

∂t

)
∂

∂t

= −∂x
j

∂s
R

(
∂

∂xj
,
∂

∂t

)
∂

∂t

= −∂x
j

∂s
Rj00

i ∂

∂xi
.

Comparing this to the classical calculation, it should be the case that

∂2ϕ

∂xi∂xj
= Ri00

j .

Now the Newton equation is∑
i

∂2ϕ

∂xi∂xi
≡ 4ϕ = 4πGρ,
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so it should be the case that the covariant gravitational equation is something like

Ric00 = Ri00
i = 4πGρ,

that is, the gravitational field equations should be equations of prescribed Ricci curvature.

However Ric00 = 4πGρ is not a lorentz-invariant expression: it depends on the choice
of a time-vector. The Ricci tensor should not rely just the mass distribution, but on the
entire stress-energy-momentum tensor Tij , which is a Lorentz-invariant object.

Thus we are led to Einstein’s first guess as to the field equations:

Ricij = 4πGTij (??).

It turns out that this must be wrong, essentially for mathematical reasons: if one takes the
divergence of both sides, then

Ricij,j = 4πGTij,j
1
2
s,i = 0.

(abusing Einstein notation here: one of the js on each side should be lifted). The left
side was simplified using the doubly-traced second Bianchi identity, and the right side was
simplified using conservation of energy-momentum. But ds = s,i = 0 means that scalar
curvature is constant, which is impossible since s = gij Ricij = gijTij is the trace of the
stress-energy-momentum tensor, and this tensor, which represents the distribution of mass,
energy, and forces in space, is by-and-large arbitrary (subject only to the conservation law).

Therefore our first ‘guess’ at the field equations is wrong. We therefore modify the
equations:

Ricij −
s

2
gij = 4πGTij .

Taking divergences of both sides, we get

Ricij,j −
(s

2
gij

)
,j

= 4πGTij,j

1
2
si −

s,j
2
gij −

s

2
gij,j = 0

1
2
si −

s,i
2

= 0,

which checks out (recall that g is covariant-constant: gij,k = 0).

Notice what we have done. We ‘guessed’ at field equation Ricij = 4πGTij using a phys-
ical reasoning (ie comparing the Newtonian gravitation). It turned out to be demonstrably
invalid, essentially for mathematical reasons. We then ad hoc appended a term that fixed
the mathematical defect. In fact, this was more-or-less Einstein’s process!
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The question is, what other terms could one possibly append? We will not prove this,
but there turns out to be only one further possible modification: adding a multiple of the
metric. One gets

Ricij −
s

2
gij + Λgij = 4πGTij .

If we take a divergence of both sides, we get(
Ricij −

s

2
gij

)
,j

+ (Λgij),j = 4πGTij,j

0 + Λ,jgij = 0

(we already computed the divergence of all terms except the new one). Thus Λ,i = 0, so
that Λ must be a constant. This is Einstein’s famous Cosmological Constant.

Therefore we can write Einstein’s Gravitational Field Equations

Ricij −
s

2
gij + Λgij = 4πGTij ,

where Λ is an arbitrary (that is, predetermined) constant. This is essentially an equation
of prescribed Ricci curvature: the distribution of matter, energy, and forces (encoded in
Tij) determines the Ricci curvature of space. Since Ricci curvature is ‘in principle’ the
D’Alembertian of the metric, it is reasonable to conclude that that one can solve for the
metric once the Ricci curvature has been set.
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MAT 401: The Geometry of Physics
Spring 2009

Department of Mathematics
SUNY at Stony Brook

Welcome to The Geometry of Physics

    In this class we will develop the mathematical
language needed to understand Einstein's field equations.
The
infinitesimal structure of any space, even curved space, is
Euclidean, and so is described with linear
algebra. Calculus, in the
form of continuity and differentiability properties of paths and
surfaces, can express
the connectedness of space. The synthesis of
these points of view, of the infinitesimal with the global, of
linear algebra with calculus, yields the powerful language of
differential geometry, which Einstein used to
express the physics of
General Relativity.

Course Content    

Before studying the field equations we must develop the language
of geometry.  We will try to integrate
intuitive content with hard
mathematics, and some of the topics will be partly review for many
students. But
hard work will be required... it took Einstein more than 2
years to understand the mathematics we will cover
in a semester.

Homework assignment page                    Class notes                    Quiz Prep (including final exam info)

Announcements

There will be a makeup class on Monday (May 11) in P-131 in the
math building. We will go over the
gravitational field equations.

I be in my office on Tuesday the 12th, from 2-4pm and 5-7pm

Course Information:

Check out the topics we will cover...

Here is a link to the syllabus.

Textbook

A first Course in General Relavity by Bernard F. Schutz

Supplimentary books / Recommended reading

http://www.math.stonybrook.edu/~brweber/401s09/coursefiles/homeworkassignments.html
http://www.math.stonybrook.edu/~brweber/401s09/coursefiles/classnotes.html
http://www.math.stonybrook.edu/~brweber/401s09/coursefiles/quizprep.html
http://www.math.stonybrook.edu/~brweber/401s09/coursefiles/Topics.html
http://www.math.stonybrook.edu/~brweber/401s09/coursefiles/syllabus401s09.pdf


The Geometry of Physcis by Theodore Frankel, Second Edition
The Large Scale Structure of Space-Time by G. Ellis and S. Hawking
General Relativity by Robert Wald

Course Grading

One homework assugnment will be due each Wednesday.

Homeworks:          10% of total grade
Quizes:                   10% of total grade
Test 1:        10% of total grade (Friday Feb 13)
Test 2:        20% of total grade (Friday Mar 6)
Test 3:        10% of total grade (Friday Mar 20)
Test 4:        10% of total grade (Friday April 17)
Final Exam:   30% of total grade

Your instructor is Brian Weber,
Office: 3-121 Math Tower

Course Prerequisites

Calculus IV, Math 305 or equivalent (differential equations)
Linear Algebra, Math 310 or equivalent

 

Americans with Disabilities Act

If you have a physical, psychological, medical or learning
disability that may impact your course work, please contact
Disability
Support Services, ECC (Educational Communications Center) Building, room
128, (631) 632-6748 or
http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are
necessary and
appropriate. All information and documentation is confidential.
Students who requiring assistance during emergency
evacuation are encouraged to discuss their
needs with their professors and Disability Support Services. For procedures
and
information, go to the following web site:
http://www.www.ehs.stonybrook.edu/fire/disabilities.asp
 

http://www.math.stonybrook.edu/~brweber/401s09/coursefiles/Lec2.html
http://studentaffairs.stonybrook.edu/dss/
http://www.ehs.stonybrook.edu/fire/disabilities.asp


Problem set 1
Due Feb 4

Problem 1) An electron flies by at half the speed of light. Mounted to the wall immediately
behind it is a meter stick.

a) How much time does it take for the electron to traverse the meter stick?
b) From the electron’s perspective, how fast is the meter stick moving?
c) From the electron’s perspective, how much time does it take the meter stick to fly

by?
d) From the electron’s perspective, what is the length of the meter stick?

Problem 2) Consider the Minkowski plane R1,1, and let p be the event (2,−c). Given a
massive particle located at space-time location p, which, if any, of the following events is it
physically possible for it to reach? Justify your conclusions.

q1 = (2, 2c)
q2 = (4, c)
q3 = (7/2, −c/2)

Problem 3) Let Λ(τ) =
(
τ, 2

3c
2τ2

)T be a path through 2-space.
a) Find the pathlength, 0 < τ < 1, in Euclidean 2-space.
b) Find the pathlength, 0 < τ < 1, in Minkowski 1+1-space

Problem 4) Let Λ(τ) = (τ, c sin(τ), c cos(τ))T through 3-space.
a) Find the pathlength, 0 < τ < 1, in Euclidean 3-space.
b) Find the pathlength, 0 < τ < 1, in Minkowski 1+2-space.

Problem 5) Consider an observer labeled o in the Minkowski plane, R1,1. Consider the
following events:

• p1 occurred 1s in the past, a distance of 2c to the left of o

• p2 occurred 1s in the past, a distance of 5c to the right of o

• p3 occurs 2s in the future, a distance of c to the right of o.

Draw a space-time diagram with p1, p2, and p3 at the corners of a triangle. What are the
lengths, in the Minkowski sense, of the sides of the triangle? Which of these events are
separated by a space-like interval? a time-like interval?

Problem 6) Consider an observer o′, located at the same space-time position as o, but
traveling at 4

5c relative to o. Make a space-time diagram from the perspective of o′ with
the events p1, p2, p3 again forming the corners of a triangle. Find and label the Minkowski
lengths of the sides of the triangle. According to o′, which event occurred first?

1



Problem set 2
Due Feb 11

Problem 1) Let {x0, x1} be coordinates for R1,1; this will be the lab frame. A second
observer is traveling at 3

5c with respect to the lab, and places {y0, y1} coordinates on space-
time (with the same origin as the {x0, x1} coordinates). A third observer is traveling at 12

13c
with respect to the lab, and places {z0, z1} coordinates on space-time (with the same origin
as the {x0, x1} coordinates).

a) Make a sketch of space-time according using the {x0, x1} coordinate system. As
accurately and neatly as possible, superimpose the {y1, y2} axes on your sketch. To do this,
first find and label the points

p0 =
(

1
0

)
{yi}

p1 =
(

0
c

)
{yi}

.

b) On the same graph, superimpose the {z1, z2} axes. To do this, first find and label
the points

q0 =
(

1
0

)
{zi}

q1 =
(

0
c

)
{zi}

.

c) Superimpose the light cone and the pseudospheres of radius 1, 2, and 3.
**YOUR GRAPH MUST BE VERY NEAT AND VERY LARGE.

Problem 2) (The Twin Paradox) A traveler leaves the Earth traveling at speed v.
After reaching a distance of d as measured by a stationary observer on Earth, the traveler
immediately turns around and returns to Earth at the same speed. According to an Earth-
bound observer, how long was the traveler gone? According to the traveler, how much time
did the trip take?

Problem 3) (Tachyons) Tachyons are hypothetical particles that travel faster than
light. Consider two spaceships leaving the space-time point o, traveling at velocity v relative
to each other. Each spaceship is equipped with a tachyon emitter, which emits a tachyon
of velocity w > c as measured in the emitter’s rest-frame. At time l, the first ship emits a
tachyon, which is received and immediately re-emitted by the second ship, and then received
again by the first ship. Let the event p be the emission of the tachyon from the first ship,
let the event q be the reception and re-emission of the tachyon from the second ship, and
let the event p′ be its reception by the first ship.

a) Let {x0, x1} be the space-time coordinates of the first ship. Express p and q in the
x0-x1 coordinate system.

b) Let {ξ0, ξ1} be the space-time coordinates of the second ship. Express p, q, and p′

in the ξ0-ξ1 coordinate system.
c) Express p′ in the x0-x1 coordinate system.
d) Show that if w > v γv

γv−1 , the first ship received the tachyon before it was emitted.
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Problem 4) (The velocity addition formula) Assume an observer o′ travels at speed
v with respect to the lab. Of course o′ sees the lab moving with speed −v. Assume, in
addition, that o′ sees a particle traveling in the direction opposite the lab’s direction, with
speed w. Prove that the lab observes the particle moving with speed

v + w

1 + vw
c2
.

(Hint: You may work in R1,1, instead of the full R1,3. First draw the situation from the
perspective of o′, then make a transformation from o′’s frame back to the lab frame.)

Problem 5) (O(k, n) is a group) In this problem we will prove that the set O(k, n) is
indeed a group. You may considerO(k, n) to be the matrix group consisting of (k+n)×(k+n)
matrices A so that AT Ik,nA = Ik,n. Recall that Im is the m×m identity matrix, and that
the matrix A−1 is the inverse of the matrix A, if it exists. Prove the following:

a) If A,B ∈ O(k, n), then AB ∈ O(k, n).
b) The identity matrix Ik+n is in O(k, n).
c) If A ∈ O(k, n), then A−1 exists and A−1 ∈ O(k, n).
d) If A,B,C ∈ O(k, n), then (AB)C = A(BC).

Problem 6) Let V be the vector space of the 1-variable functions spanned by f1 =
sin(x), f2 = cos(x), f3 = ex, and f4 = xex. Let A : V → V be the linear operator
A(α) =

∫
αdx, where the antiderivative is taken to have zero constant term.

a) Which of the following belong to V ? Circle all that apply.

1 cos(x) − ex + 2xex sin2(x) e2x

b) Express A as a matrix in the basis {f1, f2, f3, f4}.
c) Express A as a matrix in the basis

e1 = sin(x) + cos(x) e2 = sin(x)− cos(x) e3 = ex e4 = 2ex − xex

d) Express the function 2 sin(x) + cos(x)− ex + xex in both the {fi} and {ei} bases.
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Problem set 3
Due Feb 25

Problem 1) Let Ai
j and Bi

j be the 3 × 3 matrices whose indices are given by the
formulas

Ai
j = i+ j Bi

j = i2 − j2.

a) Write down the matrices A and B in matrix form.
b) Write down the matrices Ai

kB
k
j and Ak

jB
i
k in matrix form.

c) If the vector v is given by v = αivi where αi = i− 3, compute the number A1
jα

j .
d) Write the vector Ai

jα
jvi in column-vector form.

e) If the covector w is given by w = βivi where βi = i+ 3, compute the number Bj
3wj .

f) Write the covector Bj
iwjvi in row-vector form.

Problem 2) Prove the associativity of matrix multiplication: (AB)C = A(BC), where
A is an n×m matrix, B is an m× l matrix, and C is an l × p matrix.

Hint: If you are good at using Einstein notation, this is almost trivial.

Problem 3) Let V be the vector space of quadratic polynomials in one variable. Let
v1 = 1, v2 = x, and v3 = x2; these 1-variable functions will constitute the “standard basis”
of V . Let {v1,v2,v3} ⊂ V ∗ be the basis dual to {vi}. Let p = αivi ∈ V where αi = i2 + 1.

a) Compute v1(p), v2(p), and v3(p).
b) Let A,B,C ∈ V ∗ be the maps

A(·) =
∫ 1

−1

· dx

B(·) =
∫ 1

−1

x · dx

C(·) =
∫ 1

−1

x2 · dx.

Express A, B, and C in the {vi} basis; that is, compute the numbers Ai, Bi, and Ci and
write A, B, and C in the form A = Aivi, B = Bivi, C = Civi.

Problem 4) Let V be as above, this time with basis vectors w1 = 1 + x + x2, w2 =
1− x+ x2, w3 = 1 + x− x2.

a) Compute the transition matrix A{wi}←{vi}.
b) If p = αivi where αi = i2 + i− 3, compute the numbers βi where p = βiwi.
c) Compute the transition matrix A{vi}←{wi}.
d) If p = γiwi where γi = i3 − 3, compute the numbers ηi where p = ηivi.
e) Express the maps A,B,C ∈ V ∗ in covector form in the {wi} basis. That is, compute

the numbers Āi, B̄i, and C̄i and write A, B, and C in the form A = Āiwi, B = B̄iwi,
C = C̄ivi.
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Problem 5) Let V be a 3-dimensional vector space with some basis {v1,v2,v3} ⊂ V ,
and dual basis {v1,v2,v3} ⊂ V ∗. Let f ∈ V ∗ be a linear functional, given by

f = 2v1 − v2 +
1
2
v3

and let A : V → V be a linear operator, given in the {vi} basis by

A =

 1 0 2
0 1 −1
−1 −1 1

 .

Define new functionals g, h ∈ V ∗ by

g(·) = f(A(·))
h(·) = A(f)(·) , f(A−1(·)).

a) Express g as a linear combination of basis elements of V ∗: that is, find the numbers
gi so that g = givi.

b) Express h as a linear combination of basis elements of V ∗: that is, find the numbers
hi so that h = hivi.

Problem 6) In class we showed the existence of a map

N : V → V ∗∗,

which we call the natural isomorphism. Recall that this map is defined as follows: if v ∈ V ,
then N associates to v a linear functional on V ∗ given by

N (v) : V ∗ → R
N (v)(f) = f(v).

a) Prove that N is in fact a map from V to V ∗∗. That is, given v ∈ V , prove that the
map N (v) : V ∗ → R is indeed a linear functional.

Hint: This is equivalent to showing that N (v)(αf + g) = αN (v)(f) + N (v)(g) for
α ∈ R, f, g ∈ V ∗.

b) Prove that N : V → V ∗∗ is a linear map. That is, show α ∈ R and v,w ∈ V implies

N (αv + w) = αN (v) + N (w)

c) Prove that the kernel of N is the set {0} ⊂ V . That is, show that if v ∈ V and
N (v) is the zero functional on V ∗, then in fact v = 0.

d) If V is finite dimensional, prove that N : V → V ∗∗ is a vector space isomorphism.
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Problem set 4
Due March 4

Problem 1) Let V be the space of quadratic polynomials, with basis v1 = 1, v2 = x
and v3 = x2 and dual basis {vi} ∈ V ∗. Let A : V → V be the operator

A(·) =
d

dx
(·) +

1
x

∫
· dx

where the antiderivative is taken to have zero constant term. We can regard A as an element
of
⊗1,1

V . Express A in the basis {vi ⊗ vj}. What is the number A2
3?

Problem 2) Let V be a vector space with basis v1,v2,v3 and dual basis {v1,v2,v3} ⊂
V ∗. Let the numbers Tij be given by T11 T12 T13

T21 T22 T23

T31 T32 T33

 =

 0 2 0
1 0 −1
1 −2 0


Let T = Tijvi⊗vj ∈

⊗0,2
V. We can regard T as a map T : V × V → R, or in two different

ways as maps T : V → V ∗. Let

v =

 1
−1
2


{vi}

∈ V.

Compute T (v, v), and compute T (v) in the two different possible ways.

Problem 3) Let V , W be finite dimensional vector spaces. Prove that any linear map
A : V →W can be expressed as an element of W ⊗ V ∗.

Problem 4) Let V be a 1-dimensional vector space. Let W be a finite dimensional
vector space. Prove that there exists an isomorphism V ⊗W ≈W .

Problem 5) Let V be a two-dimensional vector space, with basis v1,v2 and dual basis
v1, v2. Let w1 = 1

2 (v1 + v2) w2 = 1
2 (v1 − v2), and let g ∈

⊗0,2
V be given in the

{vi} ⊂ V ∗ basis by g = v1 ⊗ v2 + v2 ⊗ v1.
a) Express the elements of the dual basis w1,w2 ∈ V ∗ in terms of the elements

v1,v2 ∈ V ∗.
b) Prove that g is an inner product.
c) Express g in terms of the {wi} basis.
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Problem 6) Let V = span{v1,v2,v3,v4} be a 4-dimensional vector space. Let T =
v1 ⊗ v2 ⊗ v3 ⊗ v4. The alternating tensor Alt(T ) can be expressed as a linear combination
of basis elements vi⊗vj⊗vk⊗vl ∈

⊗0,4
V , namely, Alt(T ) = T̃ijklvi⊗vj⊗vk⊗vl. What

are the numbers T̃1111, T̃1231, T̃1234, T̃2134, and T̃4132?

Problem 7) Assume V is an n-dimensional vector space. Prove that

dim

(∧i
V ∗
)

=
n!

i!(n− i)!
.

2



Problem set 5
Due March 18

Problem 1) Let V = span{v1,v2} be a vector space with dual space V ∗. Let

g = 4v1 ⊗ v1 − 2v1 ⊗ v2 − 2v2 ⊗ v1

be an inner product on V .
a) Determine the corresponding inner product on V ∗; explicitly write it as a linear

combination of basis elements {vi ⊗ vi} ⊂
⊗2,0

V .
b) Let v = 2v1 − 3v2 ∈ V . Compute v[.
c) Let f = 2v1 − 3v2 ∈ V ∗. Compute f ].

Problem 2) Let U ⊂ M be an open set. In class we defined an operator d : Ωp(U) →
Ωp+1(U), assuming some coordinate system was given. In this problem we will show that
the definition of the d-operator is actually independent of coordinates. Assume another
operator d̃ : Ωp(U) → Ωp+1(U) exists which obeys the following four properties: whenever
ω, η ∈ Ω∗(U) and f ∈ Ω0(U), it holds that

• d̃(ω + η) = d̃ω + d̃η

• d̃(ω ∧ η) = d̃ω ∧ η + (−1)|ω|ω ∧ d̃η

• d̃f(X) = X(f)

• d̃d̃f = 0.

Prove that d̃ = d.

Problem 3) If ω = fidx
i is a 1-form, prove directly that

dω(X,Y ) = X(ω(Y )) − Y (ω(X)) − ω([X,Y ]),

where X = Xi ∂
∂xi , Y = Y i ∂

∂xi are arbitrary vector fields.

Problem 4) Let M be Euclidean 2-space with standard (x, y)-coordinates. Define

g =
4

(1 + x2 + y2)2
dx⊗ dx +

4
(1 + x2 + y2)2

dy ⊗ dy.

Let r ∈ [0,∞), θ ∈ [0, 2π) be new coordinates, defined so r2 = x2 + y2 and tan(θ) = y/x.
Compute g in the new coordinates.

Problem 5) Let M , g be as in Problem 4.
a) Let γ : R→M be γ(τ) = (τ, τ)T

{xi}. Compute that length of the path γ([−∞,∞]).
b) Let γs : [0, 2π) → M be γs(τ) = (s cos τ, s sin τ)T

{xi}. Given a fixed s ∈ [0,∞),
compute the length of the path γs([0, 2π)).

1



Problem set 6
Due March 25

Problem 1) Let U ⊂ M be an open set. In class we defined an operator d : Ωp(U) →
Ωp+1(U), assuming some coordinate system was given. In this problem we will show that
the definition of the d-operator is actually independent of coordinates. Assume another
operator d̃ : Ωp(U) → Ωp+1(U) exists which obeys the following four properties: whenever
ω, η ∈ Ω∗(U) and f ∈ Ω0(U), it holds that

• d̃(ω + η) = d̃ω + d̃η

• d̃(ω ∧ η) = d̃ω ∧ η + (−1)|ω|ω ∧ d̃η

• d̃f(X) = X(f)

• d̃d̃f = 0.

Prove that d̃ = d.

Problem 2) If ω = fidx
i is a 1-form, prove directly that

dω(X,Y ) = X(ω(Y )) − Y (ω(X)) − ω([X,Y ]),

where X = Xi ∂
∂xi , Y = Y i ∂

∂xi are arbitrary vector fields.
Note: use the following definition: v ∧ w = v ⊗ w − w ⊗ v (no factor of 1

2).

Problem 3) If dim(V ) = n, we know dim
∧p

V ∗ = n!
p!(n−p)! . Thus dim

∧p
V ∗ = dim

∧n−p
V ∗

and so, at least abstractly,
∧p

V ∗ ≈
∧n−p

V ∗. The duality operator ∗ :
∧p

V ∗ →
∧n−p

V ∗

(also called the Hodge-∗ operator or the Hodge duality operator) realizes this isomorphism.
On Euclidean 3-space, we define the ∗ operator by

∗ :
∧0
→

∧3
∗(1) = dx ∧ dy ∧ dz

∗ :
∧1
→

∧2
∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy

∗ :
∧2
→

∧1
∗(dx ∧ dy) = dz, ∗(dx ∧ dz) = −dy, ∗(dy ∧ dz) = dx

∗ :
∧3
→

∧0
∗(dx ∧ dy ∧ dz) = 1

and extended by linearity. Prove that, if ω = ω1dx+ω2dy+ω3dz, then g(ω, ω) = ∗(ω∧∗ω),
where g is the Euclidean metric.

Problem 4) Assume a single stationary particle of mass m breaks into two particles of
equal mass m̃. Prove that the two particles have the same 3-velocity ~̃v, and find m̃ (it is
not m

2 ).

Problem 5) Prove that a massive particle cannot spontaneously emit a photon.

1



Problem set 7
Due April 15

Problem 1) Verify the Koszul formula.

Problem 2) Let f(x) =
√

1− x2, x ∈ [−1, 1] be the equation of the upper unit semicircle.
Rotate this curve around the x-axis to obtain the 2-sphere S2.

a) Compute g in the {ξ, θ} system.

b) Compute g in the {r, θ} system.

Problem 3) Let ϕ2 = ϕ2(x1) and let g = dx1 ⊗ dx1 + ϕ2 dx2 ⊗ dx2 be the metric on a
generic warped product (in more standard terminology, x1 is r and x2 is θ). Compute the
eight Christoffel symbols: that is, compute

Γ1
11, Γ2

11, Γ1
12, Γ2

12, Γ1
21, Γ2

21, Γ1
22, Γ2

22.

Problem 4) Given a generic warped product with metric g = dr ⊗ dr + ϕ(r)2 dθ ⊗ dθ.
Compute the covariant derivatives ∇ ∂

∂r

∂
∂r , ∇ ∂

∂r

∂
∂θ , ∇ ∂

∂θ

∂
∂r , and ∇ ∂

∂θ

∂
∂θ .

Problem 5) Consider the example of the sphere from problem 2. Compute explicitly the
covariant derivatives

∇ ∂
∂r

∂

∂r
, ∇ ∂

∂θ

∂

∂r
, ∇ ∂

∂r

∂

∂θ
, and ∇ ∂

∂θ

∂

∂θ

Problem 6) Let g be the metric on S2 computed in problem 2b. Let γ(τ) =
(

1
2τ

2, τ
)

be a
path on the sphere, expressed in (r, θ) coordinates. Compute the acceleration

∇ d
dτ

d

dτ
.

1



Answers to Problem Set 7
2) g = 1

1−ξ2 dξ
2 ⊗ dξ2 + (1− ξ2)2dθ ⊗ dθ, g = dr ⊗ dr + sin2(r)dθ ⊗ dθ.

3)

Γ1
11 = Γ2

11 = 0

Γ1
12 = 0 Γ2

12 =
ϕ′

ϕ

Γ1
22 = −ϕϕ′ Γ2

22 = 0

4)

∇ ∂
∂r

∂

∂r
= 0

∇ ∂
∂θ

∂

∂r
= ∇ ∂

∂r

∂

∂θ
=

ϕ′(r)
ϕ(r)

∂

∂θ

∇ ∂
∂θ

∂

∂θ
= −ϕ(r)ϕ′(r)

∂

∂r

5)

∇ ∂
∂r

∂

∂r
= 0

∇ ∂
∂θ

∂

∂r
= ∇ ∂

∂r

∂

∂θ
= − cot(r)

∂

∂θ

∇ ∂
∂θ

∂

∂θ
= cos(r) sin(r)

∂

∂r

1



Problem set 8
Due April 22

Problem 1) Do problem 1 from Problems in Classical Electrodynamics.

Problem 2) Do problem 3 from Problems in Classical Electrodynamics.

Problem 3) Do problem 1 from Problems in Relativistic Electrodynamics.

Problem 4) Do problem 3 from Problems in Relativistic Electrodynamics.

Problem 5) Given vector fields X and Y and functions f and h, prove that

[fX, hY ] = fX(h)Y − hY (f)X + fh[X, Y ].

Problem 6) Prove that the Riemann curvature tensor is indeed a tensor. That is, given
vector fields X, Y , and Z and a function f , prove that

a) R(f X, Y )Z = f R(X, Y )Z
b) R(X, f Y )Z = f R(X, Y )Z
c) R(X, Y )f Z = f R(X, Y )Z

Problem 7) Let g = dr ⊗ dr + ϕ2dθ ⊗ dθ be the metric on the sphere, where ϕ = ϕ(r) is
the function computed in the previous homework. Using results from that homework,

a) Compute R
(
∂
∂θ ,

∂
∂r

)
∂
∂r .

b) Compute the sectional curvature sec
(
∂
∂r ,

∂
∂θ

)
.

1



Problem set 9
Due May 6

Problem 1) Do problem 2 from Problems in Classical Electrodynamics.

Problem 2) Do problem 2 from Problems in Minkowski Analysis.

Problem 3) Do problem 4 from Problems in Relativistic Electrodynamics.

Problem 4) Do problem 5 from Problems in Relativistic Electrodynamics.

Problem 5) Prove the First Bianchi identity:

R(X,Y )Z + R(Y,Z)X + R(Z, X)Y = 0.

Problem 5) Do problems 1-6 from The Hopf Fibration and the Berger Spheres

1



Quiz 1 Topics

Feb 4, 2009

You must be able to define the following:

Reference frame
Proper time
Rn, Rk,n

Space-like, time-like, and null intervals
Group
Dn

O(n), E(n), O(k, n)
The inner product on Rn, Rk,n

Linear transformation of a vector space

You must be able to carry out the following tasks:

Compute γv.

Given a vector space V and a linear transformation A : V → V , determine the matrix
representation of A after a basis has been specified.

Compute distances between points in Rn or in Rk,n.

Compute the arclength of paths in Rn or in Rk,n.

Compute boost and rotation matrices.

1



Quiz 2 Topics

Feb 20, 2009

You must be familiar with vector spaces and their duals.

You must be able to construct a basis for V ∗ dual to a chosen basis of V .

You must be able to express vectors and covectors as linear combinations of basis
elements.

You must be familiar with Einstein summation notation.

You must be familiar with the action of operators on vectors and covectors.

1



Quiz 3 Topics

Feb 27, 2009

You must be familiar with the following:

The tensor product.

The spaces
⊗r,s

V .

The tensor algebra
⊗∗,∗

V .

Expressing tensors in the Einstein notation.

How tensors behave under change of bases.

Regarding tensors as linear maps.

The definition of inner products.

1



Test 2 Topics

Feb 27, 2009

1 Required Knowledge

If V is a vector space, what is V ∗?

Given a basis, how can a basis for V ∗ be defined?

How can an element v of V be interpreted as a functional on V ∗ (that is, a map
V ∗ → R)?

If A : V → V is an operator on V , how do we define the operation of A on V ∗?

If A is a change-of-basis matrix for a vector space V , what is the corresponding change-
of-basis matrix for V ∗?

If V and W are vector spaces, how is V ⊗W defined?

What is the definition of
⊗r,s

V ? of ⊗∗,∗V ?

If T is a tensor (of whatever rank) and A is a change-of-basis, how is T expressed in
the new basis?

In what different ways can a tensor T be interpreted as a map?

If A is an operator, say A : V → V (or A : V → V ∗ or A : V → V ⊗ V ∗ or ...), how
can A be expressed as a tensor?

What is a symmetric tensor? an antisymmetric tensor?

What is the definition of
∧r

V ∗? of
∧∗

V ∗?

1



2 Practice Questions

1) Express the forms v1 ∧ v2 − 2v3 ∧ v4 and 12v1 ∧ v2 ∧ v3 as elements of
⊗0,2

V and⊗0,3
V , respectively.

2) Let V = R3 with standard basis v1 = î, v2 = ĵ, v3 = k̂. Let ω ∈
⊗1,2

V be the cross
product: ω(v, w) = v ×w for v, w ∈ R3. Prove that ω is a tensor. Express ω in terms
of basis elements of

⊗1,2
V .

3) Let V = R3 again, with the standard basis. Let Ω ∈
⊗0,3

V be the triple product:
Ω(v, w, u) = (v × w) · u. Prove that Ω is a tensor. Express Ω in a basis of

⊗0,3
V .

4) Let Ω : V × V × V → R be as above. Prove that Ω is a form. Express Ω in terms of
the basis of

∧3
V ∗.

5) Let V be the vector space of quadratic polynomials in the variable x, with the standard
basis. Let Tw : V → R be given by Tw(v) =

∫ 1

0
w v dx, where w ∈ V . If w =

α1v1 + α2v2 + α3v3, express Tw in terms of the dual basis {vi} ⊂ V ∗.

2



Test 3 Topics

Mar 25, 2009

1 Required Knowledge

What are coordinates?

Given a space M and a point p ∈M , what is TpM? T ∗pM?

Given coordinates {x1, . . . , xn}, what, precisely, does ∂
∂xi

∣∣∣
p

mean?

Given a function f , what does df mean?

How are vector fields and covector fields expressed?

If X is a vector field and ω is a covector field, what is ω(X)?

Given a metric g on V , how is the metric on V ∗ defined?

Given a metric g on V with components gij , what are the components gij of the
corresponding metric g on V ∗?

Let M be a space with metric g. If X is a vector field, what is X[? If ω is a covector
field, what is ω]?

Let M be a space with metric g. If γ(τ), a < τ < b is a path, what is its length?

If ω is a p-form, how is dω computed?

What are the four defining properties of the d operator?

1



2 Practice Problems

1) Consider the Minkowski metric on R1,1. Let X = x0x1 ∂
∂x0 + ∂

∂x1 be a vector field, and
let ω = x1dx0 + x0dx1 be a 1-form. Find X[ and ω]. Compute ω(X) and X[(ω]).

2) Let g = 4
(
(x1)2 + 1

)
dx1 ⊗ dx1 − x1x2dx1 ⊗ dx2 − x1x2dx2 ⊗ dx1 + (x1x2)2dx2 ⊗ dx2 be

a 2-tensor on R2. Is this a metric?

3) Let g = e−(x1)2−(x2)2dx1 ⊗ dx1 + e−(x1)2−(x2)2dx2 ⊗ dx2 be a 2-tensor on R2. Prove g is
a metric. Compute gij . Let X = ∂

∂x1 + x1 ∂
∂x2 and compute X[.

4) Let {x, y} be coordinates on R2. Let ω = e−x2−y2
dx. Compute dω, then convert dω into

polar coordinates. Next, convert ω into polar coordinates first, and then compute dω. Do
you get the same answer?

5) Let g = r2

(1+r2)2

(
dr ⊗ dr + r2dθ ⊗ dθ

)
be a 2-tensor. Prove that this is a metric on

R2−{o}. Determine the distance from the origin to the “point at infinity.”

2



Test 4 Topics

April 22, 2009

1 Things you must memorize

The defining properties of the connection.

The definition of the Christoffel symbols.

The geodesic equation.

The parallel transport equation.

The DERIVATION of the geodesic equation.

The definition of the Riemann curvature tensor.

The definition of sectional curvature.

The DERIVATION of the Jacobi equation.

2 Things you must know

What warped products are.

How to convert between the (ξ, θ) and (r, θ) coordinate systems on warped products.

What the classical vector potential ~A and electric pseudopotential ϕ are.

What a gauge is and what ‘gauge invariance’ means.

What the Coulomb gauge is.

What the Lorentz gauge is.

1



How to derive wave equations for ~E and ~B, if you are given the Maxwell equations.

How to derive wave equations for ϕ and ~A in the Lorentz gauge, if you are given the
Maxwell equations.

What the Faraday 2-form is.

3 Things you do not have to memorize

The Koszul formula.

The formula for Γk
ij in coordinates.

The formula for Rijk
l in coordinates.

The formula for the geodesic equation in coordinates.

The formula for the parallel transport equation in coordinates.

The Maxwell equations.
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