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Topics and homework assignments

Assigned homework problems may change up until a week before their due date.
 Assignments are taken from texts by Banchoff and Lovett (B&L) and Shifrin (S), unless otherwise noted.

Topics and assignments through spring break (April 24)
Solutions to first exam
Solutions to second exam
Solutions to third exam

April 26-28: Parallel transport, geodesics. Read B&L 8.1-8.2; S2.4.
Homework due Tuesday May 3:

B&L 8.1.4, 8.2.10
S2.4: 1, 2, 4, 6, 11, 15, 20
Bonus: Figure out what map projection is used in the graphic here. (A Facebook account is not
 needed.)

May 3-5: Local and global Gauss-Bonnet theorem. Read B&L 8.4; S3.1.
Homework due Tuesday May 10:

B&L: 8.1.8, 8.4.5, 8.4.6
S3.1: 2, 4, 5, 8, 9
Project assignment: Submit final version of paper electronically to me BY FRIDAY MAY 13.

May 10: Hyperbolic geometry. Read B&L 8.5; S3.2.
No homework this week.

Third exam: May 12 (in class)
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 MAT 362 Differential Geometry, Spring 2011

Syllabus in pdf format

Introduction to the course

 This course is an introduction to the theory of curves and surfaces in Euclidean space, from the differentiable
 viewpoint. Our main goal is to cover "the local and global geometry of surfaces: geodesics, parallel
 transport, curvature, isometries, the Gauss map, the Gauss-Bonnet theorem." We will first spend some time
 (about 3-4 weeks) studying local and global properties of curves; these give insight into analogous results
 about surfaces, as well as tools for analyzing surfaces via the curves they contain. 

 The main prerequisites for this material are linear algebra, calculus in several variables, and the topology of
 R^n (such as one can get in an analysis course). These topics will be reviewed as needed, according to the
 students' background. 

 This is one of the most advanced courses offered by the math department at the undergraduate level. You are
 expected to spend about 10-15 hours each week outside of class working on the material. Grading will be
 based on homework, exams, and a final project.

Grading

30% Weekly homework (due each Tuesday, except following an exam)
15% First exam: Thursday, February 24
15% Second exam: Thursday, March 24
15% Third exam: Thursday, May 12 (last day of class)
15% Final project: papers due Tuesday, May 10, presentations on Thursday, May 19 (scheduled
 exam period)
10% Take-home final exam (distributed last day of class, collected at presentations on May 19)

Textbooks

 We will use two texts as references for this class:

Differential Geometry of Curves and Surfaces, by Thomas Banchoff and Stephen Lovett, available in
 the bookstore.
Here is the site containing the authors' applets.
Differential Geometry: A First Course in Curves and Surfaces, by Theodore Shifrin, available for
 (free) download here.

 Here are a few other books about classical differential geometry, which I will be using:

Differential Geometry of Curves and Surfaces, by Manfredo P. do Carmo
Differential Geometry: Curves -- Surfaces -- Manifolds 2nd ed., by Wolfgang Kühnel
Elementary Differential Geometry, by Andrew Pressley
Lectures on Classical Differential Geometry 2nd ed., by Dirk J. Struik

 Many other resources are available, both in the library and online.

Disability Support Services

http://www.math.stonybrook.edu/~bowman/teaching/362spring2011.pdf
http://downloads.akpeters.com/diffgeo/
http://www.math.uga.edu/~shifrin/ShifrinDiffGeo.pdf


 If you have a physical, psychological, medical, or learning disability that may impact your course work,
 please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/.
 They will determine with you what accommodations are necessary and appropriate. All information and
 documentation is confidential. 

 Students who require assistance during emergency evacuation are encouraged to discuss their needs with
 their professors and Disability Support Services. For procedures and information go to the following
 website: http://www.sunysb.edu/facilities/ehs/fire/disabilities.

Academic Integrity

 Each student must pursue his or her academic goals honestly and be personally accountable for all submitted
 work. Representing another person's work as your own is always wrong. Faculty are required to report any
 suspected instances of academic dishonesty to the Academic Judiciary. For more comprehensive information
 on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary
 website at http://www.stonybrook.edu/uaa/academicjudiciary/

Critical Incident Management

 Stony Brook University expects students to respect the rights, privileges, and property of other people.
 Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their
 ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn.

back to MAT 362 main page

http://studentaffairs.stonybrook.edu/dss/
http://www.sunysb.edu/facilities/ehs/fire/disabilities
http://www.stonybrook.edu/uaa/academicjudiciary/


MAT 362 Differential Geometry
Take-home exam
Due 19 May 2011

Instructor: Joshua Bowman

Name (please print):

Instructions:

• Don’t panic. Try to have fun. ,

• Keep in mind that most of the problems can be solved in several different ways.

• Your solutions should be submitted directly to me by 2:15 pm on Thursday,
May 19. They may be typed or handwritten; they should be stapled together,
and a copy of this page should be included as a cover sheet.

• This exam consists of three multipart problems. Read each question carefully,
and answer the same way. Partial credit will be given where appropriate.

• You may use any books, notes, or other resources you find, but you may not
discuss the exam with anyone except me until after 5:00 pm on May 19.

Question Points Score
1 10
2 10
3 10

Total 30

Each student must pursue his or her academic goals honestly and be personally
accountable for all submitted work.

Understanding this, I declare I shall not give, use, or receive unauthorized aid
in this examination.

Signature:



1. Let (x, y, z) be coordinates in R3 and (x, y, z, w) be coordinates on R4. Let S3 ⊂ R4 be
the three-dimensional unit sphere. Stereographic projection P from S3 \ {(0, 0, 0, 1)}
to R3 is defined by

P (x, y, z, w) =

(
x

1− w
,

y

1− w
,

z

1− w

)
.

(a) Show that

~X(u, v) = (cosu cos v, sinu cos v, cosu sin v, sinu sin v).

parametrizes a compact surface S in S3. What surface is S homeomorphic to?

(b) Show that P ◦ ~X is a conformal parametrization of a regular surface in R3. (Hint:

show that ~X is conformal, then use the fact that P is conformal.) Give a natural
domain for this parametrization.

(c) Show that the u- and v-coordinate curves of P ◦ ~X are circles in R3.

(d) Two circles in R3 form a Hopf link if one of them is the boundary of a topological
disk that is intersected by the other exactly once. Show that at least one pair of
v-coordinate curves for P ◦ ~X form a Hopf link. (In fact, this is the case for any
such pair, but you only need to prove it for one.)

Let tanhx = sinhx/ coshx = (ex − e−x)/(ex + e−x) be the hyperbolic tangent. For
problems 2 and 3, you will need the fact that d

dx
tanhx = 1/ cosh2 x.

2. (a) Let D be the unit disk {(x, y) | x2 + y2 < 1} with the hyperbolic metric, given by

g11 = g22 =
4

(1− x2 − y2)2
, g12 = 0.

Show that the curve
γ(t) = (tanh t, 0), t ∈ R,

is a geodesic in the hyperbolic metric.

(b) Use the result of part (a) to compute the area of a disk Dr ⊂ D, centered at (0, 0),
with hyperbolic radius r (that is, Euclidean radius tanh r).

(c) Use the result of part (b), the Taylor expansion for ex, and Theorem 8.3.15 in
Banchoff and Lovett’s text to show that the curvature of D with the hyperbolic
metric is −1 at the origin. (You do not need to prove the theorem.)

(d) Now let H be the upper half-plane {(x, y) | y > 0} with the hyperbolic metric,
given by

g11 = g22 =
1

y2
, g12 = 0.

Show that any line through the origin, parametrized by t 7→ (aet, et), has con-
stant geodesic curvature with respect to the hyperbolic metric, and express this
curvature as a function of a. Also show that any horizontal line in H has constant
geodesic curvature.
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3. The surface C1 obtained by rotating the curve y = coshx around the x-axis is called
the catenoid.

(a) Find the Gaussian curvature of the catenoid.

(b) Now find the area element dA and compute the total Gaussian curvature∫∫
C1

K dA.

(Note that this is an improper integral.)

(c) Prove (or at least show why) the catenoid is diffeomorphic to the cylinder C2

obtained by rotating the line y = 1 around the x-axis.

(d) Determine (by any method), the total Gaussian curvature of the cylinder, i.e.,∫∫
C2

K dA.

(e) Show that the Euler characteristic of the cylinder C2 is zero. You can use the
fact that a finite interval I is diffeomorphic to the whole line R, so the cylinder is
diffeomorphic to I × S1.

After all this, you’ve shown by example that the Gauss–Bonnet theorem does not hold
for non-compact surfaces in the same way it holds for compact surfaces.
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OVERVIEW OF FINAL PROJECTS FOR MAT 362

During the rest of the semester, you will produce an expository paper on some topic in
differential geometry not covered in lectures, or at least one that is not covered in depth.
The paper should be 6–10 pages long, typeset in LATEX; if it includes lots of figures, then
a couple of extra pages may be allowed. It should be written in a professional tone, with
careful definitions and at least a couple of proofs given, although a little levity or the
occasional gloss over details will not be considered improper. Part of the assignment’s
purpose is for you to practice expressing the essence of a concept in a clear and accessible
manner.

Along with this paper, you will develop some multimedia component, which will be
presented to the class on May 19, during the final exam period. This can take any number
of forms: a poster, a collection of computer images (or animations), sculpture, a demon-
sration, etc. It should illustrate some key idea or example from your topic, and be pre-
sentable in 10 minutes (this is the amount of time you will have to show the class). Thus,
you will not be expected to prepare a full-length talk, but only to convey expediently the
interest of your subject.

Here are some possible topics (many others are available):
• Ruled surfaces
• Minimal surfaces
• Weierstrass representation
• Isothermal coordinates/uniformization
• Vector fields on surfaces (e.g., the “hairy ball” theorem)
• Line bundles on surfaces
• Riemannian geometry
• Tensor algebra
• Lie groups
• Connections on tangent bundles
• Immersed surfaces/non-orientability
• Differential forms
• Curvature flows on surfaces
• Geodesic flow on surfaces
• Differential topology
• Morse theory
• Möbius transformations
• Groups of isometries
• Knot theory
• Laplace–Beltrami operator on surfaces
• Extremal length/conformal invariants
• Shape of a drum
• Discrete differential geometry
• Applications to computer modeling
• Applications to physics: relativity, electromagnetism, mechanics

1



The items on this list vary from the broad to the specific, and from the easily-accessible
to the esoteric. Your first job is to consult with me to find an appropriate topic for you,
which may be one of the above, or a small piece of one, or something else altogether. Some
of what I have listed are areas very familiar to me, and I will be able to direct you to one
or more useful sources. Others are relatively outside my own experience, and will require
more initiative on your part to find references. With the advent of the Information Age
already behind us, it should not be hard to find at least a few relevant sources through
search engines, online libraries (e.g., Google books), and Wikipedia.

As a general rule, if the topic you choose is one that appears in many differential ge-
ometry textbooks (such as minimal surfaces) but which we simply didn’t get to in lecture,
then you will be expected to survey lots of sources and create your own presentation from
these. If you choose a topic that is less broadly covered or is a field of study unto itself
(such as Morse theory), then you may focus on one or two primary sources and extract
most of your material from these, although of course you must present the ideas in your
own words.

Here is a rough timetable for the projects:
• Next three weeks: Decide on a topic and meet with me to discuss it. Find sources

and begin sorting through definitions and major results.
• April 5 (due date for first homework after the 2nd exam): Submit a summary of

what you intend to cover in your project. This should be about a page long, written
in LATEX, with a list of sources.

• April 28 (first Thursday after spring break): Present a first draft of your paper to
me and to at least one other student in the class for feedback.

• May 10 (Tuesday of last week of class): Submit final draft of paper to me electroni-
cally. (I will unfortunately be out of town.)

• May 19 (final exam period): Present projects with the other students in the class as
an audience. I will try to find a way to make this accessible to other members of
the math department, as well, provided there are no objections.
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DIFFERENTIALS OF C1 MAPS Rn → Rm

In one-variable calculus, we define the derivative of a function f : I → R at a point
a ∈ I by the limit

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

.

It is not immediately clear how to convert this to the multivariable case. One possibility
is the directional derivative. Suppose U ⊂ Rn is open and F is a function from U to Rm.
Here n ≥ 1 and m ≥ 1 can be arbitrary positive integers. If ~a ∈ U and ~v ∈ Rn, then the
directional derivative of F at ~a in the direction ~v is

(1) D~vF (~a) = lim
t→0

F (~a+ t~v)− F (~a)
t

.

Note that the subtraction in the numerator makes sense because we can add and subtract
vectors in Rm. (Sometimes one restricts to the case where ‖~v‖ = 1, so that t = ‖t~v‖
for t ≥ 0. Then we can think of t~v as replacing h in the numerator of the one-variable
defintion and t as replacing h in the denominator. The fact that the two copies of h in the
original definition turn out to play different roles in the higher-dimensional version will
be important in a moment.) Assuming this limit exists for all ~a ∈ U and ~v ∈ Rn, we’d like
to define the “differential” of F by

(2) dF~a(~v) = D~vF (~a).

(The notation is deceptive; on the left, dF~a is intended to be a function we’re trying to
define at ~v. On the right, D~v is “acting on” the function F , and the result is meant to be
evaluated at ~a. This is why ~a and ~v have moved around.) But even if the expression on the
right always exists, the function defined on the left may not be linear (as a function of ~v);
more care is needed if we still want the derivative to be the “best linear approximation”
of a function. To generalize this notion from one variable to many, it’s useful to think of
the first-order Taylor polynomial, or at least to reconsider the meaning of f ′(a).

The correct way to think of the derivative is suggested in the interpretation of f ′(a) as
a slope, not just as a number. This gives f ′(a) geometric content: the derivative describes
how a line should be placed in order to best line up with the graph of f at a, namely
according to the equation y − f(a) = f ′(a)(x − a). When x increases a small amount,
say h, then y increases by approximately f ′(a)h. Thus f ′(a) is really the coefficient (think
of it as a 1 × 1 coefficient matrix to see where this is going) of a linear map R → R,
defined by h 7→ f ′(a)h. And as h approaches zero, the discrepancy between f(a+ h) and
f(a) + f ′(a)h shrinks faster than h does. This is the way to properly define the derivative
in higher dimensions. First, let’s rearrange the one-variable definition to say that f ′(a) is
the number such that

lim
h→0

f(a+ h)−
(
f(a) + f ′(a)h

)
h

= 0.

Convince yourself, using the fact that f ′(a) is a constant, that this limit is equivalent to
(1). This implies, for instance, that if such an f ′(a) exists, then it is unique.
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Again suppose U ⊂ Rn is open, F is a function from U to Rm, and ~a ∈ U . We define the
differential of F at ~a to be the linear function L = dF~a such that

(3) lim
~h→~0

F (~a+ ~h)−
(
F (~a) + L(~h)

)
‖~h‖

= ~0,

provided such an L exists. This limit says exactly that, as ~h approaches zero, the discrep-
ancy between F (~a + ~h) and F (~a) + dF~a(~h) shrinks faster than ~h does. (Note that ~a + ~h

may not always be in U , but because U is open, for small enough ~h it is. By the linearity
property L(α~v) = αL(~v), we only need to know how L is defined on a small open ball
around ~0 in order to define it on all of Rn.) One can prove directly from the definition that
if a linear function L exists satisfying (3), then there is a unique such function. Using this
definition, the multivariable chain rule

d(G ◦ F )~a = dGF (~a) ◦ dF~a

is very nearly self-evident. (Think about why this becomes (g ◦ f)′(a) = g′(f(a)) f ′(a) in
the one-variable case.) It also follows that if dF~a exists, then it satisfies (2). Thus if the
differential of F exists, all directional derivatives exist; the reverse is not true.

This does not mean that the directional derivative is not important; indeed, it is how
one usually calculates the differential of a function (as the limit in (3) gives little indication
of how to go about finding L). In particular, if we want to find the matrix of dF~a with
respect to the standard basis of Rn and Rm, then we compute the directional derivatives
in the directions of the standard basis vectors for Rn, which amounts to taking the partial
derivatives of the component functions of F . This observation leads to the following
formula for the matrix [dF~a] of dF~a (sometimes called the “Jacobian matrix”), applicable
when F is C1:

[
dF~a

]
=


∂F1

∂x1
(~a) · · · ∂F1

∂xn
(~a)

... . . . ...
∂Fm

∂x1
(~a) · · · ∂Fm

∂xn
(~a)

 .
More commonly, when m = n, this matrix is square, and its determinant is simply called
the Jacobian (or Jacobian determinant) of F .

Here is an example I always find helpful: if F : Rn → Rm is itself linear, then it is its
own “best linear approximation” at every point—i.e., dF~a = F for all ~a ∈ Rn. This is the
correct interpretation of the statement “The derivative of a linear function is constant.”

The next step is to define the derivative of a map between surfaces (or between mani-
folds, which generalize surfaces to higher dimensions). This requires rethinking the na-
ture not only of the derivative itself, but of its domain. Put succinctly, if a function F sends
points of a surface S1 to points of another surface S2, then its linear approximation at p
(the derivative dFp) sends points of the linear approximation to S1 at p (the tangent space
TpS1) to points of the linear approximation to S2 at F (p) (the tangent space TF (p)S2). Thus
the condition of differentiability again lets us pass from “curvy” objects (surfaces and
maps between them) to “straight” objects (vector spaces and linear maps, which are what
we study in linear algebra). Defining this all properly takes a bit more care, but we gain
powerful tools as well as perspective on the old derivative we learned about years ago.

2



DUAL SPACES, LINEAR MAPS, AND THE SPECTRAL THEOREM

Let V be a real vector space. This means the following:
• V is an abelian group: vectors can be added; addition + is commutative and asso-

ciative; there is an identity ~0; and every element ~v ∈ V has an additive inverse −~v
such that ~v + (−~v) = ~0.
• elements of V can be multiplied by real numbers, subject to the following rules:

for any ~v, ~w ∈ V and a, b ∈ R,

a(b~v) = (ab)~v, a(~v + ~w) = a~v + a~w, (a+ b)~v = a~v + b~v.

• For any ~v ∈ V , 1~v = ~v (that is, multiplication by 1 acts as the identity).
V is an n-dimensional vector space if there exists a set of n linearly independent vectors in
V whose span is V ; such a set is then called a basis.

Any vector space V has associated to it another vector space V ∗, called its dual space,
which consists of linear maps from V to R. (Such a space of functions invariably consti-
tutes a vector space, because the functions themselves can be added together and multi-
plied by real numbers.) If V is n-dimensional, then so is V ∗, and any choice of basis in
V induces a dual basis in V ∗: if {~ei} is a basis for V , then the dual basis consists of the
functions ~ei

∗, which may be thought of as “projection” to the ith coordinate.
For example, if we think of vectors in Rn as column vectors, then elements of (Rn)∗ are

represented as row vectors, because multiplication of a column vector by a row vector (on
the left) produces a scalar. We move between an element ~v ∈ Rn and its dual by applying
the transpose: ~v ∗ = ~v>.

Given two vector spaces V and W , their tensor product V ⊗ W is a new vector space
that consists of tensors, which are formal linear combinations of expressions that look like
~v ⊗ ~w, with ~v ∈ V , ~w ∈ W . Tensors are assumed to be linear in each component, meaning

~v ⊗ (~w1 + ~w2) = ~v ⊗ ~w1 + ~v ⊗ ~w2, (~v1 + ~v2)⊗ ~w = ~v1 ⊗ ~w + ~v2 ⊗ ~w,

and (a~v)⊗ ~w = ~v ⊗ (a~w) = a(~v ⊗ ~w).

(Basically, you assume you can “multiply” elements of V and W , then follow the rules of
distributivity as you would expect.) If {~ei} is a basis of V and {~fj} is a basis of W , then
the tensors of the form ~ei ⊗ ~fj form a basis of V ⊗W . This means that we can write any
element of V ⊗ W as a unique linear combination of the elements ~ei ⊗ ~fj ; moreover, if
dim(V ) = k and dim(W ) = n, then dim(V ⊗W ) = kn:

V ⊗W =

{
k∑

i=1

n∑
j=1

aij(~ei ⊗ ~fj) | aij ∈ R

}
.

The space of linear maps from V to W can be expressed as the tensor product W ⊗ V ∗:
for each tensor of the form ~w⊗α, evaluate on ~v ∈ V by (~w⊗α)(~v) = α(~v)~w. Now suppose
{~ej}kj=1 is a basis for V , {~ej

∗}kj=1 is its dual basis, and {~fi}ni=1 is a basis for W . Then the
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linear map A that sends ~ej to
∑

i a
i
j
~fi for all j is just the tensor

∑
i,j a

i
j(
~fi ⊗ ~ej

∗):

[A] =

a1
1 · · · a1

k
... . . . ...
an

1 · · · an
k

 ←→ A =
n∑

i=1

k∑
j=1

ai
j(
~fi ⊗ ~ej

∗).

Here we have written the coefficients as ai
j instead of aij to remind ourselves of the dif-

ferent roles of the indices: the “down” index is matched with the input variables, and the
“up” index is matched with the output variables. We will learn more about this index
convention later in the course.

An element of V ∗ ⊗ V ∗ (i.e., a map V × V → R that is linear in each variable) is called a
bilinear form on V . Each element of the form α⊗ β is evaluated on a pair of vectors (~v1, ~v2)
according to the rule (α⊗ β)(~v1, ~v2) = α(~v1)β(~v2); this definition extends to all of V ∗ ⊗ V ∗
by linearity.

A bilinear form B ∈ V ∗⊗V ∗ is called symmetric if B(~v1, ~v2) = B(~v2, ~v1). This means that
there is a basis {~ei} of V such that B =

∑
aij(~ei

∗ ⊗ ~ej
∗), with the aij symmetric, aij = aji.

(It does not necessarily mean that this symmetry of coefficients holds in every basis.) A
bilinear form B is called positive definite if B(~v,~v) > 0 for every ~v 6= ~0. A symmetric,
positive definite bilinear form on V is often called an inner product on V ; the standard
inner product on Rn is the prototypical example.

From our previous discussion, we see that an element of V ∗ ⊗ V ∗ can also be thought
of as a linear map V → V ∗. This correspondence between bilinear forms on V and maps
from V to its dual space is entirely natural (that is, independent of coordinates). Indeed,
the transpose operation on matrices, which converts column vectors to row vectors and
vice versa, is an instance of using the standard inner product on Rn to induce a map
from Rn to its dual (Rn)∗. (Notice that this description via transposes does depend on the
coordinates, but it can be phrased just in terms of the standard inner product.)

Suppose V has an inner product 〈 · , · 〉 ∈ V ∗ ⊗ V ∗. A linear map A : V → V (that is, an
element A of V ⊗ V ∗) is called self-adjoint with respect to 〈 · , · 〉 if 〈A~v1, ~v2〉 = 〈~v1, A~v2〉 for
all ~v1, ~v2 ∈ V . We can think of the two sides of this equality as “contracting” A with 〈 · , · 〉
in two different ways: if we write A in some basis {~ei} of V as

∑
ai

j(~ei ⊗ ~ej
∗), then we can

insert each ~ei in this expansion into either “slot” of 〈 · , · 〉 to obtain a new bilinear form
in V ∗ ⊗ V ∗. Self-adjointness means that it does not matter which choice we make. (More
generally, given a linear map A : V → V , there is a unique map A∗, called the adjoint of A,
that satisfies 〈A~v1, ~v2〉 = 〈~v1, A

∗~v2〉. In an orthonormal basis, the matrix of the adjoint A∗
is the transpose of the matrix of A, but this, too, does not hold in all bases.)

Spectral Theorem. Let V be a real vector space with inner product 〈 · , · 〉. If A : V → V
is self-adjoint, then all of its eigenvalues are real, and V has an orthonormal basis consisting of
eigenvectors of A.

We will give a proof for the case that V is two-dimensional. The general case is proved
by induction on the dimension of V . The idea is to find eigenvalues and eigenvectors of
A by looking at the restriction of the quadratic form Q(~v) = 〈A~v,~v〉 = 〈~v, A~v〉 to the set of
unit vectors in V . First, we make an observation about eigenspaces of a self-adjoint map.
Recall that ~v⊥ is the subspace of V consisting of vectors orthogonal to ~v.

Lemma. If A : V → V is self-adjoint and ~v is an eigenvector of A, then ~v⊥ is A-invariant.
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Proof of lemma. Suppose ~w ∈ ~v⊥. Then, because A~v is a scalar multiple of ~v, we have
0 = 〈~v, ~w〉 = 〈A~v, ~w〉 = 〈~v, A~w〉. Thus A~w ∈ ~v⊥ for all ~w ∈ ~v⊥. �

Proof of the Spectral Theorem. The differential of Q at a point ~v ∈ V is given by

dQ~v(~w) = lim
t→0

Q(~v + t~w)−Q(~v)

t
= lim

t→0

(
Q(~v) + 〈A~v, t~w〉+ 〈A(t~w), ~v〉+ t2Q(~w)

)
−Q(~v)

t

= lim
t→0

t
(
〈A~v, ~w〉+ 〈A~w,~v〉

)
+ t2Q(~w)

t
= lim

t→0

(
〈A~v, ~w〉+ 〈~v, A~w〉+ tQ(~w)

)
= 〈A~v, ~w〉+ 〈A~v, ~w〉 = 2〈A~v, ~w〉.

Consider the set S1 = {~v ∈ V | 〈~v,~v〉 = 1}. This set is closed and bounded, and therefore,
by the Extreme Value Theorem, Q attains both a maximum λ1 and a minimum λ2 on S1,
and these are both real. For i = 1, 2, let ~vi ∈ S1 be a point such that Q(~vi) = λi. Then,
because λi is an extreme value of Q, ~vi must be a critical point of Q, and so dQ~vi

must
vanish on T~vi

S1. (You may know this from the “method of Lagrange multipliers”.) We
know that T~vi

S1 = ~v⊥i , and so for any ~w ∈ ~v⊥i , we have 0 = dQ~vi
(~w) = 2〈A~vi, ~w〉. But this

implies that A~vi is orthogonal to every element of ~v⊥i , which means it must be a multiple
of ~vi. Since λi = Q(~vi) = 〈A~vi, ~vi〉 and ~vi is a unit vector, we conclude that A~vi = λi~vi.
Therefore λ1 and λ2 are the eigenvalues of A (because it can have at most two).

By the lemma, any vector orthogonal to an eigenvector of A is itself an eigenvector of
A. Thus if λ1 6= λ2, their corresponding eigenspaces are orthogonal. �
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EXISTENCE AND UNIQUENESS RESULTS FOR INITIAL VALUE PROBLEMS

We have invoked the theory of ordinary differential equations several times during
the semester, and so it seems worthwhile to at least mention what results we are using
and why they should be true. These notes will not provide complete proofs, but they
will suggest what tools are necessary. We will also use very geometric language, as is
appropriate for our immediate interests.

We consider curves in Rn: recall that a Ck curve is a map γ : I → Rn, with I ⊆ R an
interval, whose component functions are k times continuously differentiable. For most of
our applications, and to convey the main notions, it is enough to consider curves defined
on [0, 1].

The first new idea we need is that of “distance” between curves. There are several ways
to define such a distance; we will use the following. If γ1 and γ2 are two curves from [0, 1]
to Rn, then their distance is

d(γ1, γ2) = max
t∈[0,1]

‖γ1(t)− γ2(t)‖,

where ‖ · ‖ is the usual distance in Rn. This distance measures the farthest two curves are
apart at any time, and so, in particular, it is zero if and only if the two curves are the same
map (not just that they have the same locus).

Now we recall what it means to “solve” a differential equation. A Ck vector field on Rn

is a Ck function ~ξ : Rn → Rn. Given such a vector field and a point p ∈ Rn, we look for a
curve γ : [0, 1]→ Rn that satisfies

γ′(t) = ~ξ(γ(t)) for all t, γ(0) = p.

That is, the field ~ξ specifies the tangent vectors to γ, and p provides an initial condition. A
slightly more general situation considers time-dependent vector fields, which are maps
R × Rn → Rn, where the first coordinate (in R) is thought of as “time”. This actually fits
better into the first context in which we encounter differential equations—namely, tech-
niques of integration in one-variable calculus—because now we are considering initial
value problems of the form

γ′(t) = ~ξ(t, γ(t)), γ(0) = p;

when attempting to solve an equation of the form y′ = f(x), we are essentially solving
a time-dependent differential equation where the change (i.e., the vector field R → R)
only depends on the “time” x, not on the current “position” y. In this case, the question of
existence and uniqueness reduces to the Fundamental Theorem of Calculus and the Mean
Value Theorem. Although dealing with time-dependent vector fields does not introduce
any new technical difficulties, for conceptual simplicity in the rest of these notes we will
restrict ourselves to vector fields that only depend on position.

Existence and Uniqueness Theorem. Let ~ξ be aC1 vector field on Rn such that ‖~ξ‖ is bounded.
Then for every p ∈ Rn, there exists a unique curve γ : [0, 1] → Rn such that γ(0) = p and
γ′(t) = ~ξ(γ(t)).

1



This is not the most general form of the theorem, nor is it quite sufficient for every
application we need (in particular, we do not always consider vector fields defined on all
of Rn), but it does capture the essentials, and it is easy to to make quantitative adjustments
that fit our needs. The proof of the theorem is constructive, in the sense that for any ε > 0
we can find a curve within ε of a true solution. The idea is to start with a guess, then
adjust the guess so that it more closely hews to the given vector field.

First we observe that, if γ is a true solution to the initial value problem, then

γ(t) = p+

∫ t

0

~ξ(γ(s)) ds.

(Here s is not meant to denote arc length, but just to be an intermediate variable.) The
two appearances of γ suggest an iterative procedure. Given a curve η : [0, 1] → Rn, we
construct a new curve P (η) : [0, 1]→ Rn as follows:

P (η) = p+

∫ t

0

~ξ(η(s)) ds.

We take as a first guess the line through p with direction vector ~ξ(p):

γ1(t) = p+ t ~ξ(p).

Now, given a guess γi, we apply P to get γi+1:

γi+1 = P (γi) = p+

∫ t

0

~ξ(γi(s)) ds.

That is, we use the vectors along γi to dictate the direction of γi+1. This algorithm is
known as Picard iteration. The key point is that P contracts the distance between curves. If
γ, η : [0, 1]→ Rn are two curves, then

d(P (γ), P (η)) < C · d(γ, η),

where C < 1 is a constant depending on how large ‖~ξ‖ and ‖d~ξ‖ get. This reduces the
question of existence and uniqueness of solutions to a problem about contraction map-
pings on abstract metric spaces. This is not difficult, but it is outside of our purview.

For second-order differential equations of the form

γ′′(t) = F(γ(t), γ′(t))

(where F is a function Rn×Rn → Rn), there is a standard trick to reduce to the earlier case:
define another curve η = γ′ in Rn, set γ̃(t) = (γ(t), η(t)), and use the following first-order
system for a curve in R2n:

γ̃′(t) =

[
γ′(t)
η′(t)

]
=

[
η(t)

F(γ(t), η(t))

]
.

Now the second “coordinate” of γ̃ is simply keeping track of the tangent vectors γ′. This
system requires two pieces of initial data in Rn: a starting point p and a starting vector ~v:

γ(0) = p, η(0) = γ′(0) = ~v.

Given these initial data, the result for first-order differential equations now also shows
the existence of a unique solution to our second-order differential equation, under some
appropriate smoothness and boundedness assumptions on F.

2



Old homework assignments

February 1-3: curves in R^n, arclength, curvature. Read B&L 1.1-1.3 and 3.1; S1.1.
Homework due Tuesday February 8:

B&L 1.1.3, 1.1.5, 1.2.1(a)(b), 1.2.4, 1.2.9, 1.2.10, 1.2.13 (note that b < 0), 1.3.1, 1.3.10, 1.3.13 pdf
S 1.1: 2, 4, 8, 11, Bonus: 9, 12

February 8-10: torsion, Frenet frame, fundamental theorem of curves. Read B&L 1.4-1.5 and 3.2-3.4; S1.2.
Homework due Tuesday February 15:

B&L 1.4.2, 1.4.3, 3.2.1(b)(c)(d), 3.2.5, 3.2.6, 3.2.9, 3.2.10 (cf. #19 in Shifrin 1.2), 3.3.2 pdf
S 1.2: 3(a)(b)(c)(g), 4, 9, 14; A.1 (in the Appendix): 4
LaTeX assignment: make sure you have LaTeX installed on your computer. (Installation for Macs, for
 Windows, general help)
 Download the "Short Course" from this website or this link.
 You will need it for later assignments, but for now you can just browse through it. (Appendix A has
 installation advice, if you need it.)

 Download the following file: 362latex1.tex Read the comments and make sure you can compile this
 source file as it is.
 The result should look something like this (with a different date): 362latex1.pdf
 Change the filename to include your initials at the end. Then change my name to yours, change the
 functions, compile the new source, and email the pdf to me.

February 15-17: applications of Green's and Stokes' theorems, global properties. Read B&L 2.1-2.2 and 4.1-
4.3; S1.3 through Theorem 3.5.
Homework due Tuesday February 22:

B&L: 2.1.1, 2.2.4, 3.2.2, 4.1.1, 4.2.1, 4.2.2, 4.3.2 pdf
S 1.3: 2, 3, 9, Bonus: 6, 13
LaTeX assignment: Download the following file: 362latex2.tex
 Again, change the filename to include your initials at the end, and change my name to yours.
 Follow the directions in the comments, and when you have finished, compile the source and send the
 pdf version to me.

February 22: isoperimetric inequality, four-vertex theorem. Read B&L 2.3-2.4; remainder of S1.3
No homework this week.

First exam: February 24 (in class)

March 1-3: introduction to surfaces. Read B&L 5.1-5.3; S2.1 through Example 3.
Homework due Tuesday March 8:

B&L 5.1.2 (cf. 5.2.13), 5.1.5 (don't work harder than you have to), 5.1.6, 5.2.7, 5.2.12, 5.2.15, 5.3.2,
 5.3.3
Additional exercise (in connection with 5.2.15 above): pdf tex
LaTeX assignment: Read pages 7-22 in the Short course from Grätzer's More Math Into LaTeX
 (chapter 2 and sections 3.1 and 3.2). 
 Create the files as instructed in the text, and follow Grätzer's suggestions to learn what kinds of errors
 can appear. 
 After you have performed all of the "experiments", email me the files note1b.tex, note1b.pdf,
 mathb.tex, and mathb.pdf, with your initials appended to the filenames.

http://www.math.stonybrook.edu/~bowman/teaching/362-BLexs-0208.pdf
http://www.math.stonybrook.edu/~bowman/teaching/362-BLexs-0215.pdf
http://www.tug.org/mactex/
http://www.tug.org/protext/
http://www.tug.org/protext/
http://www.latex-project.org/ftp.html
http://www.ctan.org/tex-archive/info/examples/Math_into_LaTeX-4/
http://www.math.stonybrook.edu/~bowman/teaching/Short_Course.pdf
http://www.math.stonybrook.edu/~bowman/teaching/362latex1.tex
http://www.math.stonybrook.edu/~bowman/teaching/362latex1.pdf
http://www.math.stonybrook.edu/~bowman/teaching/362-BLexs-0222.pdf
http://www.math.stonybrook.edu/~bowman/teaching/362latex2.tex
http://www.math.stonybrook.edu/~bowman/teaching/362ex110308.pdf
http://www.math.stonybrook.edu/~bowman/teaching/362ex110308.tex
http://www.math.stonybrook.edu/~bowman/teaching/Short_Course.pdf


March 8-10: tangent space, normal vector, first fundamental form. Read B&L 5.2, 5.4, and 6.1; remainder of
 S2.1.
Homework due Tuesday March 15:

B&L 5.2.2, 5.2.8(a)(b), 5.4.1, 5.4.6, 5.4.7, 6.1.6, 6.1.15
S 2.1 3(b)(c), 4, 8 (in 4(c), you may use the parametrization we used in class, which switches the roles
 of u and v)
LaTeX assignment: Read sections 3.3 and 3.4 of Grätzer's "Short course".
 You do not have to work through all of the examples, but you should practice a few to get the hang of
 the various math commands.

 Download the following file, which contains some of my standard tips and tricks: 362latex3.tex
 Compile it once, then check the resulting pdf file for double question marks (??). Compile it again to
 see the effect of labeling and referencing.
 Comment out or delete everything between \maketitle and \end{document} in the file. Change my
 name to yours and append your initials to the filename.
 Typeset the paragraph following Example 5 on page 39 of Shifrin's notes, beginning with "We saw in
 Chapter 1..." and ending before "Suppose M and M* are surfaces", as best as you can.
 Email me the .tex and .pdf files.

March 15-17: orientability, Gauss map, second fundamental form. Read B&L 5.5 and 6.2-6.3; S2.2 through
 Proposition 2.2.
Homework due Tuesday March 22:

B&L 6.1.14, 6.2.1(b)(c)(d), 6.3.2(b) ff., 6.3.6, 6.3.7, 6.3.8 (To answer 6.3.7 and 6.3.8, you will need to
 read Definition 6.3.4; in 6.3.8 you should assume that the space curve has nonzero torsion.)
 For 6.1.14(b), include a computer-produced image of the normal variation of the sphere, using
 Grapher (for Mac), the WWW Interactive Multipurpose Server (website), or some other graphing
 calculator.
S 2.2: 3(b)(c)(d)
Additional exercise: find two parametrizations $\vec{X}$ and $\vec{Y}$ from the same domain $U$
 into $R^3$ that yield the same first fundamental form but different second fundamental forms.
LaTeX assignment: Choose one homework exercise assigned this week to typeset in LaTeX, along
 with its solution.
 You may use the template provided last week, or a new document you create, or any other template
 you find.
 Call the file 362hw0322-XX.tex, where "XX" is replaced with your initials.
 When you are done with the exercise, email the .pdf file to Raquel, and email the .tex and .pdf files to
 me.

March 22: normal curvature, principal curvatures.
No homework this week.

Second exam: March 24 (in class)

March 29-31: Dupin indicatrix, asymptotic directions, Gaussian and mean curvatures. Read B&L 6.4-6.6;
 remainder of S2.2.
Homework due Tuesday April 5:

B&L 6.4.2, 6.4.9, 6.5.7, 6.5.9
S 2.2: 5, 6, 7, 8, 9(a)(b), 13, 16, 17 Bonus: 9(c)
Project assignment: Provide a one-page summary of the topic you intend to cover in your paper.
 This summary should be typeset in LaTeX and include a list of at least two sources (published books

http://www.math.stonybrook.edu/~bowman/teaching/362latex3.tex
http://guides.macrumors.com/Grapher
http://wims.unice.fr/wims/wims.cgi?session=P942B7C5F7.2&+lang=en&+module=tool%2Fgeometry%2Fanimtrace.en


 or articles, not from Wikipedia, MathWorld, PlanetMath, etc.).

April 5-7: Christoffel symbols, Gauss and Codazzi equations, Theorema egregium. Read B&L 7.2-7.3; S2.3
 through page 61.
Homework due Tuesday April 12:

B&L 7.2.2, 7.2.3, 7.2.7, 7.2.8, 7.3.3, 7.3.8
S 2.3: 4, 5(a)(b)(c) (only check the Gauss and Codazzi equations for (b)), 16(a)-(d) Bonus: 16(e)
 (needs complex analysis)

April 12-14: Fundamental theorem of surfaces, covariant differentiation. Read B&L 7.4, 7.1; remainder of
 S2.3; S2.4 through Example 2.
Homework due Tuesday April 26:

B&L 7.1.1, 7.1.5, 7.1.13(a)(b)(c) Bonus: 7.4.1 (needs differential equations)
S 2.3: 7, 8, 14
Project assignment: Prepare a first draft of your paper to be given to me and at least one other student
 by April 28.

Spring break: April 18-24

back to MAT 362 main page



MAT 362 Differential Geometry
Exam 1 Solutions

1. (a) Let k ≥ 1, n ≥ 1 be integers. Show that the Lissajous curve

γ(t) = (cos kt, sinnt), 0 ≤ t ≤ 2π,

is regular if and only if k is odd.

For γ to be regular, we must have γ′(t) 6= (0, 0) for all t.

γ′(t) = (−k sin kt, n cosnt)

The first coordinate is zero if and only if kt is a multiple of π, say kt = Nπ,
or t = Nπ/k. For the second coordinate to be zero, we must then have
nt = nNπ/k be an odd multiple of π/2, or 2nNπ/k be an odd multiple
of π. Assume that k and n have no factors other than 1 in common (this
should have been included in the problem’s statement). If k is odd, then
2nN/k is never odd, and γ is therefore regular. If k is even, then n must
be odd, and so nN/(k/2) is odd whenever N is an odd multiple of k/2;
therefore γ is not regular.

(b) Show that the locus of γ(t) = (cos 2t, sin t) lies on a parabola. Find the equation
of the parabola. Sketch the locus.

Using the double-angle formula for cosine, we have

cos 2t = cos2 t− sin2 t = 1− 2 sin2 t.

Thus the locus lies on the parabola with equation

x = 1− 2y2.

Its endpoints are at (−1, 1) and (−1,−1), as shown here:

-1 -0.5 0 0.5 1

-1

-0.5

0.5

1
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2. (a) A deltoid, shown at right, is traced out by a point on the
edge of a circle rolling along the inside of a circle with
radius 3 times as large. Assume the inner (rolling) circle
has radius 1, so that the outer (fixed) circle has radius 3,
and find a parametrization for the deltoid. (Hint: What
path does the center of the inner circle follow?)

The center of the inner circle traverses a circle of radius 2 centered at the
origin. A point on its circumference turns clockwise twice as the inner
circle rolls around three times its circumference, and with the normaliza-
tion given by the above picture, the vector from the inner circle’s center
to the marked point starts at (1, 0). A parametrization is given by

γ(t) = (2 cos t+ cos 2t, 2 sin t− sin 2t) .

(b) Notice that the deltoid is regular except at its cusps. Assume that the deltoid has
its standard (counterclockwise) orientation, and let κg denote the signed curvature
of the deltoid, where it is defined. Explain why the integral of κg with respect to
arc length over one-third of the deltoid (from cusp to cusp) must be −π/3. (You
should not need to compute the integral.)

The integral of κg along a portion of the curve is the total angle that the

unit vector ~T turns along that portion. Because

γ′(t) = (−2 sin t− 2 sin 2t, 2 cos t− 2 cos 2t)

and

lim
t→0

2 cos t− 2 cos 2t

−2 sin t− 2 sin 2t
= 2 lim

t→0

− sin t+ 2 sin 2t

− cos t− 2 cos 2t
= 0

(by L’Hôpital’s rule), ~T (0) is horizontal, pointing to the left (i.e., ~T (0) =
(−1, 0)). By symmetry of the deltoid, along one third of the deltoid
~T turns from pointing left (in the negative x-direction) to pointing up
and to the left at an angle of 2π/3 from the positive x-direction. It has
therefore turned through an angle of −π/3.
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3. Show that the curve

γ(t) =

(
1

2
(sin t+ cos t),

1

2
(sin t− cos t),

√
2

2
t

)
, −∞ < t <∞,

is parametrized by arc length. Compute its Frenet frame at t =
π

2
.

We have

γ′(t) =

(
1

2
(cos t− sin t),

1

2
(cos t+ sin t),

√
2

2

)
,

which implies

‖γ′(t)‖2 =
1

4

(
(cos t− sin t)2 + (cos t+ sin t)2

)
+

(√
2

2

)2

=
1

4
(cos2 t− 2 cos t sin t+ sin2 t+ cos2 t+ 2 cos t sin t+ sin2 t) +

1

2

=
1

4
(2 cos2 t+ 2 sin2 t) +

1

2
= 1.

This shows γ is parametrized by arc length. Hence ~T (t) = γ′(t) for all t.

Thus ~P (t) = γ′′(t)/‖γ′′(t)‖ for all t. We find

γ′′(t) =

(
1

2
(− sin t− cos t),

1

2
(− sin t+ cos t), 0

)
,

and so

γ′(π/2) =

(
1

2
(cos π/2−sinπ/2),

1

2
(cos π/2+sin π/2),

√
2

2

)
=

(
−1

2
,
1

2
,

√
2

2

)
,

γ′′(π/2) =

(
1

2
(− sin π/2−cosπ/2),

1

2
(− sin π/2+cosπ/2), 0

)
=

(
−1

2
,−1

2
, 0

)
.

This implies

~T (π/2) =

(
− 1

2
,
1

2
,

√
2

2

)
, ~P (π/2) =

(
−
√

2

2
,−
√

2

2
, 0

)
.

It only remains to find ~B(π/2), which is the cross-product of these two:

~B(π/2) = ~T (π/2)× ~P (π/2) =

(
1

2
,−1

2
,

√
2

2

)
.
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4. Let γ : I → R3 be a C3 curve parametrized by arc length, with curvature function
κ > 0 and torsion function τ > 0. Set R(s) = 1/κ(s). Suppose the locus of γ is
contained in a sphere centered at the origin. Prove that

(
R(s)

)2
+

(
R′(s)

τ(s)

)2

is constant.

(Hint: Differentiate the equation “ ‖γ(s)‖2 = constant ” three times, and use the results

to express γ as f ~T + g ~P + h ~B for some continuous functions f, g, h. Keep in mind
that at all times the Frenet frame is an orthonormal basis of R3.)

From the equation 〈γ(s), γ(s)〉 = constant and the assumption that γ is
parametrized by arc length, we have (by differentiating twice)

〈γ(s), ~T (s)〉 = 0,

〈γ(s), ~T ′(s)〉+ 〈~T (s), ~T (s)〉 = 0.

By the first of the Frenet–Serret equations, this second equation becomes

〈γ(s), κ(s)~P (s)〉+ 1 = 0,

which implies

〈γ(s), ~P (s)〉 = − 1

κ(s)
= −R(s).

Differentiating the next-to-last equation once more, we have

〈~T (s), κ(s)~P (s)〉+ 〈γ(s), κ′(s)~P (s) + κ(s)~P ′(s)〉 = 0.

The first term is zero because ~T and ~P are orthogonal, and by the second
Frenet–Serret equation, the second term expands out to

〈γ(s), κ′(s)~P (s)〉+ 〈γ(s),−(κ(s))2 ~T (s)〉+ 〈γ(s), κ(s)τ(s) ~B(s)〉.

We have seen previously that the middle term is zero and the first term is
−κ′(s)/κ(s). This implies that

〈γ(s), ~B(s)〉 =
κ′(s)

(κ(s))2τ(s)
= −R

′(s)

τ(s)
.

Because the Frenet frame is orthonormal, the inner product of γ with each
of the vectors ~T , ~P , ~B yields its coordinate in the basis they provide, so

γ(s) = −R(s) ~P (s)− R′(s)

τ(s)
~B(s).

Moreover, the length of γ, which is constant, is obtained directly from these
coefficients:

constant = ‖γ(s)‖2 =
(
R(s)

)2
+

(
R′(s)

τ(s)

)2

.
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5. (a) Below, draw a closed curve whose winding number around P is 2, around Q is 1,
and around R is −1. (Draw at least one arrow or tangent vector to indicate the
orientation of your curve.)

• P • Q • R

(b) Let γ be a closed, regular C2 curve in R2. Assume that its (unsigned) curvature
κ satisfies 0 ≤ κ(t) ≤ 1/R for some constant R > 0. Prove that, if γ has rotation
index N , then

length(γ) ≥ 2πNR.

Let κg be the signed curvature of γ. Then, using the rotation index
formula,

N =
1

2π

∫
γ

κg(s) ds.

Taking absolute values, we obtain

2πN =

∣∣∣∣∫
γ

κg(s) ds

∣∣∣∣ ≤ ∫
γ

|κg(s)| ds =

∫
γ

κ(s) ds.

By assumption, κ(s) ≤ 1/R for some R > 0, which gives the inequality

2πN ≤
∫
γ

ds

R
=

1

R

∫
γ

ds =
1

R
length(γ),

which becomes the desired inequality after we multiple both sides by R.
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MAT 362 Differential Geometry
Exam 2 Solutions

1. For each of the sets described below, write a “Y” in the blank if it is a regular surface;
write an “N” if it is not. You are not required to give any reasons for your answer.
Illegible letters will be graded as incorrect.

Y {(x, y, z) ∈ R3 | x3 + y3 − z3 = 1}

N {(x, y, z) ∈ R3 | xyz = 0}

N The image of the map ~X(u, v) =
(
(1 + cosu) cos v, (1 + cosu) sin v, sinu

)
,

0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π.

Y The image of the map ~X(u, v) = (cosu sin v, 2 sinu sin v, 3 cos v),
0 ≤ u ≤ 2π, 0 ≤ v ≤ π.

Y The union of the lines `(t), −∞ < t <∞, where `(t) joins (0, 0, t) and (1, t, 0).

2. For each of the statements below, write a “T” in the blank if the statement is true;
write an “F” if the statement is false. You are not required to give any reasons for
your answer. Illegible letters will be graded as incorrect.

F If U is a bounded subset of R2, then no map from R2 to U can be a
diffeomorphism.

For the remaining statements, assume that S ⊂ R3 is a C2 regular surface and p ∈ S.

T The first and second fundamental forms are both symmetric bilinear forms
on TpS.

F The first and second fundamental forms are both positive definite on TpS.

F If the shape operator Sp is a multiple of the identity, then there is an open set
U ⊂ R3 containing p such that S ∩ U lies entirely on one side of TpS.

F If γ : (−ε, ε)→ S is a C2 regular curve such that γ(0) = p, then the curvature
κ(0) of γ at p is bounded by the principal curvatures of S at p.



3. (a) For each point (cos θ, sin θ, 0) of the unit circle in the (x, y)-plane, consider the
line through that point in the direction of the vector (− sin θ, cos θ, 1).

Find a parameterization of the surface S covered by these lines for which the lines
are coordinate curves. Show that each point (x, y, z) ∈ S satisfies x2 +y2−z2 = 1.

To each point (cosu, sinu, 0), we add all scalar multiples of (− sinu, cosu, 1),
so a parametrization is

~X(u, v) = (cosu− v sinu, sinu+ v cosu, v).

The domain can be taken as 0 ≤ u ≤ 2π, −∞ < v <∞.
For each point in the image of ~X, we have

(cosu− v sinu)2 + (sinu+ v cosu)2 − v2

= cos2 u− 2v cosu sinu+ v2 sin2 u+ sin2 u+ 2v cosu sinu+ v2 cos2 u− v2

= cos2 u+ sin2 u+ v2(sin2 u+ cos2 u)− v2 = 1,

which proves the final statement.

(b) Find the tangent space Tpθ
S at each point pθ = (cos θ, sin θ, 0) in the (x, y)-plane,

and show that it is parallel to the z-axis.

We present two ways of finding a normal vector to Tpθ
S.

First, using the result of (a) we have

~Xu = (− sinu− v cosu, cosu− v sinu, 0), ~Xv = (− sinu, cosu, 1).

At (u, v) = (θ, 0), this leads to

~Xu(θ, 0)× ~Xv(θ, 0) = (cos θ, sin θ, 0).

Second, because S is defined by f(x, y, z) = 1, where f(x, y, z) = x2 +
y2 − z2, the tangent space at pθ has as a normal vector

∇f(cos θ, sin θ, 0) = (2 cos θ, 2 sin θ, 0).

Either normal vector is orthogonal to (0, 0, 1), so the tangent plane is
parallel to the z-axis.
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(c) Find the image of the Gauss map S → S2. (It does not matter which unit normal
vector you choose in this case.)

Let us take the “outward pointing” normal. Start with the hyperbola
x2 − z2 = 1. This has (1, 0, 0) as a normal vector at (1, 0, 0), and as
a point moves along the hyperbola, the normal vector approaches the
direction orthogonal to the asymptote, at angle ±π/4. Because S is
obtained by revolution of this hyperbola, the Gauss map covers the area
of S2 (strictly) between the circles at ±π/4 latitude.

(d) Show that every point pθ = (cos θ, sin θ, 0) ∈ S is hyperbolic. (Hint: There are
several ways to do this, most of which do not involve computing the full shape
operator.)

We may compute from the parametrization obtained in (a):

~Xuu = (− cosu+ v sinu,− sinu− v cosu, 0),

~Xuv = (− cosu,− sinu, 0),

~Xvv = (0, 0, 0)

When v = 0, the normal vector (computed in (b)) is ~N = (cosu, sinu, 0),
and so

L11(u, 0) = 〈 ~N, ~Xuu〉 = − cos2 u− sin2 u = −1

L12(u, 0) = L21(u, 0) = 〈 ~N, ~Xuv〉 = − cos2 u− sin2 u = −1

L22(u, 0) = 〈 ~N, ~Xvv〉 = 0

Therefore the determinant of
[
Lij
]

is (−1)(0)− (−1)2 = −1. This shows
that every point of S in the (x, y)-plane is hyperbolic.

Alternatively, we could consider the curves given by intersecting S with
the (x, y)-plane and with a vertical normal plane, giving a unit circle
(having curvature 1) and a hyperbola. The hyperbola is parametrized
by (cosh t, 0, sinh t) in the (x, z)-plane, for instance, and its curvature is
therefore

‖(sinh t, 0, cosh t)× (cosh t, 0, sinh t)‖
(sinh2 t+ cosh2 t)3/2

=
1

(sinh2 t+ cosh2 t)3/2
,

which is 1 at t = 0. Because both of these curvatures are non-zero and
their principal normal vectors point in opposite directions, the points pθ
must be hyperbolic.

As we shall see next week, the fact that every point of S has two straight
lines and a curve of non-zero normal curvature passing through it implies
that every point of S (on or off the (x, y)-plane) must be hyperbolic.
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4. Let ~X : R2 → S2 be the inverse of stereographic projection, i.e.,

~X(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
,

and let ~Y : [0, 2π]× [0, π]→ S2 be the usual parametrization of S2:

~Y (θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ).

We have seen previously that the coefficients of the metric tensor arising from ~X are

g11 = g22 =
4

(u2 + v2 + 1)2
, g12 = g21 = 0,

and those arising from ~Y are

g11 = sin2 φ, g22 = 1, g12 = g21 = 0.

Let C be the cylinder {(x, y, z) ∈ R3 | x2 + y2 = 1}, and let F : S2 → C be the “axial
projection”

F (x, y, z) =

(
x√

x2 + y2
,

y√
x2 + y2

, z

)
.

(a) What is the natural domain of F ◦ ~X? What is its image in C?

The natural domain of F is R2 \ {(0, 0)}. Its image is the part of C
contained (strictly) between the planes z = ±1.

(b) Compute the coefficients of the metric tensor arising from F ◦ ~Y .

We have

(F ◦ ~Y )(θ, φ) =

(
cos θ sinφ√

cos2 θ sin2 φ+ sin2 φ cos2 φ
,

sin θ sinφ√
cos2 θ sin2 φ+ sin2 φ cos2 φ

, cosφ

)
= (cos θ, sin θ, cosφ).

(Technically, we have used the fact that sinφ ≥ 0 for 0 ≤ φ ≤ π.) Thus

(F ◦ ~Y )θ = (− sin θ, cos θ, 0), (F ◦ ~Y )φ = (0, 0,− sinφ).

This gives the coefficients

g11 = 1, g22 = sin2 φ, g12 = g21 = 0.
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(c) Show that F is area-preserving (meaning that it does not change the determinant
of the metric tensor).

The determinant of the metric tensor for both ~Y and F ◦ ~Y is sin2 φ.
Therefore F is area-preserving.

(d) Use the fact that C is locally isometric to the plane R2 to compute the area of
the unit sphere S2.

Because the image of F covers C between the planes ±1, the area of this
image is (2π)(2) = 4π . Because F is area-preserving and its domain
only omits two points of the sphere, this is also the area of the unit
sphere.

(e) Interpret the following integral geometrically, and evaluate it:∫∫
D

dx dy

(x2 + y2 + 1)2
, where D = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.

(Hint: You should not have to resort to formal techniques of integration.)

The integral represents one-fourth of the area of S2 that maps to the unit
disk via stereographic projection. This area is the lower hemisphere of
S2, which therefore equals 4π/2 = 2π. One-fourth of this area is π/2.
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MAT 362 Differential Geometry
Exam 3 Spring 2011 SOLUTIONS

1. Definitions. Let S be a regular surface in R3.

(a) What does it mean for S to be minimal?

The mean curvature of S is zero at every point.

(b) What does it mean for a point of S to be umbilical?

The principal curvatures at that point are equal.

(c) What is a vector field on S?

A function ~ξ : S → R3 such that ~ξ(p) ∈ TpS for all p ∈ S.

(d) If ~X is a parametrization of (a portion of) S, how are the Christoffel symbols Γkij
defined?

For i, j, k ∈ {1, 2}, the Christoffel symbols are the unique functions Γkij
such that

~Xij = Lij ~N + Γ1
ij
~Xu + Γ2

ij
~Xv.

This can also be written as

∇ ~Xi

~Xj = Γ1
ij
~Xu + Γ2

ij
~Xv

(e) Give at least one definition of a geodesic on S.

A geodesic is a curve on S with zero geodesic curvature.
A geodesic is a curve whose field of tangent vectors is parallel.
A geodesic is a curve that locally minimizes distances between its points.



2. For each of the statements below, write a “T” in the blank if the statement is true;
write an “F” if the statement is false. You are not required to give any reasons for
your answer. Illegible letters will be graded as incorrect.

Assume throughout this problem that S is a regular C∞ surface in R3.

T If S is compact, then some point of S must have positive Gaussian curvature.

F If S is compact, then some point of S must have negative Gaussian curvature.

F If S is compact, then S cannot have any points with negative Gaussian curvature.

F If every point of S has positive Gaussian curvature, then S must be compact.

F If S has a parametrization ~X such that all its Christoffel symbols are zero,
then the image of ~X is contained in a plane.

F No geodesic on S can intersect itself.

T If two simple closed geodesics on S form the boundary of a cylinder C in S,
then the total Gaussian curvature of C must be zero.

T If S is compact and orientable, then its Euler characteristic is even.
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3. Let ~X(u, v) = (f(u) cos v, f(u) sin v, g(u)) parametrize a surface of revolution generated
by a curve (f(t), 0, g(t)) in the (x, z)-plane; assume this curve is parametrized by arc

length, so that (f ′)2 + (g′)2 = 1. Show that the Gaussian curvature at ~X(u, v) is

K(u, v) =
g′(u)

f(u)

(
f ′(u)g′′(u)− f ′′(u)g′(u)

)
.

The first derivatives of ~X are

~Xu = (f ′(u) cos v, f ′(u) sin v, g′(u)) and

~Xv = (−f(u) sin v, f(u) cos v, 0).

Observe that the unit normal at ~X(u, v) is a rotation of ~Xu, namely

~N(u, v) = (g′(u) cos v, g′(u) sin v,−f ′(u)),

and so

~Nu = (g′′(u) cos v, g′′(u) sin v,−f ′′(u)),

~Nv = (−g′(u) sin v, g′(u) cos v,−f ′(u)).

Now we can compute

g11 = 1, g12 = 0, g22 = f 2,

L11 = f ′g′′ − g′f ′′, L12 = 0, L22 = fg′.

By the determinant formula for K, we have

K =
det[Lij]

det[gij]
=
fg′(f ′g′′ − g′f ′′)

f 2
=
g′

f
(f ′g′′ − g′f ′′),

which is what we wanted.

Another method is to use the fact that ~X is orthogonal. Then, from the
above computations, we have

g11g22 = f 2, (g11)v = 0, (g22)u = 2ff ′,

∂

∂v

(
(g11)v√
g11g22

)
= 0,

∂

∂u

(
(g22)u√
g11g22

)
=

∂

∂u
2f ′ = 2f ′′,

K = − 1

2
√
g11g22

[
∂

∂v

(
(g11)v√
g11g22

)
+

∂

∂u

(
(g22)u√
g11g22

)]
= −f

′′

f
.

Now we just need to show that −f ′′ = g′(f ′g′′− f ′′g′). By differentiating the
condition (f ′)2 + (g′)2 = 1, we get f ′f ′′ + g′g′′ = 0, or g′g′′ = −f ′f ′′. Thus

g′(f ′g′′ − f ′′g′) = f ′g′g′′ − f ′′(g′)2 = −(f ′)2f ′′ − (g′)2f ′′ = −f ′′.
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4. Let H be the hyperboloid of one sheet, with equation x2 + y2− z2 = 1. Show that the
unit circle in the (x, y)-plane is a geodesic on H. Show that every other geodesic on
H is unbounded, i.e., has points arbitrarily far from the origin.

The unit circle is a geodesic because it is fixed by the isometry (x, y, z) 7→
(x, y,−z).

Recall that Clairaut’s relation says that a geodesic on a surface of revolution
satisfies the condition r cos θ = constant, where r is the distance from the
axis of revolution and θ is the angle formed with a parallel.

Now let γ be geodesic on H besides the unit circle in the (x, y)-plane. No
other parallel can be a geodesic, so we conclude cos θ 6= 1 at some point of
γ. Thus γ continues to extend in one direction farther from the (x, y)-plane,
thus farther from the origin. Let C be the constant in Clairaut’s relation.
Because r cos θ = C is constant, and r is increasing as γ moves away from
the (x, y)-plane, | cos θ| must be decreasing, i.e., the angle between γ and the
parallels must be increasing. (If cos θ = 0, then γ is a meridian, i.e., a rotated
copy of the hyperbola x2−z2 = 1 in the (x, z)-plane, and we are done.) Thus
γ continues to move away from the (x, y)-plane. Because it moves at constant
speed, with increasing vertical component, it is unbounded.

5. Let γ be a smooth, simple closed curve on the unit sphere S2. Assume that the total
geodesic curvature of γ is zero. [Note: this is not the same as saying that γ is a
geodesic.] Show that γ divides S2 into two pieces of equal area.

Let R be one of the two topological disks with γ as boundary. Then, by the
Gauss–Bonnet theorem,

2π =

∫
γ

κg ds+

∫∫
R

K dA = 0 +

∫∫
R

dA = Area(R),

using the fact that the curvature of the unit sphere is K = 1. Because this
works for both “sides” of γ (also because the total area of S2 is 4π), the
result follows.
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Visualizing Friendships
By Paul Butler on Monday, December 13, 2010 at 5:16pm

Visualizing data is like photography. Instead of starting with a blank canvas, you manipulate
 the lens used to present the data from a certain angle.
 
When the data is the social graph of 500 million people, there are a lot of lenses through
 which you can view it. One that piqued my curiosity was the locality of friendship. I was
 interested in seeing how geography and political borders affected where people lived relative
 to their friends. I wanted a visualization that would show which cities had a lot of friendships
 between them.
 
I began by taking a sample of about ten million pairs of friends from Apache Hive, our data
 warehouse. I combined that data with each user's current city and summed the number of
 friends between each pair of cities. Then I merged the data with the longitude and latitude of
 each city.
 
At that point, I began exploring it in R, an open-source statistics environment. As a sanity
 check, I plotted points at some of the latitude and longitude coordinates. To my relief, what I
 saw was roughly an outline of the world. Next I erased the dots and plotted lines between the
 points. After a few minutes of rendering, a big white blob appeared in the center of the map.
 Some of the outer edges of the blob vaguely resembled the continents, but it was clear that I
 had too much data to get interesting results just by drawing lines. I thought that making the
 lines semi-transparent would do the trick, but I quickly realized that my graphing environment
 couldn't handle enough shades of color for it to work the way I wanted.
 
Instead I found a way to simulate the effect I wanted. I defined weights for each pair of cities
 as a function of the Euclidean distance between them and the number of friends between
 them. Then I plotted lines between the pairs by weight, so that pairs of cities with the most
 friendships between them were drawn on top of the others. I used a color ramp from black to
 blue to white, with each line's color depending on its weight. I also transformed some of the
 lines to wrap around the image, rather than spanning more than halfway around the world.
 

View high-res (3.8MB)
 
After a few minutes of rendering, the new plot appeared, and I was a bit taken aback by what
 I saw. The blob had turned into a surprisingly detailed map of the world. Not only were
 continents visible, certain international borders were apparent as well. What really struck me,
 though, was knowing that the lines didn't represent coasts or rivers or political borders, but
 real human relationships. Each line might represent a friendship made while travelling, a
 family member abroad, or an old college friend pulled away by the various forces of life.
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Later I replaced the lines with great circle arcs, which are the shortest routes between two
 points on the Earth. Because the Earth is a sphere, these are often not straight lines on the
 projection.
 
When I shared the image with others within Facebook, it resonated with many people. It's not
 just a pretty picture, it's a reaffirmation of the impact we have in connecting people, even
 across oceans and borders.
 
Paul is an intern on Facebook’s data infrastructure engineering team.

English (US) Español Français (France) 中文(简体) العربية Português (Brasil) Italiano 한국어 Deutsch 日本語 …

Sign Up Log In Messenger Facebook Lite Mobile Find Friends Badges People Pages Places Games

Locations Celebrities Groups About Create Ad Create Page Developers Careers Privacy Cookies

Terms Help

 Facebook © 2016

4.4K Likes 715 Comments 971 Shares

Share

Ad Choices

http://l.facebook.com/l.php?u=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGreat-circle_distance&h=QAQHhq7PZ&s=1
https://es-la.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://fr-fr.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://zh-cn.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://zh-cn.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://zh-cn.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://zh-cn.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://zh-cn.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://zh-cn.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://ar-ar.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://pt-br.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://it-it.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://ko-kr.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://de-de.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://hi-in.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://ja-jp.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://www.facebook.com/r.php
https://www.facebook.com/login/
https://messenger.com/
https://www.facebook.com/lite/
https://www.facebook.com/mobile/?ref=pf
https://www.facebook.com/find-friends?ref=pf
https://www.facebook.com/badges/?ref=pf
https://www.facebook.com/directory/people/
https://www.facebook.com/directory/pages/
https://www.facebook.com/places/
https://www.facebook.com/games/
https://www.facebook.com/directory/places/
https://www.facebook.com/directory/celebrities/
https://www.facebook.com/directory/groups/
https://www.facebook.com/facebook
https://www.facebook.com/campaign/landing.php?placement=pflo&campaign_id=402047449186&extra_1=auto
https://www.facebook.com/pages/create/?ref_type=sitefooter
https://developers.facebook.com/?ref=pf
https://www.facebook.com/careers/?ref=pf
https://www.facebook.com/privacy/explanation
https://www.facebook.com/help/cookies/?ref=sitefooter
https://www.facebook.com/policies/?ref=pf
https://www.facebook.com/help/?ref=pf
https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919?comment_tracking=%7B%22tn%22%3A%22O%22%7D
https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919?comment_tracking=%7B%22tn%22%3A%22O%22%7D
https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919?comment_tracking=%7B%22tn%22%3A%22O%22%7D
https://www.facebook.com/ajax/sharer/?s=4&appid=2347471856&id=469716398919&p[0]=9445547199&p[1]=469716398919&share_source_type=unknown&feedback_source=2&ufi_id=u_0_d&feedback_referrer=%2F~bowman%2Fteaching%2Fmat362-spring2011.html
https://www.facebook.com/help/568137493302217
https://www.facebook.com/help/568137493302217

	VuZHNoaXBzLzQ2OTcxNjM5ODkxOQA=: 
	form0: 
	email: 
	pass: 
	input0: 




