MAT 362 - Differential Geometry
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Homework
Resources

Announcement:

You will be
provided with the
following list of
Christoffel
Symbol formulas
(ps, .pdf) on the
final exam. It is
not necessary to
memorize them.

Announcement:

The final exam is
Wednesday,
May 19th, from
11:00 am to 1:30
pm in the regular
classroom.

If it were done when tis done, then twere well it were
done quickly. If the assassination could trammel up the
consqguence and catch, with his surcease, sucess - that
but this blow might be the be-all and the end-all here,
but here, upon this bank and shoal of time, we'd jump
the life to come. But in these cases we still have
judgement here; that we but teach bloody instruction,
which, being taught, return to plague its inventor. This
even-handed justice commends the ingredience of our
poisoned chalice to our own lips.
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General Information

Professor: Matthew Kudzin

E-mail: mkudzin@math.sunysb.edu
Office: Mathematics 2-118

Office Hours: Monday & Tuesday, 9:00 - 10:00 am , or
by appointment

Classes: Monday, Wednesday, & Friday, 11:45 am -
12:40 pm in ESS room 183

Prerequisites

Students are required to have a solid understanding of
multivariable calculus and linear algebra. Some
knowledge of differential equations will be useful, but
not necessary.

Textbook

The required textbook for this class is Differential
Geometry of Curves and Surfaces by Manfredo
doCarmo (Prentice Hall, 1976). It is an expensive book.
You can compare the prices of several on-line
merchants at directtextbook.com .

Homework

Homework problems will be assigned during each
lecture. All of the problems assigned during the week
are due at the beginning of class on the following
Monday. The assignments will also be posted online,
here.

Grading



http://www.math.sunysb.edu/~mkudzin/mat362/formulas.ps
mailto:mkudzin@math.sunysb.edu
http://www.directtextbook.com/prices/0132125897

The grades for this class will be based on the weekly
homework and a final examination. The homework
constitutes 70% of your grade. The final exam
contributes the remainng 30%.

Disabled students

If you have a physical, psychological, medical or
learning disability that may impact your course work,
please contact Disability Support Services, ECC
(Educational Communications Center) Building, room
128, (631) 632-6748. They will determine with you what
accommodations are necessary and appropriate. All
information and documentation is confidential.

Students requiring emergency evacuation are
encouraged to discuss their needs with their professors
and Disability Support Services. For procedures and
information, go to the following web site:

http://www.ehs.stonybrook.edu/fire/disabilities.asp.



http://www.ehs.stonybrook.edu/fire/disabilities.asp
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Math is not a spectator sport.
-- Herman Gluck

Assignment #1 (last modified: January 30, 2004)
(s, .pdf) - due February 2, 2004.
Assignment #2 (last modified: February 4, 2004)
(s, .pdf) - due February 9, 2004.

Solution to problem 1 (.ps, .pdf)

Assignment #3 (last modified: February 12, 2004)
(.ps, .pdf) - due February 16, 2004.

Solution to problem 2 (.ps, .jpdf)

Assignment #4 (last modified: February 20, 2004)
(s, .pdf) - due February 23, 2004.

Assignment #5 (last modified: February 27, 2004)
(s, .pdf) - due March 1, 2004.

Assignment #6 (last modified: March 3, 2004) (.ps,
.pdf) - due March 8, 2004.

Assignment #7 (last modified: March 12, 2004)
(s, .pdf) - due March 15, 2004.

Assignment #8 (last modified: March 19, 2004)
(s, .pdf) - due March 22, 2004.

Assignment #9 (last modified: March 24, 2004)
(s, .pdf) - due March 29, 2004.

Solution to problem 3 (.ps, .jpdf)

Assignment #10 (last modified: March 31, 2004)
(s, .pdf) - due April 12, 2004.

Assignment #11 (last modified: April 14, 2004)
(s, .pdf) - due April 19, 2004.

Assignment #12 (last modified: April 22, 2004)
(s, .pdf) - due April 26, 2004.

Assignment #13 (last modified: April 28, 2004)
(s, .pdf) - due May 3, 2004.



http://www.math.sunysb.edu/~mkudzin/mat362/formulas.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment1.ps
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http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment4.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment5.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment6.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment7.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment8.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment9.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/solution9.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment10.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment11.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment12.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment13.ps

e Assignment #14 (last modified: May 13, 2004)
(s, .pdf) - not for credit.

Solution to problem 5 (.ps, .pdf)



http://www.math.sunysb.edu/~mkudzin/mat362/assignments/assignment14.ps
http://www.math.sunysb.edu/~mkudzin/mat362/assignments/solution14.ps

MAT 362 - Differential Geometry

Navigation:

Home
Syllabus
Homework
Resources

Announcement:

You will be
provided with the
following list of
Christoffel
Symbol formulas
(ps, .pdf) on the
final exam. It is
not necessary to
memorize them.

Announcement:

The final exam is
Wednesday,
May 19th, from
11:00 am to 1:30
pm in the regular
classroom.

Books

For more about curves and surfaces in R3:

e O'Neill, Elementary Differential Geometry
e Millman & Parker, Elements of Differential
Geometry

The same material is presented from a completely
different point of view in Differential Forms with
Applications to the Physical Sciences by Harley
Flanders.

For a more advanced treatment of Differential Geometry
in higher dimensions:

e doCarmo, Riemannian Geometry

e Gallot, Hulin, & LaFontaine, Riemannian
Geometry

e Spivak, A Comprehensive Introduction to
Differential Geometry

Flatland, the 1880 book about life in a two dimensional
universe, is available free online . If you don't like to
read books online, Dover publishes an edition for only
$1.50.

Gallery of Surfaces

o f(X,¥)=||X|-|yl|-IX|-|y|is a continuous function.
The partial derivatives, f,(0,0) and f(0,0), both
exist. However, f is not differentiable at (0,0). You
can understand why by looking at the graph of f.

e The contour surface (x2+y%+z%)2 -8 xy z - 10
(x%+y%+z2) = -20 . For more examples of
interesting surfaces defined as level sets, go to

The Scientific Graphics Project at MSRI.



http://www.math.sunysb.edu/~mkudzin/mat362/formulas.ps
http://www.geom.uiuc.edu/~banchoff/Flatland/
http://www.msri.org/publications/sgp/SGP/indexc.html
http://www.msri.org/publications/sgp/SGP/indexc.html

e Mathias Weber has a Virtual Minimal Surface
Museum which includes a movie of the associated
family of minimal surfaces between the catenoid
and the helicoid.

Mathematica programs

¢ | have written a Mathematica notebook to allow
you to construct your own minimal surfaces by
specifying the Weierstrass data. It includes
several examples and a brief description of how to
determine the conjugate minimal surface and the
associated family.

Papers

Many recent publications are available online at the e-
Print archive.

Online resources

A lot of good work is being done by the gang at
Amherst. Their website includes several galleries of
minimal (and other related) surfaces.



http://www.indiana.edu/~minimal/
http://www.indiana.edu/~minimal/
http://www.indiana.edu/~minimal/
http://www.indiana.edu/~minimal/maze/movies/cathelibig.mov
http://www.math.sunysb.edu/~mkudzin/mat362/weierstrass.nb
http://xxx.lanl.gov/
http://xxx.lanl.gov/
http://www.gang.umass.edu/

Christoffel Symbol Formulas

Many formulas involving the Christoffel Symbols are long and messy. It is not a good use of your time to
memorize all of the indices. Therefore, you will be provided with the following formulas on the exam. Do
not read too much into this. It does not mean that you will need all (or any) of these formulas. However,
they will be available if you want them.

1 1 1

I',E+T}F= 3B I',E+T},F = 3B [3,E+T5,F=F,— 3G
1 1 1

N, F+T4G=F — 3B I'i,F+T},G = 3G I3, F +T3,G = 3G

If v(t) = auy(t), u2(t))x1 + b(ui(t), uz(t))x2, then
D
d—: = (a' + T} au} + Tiyauh + T3 bu) + Toobub)xy + (b + T3 au) + Tiyaul + T3 bu) 4+ Taybub)xs
Gauss Equation:
(T%2)1 — (T7))2 + T1,T, + T3, — 1 T3, — [T, = —EK
Codazzi Equations:
e — fi = el + f(T7, = T1;) — gTh

f2—g1 =€l + f(T5, —T3;) — gT'5;



Problem Set #1
due Monday, February 2, 2004

. Draw a straight line. Prove that it is straight.

2. Prove that the curve 22 = y? does not have a C! regular parameterization.

. Consider the function
_Jzsin(Z) ifz#0
f(@) = {0 itz =0

Is the graph of f(z) between z = 0 and = = 1 rectifiable? If so, compute its
length.



Problem Set #2
due Monday, February 9, 2004

1. Prove the following version of the Mean Value Theorem for vector valued
functions:

Let a : [a,b] — R® be a regular, smooth curve. Then for any € > 0 there

exists a 6 > 0 such that if |c — d| < d then there exists a 7 € [¢, d] for which

la(c) — a(d) — a'(1)|c — d|| < e|c —d

2. Let a(s) be a regular curve parameterized by arclength and let R : R® — R?
be a rigid motion. If 8(s) = R o a(s), then
(a) Compute §'(s) is terms of o/(s).
(b) Prove that §(s) is a regular curve, parameterized by arclength, and that
kg (8) = kal(s).
3. Compute the curvature of the logarithmic spiral, a(t) = (e~ ? cost,etsint, 0).



Problem Set #2

Solutions

Problem: Prove the following version of the Mean Value Theorem for vector valued
functions:

Let a : [a,b] & R® be a regular, smooth curve. Then for any € > 0 there exists
a 0 > 0 such that if |c — d| < J then there exists a T € [¢, d] for which

la(c) — a(d) — o' (1)(c — d)| < €|c —d
Solution: Express the curve in coordinates as a(t) = (z(t),y(t),2(t)). For any

fixed interval, [c,d], we can apply the standard Mean Value Theorem to the com-
ponents of « to conclude that there exist real numbers 7,,7,, 7, € [c,d] such that

z(c) — x(d) = &' (15)(c — d)
y(e) —y(d) =y'(ry)(c — d)
2(c) — 2(d) = 2'(1,)(c — d)
or, equivalently, in vetor notation
(1) a(c) — a(d) = (2'(72),y'(ry), 2'(72)) (c — d)

If we let 7 = 7, we no longer have an equality, but by the triangle inequality, we
have

(2) |a(c) —a(d) — o (1:)(c — d)| < |a(c) —a(d) — (@' (12),y (1), 2'(12)) (c — d)|+
(@' (12), 4/ (1), 2/ (1)) (¢ = d) = & (1) (c = d)|
The first term on the right hand side is zero, by equation (1). Using the fact that

o (1) = (2'(12),y' (12), 2’ (7)), we can subtract the two vectors in the second term
and get

a(c) — a(d) — o (1:)(c = )| < [(0,4/(y) — ' (1), 2'(72) = 2/ (7)) (c — )]
= \/(y’(Ty) —y(12)? + (2/(72) — 2/(72))*|c — d|

In order to prove that the term under the radical can be made arbitrarily small,
we use the fact that ¢’ and 2’ are continuous functions, so that li_r)n Y (12) =9 (7).
Ta Ty

In particular, for every € > 0, there exists a d, > 0 such that if |7, — 7| < d,, then
ly'(7y) — y'(72)| < €/2. Similarly, using the continuity of 2/, we can construct a
number §, sufficiently small to guarantee that |2'(7,) — 2'(72)| < €/2.

Finally, let § = min{d,,d,}. Since 7., 7, and 7, are all contained in the interval
le,d], if |c —d| < 6, then |1, — 7,| < 6§ <6, and |1, — 7| < § < §,. With this, the
previous estimate becomes

|a(c) —a(d) — o (1;)(c — d)| </ (e/2)2 + (6/2)2|C - d| < e|c - d|

as desired.



Problem Set #3
due Monday, February 16, 2004

1. doCarmo, section 1.5, # 2,9,14

2. Let a(s) be a regular curve, parameterized by arclength, such that x(s) # 0
and 7(s) # 0 for all s.
(a) Prove that if « lies on the sphere of radius r, centered at p, then

T &\
P (TH2>
(b) Prove that the center of the sphere, p, satisfies

K
R o)

1
p=als) + G Ne) +

for all s.
(c) Prove the converse of part (a).

3. Find a minimal set of first—order, linear differential equations which are
equivalent to the Frenet-Serret equations for a curve in R®. (Hint: You will
need at least three equations.)



Problem Set #3

Solutions

Problem:Let a(s) be aregular curve, parameterized by arclength, such that x(s) #
0 and 7(s) # 0 for all s.

(a) Prove that if « lies on the sphere of radius r, centered at p, then

T &\
K (TI‘&2>
(b) Prove that the center of the sphere, p, satisfies

K
R o)

1
- N
p=als) + =N +
for all s.
(c) Prove the converse of part (a).

Solution: Assume that « lies on the surface of the sphere. That means that the
distance between any point on the curve, a(s), and the center, p, is equal to r.
Symbolically,

(a(s) = p) - (a(s) —p) =r?
for all s.

Notice that the equation that we are trying to derive depends on the second
derivative of k. Since curvature is, itself, computed in terms of the second derivative
of a, the right hand side of the desired equation depends on the fourth derivative
of a. Therefore, no matter what we do, we must compute at least four derivatives.

Differentiating once with respect to s, we get o/(s)-(a(s)—p)+(a(s) —p)-a'(s) =
0, which simplifies to

(1) T-(afs) —p) =0
Differentiating again, we get 7" - (a(s) —p) + T - T = 0. Using the Frenet equation
T' = kN, and the fact that T is a unit vector, this reduces to

1

©) N (a(s) —p) =~

Differentiating a third time, we have N’ - (a(s) —p) + N - T = (—1/k)". The left
hand can be simplified by substituting N' = —kT — 7B, and by using the fact that
N and T are orthogonal, to get

1\'" &«
—xT — 7B) - _py={_-2) =&
(-nT = 7B)-(als) -p) = (1) =%
We can use equation (1) to further simplify this equation down to
K/I
B- —p) = —
3) (als) = p) = =5

Differentiating a fourth, and final, time, we get B'-(a(s)—p)+B-T = —(x'/(%1))".
Using the Frenet equations once again, and the fact that B and T are orthogonal,
this reduces to ,
K/,
N- —p) = — [ —

(el =) = - ()

Substituting equation (2) into the left hand side finishes part (a).
1



In order to answer part (b), notice that equations (1-3) give the projections of
the vector a(s) — p onto the orthonormal basis {T', N, B}. We can reconstruct any
vector from its projections, so

!
ly_f g
K K2T
which, once rearranged, is the answer. (If you are unsatisfied by this, write a(s) —
p=al + bN + c¢B and solve for the coefficients a, b, and ¢, as we did in the proof
of the Frenet—Serrat Theorem.)

The proof of part (c¢) is not yet written.

a(s) —p=0T —



Problem Set #4
due Monday, February 23, 2004

. doCarmo, section 1.7, # 6, 13 (Hint: You might want to do problem 12(d)
from section 1.5.)

. Let a be a regular curve whose tangent indicatrix, T, is also regular. Com-
pute the curvature and torsion of T', in terms of the curvature and torsion
of a.

. Let B be a regular closed curve of length L. Prove that if the curvature of g3
is bounded above by 1/R, then L > 27 R.

. Let ¢ be a regular closed plane curve.

(a) Prove that if ¢ is simple, then the tangent indicatrix of ¢ is the entire
unit circle.

(b) Give an example to demonstrate that part (a) is false without the as-
sumption that c¢ is simple.



Problem Set #5
due Monday, March 1, 2004

Note: The definition of a regular surface that I gave in class is not the same as
the one in the book. doCarmo assumes that his coordinate patches are homeomor-
phisms. It is a theorem (Proposition 4 in section 2.2) that this is equivalent to the
coordinate patches being 1-1. You may use whichever definition is more convenient.

1. doCarmo, section 2.2, # 2, 4, 10

2. Let ¢(s) = (x(s),0,2(s)) be a simple regular curve in the zz—plane with
z(s) > 0 for all s. Let S be the set of points formed by rotating c(s) about
the z—axis.

(a) Show that F(s,0) = (x(s)cosf,z(s)sind,z(s)) is a coordinate patch
for some open set in the sf—plane.

(b) Prove that the set S is a regular surface (called a surface of revolution).

(c) Prove that S is still a regular surface if ¢(s) is a simple closed curve.



Problem Set #6
due Monday, March 8, 2004

1. doCarmo, section 2.2, # 16
2. doCarmo, section 2.3, # 1, 2,6, 7



Problem Set #7
due Monday, March 15, 2004
1. doCarmo, section 2.4, # 2, 3, §, 10, 15

2. Compute the inner product for the northern hemisphere in the coordinate

patch y(u,v) = (u,v, V1 —u? — v?).



Problem Set #8
due Monday, March 22, 2004

1. doCarmo, section 2.5, # 9, 12. 14a
2. doCarmo, section 3.2, # 3,5, 7, 8



Problem Set #9
due Monday, March 29, 2004

Warning: This is not the final draft of the assignment. More problems will be
added in the course of the week.

1. doCarmo, section 3.3, # 5, 6, 16
2. Let V be a vector space with an inner product, {-,-), and let {v1,va,...,vn}

be a (not necessarily orthonormal) basis of V. Prove that for any vector,
v = Y ¢;v;, the coefficients ¢; can be computed by

C1 bl
C2 b2
=)

Cn b,

where g is the matrix representing the inner product (ie. g;; = (v;,v;)) and
bi = <U,U,’).

3. Let S be a tubular surface about a curve a (see doCarmo, section 2.4, prob-
lem 10). Compute the second fundamental form, principal, Gaussian, and
mean curvatures of S, in terms of the curvature and torsion of a.



Problem Set #9

Solutions

Problem: Let S be a tubular surface about a curve a (see doCarmo, section 2.4,
problem 10). Compute the second fundamental form, principal, Gaussian, and
mean curvatures of S, in terms of the curvature and torsion of a.

Solution: As we have discussed before, S can be parameterized as
x(s,0) = a(s) + rcosON(s) + rsin6B(s)
Computing the derivatives of the parameterization, we get
xs = (1 —r&(s) cos0)T(s) + r7(s)sin N (s) — r7(s) cos B(s)
xg = —rsinON(s) + r cos§B(s)
and the normal vector to the surface is
v =cosON(s) + sin6B(s)
The second derivatives of the parameteriztion are
Xss = (—7K'(8) cos§ — rr(s)T(s) sin §) T (s)+
(k(s)(1 — rk(s) cos @) + r7'(s) sin§ — r72(s) cos ) N (s)+
(=r7?(s) sin@ — r7'(s) cos §) B(s)
Xs9 = TK(s) sin 0T'(s) + r7(s) cos N (s) + r7(s) sin 0B(s)
Xpg = —1 COsON () — rsin§B(s)

Using this, we can compute the first and second fundamental forms:

 ((1 —rK(s)cos0)? +r27%(s) —r’r(s)
g= ( —r27(s) r? )
_ (K(s) cosO(1 — rk(s) cosB) —r7r2(s) r(s)
Lsg = ( r7(s) —r )

From which we mau compute various curvatures. For example, the Gaussian cur-

vature is
_detLys  —k(s)cosf

~ detg (1 —rk(s)cosh)




Problem Set #10
due Monday, April 12, 2004

1. doCarmo, section 3.5, # 11 — 14



Problem Set #11
due Monday, April 19, 2004
1. doCarmo, section 4.2, # 2, 3, 10, 14

2. Let f(z) be a smooth function of one variable. Prove that the graph z = f(x)
is isometric to the zy—plane.



Problem Set #12
due Monday, April 26, 2004

1. doCarmo, section 4.3, # 2, 3



Problem Set #13
due Monday, May 3, 2004

1. doCarmo, section 4.4, # 4, 14, 18, 19
In problem 14, skip the part about “lines of curvature”.



Problem Set #14

This assignment is for your own benefit. You do not need to turn in your
solutions.

1. doCarmo, section 4.5, # 1, 4, 5



Problem Set #14
Solution to section 4.5 # 5

Solution: We have seen that when you parallel transport a vector around a closed
loop, the vector does not come back to itself. I tried to argue in class that the
amount that the vector is rotated, the defect angle, is a measure of the total Gauss-
ian curvature in the region bounded by the loop. Moreover, you can use this idea to
compute the curvature at a point, p, by computing the defect angle for any infinite
family of shrinking loops containing p.

This problem makes that idea explicit by asking you to perform the calculation
on a sphere. We take p to be the north pole use as our family of curves the parallels,
Cy. For each Cy, we start with a vector tangent to the curve and parallel transport
it around the circle.

In order to compute the defect angle, we follow the procedure of example 1 on
page 243. The crucial observation is the following: the covariant derivative of a
vector field depends only on the curve, the vector field, and the tangent planes to
the surface along the curve. In particular, if two surfaces are tangent to each other
along the curve, then the covariant derivatives for the two surfaces will be equal.
Therefore, in order to compute the defect angle, we can replace the sphere with
a cone which is tangent to Cy4,. The advantage of this is that the cone is locally
isometric to the plane, where the covariant derivative is easy to compute. I will
not repeat their calculation here. I will only use the result, which is that the defect
angle is

Ap =21 — 0 =21 —2msinyy = 21 — 2wsin(n/2 — ¢po) = 27(1 — cos ¢o)
(It is worth noting that the concept of parallelism is, in fact, older than the covariant
derivative. It was originally defined by precisely this procedure: replace the surface
with a flat one which is tangent to the orginal surface, unroll the flat surface, and
compute the parallel transport in the plane.)

In order to complete the problem, we still need to compute the area, A, bounded
by the parallel, Cy. There are many ways to do this. For example, it can be done

with elementary calculus. However, for the sake of exposition, I will show how to
use the area formulas from section 2.5. We begin by parameterizing the sphere by

x(0, ¢) = (cosfsin ¢, sin 6 sin @, cos @)

so that the first fundamental form is given by

10
g_(O sin2¢)

We defined the area of a region, R, to be
A= //dA = // v/det g dod¢
R x~1(R)

which, when R is the portion of the upper hemisphere bounded by Cy, evaluates
to

bo 27
A= /0 /0 sin ¢pdfde¢ = 2w (1 — cos ¢o)

1



2

Finally,

. . 2m(1 —cos¢yg)
lim —=lim —~ =1
Rsp A ¢0—0 2m(1 — cos ¢yp)

as expected.









