
 MAT 360: Geometric Structures, Fall 2013 
Instructor: Nikita Selinger, office 4-115 Math,
Office hours: MoWe 4.00-5.30pm, or by appointment.
Class meetings: MoWe, 10:00-11:20pm, Frey Hall 217.

 Here you can find sample solutions for homeworks of a similar course. You can also look at the final exam
 for that course.

 The final exam is scheduled on Dec 17th, 2.15pm, in our usual classroom. Here is the list of topics
 recommended for a review for the final exam.

Homework 10, due Dec 2 before class Read the lecture notes on similarity by Oleg Viro and Olga
 Plamenevskaya. Read the textbook pp 143-160. 
 Solve the following excercises from the textbook: 400, 401, 404, 412. Prove Theorems 5 and 6 from the
 notes.

Homework 9, due Nov 20 before class Read the following lecture notes by Oleg Viro and Olga
 Plamenevskaya. 
 Solve the following excercises from the textbook: 386, 388, 389, 391, 595. Prove Theorems 10 and 11 from
 the notes.

Homework 8, due Nov 13 before class Read the textbook pp 138-150. Start reading the following lecture
 notes by Oleg Viro and Olga Plamenevskaya. 
 Solve the following excercises from the textbook: 349, 359, 371, 375, 377, 379, 383.

Homework 7, due Nov 6 before class Read the textbook pp 117-138. 
 Solve the following excercises from the textbook: 321, 324, 346, 348, 355, 356, 360.

 Here are examples of previous years midterms with solutions Midterm1 and Midterm2 , and a list of topics
 to review.

 We will have additional office hours Friday 10/18 at 4pm.

Homework 6, due Oct 16 before class Read the textbook pp 78-96. 
 Solve the following excercises from the textbook: 214, 216, 217, 223, 250, 253, 256.

Homework 5, due Oct 9 before class Read the textbook pp 55-81. 
 Solve the following excercises from the textbook: 157, 160, 171, 183, 187, 197, 205, 206.

Homework 4, due Oct 2 before class Read the textbook pp 49-66. 
 Solve the following excercises from the textbook: 130, 136, 138, 140, 146, 149, 150.

Homework 3, due Sep 25 before class Read the textbook pp 41-53. 
 Solve the following excercises from the textbook: 95, 98, 99, 101, 102, 103, 116.

Homework 2, due Sep 18 Read the textbook pp 22-41. 
 Solve the following excercises from the textbook: 54, 58, 67, 69, 77, 91, 92.

Homework 1, due Sep 11 . Recall the following axioms of congruence:
 (i) The identity mapping (i.e. the mapping that sends all points and lines to themselves) is a congruence. 
 (ii) There exists a congruence that takes one given ray to any other given ray. 
 (iii) There exists a (non-identity) congruence keeping all the points of a given straight line fixed. This "flip"

http://www.math.stonybrook.edu/~nikita/index.html
http://www.math.stonybrook.edu/~nikita/teaching/fall13/teaching/fall12/MAT515/MAT515.html
http://www.math.stonybrook.edu/~nikita/teaching/fall13/teaching/fall12/MAT515/midterm-solutions.pdf
http://www.math.stonybrook.edu/~nikita/teaching/fall13/teaching/fall12/MAT515/mt2solutions.pdf


 can be done in a unique way. 
 Solve the following excercises from the textbook: 28, 33, 36, 39, 50.

 Please note the class room has changed to Frey Hall 217.

 Homework is a compulsory part of the course. Homework assignments are due each week at the beginning
 of the Wednesday's class. Under no circumstances will late homework be accepted.

Grading system: The final grade is the weighted average according the following weights: homework 10%,
 in-class tests 20%, Midterm 30%, Final 40%.

Textbook: Kiselev’s Geometry (Book I, Planimetry) Sumizdat, El Cerrito, Calif., 2006. You can find the first
 33 pages of the textbook here.

 Disability support services (DSS) statement: If you have a physical, psychological, medical, or learning disability that may impact
 your course work, please contact Disability Support Services (631) 6326748 or http://studentaffairs.stonybrook.edu/dss/. They will
 determine with you what accommodations are necessary and appropriate. All information and documentation is confidential. Students
 who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability
 Support Services. For procedures and information go to the following website: http://www.stonybrook.edu/ehs/fire/disabilities/asp.

 Academic integrity statement: Each student must pursue his or her academic goals honestly and be personally accountable for all
 submitted work. Representing another person’s work as your own is always wrong. Faculty are required to report any suspected
 instance of academic dishonesty to the Academic Judiciary. For more comprehensive information on academic integrity, including
 categories of academic dishonesty, please refer to the academic judiciary website at
 http://www.stonybrook.edu/uaa/academicjudiciary/.

Critical incident management: Stony Brook University expects students to respect the rights, privileges, and property of other
 people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach,
 compromises the safety of the learning environment, and/or inhibits students’ ability to learn.
 

http://www.sumizdat.org/pl_1_33.pdf
http://studentaffairs.stonybrook.edu/dss/
http://www.stonybrook.edu/ehs/fire/disabilities/asp
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MAT 515, Geometry for Teachers
Fall 2012

Final Exam

Name:

This is a closed book, closed notes test. No consultations with others.
Calculators are not allowed.

Please turn off and take off the desk cell phones, pagers, etc. Only the
exam and pens/pencils should be on your desk.

Please explain all your answers, show all work, and give careful proofs.
Answers without explanation will receive little credit.

The problems are not in the order of difficulty. You may want to look
through the exam and do the easier questions first.

DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO
SO

Please do not write in this table

1 2 3 4 5 6 Total
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1. Suppose that two lines are intersected by a third one
such that two corresponding angles are congruent to each other.
Prove that the lines are parallel.
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2. Let O be a point in the interior of a triangle 4ABC.
Prove that AO + BO + CO ≤ AB + BC + AC.
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3. Find the geometric locus the feet of the perpendiculars
dropped from a given point A to all lines passing through an-
other given point B.
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4. Construct a line making a given angle with a given line and
tangent to a given circle. (You may use, without a detailed de-
scription, the following elementary constructions: segment and
angle bisection, raising a perpendicular at a point on the line,
dropping a perpendicular from a point not on the line, construct-
ing segments and angles congruent to given ones.)
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5. Prove that the hypotenuse and the shorter leg of a right
triangle with acute angles 60◦ and 30◦ are commensurable.
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6. Find the composition of two rotations: the rotation in
the counterclockwise direction about a point A by angle 150◦

followed by the rotation in the counterclockwise direction about
a point B by angle 100◦: prove that this is a rotation, find the
center and angle of this rotation.
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MAT360. Final topics

Here is the list of topics recommended for review.

1. Theorem about vertical angles, section 26.
2. Existence and uniqueness of perpendicular to a line from a point, sec-

tions 24, 65 and 66.
3. Theorems about isosceles triangles and their properties, sections 35,

36.
4. Congruence tests for triangles section 40.
5. Inequality between exterior and interior angles in a triangle, sections

41 - 43.
6. Relations between sides and opposite angles sections 44 - 45.
7. Triangle inequality and its corollaries, sections 48 and 49.
8. Perpendicular and slants, sections 51 - 53.
9. Segment and angle bisectors, sections 56 and 57.

10. Basic construction problems, sections 61 - 69.
11. Tests for parallel lines, section section 73.
12. The parallel postulate, sections 75 and 76.
13. Angles formed by parallel lines and a transversal, sections 77 and 78.
14. Angles with respectively parallel sides, section 78.
15. Angles with respectively perpendicular sides, section 79.
16. The sum of interior angles in a triangle, section 81.
17. The sum of interior angles in a convex polygon, section 82.
18. Properties of a parallelogram, sections 85 - 87.
19. Special types of parallelograms and their properties, sections 90 - 92.
20. The midline theorem, sections 93, 94, 95.
21. The midline of trapezoid, sections 96, 97.
22. Existence and uniqueness of a circle passing through three points, sec-

tions 103, 104.
23. Constructions that use isometries, sections 98 - 101
24. Theorems about inscribed angles, section 123.
25. Corollaries of the theorem about inscribed angles, sections 125,126.
26. Constructions using theorems about inscribed angles, sections 127 -

130, 133.
27. Inscribed and circumscribed circles, sections 136, 137.
28. Concurrency points in a triangle, sections 140 - 142.
29. Mensurability, sections 143-153.
30. Lecture notes on isometries.



31. Lecture notes on similarities.
32. Similarity of triangles 156-164.
33. Thales’ theorem 170-175.
34. Pythagorean theorem 188-198.



SIMILARITY

BASED ON NOTES BY OLEG VIRO, REVISED BY OLGA PLAMENEVSKAYA

Euclidean Geometry can be described as a study of the properties of geometric
figures, but not all kinds of conceivable properties. Only the properties which do
not change under isometries deserve to be called geometric properties and studied in
Euclidian Geometry.

Some geometric properties are invariant under transformations that belongto wider
classes. One such class of transformations is similarity transformations. Roughly
they can be described as transformations preserving shapes, but changing scales:
magnifying or contracting.

The part of Euclidean Geometry that studies the geometric properties unchanged
by similarity transformations is called the similarity geometry. Similarity geometry can
be introduced in a number of different ways. The most straightforward of them is
based on the notion of ratio of segments.

The similarity geometry is an integral part of Euclidean Geometry. In fact, there is
no interesting phenomenon that belong to Euclidean Geometry, but does not survive
a rescaling. In this sense, the whole Euclidean Geometry can be considered through
the glass of the similarity geometry. Moreover, all the results of Euclidean Geometry
concerning relations among distances are obtained using similarity transformations.

However, main notions of the similarity geometry emerge in traditional presenta-
tions of Euclidean Geometry (in particular, in the Kiselev textbook) in a very indirect
way. Below it is shown how this can be done more naturally, according to the stan-
dards of modern mathematics. But first, in Sections 1 - 4, the traditional definitions
for ratio of segments and the Euclidean distance are summarized.

1. Ratio of commensurable segments. (See textbook, sections 143-154 for a
detailed treatment of this material.)

If a segment CD can be obtained by summing up of n copies of a segment AB,

then we say that
CD

AB
= n and

AB

CD
=

1

n
.

If for segments AB and CD there exists a segment EF and natural numbers p and

q such that
AB

EF
= p and

CD

EF
= q, then AB and CD are said to be commensurable,

AB

CD
is defined as

p

q
and the segment EF is called a common measure of AB and CD.

The ratio
AB

CD
does not depend on the common measure EF .

1



2 BASED ON NOTES BY OLEG VIRO, REVISED BY OLGA PLAMENEVSKAYA

This can be deduced from the following two statements.

For any two commensurable segments there exists the greatest common measure.

The greatest common measure can be found by geometric version of the Euclidean
algorithm. (See textbook, section 146)
If EF is the greatest common measure of segments AB and CD and GH is a common

measure of AB and CD, then there exists a natural number n such that
EF

GH
= n.

If a segment AB is longer than a segment CD and these segments are commensu-

rable with a segment EF , then
AB

EF
>

CD

EF
.

2. Incommensurable segments. There exist segments that are not commensu-
rable. For example, a side and diagonal of a square are not commensurable, see
textbook, section 148. Segments that are not commensurable are called incommensu-
rable.

For incommensurable segments AB and CD the ratio
AB

CD
is defined as the unique

real number r such that

• r <
EF

CD
for any segment EF , which is longer than AB and commensurable

with CD;

• EF

CD
< r for any segment EF , which is shorter than AB and commensurable

with CD.

3. Thales’ Theorem. (See Sections 159-160 of the textbook.) Let ABC be a
triangle, D be a point on AB and E be a point on BC. If DE ‖ AC, then

BD

DA
=

BE

EC
.

¤

A

E

D

B C

Corollary. Under the assumptions of Thales’ Theorem,

BD

BA
=

BE

BC
=

DE

AC
.

¤
The converse theorem. Let ABC be a triangle, D be a point on AB and E be a
point on BC. If

BD

DA
=

BE

EC
,



SIMILARITY 3

then DE ‖ AC.

Proof. Through the point D, draw a line parallel to AC. Let it intersect the side BC
at point E ′. (We would like to show that E = E ′.) By the direct theorem, which
applies since now we are considering parallel lines,

BD

DA
=

BE ′

E ′C
.

But then the hypothesis implies that

BE

EC
=

BE ′

E ′C
,

and then E = E ′.
¤

4. Distance. If we choose a segment AB and call it the unit, then we can assign

to any other segment CD the number
CD

AB
, call it the length of CD and denote by

|CD|.
Further, the length |CD| of segment CD is called then the distance between points

C and D and denote by dist(C,D). Of course, dist(C,D) depends on the choice of
AB. Define |CD| and dist(C,D) to be 0 if C = D.

The distance between points has the following properties:

• it is symmetric, dist(C,D) = dist(D,C) for any points C, D;
• dist(C,D) = 0 if and only if C = D;
• triangle inequality, dist(C,D) ≤ dist(C,E) + dist(E,D).

5. Definition of similarity transformations. A map S is said to be a similarity
transformation with ratio k ∈ R, k ≥ 0, if |T (A)T (B)| = k|AB| for any points A,B in
the plane.

Other terms may be used in the same situation: a similarity transformation may
be called a dilation, or dilatation, the ratio may be also called the coefficient of the
dilation.
General properties of similarity transformations.
1. Any isometry is a similarity transformation with ratio 1.
2. Composition S ◦ T of similarity transformations T and S with ratios k and l,
respectively, is a similarity transformation with ratio kl.

6. Homothety. An important example of similarity transformation with ratio dif-
ferent from 1 is a homothety.
Definition. Let k be a positive real number, O be a point on the plane. The map
which maps O to itself and any point A 6= O to a point B such that the rays OA and

OB coincide and
OB

OA
= k is called the homothety centered at O with ratio k.



4 BASED ON NOTES BY OLEG VIRO, REVISED BY OLGA PLAMENEVSKAYA

Composition T ◦ S of homotheties T and S with the same center and ratios k and
l, respectively, is the homothety with the same center and the ratio kl. In particular,
any homothety is invertible and the inverse transformation is the homothety with the
same center and the inverse ratio.

Theorem 1. A homothety T with ratio k is a similarity transformation with ratio
k.

Proof. We need to prove that T (A)T (B)
AB

= k for any segment AB. Consider, first,
the case when O does not belong to the line AB. Then OAB is a triangle, and
OT (A)T (B) is also a triangle.

Assume that k < 1. Then T (A) belongs to the segment OA, T (B) belongs to

OB, and since OT (B)
OB

= OT (A)
OA

= k, the converse to the Thales’ theorem implies that

T (A)T (B) is parallel to AB. Then, by Corollary of Thales’ Theorem, T (A)T (B)
AB

=
OT (A)
OA

= k.
If k > 1, then A belongs to OT (A), B to OT (B), and the proof is similar.
The case where points A, B, O are collinear is easy, and left as exercise. ¤

Theorem 2. Any similarity transformation T with ratio k of the plane is a compo-
sition of an isometry and a homothety with ratio k. The center of the homothety can
be chosen arbitrarily.

Proof. Consider a composition T ◦ H of T with a homothety H with ratio k−1 and
your preferred center O. This composition is a similarity transformation with ratio
k−1k = 1, that is an isometry. Denote this isometry by I. Thus I = T ◦H. Notice
that the homothety H is invertible: its inverse H−1 is the homothety with the same
center and coefficient k. (Informally, scaling up can be undone by scaling down.)
Now, multiply both sides of the equality I = T ◦H by H−1 from the right hand side:
I ◦H−1 = T ◦H ◦H−1 = T .

We have just shown that T can be represented as the composition of an isometry
and a homothety, where the homothety is performed first. This argument can be
modified to show that T can be also represented as a composition where the isometry
is performed before the homothety. (For this, consider the composition I ′ = H◦T , and
show that this is also an isometry. Note that in general I ′ 6= I, since transformations
may not commute.) ¤
Theorem 3. A similarity transformation of a plane is invertible.

Proof. By Corollary of Theorem 1, any similarity transformation T is a composition
of an isometry and a homothety. A homothety is invertible, as was noticed above. An
isometry of the plane is a composition of at most three reflections. Each reflection
is invertible, because its composition with itself is the identity. A composition of
invertible maps is invertible. ¤
Corollary. The transformation inverse to a similarity transformation T with ratio k is
a similarity transformation with ratio k−1.
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7. Similar figures. Plane figures F1 and F2 are said to be similar if there exists a
similarity transformation T such that T (F1) = F2.

Any two congruent figures are similar. In particular, any two lines are congruent
and hence similar, any two rays are congruent and hence similar.

Segments are not necessarily congruent, but nonetheless any two segments are
similar.

Theorem 4. 1) A figure similar to a segment is a segment, i.e. any similarity
transformation maps segments to segments.

2) Any segment can be mapped to any other by a similarity transformation, i.e.
any two segments are similar.

Proof. 1) Let AB be the given segment, S the similarity transformation. By previous
theorem, we can write S = I ◦ HA, where HA is a homothety with center A, and I
is an isometry. Because the segment AB emanates from the center of homothety, it
is clear that HA maps AB to a segment. (Note that this is far from obvious if the
center of homothety lies away from the segment!) Since we know that isometries map
segments to segments, we’ll still get a segment after applying I.

2) Given segments AB and A′B′, we can find an isometry mapping A′ to A, and
B′ to a point on the ray AB. (First find a translation mapping A′ to A, and then
rotate around the point A = A′ match rays AB and A′B′.) Then find a homothety
with center A = A′ mapping one of the segments to the other one.

¤
Theorem 5. 1) A figure similar to a circle is a circle, i.e. any similarity transfor-
mation maps circles to circles.

2) Any circle can be mapped to any other by a similarity transformation, i.e. any
two circles are similar.

Proof. Exercise. ¤
Theorem 6. 1) A figure similar to an angle is an angle.

2)Two angles are similar if and only they are congruent.

Proof. Exercise. ¤

8. Similarity tests for triangles.

Theorem 7 (AA-test). If in triangles ABC and A′B′C ′ the angles ∠A, ∠A′ are
congruent and angles ∠B, ∠B′ are congruent, then 4ABC is similar to 4A′B′C ′.

Proof. Without loss of generality we may assume that A′B′ is shorter than AB. Find
a point D on AB such that |BD| = |B′A′|. Draw a segment DE parallel to AC. By
ASA test for congruence of triangles, 4A′B′C ′ is congruent to 4DBE. By Corollary
of Thales’ Theorem, DB

AB
= BE

BC
. Hence, the homothety centered at B with ratio DB

AB
maps 4ABC onto 4DBE. ¤
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Theorem 8 (SAS-test). If in triangles ABC and A′B′C ′ the angles ∠A, ∠A′ are
congruent and

A′B′

AB
=

A′C ′

AC
then 4ABC is similar to 4A′B′C ′.

Proof. Without loss of generality we may assume that A′B′ is shorter than AB. Find
a point D on AB such that |BD| = |B′A′|. Draw a segment DE parallel to AC.
By Corollary of Thales’ Theorem, DB

AB
= BE

BC
, and therefore |BE| = |B′C ′|. By SAS

test for congruence of triangles, 4A′B′C ′ is congruent to 4DBE. The homothety
centered at B with ratio DB

AB
maps 4ABC onto 4DBE. ¤

Theorem 9 (SSS-test). If in triangles ABC and A′B′C ′

A′B′

AB
=

B′C ′

BC
=

C ′A′

CA
then 4ABC is similar to 4A′B′C ′.

Proof. Without loss of generality we may assume that A′B′ is shorter than AB.
Find a point D on AB such that |BD| = |B′A′|. Draw a segment DE parallel to
AC. By Corollary of Thales’ Theorem, DB

AB
= BE

BC
= DE

AC
. Therefore |BE| = |B′C ′|

and |DE| = |A′C ′|. By SSS test for congruence of triangles, 4A′B′C ′ is congruent to
4DBE. The homothety centered at B with ratio DB

AB
maps4ABC onto4DBE. ¤

Theorem 10. Conversely, suppose that triangles ABC and A′B′C are similar, i.e.
there exists a similarity transformation S mapping one triangle to the other. For
concreteness, we assume that S(A) = A′, S(B) = B′, S(C) = C ′. Then ∠A = ∠A′,
∠B = ∠B′, ∠C = ∠C ′, and

A′B′

AB
=

B′C ′

BC
=

C ′A′

CA
.

Proof. We can represent S as the composition of a homothety HA centered at A and
an isometry, S = I ◦HA. Since the center of HA is one of the vertices of the triangle
ABC, this triangle and its image, the triangle HA(A)HA(B)HA(C) are positioned as
in Thales’ theorem, so the corresponding angles of4ABC and4HA(A)HA(B)HA(C)
are equal, and the sides are proportional. On the other hand, the isometry I maps
4HA(A)HA(B)HA(C) to 4A′B′C ′, so the latter two triangles are congruent. ¤



Isometries.

Congruence mappings as isometries. The notion of isometry is a general notion
commonly accepted in mathematics. It means a mapping which preserves distances.
The word metric is a synonym to the word distance. We will study isometries of the
plane. In fact, we have already encountered them, when we superimposed a plane
onto itself in various ways (eg by reflections or rotations) to prove congruence of
triangles and such. We now show that each isometry is a “congruence mapping” like
that.

Theorem 1. An isometry maps
(i) straight lines to straight lines;
(ii) segments to congruent segments;
(iii) triangles to congruent triangles;
(iv) angles to congruent angles.

Proof. Let’s show that an isometry S maps a segment AB to segment S(A)S(B) which
is congruent to AB. It is clear (from the definition of isometry) that the distance
between S(A) and S(B) is the same as the distance between A and B. However,
we need to check that the image of AB will indeed be a straight line segment. To
do so, pick an arbitrary point X on AB. Then S(A)S(B) = AB = AX + XB =
S(A)S(X)+S(X)S(B), and by the triangle inequality the point S(X) must be on the
segment S(A)S(B) (otherwise we would have S(A)S(X) + S(X)S(B) > S(A)S(B).
So image of the segment AB lies in the segment S(A)S(B), and indeed, covers the
whole of S(A)S(B) without leaving any holes: if X ′ is a point on S(A)S(B), find X
on AB such that XA = X ′S(A), XB = X ′S(B), then S(X) = X ′. ¤

Examples of isometries. We have encountered quite a few examples before: re-
flections, rotations, and translations are all isometries. (It is pretty easy to see that
the distances are preserved in each case: for instance, a reflection Rl through the line
l maps any segment AB to a symmetric, and thus congruent, segment A′B′.) Let’s
look at some examples more closely.

Translations and central symmetries. A map of the plane to itself is called a
translation if, for some fixed points A and B, it maps a point X to a point T (X) such
that ABT (X)X is a parallelogram. (Note the order of points!)

Here we have to be careful with the notion of parallelogram, because a parallelogram
may degenerate to a figure in a line. Not any degenerate quadrilateral fitting in a line
deserves to be called a parallelogram, although any two sides of such a degenerate
quadrilateral are parallel. By a parallelogram we mean a sequence of four segments
KL, LM , MN and MK such that KL is congruent and parallel to MN and LM is
congruent and parallel to MK. This definition describes the usual parallelograms, for
which congruence can be deduced from parallelness and vice versa, and the degenerate
parallelograms.

1



2

Theorem 2. For any points A and B there exists a translation mapping A to B. A
translation is an isometry.

Proof. Any three points A, B and X can be completed in a unique way to a par-
allelogram ABX ′X. Define T (X) = X ′. For any points X, Y the quadrilateral
XY T (Y )T (X) is a parallelogram, since XT (X)||AB||Y T (Y ). Therefore, XY =
T (X)T (Y ), so T is an isometry. ¤

Denote by TAB the translation which maps A to B.

Theorem 3. The composition of any two translations is a translation.

Proof. Exercise. ¤
Theorem 3 means that TBC ◦ TAB = TAC .
Fix a point O. A map of the plane to itself which maps a point A to a point B

such that O is a midpoint of the segment AB is called the symmetry about a point O.

Theorem 4. A symmetry about a point is an isometry.

Proof. SAS-test for congruent triangles (extended appropriately to degenerate trian-
gles.) ¤
Theorem 5. The composition of any two symmetries in a point is a translation.
More precisely, SB ◦ SA = T

2
−→
AB

, where SX denotes the symmetry about point X.

Proof. Exercise. ¤
Remark. The equality

SB ◦ SA = T
2
−→
AB

implies a couple of other useful equalities. Namely, compose both sides of this equality
with SB from the left:

SB ◦ SB ◦ SA = SB ◦ T
2
−→
AB

Since SB ◦ SB is the identity, it can be rewritten as

SA = SB ◦ T
2
−→
AB

.

Similarly, but multiplying by SA from the right, we get

SB = T
2
−→
AB

◦ SA.

Corollary. The composition of an even number of symmetries in points is a trans-
lation; the composition of an odd number of symmetries in points is a symmetry in a
point.

Remark. In general, it is clear that a composition of isometries is an isometry:
if each mapping keeps distances the same, their composition also will. It is trickier,
however, to see the resulting isometry explicitly; we will prove a few theorems related
to compositions of isometries. To practice with compositions, consider, for example,
a reflection about a line l and a rotation by 90◦ counterclockwise about a point
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O ∈ l. When composed in different order (rotation followed by reflection vs reflection
followed by rotation), these yield reflections about different lines. The proof that
the composition is a reflection can be obtained by an explicit examination of which
points go where; by Theorem 6 , it suffice to examine 3 non-collinear points.

Recovering an isometry from the image of three points.

Theorem 6. An isometry of the plane can be recovered from its restriction to any
triple of non-collinear points.

Proof. Given images A′, B′ and C ′ of non-collinear points A, B, C under and isometry,
let us find the image of an arbitrary point X. Using a compass, draw circles cA and
cB centered at A′ and B′ of radii congruent to AX and BX, respectively. They
intersect in at least one point, because segments AB and A′B′ are congruent and the
circles centered at A and B with the same radii intersect at X. There may be two
intersection point. The image of X must be one of them. In order to choose the right
one, measure the distance between C and S and choose the intersection point X ′ of
the circles cA and cB such that C ′X ′ is congruent to CX. ¤

In fact, there are exactly two isometries with the same restriction to a pair of dis-
tinct points. They can be obtained from each other by composing with the reflection
about the line connecting these points.

Isometries as compositions of reflections.

Theorem 7. Any isometry of the plane is a composition of at most three reflections.

Proof. Choose three non-collinear points A, B, C. By theorem 6 , it would suffice
to find a composition of at most three reflections which maps A, B and C to their
images under a given isometry S.

First, find a reflection R1 which maps A to S(A). The axis of such a reflection is a
perpendicular bisector of the segment AS(A). It is uniquely defined, unless S(A) = A.
If S(A) = A, one can take either a reflection about any line passing through A, or
take, instead of reflection, an identity map for R1 .

Second, find a reflection R2 which maps segment S(A)R1(B) to S(A)S(B). The
axis of such a reflection is the bisector of angle ∠R1(B)S(A)S(B).

The reflection R2 maps R1(B) to S(B). Indeed, the segment
S(A)R1(B) = R1(AB) is congruent to AB (because R1 is an isometry), AB is con-
gruent to S(A)S(B) = S(AB) (because S is an isometry), therefore S(A)R1(B) is
congruent to S(A)S(B). Reflection R2 maps the ray S(A)R1(B) to the ray S(A)S(B),
preserving the point S(A) and distances. Therefore it maps R1(B) to S(B).

Triangles R2 ◦R1(4ABC) and S(4ABC) are congruent via an isometry S ◦ (R2 ◦
R1)

−1 = S ◦R1 ◦R2, and the isometry is identity on the side S(AB) = R2 ◦R1(AB).
Now either R2(R1(C)) = C and then S = R2 ◦ R1, or the triangles R2 ◦ R1(4ABC)
and S(4ABC) are symmetric about their common side S(AB). In the former case
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S = R2 ◦R1, in the latter case denote by R3 the reflection about S(AB) and observe
that S = R3 ◦R2 ◦R1. ¤
Compositions of two reflections.

Theorem 8. The composition of two reflections in non-parallel lines is a rotation
about the intersection point of the lines by the angle equal to doubled angle between
the lines. In formula:

RAC ◦RAB = RotA,2∠BAC ,

where RXY denotes the reflection in line XY , and RotX,α denotes the rotation about
point X by angle α.

Proof. Pick some points whose images under reflections are easy to track. From
symmetries/congruent triangles in the picture, it is clear that effect of two refections
is that of a rotation. Since we know that an isometry is determined by the image of 3
non-collinear points, the ir no need to consider all possible positions of the points. ¤
Theorem 9. The composition of two reflections in parallel lines is a translation
in a direction perpendicular to the lines by a distance twice larger than the distance
between the lines.

More precisely, if lines AB and CD are parallel, and the line AC is perpendicular
to the lines AB and CD, then

RCD ◦RAB = T
2
−→
AC

.

Proof. Similar to the above. ¤
Application: finding triangles with minimal perimeters. We have considered
the following problem:

Problem 1. Given a line l and points A,B on the same side of l, find a point C ∈ l
such that the broken line ACB would be the shortest.

Recall that a solution of this problem is based on reflection. Namely, let B′ =
Rl(B). Then the desired C is the intersection point of l and AB′.

Notice that this problem can be reformulated as finding C ∈ l such that the perime-
ter of the triangle ABC is minimal.

Problem 2. Given lines l, m and a point A, find points B ∈ l and C ∈ m such that
the perimeter of the triangle ABC is the smallest possible.

Idea that solves Problem 2. Reflect point A through lines l and m, that is, consider
points B′ = Rl(A) and C ′ = Rm(A). Use these points to find B and C (how?), and
prove that the resulting triangle indeed has the smallest perimeter.

Problem 3. Given lines l, m and n, no two of which are parallel to each other. Find
points A ∈ l, B ∈ m and C ∈ n such that triangle ABC has minimal perimeter.

If we knew a point A ∈ l, the problem would be solved like Problem 2: we would
connect points Rm(A) and Rn(A) and take B and C to be the intersection points of
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this line with m and n. So, we have to find a point A ∈ l such that the segment
Rm(A)Rn(A) would be minimal.

The endpoints Rm(A), Rn(A) of this segment belong to the lines Rm(l) and Rn(l)
and are obtained from the same point A ∈ l. Therefore

Rn(A) = Rn(Rm(Rm(A))) = Rn ◦Rm(B),

where B ∈ Rm(l). So, one endpoint is obtained from another by Rn ◦Rm.
By Theorem 9 , Rn ◦ Rm is a rotation about the point m ∩ n. We look for a point

B on Rm(l) such that the segment BRn ◦Rm(B) is minimal.
The closer a point to the center of rotation, the closer this point to its image under

the rotation. Therefore the desired B is the base of the perpendicular dropped from
m∩n to Rm(l). Hence, the desired A is the base of perpendicular dropped from m∩n
to l.

Since all three lines are involved in the conditions of the problem in the same way,
the desired points B and C are also the endpoints of altitudes of the triangle formed
by lines l, m, n.

Composition of rotations.

Theorem 10. The composition of rotations (about points which may be different) is
either a rotation or a translation.

Prove this theorem by representing each rotation as a composition of two reflections
about a line. Choose the lines in such a way that the second line in the representation
of the first rotation would coincide with the first line in the representation of the
second rotation. Then in the representation of the composition of two rotations as
a composition of four reflections the two middle reflections would cancel and the
whole composition would be represented as a composition of two reflections. The
angle between the axes of these reflections would be the sum of of the angles in
the decompositions of the original rotations. If this angle is zero, and the lines are
parallel, then the composition of rotations is a translation by Theorem 9 . If the angle
is not zero, the axes intersect, then the composition of the rotations is a rotations
around the intersection point by the angle which is the sum of angles of the original
rotations.

Similar tricks with reflections allows to simplify other compositions.

Glide reflections. A reflection about a line l followed by a translation along l is
called a glide reflection. In this definition, the order of reflection and translation does
not matter, because they commute: Rl ◦ TAB = TAB ◦Rl if l ‖ AB.

Theorem 11. The composition of a central symmetry and a reflection is a glide
reflection.

Use the same tricks as for Theorem 10
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Classification of plane isometries.

Theorem 12. Any isometry of the plane is either a reflection about a line, a rotation,
a translation, or a gliding reflection.

This theorem can be deduced from Theorem 7 by taking into account relations
between reflections in lines. By Theorem 7 , any isometry of the plane is a composition
of at most 3 reflections about lines. By Theorems 8 and 9 , a composition of two
reflections is either a rotation about a point or a translation.

Lemma. A composition of three reflections is either a reflection or a gliding
reflection.

Proof. We will consider two cases: 1) all three lines are parallel, 2) not all lines are
parallel (although two of the three may be parallel to one another).

The first one is easier; it is pretty straightforward to see (at least in some examples)
that the composition is a translation. However, since the order of reflections matters,
for a precise proof we wouold have to check different cases ( if the lines are all vertical,
the first reflection may be done about the leftmost, the rightmost, or the middle lien,
etc.) To avoid this, we proceed as follows. Notice that Rl3 ◦Rl2 ◦Rl1 = Rl3 ◦(Rl2 ◦Rl1),
and the composition Rl2 ◦Rl1 of two reflections in parallel lines is a translation. This
translation depends only on the direction of the lines and the distance between them,
ie Rl2 ◦ Rl1 = Rl′2 ◦ Rl′1 for any two lines l′1, l

′
2 that are parallel to l1, l2 and have

the same distance between them. Thus, we translate the first two lines to make the
second line coincide with the third, ie choose l′1, l

′
2 so that l′2 = l3. Then

Rl3 ◦Rl2 ◦Rl1 = Rl3 ◦Rl′2 ◦Rl′1 = Rl3 ◦Rl3 ◦Rl′1 = Rl′1

since two reflections about the same line l3 cancel. Therefore, the result is a reflection
(about the line l′1).

If the three lines are not all parallel, then the second line l2 is not parallel to l1 or
l3. Let’s suppose l1 and l2 are not parallel (the other case is very similar). Then the
composition Rl2 ◦Rl1 of reflections about intersecting lines is a rotation (that depends
only on the point where the lines intersect, and the angle at which they intersect).
So the lines l1, l2 can be rotated simultaneously about their intersection point by the
same angle without changing the composition.

By an appropriate rotation, make the second line l2 perpendicular to the third line
l3 (which is not rotated), ie replace l1, l2 by l′1, l

′
2 so that Rl2 ◦ Rl1 = Rl′2 ◦ Rl′1 , and

l′2 ⊥ l3.
Then by rotating these two perpendicular lines l′2, l3 about their intersection point,

make the middle line l2 parallel to the line l1. That is, we replace the lines l′2, l3 by
lines l′′2 , l

′′
3 so that

Rl3 ◦Rl2 ◦Rl1 = Rl3 ◦Rl′2 ◦Rl′1 = Rl′′3 ◦Rl′′2 ◦Rl′1 .
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Now, the configuration of lines consists of two parallel lines and a line perpendicular
to them: l′1, l

′′
2 are parallel, l′′3 is perpendicular to them both. The composition of

reflections Rl′′2 ◦ Rl′1 is a translation by a vector perpendicular to these two lines
(and thus parallel to the third); so Rl′′3 ◦ (Rl′′2 ◦ Rl′1) is a glide symmetry. But the
composition of these three reflections is the same as the composition of reflections
about the original three lines.

Properties of the four types of isometries. We have just seen that any isometry
of the plane belongs to one of the four types. How do we detect to which type it
belongs? In particular, it may seem a bit mysterious that while composition of 3
reflections is a reflection or glide reflection, a composition of two isometries can never
be a reflection, but only a rotation or translation. This can be explained as follows.
Suppose our plane lies in the 3-space (as a horizontal xy-plane), and its top is painted
black, its bottom white. Suppose that the reflections are done by rotating the plane
around the line (axis of reflection) in the 3-space. Then after a reflection, the white
side will be on top, the black side on the bottom. Notice that the colors will flip
this way if we perform any odd number of reflections, but after an even number of
reflections the colors do not flip. (Eg after two reflections, the top will be black again,
the bottom white.) By contrast, rotations and translations do not flip the colors. This
explains why the composition of two reflections can be a rotation or translation, but
never a reflection.

Another fundamental characteristic of an isometry is the points that it leaves fixed.
For instance, a rotation doesn’t move the center (but moves any other point); a
reflection fixes every point of its axis. We summarize these properties in the chart
below.

type of isometry points that stay fixed flips colors?
rotation the center no
reflection every point on axis yes
translation none no
glide reflection none yes

These properties help detect the type of isometry. In particular, the chart shows
that a glied reflection cannot belong to any of the other three types.

¤



MAT360. Midterm topics

Here is the list of topics recommended for review.

1. Theorem about vertical angles, section 26.
2. Existence and uniqueness of perpendicular to a line from a point, sec-

tions 24, 65 and 66.
3. Theorems about isosceles triangles and their properties, sections 35,

36.
4. Congruence tests for triangles section 40.
5. Inequality between exterior and interior angles in a triangle, sections

41 - 43.
6. Relations between sides and opposite angles sections 44 - 45.
7. Triangle inequality and its corollaries, sections 48 and 49.
8. Perpendicular and slants, sections 51 - 53.
9. Segment and angle bisectors, sections 56 and 57.

10. Basic construction problems, sections 61 - 69.
11. Tests for parallel lines, section section 73.
12. The parallel postulate, sections 75 and 76.
13. Angles formed by parallel lines and a transversal, sections 77 and 78.
14. Angles with respectively parallel sides, section 78.
15. Angles with respectively perpendicular sides, section 79.
16. The sum of interior angles in a triangle, section 81.
17. The sum of interior angles in a convex polygon, section 82.
18. Properties of a parallelogram, sections 85 - 87.
19. Special types of parallelograms and their properties, sections 90 - 92.
20. The midline theorem, sections 93, 94, 95.
21. The midline of trapezoid, sections 96, 97.
22. Existence and uniqueness of a circle passing through three points, sec-

tions 103, 104.
23. Constructions that use isometries, sections 98 - 101
24. Theorems about inscribed angles, section 123.
25. Corollaries of the theorem about inscribed angles, sections 125,126.
26. Constructions using theorems about inscribed angles, sections 127 -

130, 133.
27. Inscribed and circumscribed circles, sections 136, 137.
28. Concurrency points in a triangle, sections 140 - 142.


