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Schedule

The PDF version of the schedule is available for print here.

Note: Z=Zhang, S=Strogatz, DHS=Devaney,Hirsch,Smale

Date Topic Notes Assignments

Jan 26 Introduction: differential equations & dynamical systems

Jan 28
First order autonomous equations
Differential equations in dimension one: equilibrium & stability

Z3.1-3.2
S2.1-2.4

Feb 2 Stability, Lyapunov function & examples
S2.4-2.7
Notes Bb

HW1 (due Feb 11)

Feb 4
Existence & uniqueness of solutions
Bifurcations, normal forms

Z3.2, S2.5

Feb 9 Bifurcations: saddle-node, transcritical & examples
Z3.3, S3.1-3.2
Notes Bb

HW2 (due Feb 18)

Feb 11 Bifurcations: transcritical, pitchfork, hysteresis S3.3-3.4

Feb 16 Dimension two: Linear systems Z5, S5.1-5.2

Feb 18 Classification of linear systems S5.2, 6.1-6.2 HW3 (due Feb 25)

Feb 23
Nonlinear systems: sinks, saddles, sources, stability, hyperbolicity
Hartman-Grobman theorem; Examples

S6.3-6.5

Feb 25
Stable/unstable manifolds, closed orbits, limit cycles
An example of Hopf bifurcation

S7.1, 8.2 HW4 (due Mar 8)

Mar 1 Conservative systems, energy and nonlinear centers S6.5

Mar 3 Gradient systems, Lyapunov functions and examples S7.2, Z6.2

Mar 8 Dulac's criterion, Bendixon's negative criterion
S7.1-7.3
Z6.3-6.4

HW5 (due Mar 24)

Mar 10 Poincaré-Bendixon theorem Z6.4-6.5
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Mar 15 Spring break (no class)

Mar 17 Spring break (no class)

Mar 22 Applications of Poincaré-Bendixon theorem S7.3

Mar 24 Bifurcations in two-dimensional systems S8.1-8.2 Practice problems

Mar 29
Hopf bifurcations
Review

S8.2-8.3 Project Topics

Mar 31 Midterm (1:00-2:20pm, in class) -- Midterm

Apr 5 Hopf bifurcations; Examples
Notes Bb
DHS Ch. 8

Apr 7 Homoclinic bifurcations; Lorenz system S8.4, S9.2

Apr 12 Lorenz system & properties S9.2, Notes Bb

Apr 14 Dissipative systems, attractors, examples S9.3, Notes Bb HW6 (due Apr 21)

Apr 19
Lorenz attractor 
Stable manifold of the origin:
(Video & Lorenz System Example by Alex Vladimirsky)

S9.3

Apr 21
A model for the Lorenz attractor
Poincaré map

DHS Ch. 14
Pictures

Apr 26
Chaotic attractor
Reading (see Figures 6, 7): A new twist in knot theory 
Animation several trajectories (Video)

DHS Ch. 14
Pictures

HW7 (due May 5)

Apr 28
Discrete dynamical systems
Chaos

S10
DHS Ch. 15

May 3 Discrete dynamical systems; Examples
S10
DHS Ch. 15

May 5
Fractals and dimension
Three-dimensional ODEs - Open Problems

S11

May 16 Projects -- due at 5:30pm in Math Tower 4-103

http://www.math.cornell.edu/~vlad/manifold_movies/lorenz150.gif
http://www.math.cornell.edu/~vlad/manifold_movies/lorenz.html
http://www.math.cornell.edu/~vlad/
http://www.ams.org/happening-series/hap7-new-twist.pdf
https://upload.wikimedia.org/wikipedia/commons/e/ea/A_Lorenz_system.ogv


Last updated August 2017

Remus Radu

Institute for Mathematical Science
Stony Brook University 

e-mail: rradu@math.stonybrook.edu

Home  Research  Teaching  MAT 341 (Spring 2017)

About me

From 2013 to 2017 I was a Milnor Lecturer at the Institute for Mathematical Sciences at Stony Brook University. I got my Ph.D. in
Mathematics from Cornell University in 2013, under the supervision of John H. Hubbard. 

I started my undergraduate studies at the University of Bucharest and after one year I transfered to Jacobs University Bremen,
where I earned my B.S. degree in Mathematics in 2007. I got a M.S. in Computer Science from Cornell University in 2012.

Research Interests

My interests are in the areas of Dynamical Systems (in one or several complex variables), Analysis, Topology and the interplay
between these fields. 

My research is focused on the study of complex Hénon maps, which are a special class of polynomial automorphisms of C2 with
chaotic behavior. I am interested in understanding the global topology of the Julia sets J, J−  and J+  of a complex Hénon map and
the dynamics of maps with partially hyperbolic behavior such as holomorphic germs of diffeomorphisms of (Cn, 0) with semi-
neutral fixed points. Some specific topics that I work on include: relative stability of semi-parabolic Hénon maps and connectivity
of the Julia set J, regularity properties of the boundary of a Siegel disk of a semi-Siegel Hénon map, local structure of non-
linearizable germs of diffeomorphisms of (Cn, 0).

Other activities

I was organizer for the Dynamics Seminar at Stony Brook University. 
I have also developed projects for MEC (Math Explorer's Club): Mathematics of Web Search and Billiards & Puzzles.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

http://www.math.stonybrook.edu/~rradu/research.html
http://www.math.stonybrook.edu/~rradu/teaching.html
http://www.math.stonybrook.edu/institute-mathematical-sciences
http://math.cornell.edu/
http://www.math.cornell.edu/~hubbard/
http://www.unibuc.ro/e/
http://www.jacobs-university.de/
https://www.math.stonybrook.edu/calendar/agenda.php?LocationID=10
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/
http://www.math.cornell.edu/~mec/Summer2009/Remus/index.html


Remus Radu

Institute for Mathematical Science
Stony Brook University 

office: Math Tower 4-103
phone: (631) 632-8266 
e-mail: remus.radu@stonybrook.edu 

Home  Course Information  Schedule & Homework

Synopsis

Dynamical systems occur in all branches of science, from the differential equations of classical mechanics in physics to the
difference equations of mathematical economics and biology. This course is an introduction to the field of dynamical systems. It
concerns the study of the long-term behavior of solutions to ordinary differential equations or of iterated mappings, emphasizing
the distinction between stability on the one hand and sensitive dependence and chaotic behavior on the other. The course
describes examples of chaotic behavior and of fractal attractors, and develops some mathematical tools for understanding them.
In particular we will study the following key concepts: hyperbolicity, topological conjugacy, equilibrium, limit cycle, stability,
chaos, etc.

Click here to download a copy of the course syllabus. Please visit the course website on Blackboard to see your grades.

Lectures

Tuesday & Thursday 1:00-2:20pm in Physics 116

Instructor

Remus Radu 
Office: Math Tower 4-103 
Office hours: TuTh 2:30-4:00pm in Math Tower 4-103, or by appointment

Teaching Assistant

Aleksandar Milivojevic 
Office: MLC (Math Tower S-240A) 
Office hours: Monday 10:00-11:00am & 1:00-2:00pm; Wednesday 10:30-11:30am in MLC

Textbook & recommended reading

Steven Strogatz, Nonlinear dynamics and Chaos: with applications to physics, biology, chemistry, and engineering, Westview
press.
Wei-bin Zhang, Differential equations, bifurcations, and Chaos in economics, World Scientific 2005.
Robert L. Devaney, Morris W. Hirsch, and Stephen Smale, Differential Equations, Dynamical Systems, and an Introduction to
Chaos, 3rd ed., Elsevier Academic Press, 2012.
Robert L. Devaney, A First Course in Chaotic Dynamical Systems: Theory And Experiment, Westview Press 1992.
Clark Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd ed., CRC Press. (more advanced)
John Guckenheimer, Philip Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer
1983. (more advanced)
*** We will follow the first three textbooks, but there will also be lecture notes posted on Blackboard. ***

Grading Policy

Grades will be computed using the following scheme:
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https://blackboard.stonybrook.edu/
https://westviewpress.com/books/nonlinear-dynamics-and-chaos/
https://westviewpress.com/books/nonlinear-dynamics-and-chaos/
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Homework – 30%
Midterm – 35% (on Thursday, March 31, 1:00-2:20pm)
Projects & presentation – 35%

Students are expected to attend class regularly and to keep up with the material presented in the lecture and the assigned
reading.



Schedule & Homework

Note: Z=Zhang, S=Strogatz, DHS=Devaney,Hirsch,Smale

Date Topic Notes Assignments

Jan 26 Introduction: differential equations & dynamical systems

Jan 28 First order autonomous equations
Differential equations in dimension one: equilibrium & stability

Z3.1-3.2
S2.1-2.4

Feb 2 Stability, Lyapunov function & examples S2.4-2.7
Notes Bb HW1 (due Feb 11)

Feb 4 Existence & uniqueness of solutions
Bifurcations, normal forms Z3.2, S2.5

Feb 9 Bifurcations: saddle-node, transcritical & examples Z3.3, S3.1-3.2
Notes Bb HW2 (due Feb 18)

Feb 11 Bifurcations: transcritical, pitchfork, hysteresis S3.3-3.4

Feb 16 Dimension two: Linear systems Z5, S5.1-5.2

Feb 18 Classification of linear systems S5.2, 6.1-6.2 HW3 (due Feb 25)

Feb 23 Nonlinear systems: sinks, saddles, sources, stability, hyperbolicity
Hartman-Grobman theorem; Examples S6.3-6.5

Feb 25 Stable/unstable manifolds, closed orbits, limit cycles
An example of Hopf bifurcation S7.1, 8.2 HW4 (due Mar 8)

Mar 1 Conservative systems, energy and nonlinear centers S6.5

Mar 3 Gradient systems, Lyapunov functions and examples S7.2, Z6.2

Mar 8 Dulac's criterion, Bendixon's negative criterion S7.1-7.3
Z6.3-6.4 HW5 (due Mar 24)

Mar 10 Poincaré-Bendixon theorem Z6.4-6.5

Mar 15 Spring break (no class)

Mar 17 Spring break (no class)

Mar 22 Applications of Poincaré-Bendixon theorem S7.3

Mar 24 Bifurcations in two-dimensional systems S8.1-8.2 Practice problems

Mar 29 Hopf bifurcations
Review S8.2-8.3 Project Topics

Mar 31 Midterm (1:00-2:20pm, in class) -- Midterm



Apr 5 Hopf bifurcations; Examples Notes Bb
DHS Ch. 8

Apr 7 Homoclinic bifurcations; Lorenz system S8.4, S9.2

Apr 12 Lorenz system & properties S9.2, Notes Bb

Apr 14 Dissipative systems, attractors, examples S9.3, Notes Bb HW6 (due Apr 21)

Apr 19 Lorenz attractor S9.3

Apr 21 A model for the Lorenz attractor
Poincaré map

DHS Ch. 14
Pictures

Apr 26
Chaotic attractor
Reading (see Figures 6, 7): A new twist in knot theory 
Animation several trajectories (Video)

DHS Ch. 14
Pictures HW7 (due May 5)

Apr 28 Discrete dynamical systems
Chaos

S10
DHS Ch. 15

May 3 Discrete dynamical systems; Examples S10
DHS Ch. 15

May 5 Fractals and dimension
Three-dimensional ODEs - Open Problems S11

May 16 Projects -- due at 5:30pm in Math Tower 4-103
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Assignment 1

Due Thursday, February 11, in class.

Problem 1: Determine the equilibrium points of the following differential equations and
discuss their stability.

a) ẋ = 3x(1− x)

b) ẋ = cos2(x)

c) ẋ = r + x − x3, for various values of r. It may be useful to look at the Lyapunov
function.

Problem 2: The growth of cancerous tumors can be modeled by the Gompertz law
Ṅ = −aN log(bN), where N(t) is proportional to the number of cells in the tumor and
a, b > 0 are parameters. Find the fixed points of this model and discuss their stability.
Sketch the graph of the solution N(t) based at 1/(2b).

Problem 3: Consider the equation ẋ = rx+x3, where r > 0 is fixed. Show that |x(t)| → ∞
in finite time, starting from any initial condition x0 6= 0.

Problem 4: Let p and q be positive integers with no common factors. Consider the initial
value problem ẋ = |x|p/q, x(0) = 0.

a) Show that there are an infinite number of solutions if p < q.

b) Show that there is a unique solution if p > q.

Problem 5: A solution x(t) is a periodic solution of the differential equation ẋ = f(x)
if there exists T > 0 such that x(t) = x(t + T ) for all time t, but x(t) 6= x(t + s) for all
0 < s < T . Show that there are no periodic solutions to ẋ = f(x) on the real line.

1
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Assignment 2

Due Thursday, February 18, in class.

Problem 1: Show that the following system

ẋ = λ+
1

2
x− x

x+ 1

undergoes a saddle-node bifurcation at a critical value of λ, to be determined. Sketch all the
qualitatively different vector fields that occur as λ is varied. Sketch the bifurcation diagram
of fixed points x∗ versus λ.

Problem 2: Show that the system ẋ = x(1 − x2) − 3(1 − e−λx) undergoes a transcritical
bifurcation at x = 0. Find the critical value of λ for which this occurs. Find an approximate
formula for the fixed point that bifurcates from x = 0.

Problem 3: For the following equations, find the value of λ at which bifurcations occur,
and classify those as saddle-node, transcritical, pitchfork (supercritical or subcritical). Sketch
the bifurcation diagram of x∗ vs. λ.

a) ẋ =
λ− x2

1 + x2
x

b) ẋ = x+ tanh(λx)

Problem 4: Consider the system ẋ = λx− sin(x), for −4π ≤ x ≤ 4π.

a) Show that for λ > 1 there is only one fixed point. Describe its stability.

b) Draw a phase portrait and a bifurcation diagram for 1
2
≤ λ <∞. Indicate the stability

of the various branches of fixed points.

c) What happens in the interval 0 < λ < 1
2
? Classify all the bifurcations that occur.

(You are not asked to find the exact value of λ at which bifurcations occur.)

1
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Assignment 3

Due Thursday, February 25, in class.

Problem 1: Sketch the vector field and some typical trajectories for the following linear
systems. Determine whether the equilibrium is stable, asymptotically stable, or unstable.

a) ẋ = x, ẏ = x + y.

b) ẋ = −x + y, ẏ = −5x + y.

Problem 2: Sketch the phase portrait and classify the fixed point x∗ = 0 of the following
linear systems. Specify if the system is hyperbolic or not.

a) ẋ = −3x + 2y, ẏ = x− 2y.

b) ẋ = y, ẏ = −x− ay, where −2 < a < 2.

Problem 3: The motion of a damped harmonic oscillator is described by mẍ+bẋ+kx = 0,
where b > 0 is the damping coefficient. The constants m, k > 0.

a) Rewrite the equation as a two-dimensional linear system.

b) Classify the fixed point at the origin and sketch the phase portrait in the case when the
system is: underdamped (b2 < 4mk), critically damped (b2 = 4mk), or overdamped
(b2 > 4mk).

Problem 4: Consider the system

ẋ = g(x), x ∈ R2, where g

(
x1

x2

)
=

(
3x2

1 + 7x1x2 + x1 + 2x2
2 − x2

−12x2
1 − 16x1x2 − 3x1 − x2

)
.

a) Compute the Jacobian matrix at x∗ = (0, 0) and find its eigenvalues. Use this infor-
mation to classify this fixed point and determine its stability.

b) Sketch the phase portrait in a neighborhood of x∗.

c) (Extra Credit - 3p) Sketch a plausible phase portrait for the whole system.

1
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Assignment 4

Due Tuesday, March 8, in class.

Problem 1: For each of the following systems, find the equilibrium points, classify them
and sketch the neighboring trajectories.

a) ẋ = x− y, ẏ = x2 − 4

b) ẋ = y, ẏ = xy + x− 1

c) ẋ = x(x2 + y2), ẏ = y(x2 + y2)

Does the linearized system accurately describe the local behavior near the equilibrium points?

Problem 2: Consider the system ẋ = sin(y), ẏ = cos(x) in the rectangle −3 < x < 5,
−4 < y < 5

a) Find all fixed points, determine their stability and sketch the neighboring trajectories.

b) Does the system have homoclinic trajectories, heteroclinic trajectories, closed orbits,
or limit cycles? Sketch some of them, if they exist.

Problem 3: Consider the pendulum equation, ẍ+ sin(x) = 0, −8 < x < 8.

a) Find the equilibrium points and discuss the linearization of the pendulum equation in
the neighborhood of each equilibrium point.

b) Multiply both sides of the pendulum equation by ẋ and show that the energy function
E(ẋ, x) = 1

2
(ẋ)2 − cos(x) is constant along trajectories.

c) (Extra Credit - 3p) Sketch the phase portrait of the full nonlinear equation.

Problem 4: Discuss the local and global behavior of solutions of

ṙ = ar − r5

θ̇ = 1

as the parameter a passes through 0. Does the system have a limit cycle for some value of
a?

1



Problem 5: The relativistic equation for the orbit of a planet around the sun is

d2u

dθ2
+ u = α + εu2

where u =
1

r
and r, θ are the polar coordinates of the planet in its plane of motion. The

parameter α is positive and can be found explicitly from classical Newtonian mechanics; the
term εu2 is Einsteins correction. Here ε is a very small positive parameter (so that εα ≈ 0).

a) Rewrite the equation as a system in the (u, v) phase plane, where v =
du

dθ
.

b) Find all the equilibrium points of the system.

c) Show that one of the equilibria is a center in the (u, v) phase plane, according to the
linearization. Is it a nonlinear center?

d) (Extra Credit - 2p) Show that the equilibrium point found in c) corresponds to a
circular planetary orbit.

Problem 6: Show that the nonlinearly damped oscillator ẍ+ (ẋ)3 + x = 0 has no periodic
solutions. Hint: Analyze the energy function E(ẋ, x) = 1

2
((ẋ)2 + x2).

2
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Assignment 5

Due Thursday, March 24, in class.

Problem 1: Show that (0, π) is a nonlinear center for the system ẋ = sin(y), ẏ = sin(x).
Hint: Find an energy function E(x, y) of the form α sin(x) + β cos(y), α cos(x) + β sin(y),
α sin(x)+β sin(y), or α cos(x)+β cos(y) and show that this has a local min or max at (0, π).

Problem 2: For each of the following systems, decide whether it is a gradient system. If so,
find V (x, y) and sketch the phase portrait. On a separate graph, sketch the equipotentials
V (x, y) = constant. If the system is not a gradient system, explain why not and go on to
the next question.

a) ẋ = y + x2y, ẏ = −x+ 2xy

b) ẋ = 2x, ẏ = 8y

c) ẋ = −2xex
2+y2 , ẏ = −2yex

2+y2

Problem 3: Consider the nonlinear system

ẋ = −y + x(x2 + y2) sin

(
1√

x2 + y2

)

ẏ = x+ y(x2 + y2) sin

(
1√

x2 + y2

)

a) Use polar coordinates x = r cos(θ) and y = r sin(θ) and show that the system becomes

ṙ = r3 sin

(
1

r

)
θ̇ = 1

b) Observe that if ṙ = 0 then r = 0 or r =
1

nπ
for n = 1, 2, 3, . . .. The latter corresponds

to closed orbits of radius r =
1

nπ
, which are limit cycles. In this exercise you have to

show that these cycles are stable for even n and unstable for odd n.

1



Hint: Consider h(t) =
1

r(t)
− nπ, where |h(t)| is much smaller than nπ. Substitute

this into the equation for r and show that ḣ = − 1

nπ + h
(−1)n sin(h). Then show that

ḣ > 0 or ḣ < 0 when n is even. What does this tell us about ṙ ? Use this information
to show stability. Treat the case when n is odd similarly.

c) (Extra Credit - 2p) We demonstrated the existence of infinitely many nested limit
cycles in part b). Make a sketch of the phase portrait and include at least three cycles.

Problem 4: Apply Bendixon’s negative criterion or Dulac’s criterion to show that there
are no periodic solutions to:

a) ẋ = −x+ y2, ẏ = −y3 + x2

b) ẋ = −2xex
2+y2 , ẏ = −2yex

2+y2

c) ẋ = y, ẏ = a1x+ a2y + a3x
2 + a4y

2, where a1, a2, a3, a4 are nonzero constants.

Problem 5: Consider the nonlinear system

ẋ = x− y − x(x2 + 5y2)

ẏ = x+ y − y(x2 + y2)

a) Classify the fixed point at the origin.

b) Rewrite the system in polar coordinates (x = r cos(θ) and y = r sin(θ)).

c) Prove that the system has a limit cycle in the annular region
1√
2
− ε < r < 1 + ε. Here

ε is a small enough positive number (e.g. ε = 0.05).

Hint: Apply the Poincaré-Bendixson Theorem.

2
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Practice problems

Problem 1: Determine the equilibrium points of the following one-dimensional differential
equations and discuss their stability:

1. ẋ = e−x sin(x)

2. ẋ = x2(6− x)

3. ẋ = − sinh(x)

Problem 2: Find the critical value of λ in which bifurcations occur in the following
systems. Sketch the phase portrait for various values of λ and the bifurcation diagram.
Classify the bifurcation.

1. ẋ = x3 − 5x2 − (λ− 8)x+ λ− 4.

2. ẋ = 1 + λx+ x2

3. ẋ = 5− λe−x2

Problem 3: Describe the local stability behavior near equilibrium points of the following
nonlinear systems. Also, draw the phase portrait near the equilibrium point.

1. ẋ = y2 − x+ 2, ẏ = x2 − y2

2. ẋ = y + x3, ẏ = x− y3 (also find a Lyapunov function)

3. ẍ+ x+ 4x3 = 0

Problem 4: Consider the system

ẋ = −y + x(1− 2x2 − 3y2)

ẏ = x+ y(1− 2x2 − 3y2)

1. Find all fixed points of the system and define their stability.

2. Transfer the system into polar coordinates (r, θ).

3. Find a trapping region of the form R = {(r, θ) : a ≤ r ≤ b} and then use Poincaré-
Bendixson theorem to prove that the system has a limit cycle in the region R.

1



Problem 5: Discuss the local and global behavior of solutions of

ṙ = r(a− r2)
θ̇ = −1

as the parameter a passes through 0. Does the system have a limit cycle for some value of
a? What type of bifurcation does this system undergo?

2



MAT 351 Differential Equations: Dynamics & Chaos
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Project ideas

Project title due: Thursday, April 14.
The final project is due: Monday, May 16 at 5:30pm.
Note: Project 2 and Project 7 can be done in groups of 1 or 2 students. Project 3+4
(together) can be done in groups of 2 students.

Topic 1: This year we had a particularly warm winter, which was characterized by El Niño
phenomenon. El Niño or, more precisely El Niño-Southern Oscillation (ENSO), is a
quasi-periodic climate pattern that occurs across the equatorial Pacific Ocean roughly every
three to seven years. It is characterized by a change in sea surface temperatures (SSTs)
in the eastern Pacific off the coast of Peru and accompanying changes in the air pressure
difference between the central and western Pacific Ocean (Tahiti and Darwin, Australia).
The following system of equations (with dimensionless variables and parameters) is a good
model for studying ENSO:

ẋ = −x+
λ

b
(bx+ y)− ε(bx+ y)3

ẏ = −ry − αbx

where r, α, b, ε, λ are all positive numbers. We are looking for the oscillatory behavior that
characterizes the El Niño phenomenon

1. What is a quasi-periodic solution (or function)?

1. Compute the Jacobian A at the fixed point (0, 0) and find its eigenvalues. Find a
condition on λ such that A has a pair of complex conjugate eigenvalues ρ1 = β − iω
and ρ2 = β + iω. Classify the fixed point at (0, 0).

2. Prove that a Hopf bifurcation occurs at a critical value λ = λc and find λc. Decide
whether the bifurcation is subcritical or supercritical. Find the value ωc at the critical
value λc (note that β and ω depend on λ).

3. Find the nontrivial solutions to the linearized system (ẋ, ẏ) = A(x, y) at the parameter
λ = λc. Show that y(t) can be written as:

y(t) = − αb√
α(1 + r)

x(t− η), where η =
1

ωc

tan−1
(ωc

r

)
,

1



which shows that the trajectories of x and y coincide, but y lags behind x with a
lag given by η. Thus, this ENSO model predicts that the negative thermocline depth
anomaly follows the same oscillatory pattern as the SST anomaly but with a time lag
η.

4. Consider r = 1
4
, α = 1

8
, and λ = 3

4
b. Find λc, ωc, and the time lag η. Suppose the time

unit is two months, what is the predicted period? (this is the period of the function
y(t) from above). What does the factor η predict in this case? Are there better models
for studying El Niño?

A comprehensive description of El Niño and deduction of the dimensionless model can be
found in Chapter 16 from:

Hans Kaper, Hans Engler, Mathematics and Climate, Society for Industrial and Applied
Mathematics (SIAM), 2013.

It is useful to read this chapter beforehand for a better understanding of the project (espe-
cially the last question).

Topic 2: The Fitzhugh-Nagumo system is a simplified model that describes the electro-
chemical transmission of neuronal signals along the cell membrane. Although the model is
not entirely accurate, it capture the essential behavior of nerve impulses.

The Fitzhugh-Nagumo system of equations is given by

ẋ = y + x− x3

3
+ I

ẏ = −x+ a− by

where a and b are constants satisfying 0 < 3
2
(1 − a) < b < 1 and I is a parameter. In

these equations x is similar to the voltage and represents the excitability of the system; the
variable y represents a combination of other forces that tend to return the system to rest.
The parameter I is a stimulus parameter that leads to excitation of the system (I is like an
applied current).

1. First assume that I = 0. Prove that this system has a unique equilibrium point
(x∗, y∗). Hint: Use the geometry of the nullclines for this rather than explicitly solving
the equations. Also remember the restrictions placed on a and b.

2. Prove that this equilibrium point is always a sink.

3. Now suppose that I 6= 0. Prove that there is still a unique equilibrium point (x∗(I), y∗(I))
and that x∗(I) varies monotonically with I.

4. Determine values of x∗(I) for which the equilibrium point is a source and show that
there must be a stable limit cycle in this case.

5. When I 6= 0, the point (x∗, y∗) is no longer an equilibrium point. Nonetheless we
can still consider the solution through this point. Describe the qualitative nature of
this solution as I moves away from 0. Explain in mathematical terms why biologists
consider this phenomenon the “excitement” of the neuron.

2



6. Consider the special case where a = I = 0. Describe the phase plane for each b > 0
(no longer restrict to b < 1) as completely as possible. Describe any bifurcations that
occur.

7. Now let I vary as well and again describe any bifurcations that occur. Describe in as
much detail as possible the phase portraits that occur in the I, b-plane, with b > 0.

8. Extend the analysis of the previous problem to the case b ≤ 0.

9. Now fix b = 0 and let a and I vary. Sketch the bifurcation plane (the I, a-plane) in
this case.

This project and a brief description on neurodynamics can be found in Chapter 12.5 from:
R. Devaney, M. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and an
Introduction to Chaos, 3rd ed. Elsevier Academic Press 2013.

Topic 3: Hamiltonian systems are fundamental to classical mechanics; they provide an
equivalent but more geometric version of Newtons laws. They are also central to celestial
mechanics and plasma physics, where dissipation can sometimes be neglected on the time
scales of interest. We restrict our attention to Hamiltonian systems in R2, which is a system
of the form:

ẋ =
∂H

∂y
(x, y) (1)

ẏ = −∂H
∂x

(x, y),

where H : R2 → R is a smooth function called the Hamiltonian function.

1. Show that H is constant along every solution curve. Check that any system of the
form ẍ+ f(x) = 0 is a Hamiltonian system.

2. Let (x∗, y∗) be a non-degenerate equilibrium point of a Hamiltonian system (that is,
the determinant of the Jacobian at (x∗, y∗) is nonzero). Show that (x∗, y∗) is either a
saddle or a center. Recall that (x∗, y∗) is a saddle for the system (1) iff it is a saddle
of the Hamiltonian function H(x, y) and a strict local maximum or minimum of the
function H(x, y) is a center for (1).

3. There is an interesting relationship between the gradient system and the Hamiltonian
system. Show that the system given by ẋ = f(x, y), ẏ = g(x, y) is a Hamiltonian
system if and only if the system orthogonal to it, given by ẋ = g(x, y), ẏ = −f(x, y) is
a gradient system. To illustrate the orthogonality, consider the Hamiltonian function
H(x, y) = y sin(x) and sketch the phase portraits of the Hamiltonian system and its
gradient system (on the same graph).

4. Consider the equations for a nonlinear pendulum

θ̇ = v (2)

v̇ = −bv − sin(θ) + k.
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Here θ gives the angular position of the pendulum (assumed to be measured in the
counterclockwise direction) and v is its angular velocity. The parameter b > 0 measures
the damping. The parameter k ≥ 0 is a constant torque applied to the pendulum in
the counterclockwise direction.

a) Find all equilibrium points for this system and determine their stability.

b) Suppose k > 1. Prove that there exists a periodic solution for this system in a
region R of the form R = {(θ, v) : 0 < v1 < (k − sin(θ))/b < v2}.

c) Find a Hamiltonian function and use it to prove that when k > 1 there is a unique
periodic solution for this system.

d) Are there any parameter values for which a stable equilibrium and a periodic
solution coexist?

Useful references for this project are:
Steven Strogatz, Nonlinear dynamics and Chaos: with applications to physics, biology,
chemistry, and engineering, 2nd ed., Addison-Wesley Pub. 2014.
R. Devaney, M. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and an
Introduction to Chaos, 3rd ed. Elsevier Academic Press 2013

Topic 4: Consider the Hamiltonian systems from Topic 3.

1. Do the first two parts of Topic 3.

2. State the Andronov-Hopf Bifurcation Theorem for a two-dimensional system.

3. Prove the Lyapunov Center Theorem as a consequence of the Hopf Bifurcation
Theorem.

Theorem 1 (Lyapunov Center Theorem). Assume that (0, 0) is a center equilibrium
of the Hamiltonian system (1) and that ±λiare simple eigenvalues of the Jacobian A of
the vector field at (0, 0) (assume λ > 0). Then each neighborhood of the center contains
periodic orbits, whose periods approaches 2π/λ as they approach the center

The Lyapunov Center Theorem (together with a proof) and the Hopf Bifurcation Theorem
can be found in:

K. Alligood, T. Sauer, J. Yorke, Chaos: an introduction to dynamical systems, Springer,
New York, 1996.

The Hopf Bifurcation Theorem can also be found in Chapter 6 of:
Wei-bin Zhang, Differential equations, bifurcations, and Chaos in economics, World
Scientific 2005.

Topic 5: For much of the 20th century, chemists believed that all chemical reactions tended
monotonically to equilibrium. This belief was shattered in the 1950s when the Russian
biochemist Belousov discovered that a certain reaction involving citric acid, bromate ions,
and sulfuric acid, when combined with a cerium catalyst, could oscillate for long periods
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of time before settling to equilibrium. The concoction would turn yellow for a while, then
fade, then turn yellow again, then fade, and on and on like this for over an hour. This
reaction, now called the Belousov-Zhabotinsky reaction (the BZ reaction, for short), was
a major turning point in the history of chemical reactions. Now, many systems are known
to oscillate. Some have even been shown to behave chaotically.

One particularly simple chemical reaction is given by a chlorine dioxide-iodine-malonic
acid interaction. The exact differential equations modeling this reaction are extremely com-
plicated. However, there is a planar nonlinear system that closely approximates the concen-
trations of two of the reactants. The system is

ẋ = a− x− 4xy

1 + x2

ẏ = bx

(
1− y

1 + x2

)
where x and y represent the concentrations of I− and ClO−

2 , respectively, and a and b are
positive parameters.

1. Find all equilibrium points for this system. Linearize the system at your equilibria and
determine the type of each equilibrium.

2. In the ab-plane, sketch the regions where you find asymptotically stable or unstable
equilibria.

3. Identify the a, b-values where the system undergoes bifurcations. What kind of bifur-
cations are these?

4. Using the nullclines for the system together with the Poincaré-Bendixson theorem, find
the a, b-values for which a stable limit cycle exists. Why do these values correspond to
oscillating chemical reactions?

The project was taken from Chapter 10 of:
R. Devaney, M. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and an
Introduction to Chaos, 3rd ed. Elsevier Academic Press 2013

For more details on this reaction, see the following article: Lengyel, I., Rabai, G., and
Epstein, I. Experimental and modeling study of oscillations in the chlorine dioxide-iodine-
malonic acid reaction. J. Amer. Chem. Soc. 112 (1990), 9104.

The very interesting history of the BZ-reaction is described in: Winfree, A. T. The
prehistory of the Belousov-Zhabotinsky reaction. J. Chem. Educ. 61 (1984), 661.

Topic 6: This project deals with the existence of periodic points of functions defined on
an interval or on the real line. A point x is a periodic point of period p for the function f if
fp(x) = x. It is of prime period if there is no smaller number 0 < q < p such that f q(x) = x.
Here fp(x) means f ◦ f ◦ f . . . ◦ f(x). For example f 2(x) = f(f(x)).

1. Explain what Sharkovskii’s ordering is.

2. Give a proof of Sharkovskii’s Theorem.
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Theorem 2 (Sharkovskii). Assume that f : R → R is a continuous map and has an
orbit of prime period p. If p � q in the Sharkovskii’s ordering, then f has an orbit of
period q.

3. Explain the meaning of “period 3 implies chaos”.

4. Give some applications of Sharkovskii’s Theorem. For example, can a continuous
function on R have a periodic point of period 176 but not one of period 96? Why?
Or prove that if a continuous function f : [0, 1]→ [0, 1] has a periodic point of period
2014, then f has a periodic point of period 100. Does Sharkovskii’s Theorem hold for
continuous functions f : R2 → R2?

Aside from Strogatz, these are also useful references (they include proofs):
Robert Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed.,
Westview Press, 2003.
K. Alligood, T. Sauer, J. Yorke, Chaos: an introduction to dynamical systems, Springer,
New York, 1996.

Topic 7: Another interesting project related to Quantum Mechanical Systems and
anisotropic Kepler problem can be found in Chapter 13 of:

R. Devaney, M. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and an
Introduction to Chaos, 3rd ed. Elsevier Academic Press 2013

Topic 8: The subject of Differential Equations, Dynamical Systems and Chaos is a vast
subject and many other topics are possible:

a) A project in Complex Dynamics (which requires some knowledge of Complex Anal-
ysis). This would include a description of the Julia set, the Mandelbrot set, local
behavior around fixed points, a classification of the possible Fatou components, hyper-
bolicity (and the role of the critical points), Chaos, etc.

b) A study of the van der Pol equation and Liénard’s Theorem.

c) The analysis of a Lotka-Volterra equation model of population dynamics and ecology.

d) A new topic!

Please discuss these additional topics with me to ensure that the level of difficulty is within
the framework of the course.
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MAT 351 Differential Equations: Dynamics and Chaos
Spring 2016

Midterm – March 31, 2016

NAME:

Please turn off your cell phone and put it away. You are NOT allowed to use a
calculator.

Please show your work! To receive full credit, you must explain your reasoning and
neatly write the steps which led you to your final answer. If you need extra space, you
can use the other side of each page.

Academic integrity is expected of all students of Stony Brook University at all times,
whether in the presence or absence of members of the faculty.

PROBLEM SCORE

1

2

3

4

TOTAL



Problem 1: (22 points) Consider a two-dimensional system ẋ = f(x), x ∈ R2 and f is a C1
function.

a) Give a short definition for the following notions:

hyperbolic fixed point

closed orbit

limit cycle

Hopf bifurcation

1



(Problem 1 continued)

b) Give an example of a system that undergoes a Hopf bifurcation. No proof is required.

c) Sketch a phase portrait of a system that has a stable limit cycle, a heteroclinic orbit,
and a nonlinear center. Sketch some typical trajectories for your system.
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Problem 2: (22 points) Consider the differential equation

ẋ = λ− x2

1 + x2
, x ∈ R, λ ∈ R.

Find the equilibrium points and discuss their stability. Find the values of λ at which a
bifurcation occurs, and classify them as saddle-node, transcritical, supercritical pitchfork, or
subcritical pitchfork. Sketch the bifurcation diagram of fixed points x∗ vs. λ.
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Problem 3: (28 points) Consider the two-dimensional system:

ẋ = y − y2

ẏ = sin(x)

a) Find an energy function E(x, y) of the form E(x, y) = α cos(x)+f(y), for some constant
α and some function f . Verify that E(x, y) is constant along trajectories.

b) Show that the fixed points ((2n+ 1)π, 0) and (2nπ, 1) are nonlinear centers.
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(Problem 3 continued)

c) Show that the fixed points (2nπ, 0) and ((2n+ 1)π, 1) are saddles.

d) Sketch the phase portrait for this system.
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Problem 4: (28 points) Consider the two-dimensional system

ẋ = y + x(1− a− x2 − y2)
ẏ = −x+ y(1− x2 − y2)

where a is a constant such that 0 < a < 1.

a) Determine the equilibrium points and classify them as sinks, sources, or saddles. Draw
the phase portrait near the equilibrium points.

b) Using x = r cos(θ) and y = r sin(θ), rewrite the system in polar coordinates.

6



(Problem 4 continued)

c) Let r1 =
√

1− a− ε and r2 = 1 + ε, for some ε > 0 small enough. Show that there is
at least one limit cycle in the region R = {(r, θ) : r1 ≤ r ≤ r2}.

d) Suppose there are several limit cycles. Explain why they all must have the same period
(the period will depend on the parameter a though).
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MAT 351 Differential Equations: Dynamics & Chaos
Spring 2016

Assignment 6

Due Thursday, April 21, in class.

Problem 1: Consider the oscillator ẍ−(µ−x2)ẋ+x = 0. Show that the system undergoes
a Hopf bifurcation at µ = 0. Is this subcritical or supercritical?

Problem 2: Consider the Lorenz system of equations

ẋ = 10(y − x)

ẏ = rx− y − xz

ż = xy − 8

3
z.

for r > 0.

a) Find the linearized system at the origin. This system has the form Ẋ = AX, where A
is the Jacobian matrix at (0, 0, 0).

b) Compute the eigenvalues of the matrix A.

c) By studying the eigenvalues from part b), show that the origin is asymptotically stable
for r < 1 and unstable for r > 1.

Problem 3: Consider the system

ẋ = −νx+ zy

ẏ = −νy + (z − a)x

ż = 1 − xy

where a, ν > 0 are parameters.

a) Show that the system is dissipative.

b) Show that the fixed points may be written in parametric form x∗ = ±k, y∗ = ±1

k
, and

z∗ = νk2, where k verifies the equation ν(k4 − 1) = ak2.

c) (Extra Credit - 3p) Classify the fixed points.

1



Note from Strogatz: These equations were proposed by Rikitake (1958) as a model for the
self-generation of the Earths magnetic field by large current-carrying eddies in the core.
Computer experiments show that the model exhibits chaotic solutions for some parameter
values. These solutions are loosely analogous to the irregular reversals of the Earths magnetic
field inferred from geological data.

Problem 4: Consider the following familiar system in polar coordinates: ṙ = r(1 − r2),
θ̇ = 1. Let A be the unit circle x2 + y2 = 1.

a) Is A an invariant set? Does A attract an open set of initial conditions?

b) Is A an attractor? If not, explain why not?

2











MAT 351 Differential Equations: Dynamics & Chaos
Spring 2016

Assignment 7

Due Thursday, May 5, in class.

Problem 1: Consider the system

ẋ = 10(y − x)

ẏ = 28x− y + xz

ż = xy − 8

3
z.

a) Consider E = 28x2 + 10y2 + 10(z − 56)2. Show that E > 0 and Ė > 0 in the region

R =

{
28x2 + y2 +

8

3
(z − 28)2 <

8

3
282 and x > 0, y > 0, z > 0

}
.

What does this tell us about the points in the region R? The region R is the part of
the solid ellipsoid 28x2 + y2 + 8

3
(z − 28)2 < 8

3
282 where x, y, and z are all positive.

b) (Extra Credit - 5p) Show that this system is not chaotic in the region where x,
y, and z are all positive.

Hint: It is enough to show that most solutions tend to ∞ in forward time. Note that this is
not the Lorenz system: in the equation for ẏ we have +xz instead of −xz.

Problem 2: Determine whether f : R→ R, f(x) = x2 has sensitive dependence on initial
conditions. Is the map f transitive?

Problem 3: Consider the tent map T : [0, 1]→ [0, 1] defined by

T (x) =

{
2x if 0 ≤ x < 1

2

2− 2x if 1
2
≤ x ≤ 1

(a) Sketch the graphs of T , T 2 and T 3. What does the graph of T n look like?

(b) Use the graph of T n to conclude that T has exactly 2n periodic points of period n.
These points do not necessarily have least period n, but are fixed by T n.

(c) (Extra Credit - 3p) The tent map is chaotic. In this exercise, you are asked to
prove that the set of all periodic points of T is dense in [0, 1].
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Problem 4: Consider the logistic map G : [0, 1]→ [0, 1] defined by G(x) = 4x(1− x).

(a) Prove that G is topologically conjugate to the tent map T : [0, 1]→ [0, 1],

T (x) =

{
2x if 0 ≤ x < 1

2

2− 2x if 1
2
≤ x ≤ 1

You need to verify that there exists a homeomorphism h : [0, 1] → [0, 1] such that
h(G(x)) = T (h(x)). Hint: Consider h(x) = (1− cos(πx))/2.

b) Use the previous problem to conclude that the logistic map G is chaotic.

2



Remus Radu

Institute for Mathematical Science
Stony Brook University 

office: Math Tower 4-103
phone: (631) 632-8266 
e-mail: remus.radu@stonybrook.edu 

Home  Course Information  Schedule & Homework

Schedule

The PDF version of the schedule is available for print here.

Date Topic Section Assignments Due date

Jan 24 An introduction to Fourier series 1.1 1.1: 1abc, 2ad, 4, 7b, 8
HW1

Due Jan 31
Jan 26 Determining Fourier coefficients; Examples 1.2 1.2: 1, 7c

Jan 31
Even & odd extensions
Convergence of Fourier series

1.2, 1.3 1.2:10b, 11b
HW2

Due Feb 7
Feb 2 Uniform convergence of Fourier series 1.3, 1.4 1.3:1abd, 2ad, 6

Feb 7
Fourier sine & cosine series
Basic operations on Fourier series

1.4, 1.5
1.4: 1ae, 2, 3ab, 5bc
page 120: 19, 20 [use a=3]

HW3
Due Feb 14

Feb 9 no class (snow storm)

Feb 14
Differentiation of Fourier series
The heat equation

1.5, 2.1
1.5: 2, 5, 9
2.1: 2, 9

HW4
Due Feb 23Feb 16

The heat equation
Steady-state & transient solutions

2.1, 2.2 2.2: 2, 6

Feb 21 Fixed-end temperatures 2.3 2.3: 8 [use a=pi]

Feb 23
Insulated bar; Examples
Review

2.4
2.3: 6
2.4: 4 [use a=pi], 5, 8

HW5
Due Mar 9Feb 28

Midterm 1 (2:30-3:50pm) Covers 1.1-1.5, 2.1-2.3 -- Solutions 
Practice exams: Fall 2015 (Solutions) and Spring 2015 (Solutions)

Mar 2 Different boundary conditions 2.5 2.5: 4, 5 [use a=pi], 6

Mar 7
Eigenvalues and eigenfunctions
Convection

2.6, 2.7
Notes

2.6: 7, 9, 10 HW6
Due Mar 23
Problem 3c

Mar 9 Sturm-Liouville problems 2.7 2.7: 1, 3abc, 7

MAT 341: Applied Real Analysis 
Spring 2017 
Schedule & Homework

http://www.math.stonybrook.edu/~rradu/MAT341SP17-info.html
http://www.math.stonybrook.edu/~rradu/PreviewSP17.pdf
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http://www.math.stonybrook.edu/~rradu/m341-Midterm1-SP15.pdf
http://www.math.stonybrook.edu/~rradu/m341-Midterm1-SP15-sol.pdf
http://www.math.stonybrook.edu/~rradu/Notes-HeatEq.pdf
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Mar 14 no class (Spring break)

Mar 16 no class (Spring break)

Mar 21
Series of eigenfunctions & examples
Fourier integral & applications to PDEs

2.8, 1.9
2.8: 1 [use b=2]
1.9: 1ab, 3a

HW7
Due Mar 30

Mar 23
Semi-infinite rod
The wave equation

2.10, 3.1 2.10: 3, 4

Mar 28 The wave equation 3.2 3.2: 3, 4, 5, 7 HW8
Due Apr 6 

CommentsMar 30 D'Alembert's solution; Examples 3.3, 3.4 3.3: 1, 2, 5

Apr 4
The wave equation: generalizations
Laplace's equation

3.4, 4.1
page 255: 18
page 257: 31

HW9
Due Apr 20
Comments

Apr 6
Dirichlet's problem in a rectangle
Examples & Review

4.2, 4.3
4.1: 2
4.2: 5 [use a=1, f(x)=sin(3pix)]
4.2: 6

Apr 11
Midterm 2 (2:30-3:50pm) Covers 2.4-2.8, 2.10, 1.9, 3.1-3.4 -- Solutions 
Practice exams: Fall 2015 (Solutions) and Spring 2015 (Solutions) 
Extra practice problems

Apr 13
Potential in a rectangle; Examples
Potential in unbounded regions

4.3, 4.4
4.3: 2b
4.4: 4a, 5ab

HW10
Due Apr 27Apr 18

Polar coordinates
Potential in a disk

4.1, 4.5
Notes

4.1: 6
4.5: 1

Apr 20 Dirichlet problem in a disk; Examples 4.5 4.5: 4

Apr 25 Two-dimensional heat equation
5.3, 5.4
Notes

5.3: 1, 7c [use a=b=pi]

HW11
Due May 4

Apr 27
Problems in polar coordinates
Bessel's equation

5.5, 5.6 5.4: 5

May 2
Temperature in a cylinder
Applications: symmetric vibrations

5.6, 5.7
5.6: 3 [use a=1]
page 371: 1

May 4 Examples & Review 5.7

May 15
Final Exam (11:15am-1:45pm) -- in class, Melville Library E4315
The final is cumulative and covers: 1.1-1.5, 1.9, 2.1-2.8, 2.10, 3.1-3.4, 4.1-4.5, 5.3-5.6
Practice exams: Fall 2015 and Spring 2015.

http://www.math.stonybrook.edu/~rradu/HW8-comments-SP17.pdf
http://www.math.stonybrook.edu/~rradu/HW9-comments-SP17.pdf
http://www.math.stonybrook.edu/~rradu/m341-Midterm2-SP17-sol.pdf
http://www.math.stonybrook.edu/~rradu/m341-Midterm2-FA15.pdf
http://www.math.stonybrook.edu/~rradu/m341-Midterm2-FA15-sol.pdf
http://www.math.stonybrook.edu/~rradu/m341-Midterm2-SP15.pdf
http://www.math.stonybrook.edu/~rradu/m341-Midterm2-SP15-sol.pdf
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http://www.math.stonybrook.edu/~rradu/m341-Lecture.pdf
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http://www.math.stonybrook.edu/~rradu/m341-FinalFA15.pdf
http://www.math.stonybrook.edu/~rradu/m341-FinalSP15.pdf


MAT 351 DIFFERENTIAL EQUATIONS: DYNAMICS & CHAOS

SPRING 2016

GENERAL INFORMATION

Instructor. Remus Radu
Email: rradu@math.stonybrook.edu
Office: Math Tower 4-103, t: (631) 632-8266
Office Hours: TuTh 2:30-4:00pm, or by appointment

Teaching Assistant. Aleksandar Milivojevic
Email: aleksandar.milivojevic@stonybrook.edu
Office Hours: Monday 10:00-11:00am & 1:00-2:00pm and Wednesday 10:30-11:30am in MLC

Lectures. TuTh 1:00-2:20pm in Physics P116

Blackboard. Grades and some course administration will take place on Blackboard. Please
login using your NetID at http://blackboard.stonybrook.edu.

Course Description. Dynamical systems occur in all branches of science, from the differential
equations of classical mechanics in physics to the difference equations of mathematical economics
and biology.

This course is an introduction to the field of dynamical systems. It concerns the study of
the long-term behavior of solutions to ordinary differential equations or of iterated mappings,
emphasizing the distinction between stability on the one hand and sensitive dependence and
chaotic behavior on the other. The course describes examples of chaotic behavior and of fractal
attractors, and develops some mathematical tools for understanding them. In particular we
will study the following key concepts: hyperbolicity, topological conjugacy, equilibrium, limit
cycle, stability, chaos, etc.

Prerequisites. C or higher in the following: MAT 203 or 205 or 307 or AMS 261; MAT 303
or 305 or 308 or AMS 361; MAT 200 or permission of instructor

Recommended reading.

• Wei-bin Zhang, Differential equations, bifurcations, and Chaos in economics, World
Scientific 2005.

• Steven Strogatz, Nonlinear dynamics and Chaos: with applications to physics, biology,
chemistry, and engineering, 2nd ed., Addison-Wesley Pub. 2014.

• Robert Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Westview
Press, 2003.

• Robert Devaney, Morris Hirsch, and Stephen Smale, Differential Equations, Dynamical
Systems, and an Introduction to Chaos, 3rd ed., Elsevier Academic Press 2012.

Other useful materials, reading suggestions and lecture notes will be posted on Blackboard.

Exams. There will be a midterm exam on Thursday, March 31, 1:00pm-2:20pm in class
(Physics P116). There will be no make-up exams.

Grading policy. Grades will be computed using the following scheme:

Homework 30%
Midterm 35%
Project & presentation 35%

http://blackboard.stonybrook.edu/


Students are expected to attend class regularly and to keep up with the material presented in
the lecture and the assigned reading. There will be (roughly) weekly homework assignments.
You may work together on your problem sets, and you are encouraged to do so. However, all
solutions must be written up independently. The project presentations are currently scheduled
on Monday, May 16, 5:30pm-8:00pm in class. Project information and a list of suggested
topics will be posted on Blackboard as we advance in the semester.

Extra Help. You are welcome to attend the office hours and ask questions about the lectures
and about the homework assignments. In addition, math tutors are available at the MLC:
http://www.math.sunysb.edu/MLC.

Special Needs. If you have a physical, psychological, medical or learning disability that
may impact your course work, please contact Disability Support Services, ECC (Educational
Communications Center) Building, Room 128, (631) 632-6748, or at the following website
http://studentaffairs.stonybrook.edu/dss/index.shtml. They will determine with you
what accommodations, if any, are necessary and appropriate. All information and documenta-
tion is confidential.

Academic integrity. Each student must pursue his or her academic goals honestly and be
personally accountable for all submitted work. Representing another person’s work as your own
is always wrong. Faculty is required to report any suspected instances of academic dishonesty
to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology
& Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required
to follow their school-specific procedures. For more comprehensive information on academic
integrity, including categories of academic dishonesty please refer to the academic judiciary
website at http://www.stonybrook.edu/uaa/academicjudiciary.

Critical Incident Management. Stony Brook University expects students to respect the
rights, privileges, and property of other people. Faculty are required to report to the Office
of University Community Standards any disruptive behavior that interrupts their ability to
teach, compromises the safety of the learning environment, or inhibits students’ ability to
learn. Faculty in the HSC Schools and the School of Medicine are required to follow their
school-specific procedures. Further information about most academic matters can be found
in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee
Handbook.

http://www.math.sunysb.edu/MLC
http://studentaffairs.stonybrook.edu/dss/index.shtml
http://www.stonybrook.edu/uaa/academicjudiciary



