MAT 342 - Applied Complex Analysis

MWEF 10:00am-10:53am, Frey Hall 309, Fall 2013

Organizational Information

Textbook: Complex Variables and Applications by James Ward Brown and Ruel V.
Churchill, Ninth Edition, McGraw-Hill, 2013.

Instructor: Chi Li, Office: Math Tower: 3-120, Office Hour: T/Th 1:30-3:30pm

Grader: Raquel Perales Aguilar , Office: Math Tower 3-105, Office Hour: Th 2:30-
3:30pm, MLC: T/Th 1-2pm

Homework, Syllabus, Grades, Exams

Read the textbook: It's very important to read (and really understand) the text book
both before and after the lecture since we don't have time to cover all the details from
the book.

Homework and Syllabus: Doing homework is very important for understanding the
materials. Note that homework takes 20% of your total scores. Try to do the rest of
exercises in the book for more practices. Homework will be collected every Wednesday
in the lecture. 6 homework problems will be graded. Solutions to some problems will be
provided.

Midterm Exams : 2 midterms in class. Tentative Schedule: Mid 1: Oct. 3 ; Mid 2: Nov.
7.

Final Exam : Dec. 16, 2:15pm-5:00pm.

Grading Policy: The overall numerical grade will by computed by the formula:
Homework 20% + Midterm Exam 1 15% + Midterm Exam 2 15% + Final Exam 50%.

Miscellaneous

Wikipedia articles you may find useful (from the previous course page by Professor
Leon Takhtajan)

A very useful resource is the Math Learning Center (MLC) located in room S240-A of
the mathematics building basement. The Math Learning Center is open every day and
most evenings. Check the schedule on the door. Another useful resource are your
teachers, whose office hours are listed above.

Disability Support Services (DSS) Statement: If you have a physical, psychological,
medical or learning disability that may impact your course work, please contact
Disability Support Services, ECC (Educational Communications Center) Building, room
128, (631) 632-6748. They will determine with you what accommodations, if any, are
necessary and appropriate. All information and documentation is confidential. Students



http://sb.cc.stonybrook.edu/bulletin/current/courses/mat/#342
http://www.math.sunysb.edu/schedules/fall14.html#MAT342
http://www.amazon.com/Complex-Variables-Applications-Brown-Churchill/dp/0073383171/ref=sr_1_2?s=books&ie=UTF8&qid=1407287177&sr=1-2&keywords=complex+variables+and+applications
http://www.math.sunysb.edu/~chili
http://www.math.sunysb.edu/~praquel
http://www.math.sunysb.edu/~leontak/mat342-spr13/index.php?page=links
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Syllabus

Week Ch. Topics From Topics To Homework Notes

P4: 2,11; P8: 5; P13:

4,5,6,8; P16: 2,13,14;
P24:7,9,10 HW1
P4: 1,4; P7: 1; P13: Solution
1,2,7; P16: 3,7,9,10;
P23:1,2,4,6

8/25 1 1:Sums/Products  9: Arguments

Part 1. P31: 4,7,8; Example
P34:1,4,5,7,8; Part of types

9/1 1 10: Roots 12: Regions 2 of points
P30: 1,2,3,5,6; P34: HW2
2,3,6,9,10 Solution
Part1: P43:

13: 1,2,3,4,5,8,9; P54: HW3

9/8 2 17: Limits at Infinity

1,3,5,7,10; Part2 Solution
The rest exercises

Functions/Mappings

Part1: P55: 13; P61:

. - 22: Examples of ] . A HW4
9/15 2 18: Continuity Derivatives 2,3,4,6,8,9; P70: 1,2; Solution
Part 2
Part 1: P71: 3,4,5,6,8; HW5
9/22 2 23: Differentiability  28: Uniquely Determined P76: 1,2,4,6,7; Part .
5 Solution
. Part 1: P79: 1,2,3;
31: Exponential . I . _ . HW6
3 Function 32: Logarithmic Function P89: 1,4,5,8,10,11,12; Solution
9/29 Part 2
. Midterm . . Practice
Review 1(solutions/statistics) Practice Midterm 1 Solution
33: Branches of . " ) )
3 \ 38: Zeros/Singularities ~ P95: 1,4,5,10,11;
10/6 __Logarithms P9Y: 1; P103: 1,2,3,9; W/
— — P107: 25.8 - Solution
4 41: Derivatives 42: Definite Integrals T e
HWS8
49: Proof P119: 2,3; P124: 2,6; Solution
10/13 4 43: Contours (Antiderivatives) P132:1,3,4,5,6,10,13; The
P147: 2 ; Part 2 example
in class
10/20 4 50: Cauchy- 57: Consequences of |1D124E?6 - 5 g}gg HW9
Goursat Theorem Extension rom " Solution

2,3,4,7; Part 2



58: Louville 59: Maximum Modulus

4 Theorem Principle P138: 1,25, P171: | ,v10
10/27 5,10; P177: 125,68, o0\
61: Convergence of pP185:1,2; Part 2 olution

5 60: Sequences
sequences

6 62: Taylorseries 64 Examples P196: 2,3,4,6,7,9,11; HW11

P205:1,2,4,5,6,7 Solution
11/3 -
Review Midterm Practice Midterm 2 g ractice
2(solutions/statistics) .
solution
11/10 6 65: Negative 71: P218: 1,3,4,6,8;, HW12
powers Integration/Differentiation P237: 1,2,4; P242: 1  Solution
1117 7 74: Isolated 84: Behavior near
singular points singularities P246: 1.5.7: P264: 3- HW13
8; P273: 2,4,6,11 Solution
11/24 7 85 Improper 86 Examples
Integrals
. . Practice Final Practice
19/1 91 Integration along 94 BochesTheorem Final Solutions and Final
branch cut Review . . .
Overall Statistics solution

Return to main page
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Exam Information for MAT 342

Fall 2014

Final Solutions and Overall Statistics: Final solutions

Overall Statistics

y Range Grade
B

>92 A
: 88-92 A-
2 81-87 B+
4 74-79 B
3 — 67-70 B-
2 ' ] 62-64 C+
* 59-60 2
S A B+ 8 [ ce c F <53 F

MEAN: 78; MEDIAN: 83; High Score: 97; Low 5core: 30

Midterm 1: solution , SOLUTION




10 Range Grade

’ 238-250 A

j 227-232 A-

6 214-224 B+

1 190-204 B

] 178-187 B-

2 164 C+

1 152 I

‘ o 5 143-147 &
115-127 D

MEAN: 197.19; MEDIAN: 203; High Score: 250; Low Score: 80 80 F

Midterm 2: SOLUTION




10
) 226-250 A
- 210-223 A-
a 198-206 B+
s 170-192 B
:', 165-167 B-
: 140-152 c+
' 132 C
i 118-122 c-
100 D
MEAN: 172.2; MEDIAN: 179.5; High Score: 250; Low Score: 41 <80 .

Return to main page
Page last modified on
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Homework 2: Part 2

1. Prove the following identity and explain its geometric meaning;:
|21+ 22” + |21 — 2] = 2(|21[* + |22]?).

2*. Assume 27 and 25 are two different fixed complex numbers. Find the sets
described by the following identities. (Hint: use geometric meanings)

(a)
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Homework 3: Part 2

1*: Find the image of the following shaded domains on the z-plane under the

map w = 2.

(a) 22 —y2>1,z<0

AN

(b) 22 —y?2 <1,z >0,y >0

&

\
r
l

(d) zy > -1,z <0,y >0



Y= | Ny ]
Dht & I 1 ,
- 5 XY=D
e ]
’ h | Z//z]ﬂ
b K ==TF = A7)
3 > T 2
, \\\\ % [ , (
woz2? & | { k= %y ?
V= 204 R

;_z_:L) %)
2 !
\) /

/

= l

&

Generated by CamScanner



1.

Wz je=1f0+)= “Yriv. veder Jrell: (0.9 '_><"lj’m>-

Generated by CamScanner



Generated by CamScanner



| ndex of /~chili/mat342f/hw4

Name Last modified Size Description

¥ Parent Directory -
55.0PG 2014-09-15 19:34 854K

61-62-70.pdf  2014-09-15 19:32 1.4M
Weekd.pdf ~ 2014-09-15 14:28 330K
hw4-solpdf ~ 2014-09-24 13:57 2.0M

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80



Homework 4: Part 2

1*: Assume that the unit sphere embedded in R? is given by the equation:
a> 4+ b+ =1.

Assume that the complex plane sits in R? as the plane given by {c = 0}.

Figure 1: Stereographic Projection

(a) Show that the stereographic projection from the north pole N = (0,0, 1)
is given by the following formulas:

e (from the complex plane to the sphere) z — (a,b, c) is given by:

. 2Re(z) b 2Im(z) . |22 —1
I N T N PR

e (from the sphere to the complex plane) (a, b, ¢) — z is given by:

a+ bi

1—c’

(b) Show that, under the stenographic projection, the neighborhood at infinity
{z;]z| > 1} corresponds to the following neighborhood of the north pole:

+ €2’

1
{(a,b,c)E]R3;c>1 a2+62:1—c2}.
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COORDINATES 71

SEC. 24

3. From results obtained in Secs. 21 and 23, determine where f'(z) exists and find its value
when
(@ f()=1/z (b) f(z) =x*+iy% (c) f(z) =zlmz.

Ans. (@) f/@) =—-1/22 @z #0); (b)) f'(x+ix)=2x; (o) f'0)=0.

4. Use the theorem in Sec. 24 to show that each of these functions is differentiable in the
indicated domain of definition, and also to find f'(z):

(@ f(@)=1/z* (z#0);
(b) f(z)=e"cos(Inr)+ie?sin(Inr) (r>0,0<86 < 2m).
Fz)

<

5. Solve equations (2), Sec. 24 for u, and u, to show that

Ans. (b) f'(z) =i

sin@ . cosd
U, = u, sinf + uy

Uy, = U, cost —ug

#
Then use these equations and similar ones for v, and v, to show that in Sec. 24 equations (4)
are satisfied at a point z, if equations (6) are satisfied there. Thus complete the verification
that equations (6), Sec. 24, are the Cauchy—Riemann equations in polar form.

6. Letafunction f(z) = u-+iv be differentiable at a nonzero point 2o = ro exp(it). Use the
" expressions for u, and v, found in Exercise 5, together with the polar form (6), Sec. 24,
of the Cauchy—Riemann equations, to rewrite the expression

f'(z0) = ux + ivy
in Sec. 23 as
f,(z()) = (J_m(“r + ivr)-

where u, and v, are to be evaluated at (rq, 6y).

7. (a) With the aid of the polar form (6), Sec. 24, of the Cauchy—Riemann equations, derive
the alternative form

; —i .
f(z0) = —(ug + ivy)
0

<

of the expression for f'(z9) found in Exercise 6.
(b) Use the expression for f'(zo) in part (a) to show that the derivative of the function
f(z) = 1/z (z # 0) in Exercise 3(a) is f'(z) = —1/z*%
8. (a) Recall (Sec. 6) that if z = x + iy, then
- + = e
Z < - Z <
2 : 2i
By formally applying the chain rule in calculus to a function F(x, v) of two real
variables, derive the expression '

aF oOF ox odF 9y 1 (BF oF
= = — +i— .
dx 3_\')

X =

— = = 4 — =
a7 dx 0z dy 07 2
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72 ANALYTIC FUNCTIONS CHap

(b) Define the operator

d 1/ 0 L ad )
—==|=—4+i—]
az 2 (H.\‘ ay

suggested by part (a), to show that if the first-order partial derivatives of the reg ang
imaginary components of a function f(2) = w(x, ) + iv(x. y) satisfy the Cauchy.
Riemann equations, then

af 1
— = —[(u, —vy) +i(vy +u,)]=0.
37 = 2 [y = v, (Vr +uy)]
Thus derive the complex form df/0Z = 0 of the Cauchy—Riemann equations,

25. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of
the complex variable z is analytic in an open set S if it has a derivative everywhere in
that set. It is analytic at a point z if it is analytic in some neighborhood of z;.*
Note how it follows that if f is analytic at a point z, it must be analytic at each
point in some neighborhood of zy. If we should speak of a function that is analytic
in a set § that is not open, it is to be understood that f is analytic in an open set

containing §.
An entire function is a function that is analytic at each point in the entire plane.

EXAMPLES. The function f(z) = 1/z is analytic at each nonzero point in the
finite plane since its derivative f’(z) = —1/z° exists at such a point. But the function
flz)= |z|? is not analytic anywhere since its derivative exists only at z =0 and not
throughout any neighborhood. (See Example 3, Sec. 19.) Finally, since the derivative of
a polynomial exists everywhere, it follows that every polynomial is an entire function.

A necessary, but by no means sufficient, condition for a function to be analyt¢
in a domain D is clearly the continuity of f throughout D. (See the statement I
italics near the end of Sec. 19.) Satisfaction of the Cauchy—Riemann equations is also
necessary, but not sufficient. Sufficient conditions for analyticity in D are provided by
the theorems in Secs. 23 and 24. ‘

Other useful sufficient conditions are obtained from the rules for differentiatio”
in Sec. 20. The derivatives of the sum and product of two functions exist whergver ‘
functions themselves have derivatives. Thus, if two functions are analytic in @ df_’"'a'."
D, their sum and their product are both analytic in D. Similarly, their quom’."t ,”
analytic in D provided the function in the denominator does not vanish at any point "
D. In particular, the quotient P(z)/Q(z) of two polynomials is analytic in any domé!
throughout which Q(z) # 0.

*The terms regular and holomorphic are also used in the literature to denote analyticity.
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HAP_\

where c¢ is a real constant. lfﬂc = 0. it follows that f‘t ) = 0 everywhere iy ]

¢ # 0, the property zZ = [z]~ of complex numbers tells us tho o
ff@)=c#0

and hence that f(z) is never zero in D. So
f(2)

and it follows from this that f(z) is analytic everywhere in D). The main result j,
Example 3 just above thus ensures that f(z) is constant throughout D.

forall zin D,

f@)=

EXERCISES

1. Apply the theorem in Sec. 23 to verify that each of these functions is entire:
(@ f(z)=3x+y+iQGy—x) (b) f(z) =coshxcosy +isinhxsiny:
(c) f(z) =e ¥sinx —ie™" cosx; d) £(2) = (22 —2e"e™™,

2. With the aid of the theorem in Sec. 21, show that each of these functions is nowher
analytic:

(@) f(2)=xy+iy: (b) f(z) =2xy+i(x? —y?);
(©) f(z)=e%e".

3. State why a composition of two entire functions is entire. Also, state why any linear
combination c) fi(z) + c¢2 f2(z) of two entire functions, where ¢, and ¢, are complex
constants, is entire.

4. In each case, determine the singular points of the function and state why the function i
analytic everywhere else:

_ 2241 D+
(a) f(Z)_z(z2+1)’ (b) f(z)=_._z2_3z+2;
241
© f()= i

(z+2)(z2+2z+2)
Ans. (a)z=0,xi;, b)z=1,2; (¢)z=-2,-1=i.

5. According to Example 2, Sec. 24, the function
g@)=re®? (r>0,-71 <6 <n)

is analytic in its domain of definition, with derivative

. _ 1
g ()= —Zg(z)'
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seC. 27
Show that the composite function G(z) = g(2z — 2+ 1) 18 analytic in the half plane
x > 1, with derivative
]
G(7) = ——mm—
g(2z —2+1)

Suggestion: Observe that Re(2z — 2 + i) > 0 when x > .
6. Use results in Sec. 24 to verify that the function
g(z)=Inr+i6 (r>0,0<6 <2m)
is analytic in the indicated domain of definition, with derivative g'(z) = 1/z. Then show

that the composite function G(z) = g(:z + 1) is analytic in the quadrant x > 0,y >0,

with derivative
2z

2+1
Suggestion: Observe that Im(z2+ 1) > Owhenx >0,y > 0.

7. Let a function f be analytic everywhere in a domain D. Prove that if f(z) is real-valued
for all z in D, then f(z) must be constant throughout D.

GiG=

27. HARMONIC FUNCTIONS

A real-valued function H of two real variables x and y is said to be harmonic in
a given domain of the xy plane if, throughout that domain, it has continuous partial
derivatives of the first and second order and satisfies the partial differential equation

(1) He (x,y) + Hyy(x,y) =0,

known as Laplace’s equation.
Harmonic functions play an important role in applied mathematics. For

example, the temperatures 7 (x, y) in thin plates lying in the xy plane are often har-
monic. A function V (x, y) is harmonic when it denotes an electrostatic potential that

varies only with x and y in the interior of a region of three-dimensional space that is
free of charges.

EXAMPLE 1. It is easy to verify that the function 7'(x, y) = e sinx is har-
monic in any domain of the xy plane and, in particular, in the semi-infinite vertical
_strip 0 < x < m,y > 0. It also assumes the values on the edges of the strip that are
indicated in Fig. 31. More precisely, it satisfies all of the conditions *

Tox(x,y) + Ty_v(xs y) =0,
T©,y)=0, T(my)=0,
T(x,0)=sinx, lim T(x,y)=0,

y—>00

which describe steady temperatures T (x, y) in a thin homogeneous plate in the xy
Plane that has no heat sources or sinks and is insulated except for the stated conditions
along the edges.
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Homework 5: Part 2

1. Let w = f(z) be differentiable at any point in a domain D. Suppose f(z)
is one-to-one, that is f(z1) # f(z2) if 21 # 22. We can define a inverse
function z = f~!(w) such that it satisfies:

Ff7H(w)) = w and f7H(f(2)) = =.

Suppose f’(z) # 0. Use the definition to prove that z = f~1(w) is differ-
entiable and its derivative is given by:

d 1
R f71 w - —_—
g ) fr(f=Hw))
2. Any branch of the multivalued function z'/™ can be seen as an inverse

function of f(z) = 2™. Use Part 1 to prove that for any branch of the

multivalued function z!/™, we have:
d 1 1
— /= — = Zawlt
dZ nzg n_ n

(Note that z and w are just names of variables (dummy variables) and we
can interchange them)
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sec. 27 HARMONIC FUNCTIONS 79

EXAM[PLESZ. FZ'EL :;“]CU(,'" J(2) =€V sinx —ie~" cosx is entire, as is shown
in Exercise ,(f. }>.-. ec. 26. Hence iIts real component, which is the ———
T(x.y) = ¢ *sinxinExample 1, must be harmonic in every domain of the vy plane.
EXAMPLE 3. Since the function f(z)

2 ' .
: : = 1/z7 is analytic at every nonzero
point z and since

=2 ) _9 . ; ‘
_1 =z _ = ¥ (x2 =y —i2xy
72 -2 52 (.=\2 919 = = L
= ¢ ¢ (22 27| (% % 34
the two functions
Xty 2xy
ux,y) = — T and vix, y) = e
&= =+ 3%) (x= 4+ y*)-

are harmonic throughout any domain in the xy plane that does not contain the origin.

Further discussion of harmonic functions related to the theory of functions of a
complex variable appears in Chaps. 9 and 10, where they are needed in solving physical
problems, such as in Example | here.

EXERCISES

1. Let the function [(z) = u(r.6) + iv(r,0) be analytic in a domain D that does not
include the origin. Using the Cauchy-Riemann equations in polar coordinates (Sec. 24)
and assuming continuity of partial derivatives, show that throughout D the function u(r, )
satisfies the partial differential equation

r2u,, (1 @) + ru, (r, 0) + ug(r.0) =0,

which is the polar form of Laplace s equation. Show that the same is true of the function
v(r,0).

2. Let the function f(z) = u(x,v) +iv(x,y) be analytic in a domain D, and consider the
families of Ievelvcurves u(x,v) = ¢ and v(x, y) = 2. where ¢ and ¢, are arbitrary
real constants. Prove that th;sc families are orthogonal. More precisely, show that if
20 = (x0. vo) is a point in D which is common o two particular curves u(x, v) = ¢
and v(x, \-) — ¢ and if f'(z0) # 0. then the lines tangent to those curves at (xg, o) are

perpendicular. | o o |
Suggestion: Note how it follows from the pair of equations w(x.v) = ¢ and
v(x, y) = ¢, that
( ( ’ dJv v dy a
i'i + f-i“ f_‘ -0 and —+ — - =0.
dx  dy dx dx  dy dx
3. Show that when f(z) = -2 the level curves u(x.y) = ¢ and v(x.y) = ¢ of the

. ; % - i . ics ed in Fie. 32 Note the Ul'lh()gun;l]i( ;
component functions are the hyperbolas indicat ¢ ‘ g N
2. Observe that the curves u(x. y) = 0 and

of the two families, described in Exercise = .
v(x.y) = 0 intersect at the origin butare not. however. orthogonal to each other. Why is

. § C ~sarpiea 27
this fact in agreement with the result in Exercise =
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FIGURE 32

4. Sketch the families of level curves of the component functions u and v when
f(2) = 1/z, and note the orthogonality described in Exercise 2.

S. Do Exercise 4 using polar coordinates.
6. Sketch the families of level curves of the component functions u and v when

z—1
f(z)—z_H,

and note how the result in Exercise 2 is illustrated here.

Lemma. Suppose that
(@) afunction f is analytic throughout g domain D.
®) f(z)=0ar each point ; of a domain oy J;

. 15 int
IN1ts hypothesis and Jet z be any P° o
= 0. Since D is a connected ope™* 5

' : n
ng of a finite number of line s€g rn; in
int

D. We let d be the shortest dj » Jat extends from 2, to r
s the entire plane- in .. 21c¢ om@@R erated DY BN Soarner



sec. 30 THE EXPONENTIAL FUNCTION 89

Some properties of e are, on the other hand. nor expected. For example. since

z+271 - D=7 V=

e = e and

we find that e is periodic, with a pure imaginary period of 27i:

(8) g gt
For another property of e that ¢* does not have. we note that while ¢’ is alwayvs
positive, e* can be negative. We recall (Sec. 6). for instance. that ¢ = —1. In fact.
i2n+1)x i2nT+iT i2nw inw
€ =1 5 =" = (1)(-1) = -1 n=0.=£1.=2....).

There are, moreover, values of z such that 7 is any given nonzero complex number.
This is shown in the next section, where the logarithmic function is developed. and IS
illustrated in the following example.

EXAMPLE. In order to find numbers z = x + iy such that
9) ¢ =1-+v3i,
we write equation (9) as

efe'? =27

Then. in view of the statement in italics at the beginning of Sec. 10. regarding the
equality of two nonzero complex numbers in exponential form.

. b4 ;
=2 and y= —-+2nnm (i = 0,:E], £2, 55 5

Because In(e®) = x, it follows that

x=In2 and _\‘:g——%?_n:r n =0, 1, £2;...)
and so
1
(10) ;:In2+(2n+§)n‘i m =0, £1, 2, ;:.)
EXERCISES

1. Show that 57 -
2+ mi

€ .
(a) exp(2 £ 3mi) = =% (b exp( 2 ) :\ ;(1 + I);

(c) exp(z +mi) = —expZ.
2. State why the function f(z) = 22> — 3 — ze* + ™" is entire.
3. Use the Cauchy-Riemann equations and the theorem in Sec. 21 to show that the function
f(z) = expZ is not analytic anywhere.
4. Show in two ways that the function f(2) = exp(z”) is entire. What is its derivative?

Ans. f(z) = 2zexp(z°).
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20 1 EMENTARY FUNCTIONS "
1 i terms of X and v. Then show that
: wp(i-2)] in terms Ot .
8, Write Jexp(2:z 4 ;)| and [explis )| 1 i (;Zx\
exp(2z +i) + exp(iz’)| = ¢
6. Show that [exp(z)] - exp(|z])- 0
o if Rez = U
7. Prove that [exp(—22)| < Ll and only if Re <
8. Find all values of = such that .
o, . . ’ o l _ l
() e . by e- =1 +18 (c) exp(=C )
v 9 2
Ans. (@) z=In2+Qn+ Dmtin= 0, x1,£2,...)5
: ') =0, £ £2, ..
: ) 4+ — |mi (n =0, 1, x<.
(h) : 3 In2+ (un + 1
| 4
() 2= 5 +nm (n=0,+1,x2,...).
- 5 Y . L 1A : /
9. Show that exp(iz) = exp(iz) it and only if z = nm (n = 0. 1. £2....). (Compy
with Exercise 4. Sec. 29))
5
10. () Show that if ¢° is real. then Imz = nx (n =0, £1. =2....).

4 , - 5
(b)) It e is pure imaginary. what restriction is placed on 2°

11. Describe the behavior of ¢ = e'e’ as (a) x tends to —oC: (H) y tends to .

12. Write Re(e' ) in terms of x and yv. Why is this function harmonic in every domain tha
does not contain the origin?

13. Let the function f(2) = u(x. y) 4+ iv(x, v) be analytic in some domain D. State why
the functions

J .y¥) . r ) ) .
Ux,.y) ="V cosv(x,y), Vi(x,y)=e""sinv(x,y)
are harmonic in D.

14. Establish the identity

(e)' = ¢ =0, +1.+£2...)

i the following way.

(@) Use mathematical induction to show that it is valid whenn =0.1.2. ...

(b) Verity it for negative integers n by first recalling from Sec. § that
Y P [
I =(z7") Mm=—-n=1.2..)
when 2 % 0 and w riting (e)" = (1 /e )™ The
with the property 1 /¢" = '

d n use the result in part (a), togeth?
¢ " (Sec. 30) of the exponential function. <

31. THE LOGARITHMIC FUNCTION

Our motivation for | niti 3 '
‘ 1¢ definition of ari rec S ine the
equation 1e logarithmic function is based on solving !
( [ ) w
e =7
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Homework 6: Part 2

1: Determine and sketch the images of the following regions under the
map w = e*.

(a)
Re(z) > 1
(b)
Re(z) <0
()
0<Im(z)<m
(d)
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MAT 342 FALL 2014 Practice MIDTERM 1

NAME : 1D :

THERE ARE FIVE (5) PROBLEMS. THEY HAVE THE INDICATED VALUE.
SHOW YOUR WORK
DO NOT TEAR-OFF ANY PAGE
NO CALCULATORS NO CELLS ETC.
ON YOUR DESK: ONLY test, pen, pencil, eraser.




2

"' WRITE YOUR NAME, STUDENT ID AND LECTURE N. BELOW !!!

NAME : ID :

LECTURE N.
1. (50pts) Let z; =1 — 1,29 =3 —i.
(a): Calculate z; - zo and 21/ 2.

(b): Calculate zi/ % and sketch the roots on a regular polygon.



2. (50pts) Calculate the limit if it exists:

(a)

(b)
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3. (50pts)

(1) Sketch the region given by:
3
0§Argz<£, 1<zl <2

(2) Find the image of the above region under the mapping w = 22,



4. (50pts)
(a) Explain why the following function is analytic in its domain and calculate
I8! -
1z — 1

(b) If g(z) is an analytic function and f(z) = g(z) + g(z) is also an analytic
function, what can you say about ¢g(z)? Explain your reason.
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5. (50pts)

Find the points where the function is differentiable and then calculate the first order
derivative of the function at those points. Is the function analytic at those points?

(a)
(b)

f(z)=(2*+ (y+9)?) +2iz(y+1)

f(re®”)y = (logr)*> —0* +2i flogr, 7>0,0<6<2m.
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1! WRITE YOUR NAME, STUDENT ID AND LECTURE N. BELOW !!!

NAME : ID:
LECTURE N.

1. (50pts) Let z; =1 —4,2, =3 —s.
(a): Calculate z; - 22 and z;/2s.

22,z (1) 3-1)= 347(a) 4 30-i= 420

2~ = (=R |55
o T ( - =23

—_——

3T BNE) T T

(b): Calculate 211/ % and sketch the roots on a regular polygon.

¢ _ 1% Al L o B, 2k
z=l= 5% gopfel 24 22) oy
) L 2 2 Tz

G = 2% E’-% : (.= z—é‘eullze]%:j? QTZ?? ;

L T L sz ! 57z :
&= (g el%:z‘l_ é&Jrzg S-S &

= ~L . \
=G € 32“130'“)'(‘5’-

= 2% (16 + (+3))
(= Ge 8 =) (-%

= 273 ({4 (1-6)1)
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2. (50pts) Calculate the limit if it exists:

(a)
z—1t
111;nz(::"’+1)
(b) .
lim 5.
(a) %ﬂ S N N N
257 2@H) T Te»i (?ﬂ)ég ‘)
21 8/8+)) o)
O
o "
U—*) Ehl Nk
22 T e T |

U
R4
=0
__?_4_ _ J e _ - LA
o /247}: es - é: 3 /réa( €U0
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3. (50pts)

(1) Sketch the region given by:
0§_Argz<%7-r-, 1< |z| £2.

. - y = zz.
(2) Find the image of the above region under the mapping W

0)

I, o
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4. (50pts)
(a) I}]")zpl)a.m why the following function is analytic in its domain and calculate
i)
_ (2~ 1)
fz) = Gz + )¢

Do of f = {zec, 241

%OM% M He dowarin ﬂqLJL becane e Guotient ”JL tuo M’ﬂjff&)

qtmwﬂﬁm»s 24 Mﬁ%ﬁ bet- PmMs wia,g He. dﬁ«wmm%w hot 2erp

j[ () ks L (7233 [3z4)*= Gen) * L fewy z 41(73_,
- (‘?‘1—\)8 C‘Z-H); )

(‘z?+l 78—]))

(b) If g(z) is an analytic function and f(2) = g(z) + g(2) is also an analytic |~
function, what can you say about g(z)? Explain your reason. / 8 1 (i 52 _]) 3
Qe+
J)= §6+56) = 2 Re(56) _

2 Onalytic erdd ted vedued = ‘H?)HQ Wﬂrk & );e,:\é
eefoscitodte) o, 1eal moseer. |

let jlo)=u&)+ivi), o )= (zz -

. =24
-__> j)zo—- gw—fO _? Ve -
= Vol = V= t
Uy = Vo =0 Vico © V=(, 3 4 losky
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5. (50pts)

Find the points where the function is differentiable and then calculate the first order
derivative of the function at those points. Is the function analytic at those points?

(a)
(b)

fR) =G+ y+i1))+2iz(y+1)

RTINS

f(re®®) = (logr)* — 9> +2i6flogr, r>0,0<6<2n.

= [mgysﬂ + (zlﬁ) = [)02+ g2 ) TR -2)0

&) )

| 2:&01'1? 2 2 .
| = 60 ‘}'U = )"2}0) + 2 (Q—HOBI) Z U7V seethe next page
for correction
=) p2N=2 , Uyl 2022 4y XE 2
o ’ ‘%I / >' f = {
S L $
0 | ) Cg’y&& te w o )o‘f‘ﬂzb)/ =9 2—[-79/
2 e &aﬁzﬂeaﬁémggéu,,%w_ 4 “ < :

=4

T~

L =29,

L_””J‘W\m@ww

ri-= ]/9,2%% re. [{28{5

) Ulre): gL, V=20 bx
Up=—FVp =20 Gre saendiof |

Mo-:Z(% [gj ::>{
Vo= 2
(h r»f»«mw.

i 29
= ) 2 dfecdslle 6 a1y poit Ml dlinan {50 0< boz

——

bned qU(z): &0 (uerive) = ‘79'(21““+7‘2 2(lsr +¥0)
2 m«wgﬁz ot ﬂ’g privt W the domain )}ba {;‘69%;}

/& wew)/( C&Z@fey C(

= 0 branch ¢} @?g
:> U[/[E): e bt aQ[ %i
2
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Pencil

chili
Pencil

chili
Pencil

chili
Pencil

chili
Pencil

chili
Typewritten Text
see the next page 
for correction
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LCL\. JCIE):()&} [;w) a) +2 ) N[C‘ﬁ z‘) = @72+g"-}—2}j )‘—])+2 Y 0F =250
= (M- %)+ 1 (2Y4axy)= LAV,

= W= 203, W=y gre {222
VT 29, Vy=2Rk 2d=-2%
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SEC. 33 BRANCHES AND DERIVATIVES OF LOGARITHMS 95

We saw in Example 5, Sec. 32, that the set of values of log(i?) is not the set of
values of 21ogi. The following example does show, however, that equality can occur
when a specific branch of the logarithm is used. In that case, of course, there is only
one value of log(i?) that is to be taken, and the same is true of 2 logi.

EXAMPLE. In order to show that

(M log(i?) = 2logi
when the branch
. T 9
logz=Inr +i6 (:->0,Z<9<Tn)
is used, write
log(i?) = log(—=1) = In1 + ix = 7i
and then observe that
2logi =2 (m 1 +i%) -
Itis interesting to contrast equality (7) with the result log(i?) # 2logi in Exer-

cise 4, where a different branch of log z is used.

In Sec. 34, we shall consider other identities involving logarithms, sometimes
with qualifications as to how they are to be interpreted. A reader who wishes to pass
to Sec. 35 can simply refer to results in Sec. 34 when needed.

EXERCISES
‘l. Show that
(a)ln(—’i)—l—j—r—i' 1 '—112 Zi
L0gl—el) = 5 b (h) Log( —t)_in ——Zz.

2. Show that
(@) loge = 1+42nmi (n=0,=xl1,x2,...);

l
(b) logi = (211 + 5) mwi =D ]l e die o)
1
(¢) log(—1 + V3i)=In2+2 (n + 5) i (=0 x1,2£2,...) B

Show that Log(i®) # 3 Logi.
4. Show that log(i2) # 2logi when the branch

[#S]

3 11
logz =Inr +i6 (r>0,-:4£<6<—4n—)

is used. (Compare this with the example in Sec. 33.)
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96 ELEMENTARY FUNCTIONS Hap 3

5. (a) Show that the two square roots of i are
i5t/4

Then show that

log(e'™*) = (211 + Z) T (n ’

and

1 .
log(e'> ™) = [(211 + D+ Z} i (n=0,%1,%2,...).

Conclude that

; 1
log(i'*) = (n + Z) wi  (n=0,%£1,%2,..).
/

(b) Show that
1 .
log(i"/z) = ;): lOgl,

as stated in Example 5, Sec. 32, by finding the values on the right-hand side of thjg
equation and then comparing them with the final result in part (a).

6. Given that the branch logz = Inr +i0(r > 0, < 0 < o + 2m) of the logarith.
' mic function is analytic at each point z in the stated domain, obtain its derivative by

differentiating each side of the identity (Sec. 31)

logz

gt e=p (Iz]l > 0, < argz < @ + 2m)

and using the chain rule.
7. Show that a branch (Sec. 33)

logz=Inr +i6 (r>0,a0 <6 <a+2n)
of the logarithmic function can be written

1
logz = = In(x* 4+ y®) + i tan™! (Z>
2 x

?n rectan.gu.]ar. coordinates. Then, using the theorem in Sec. 23, show that the given branch
is analytic in its domain of definition and that

d 1 1
dz 8t =3 )
there.
8. Find all roots of the equation log 7 = i J 2,

Ans. 7z =1|.

9. Suppose that the pointz = x 4 ¥ lies in the horizontal stripe < y < @ + 27r. Show that

i‘:}:le;;;h‘fobrarl‘:hlogz =Inr+i0(r>00<0<q +27) of the logarithmic function
»108(€°) = z. [Compare with equation (5), Sec. 31.]
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SEC. 3 SOME IDENTITIES INVOLVING LOGARITIIMS 97

10./Show that

(a) the function f(z) = Log(z — i) is analvtj o - it
of the line y = 1: ytic everywhere except on the portion x =

(b) the function

_ Log(z+4)
22+

is analytic everywhere except at the points (1 — i)/+/2 and on the portion
x < —4 of the real axis.

f(@)

e t‘W() ways that the function In(x? + y?) is harmonic in every domain that does
not contain the origin.

12. Show that
1 , 2
Re[log(z — 1)] = 5 In[(x = 1)" + y°] (z#£1).

Why must this function satisfy Laplace’s equation when z # 1?

34. SOME IDENTITIES INVOLVING LOGARITHMS

If z; and z, denote any two nonzero complex numbers, it is straightforward to show
that

(1) log(z1z2) = log z; + log z2.

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

(2) arg(z1z2) = argz) +arg 22

was in Sec. 9. That is, if values of two of the three logarithms are specified, then there

is a value of the third such that equation (1) holds. .
The verification of statement (1) can be based on statement (2) in the following

way. Since |z;z2| = |z1]]z2| and since these moduli are all positive real numbers, we
know from experience with logarithms of such numbers in calculus that

In|z;z2] = In|zy| + In|z2|.

So it follows from this and equation (2) that
(3) In|z122| + i arg(ziz2) = |z +iargz) + (In 22| + iarg22).
Finally, because of the way in which equations (1) and (2) are to bevinterpreted,

equation (3) is the same as equation (1).

EXAMPLE 1. To illustrate statement (1), write z; = z2 = —1 and recall from

Examples 2 and 3 in Sec. 32 that

log 1 = 2nmi and log(—1) = (2n + Dmi,
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ogC. 34 SOME IDENTITIES INVOLVING LOGARITHMS 99

for any value of log z that is taken. When n = 1, this reduceS; of course, to relation
(3), Sec. 31. Equation (5) is readily verified by writing z = re'” and noting that each
side becomes r"e”.

It is also true that when z #£ 0,

1
(6) 7V = eXp(Elogz> =12 ..

That is, the term on the right here has n distinct values, and those values are the nth
roots of z. To prove this, we write z = r exp(i®), where © is the principal value of
arg z. Then, in view of definition (2), Sec. 31, of log z,

1 1 i(® 4 2km)
exp ;logz = exp Elnr—}——————’-l——

where k =0, =1, £2, ... . Thus
1 & 2k

(7) cxp(:logz) Z{VFexp{i(——f-—n)] (k =0,=£l1,2,...).
' R n

Because exp(i2km /n) has distinct valuesonly whenk = 0, 1, ..., n—1, the right-hand
side of equation (7) has only n values. That right-hand side is, in fact, an expression for
the nth roots of z (Sec. 10), and so it can be written z!/. This establishes property (6),
which is actually valid when n is a negative integer too (see Exercise 4).

EXERCISES

1. Show that for any two nonzero complex numbers z; and z5,

Log(z1z2) = Log z; + Log z, + 2N i

where N has one of the values 0, £1. (Compare with Example 2 in Sec. 34.)
2. Verify expression (4), Sec. 34, for log(z1/z2) by

(@) using the fact that arg(z, /z,) = argz, — arg z, (Sec. 9):

(b) showing thatlog(1/z) = —log z (z # 0), in the sense that log(1/z) and — log z have
the same set of values, and then referring to expression (1), Sec. 34, for log(z,z5).

_3. By choosing specific nonzero values of z1 and 23, show that expression (4), Sec. 34, for
log(z1/z2) is not always valid when log is replaced by Log.

4. Show that property (6), Sec. 34, also holds when n is a negative integer. Do this by writing
2" = (z/™)=1 (m = —n), where n has any one of the negative valuesn = —1, -2 . ..
(see Exercise 9, Sec. 11), and using the fact that the property is already known to be valid

for positive integers. "

Let z denote any nonzero complex number, written z — r¢'© (-7 < ® < 7), and let n

denote any fixed positive integer (n = 1, 2, ...). Show that all of the values of log(z!/")
are given by the equation

O+2(pn+kn

1
log(z"/")y = —Inr +i
h n
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gc. 37 , )
S THE TRIGONOMETRIC FUNCTIONS sinz AND cos = 103

Hence

(2223)" = [977/4(,i(ln2)/2] [63:/4€i(ln2)/2]€—21’
or
2) ) =dge ™,
EXERCISES

1. Show that
Ny _ T
(a) {1 +1) =exp (—Z +2nn) exp (1%) (n=0 %1, £2,...);

1
(b) i expl(4n+ D] (n=0,%1,+2,..).

2. Find the principal value of
" e Imi ‘
(@) (=0)'5 (D) [5(—1 —~/§i)] s (o) (I =i)%.

Ans. (a) exp(/2); (b) —exp(27?); (c)e[cos(2In2) + isin(21n2)].
-3, Use definition (1), Sec. 35, of z¢ to show that (—1 + +/3i)¥2 = £ 2/2.
4. Show that the result in Exercise 3 could have been obtained by writing
(@) (=14 /30)¥% = [(=1 + +/3i)72]® and first finding the square roots of —1 + +/3i;

(b) (=14 +/31)%2 = [(=1 + +/3i)*]"/2 and first cubing —1 + +/3i.

5. Show that the principal nth root of a nonzero complex number z, that was defined in
Sec. 10 is the same as the principal value of zo " defined by equation (3), Sec. 35.

6. Show that if z # 0 and a is a real number, then |29] = exp(aln|z|) = |z|¢, where the
principal value of |z|? is to be taken.

7. Let ¢ = a + bi be a fixed complex number, where ¢ # 0, =1, &2, ..., and note that i
is multiple-valued. What additional restriction must be placed on the constant ¢ so that

the values of |i¢| are all the same?

Ans. c is real.
8. Letc, ¢y, ¢z, and z denote complex numbers, where z # 0. Prove that if all of the powers

involved are principal values, then
C)

crtez. (h) e i
z%

(&) EP =2 n=12...).
9. Assuming that f'(z) exists, state the formula for the derivative of ¢/ @,

(q) 282 =%

37. THE TRIGONOMETRIC FUNCTIONS sinz AND cosz

Euler’s formula (Sec. 7) tells us that

X — cosx +isinx and e ¥ =cosx —isinx
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SEC. 38 OS AND SINGULARITIES OF TRIGONOMETRIC FUNCTIONS 107

Observe that the quotients tan z and sec z are an

iti alytic everywhere except at the singu-
larities (Sec. 25) ¥ ry p g

T
Z=§+mr (n=0,+1,£2,..),

W!HFh are the zeros of cos z. Likewise, cot z and csc z have singularities at the zeros
of sin z, namely

Z = (n=0,%1,42,..).

By diﬁ‘grt‘:ntiating the right-hand sides of equations (1) and (2), we obtain the antici-
pated differentiation formulas

3) d . . d ;
- e AN T = secT7, —cCcotz = —
e iz d Gse™ Z;
@ d d
——S€CZ =secztanz, —cscz = —csczcotz.
dZ dz < Z 73

The periodicity of each of the trigonometric functions defined by equations (1) and
(2) follows readily from equations (10) and (11) in Sec. 37. For example,

(5) tan(z 4+ ) = tan z.

Mapping properties of the transformation w = sin z are especially important in
the applications later on. A reader who wishes at this time to learn some of those
properties is sufficiently prepared to read Secs. 104 and 105 (Chap. 8), where they are
discussed.

EXERCISES

1. Give details in the derivation of expressions (2), Sec. 37, for the derivatives of sin z and
cos Z.

/2/ (@) With the aid of expression (4), Sec. 37, show that

¢l = cos z; COS zy — sinz) sinzy + i(sinzy cos 2z + oS z; Sin z3).
Then use relations (3), Sec. 37, to show how it follows that

e UeTi%2 — cosz) cOSZy — SiNZy SiNZy — i(sinz; cos zp + €OS Z; sinz3).

(b) Use the results in part (a) and the fact that

. L 5 5 ; .
|:€i(z'+22) _ e—-:(z|+12)] = — (etueJZz o e‘—IZ]e—'le)

sin(z) + 22) = 53 2%

2i

to obtain the identity
sin(z; + z2) = sinz; cos 2z + €08 Z; sin z,

in Sec. 37.

3. According to the final result in Exercise 2(b),
sin(z 4 72) = SNz €OS 22 + €COSZ sin z3.
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10.

11.

12,

13.

14.

15.

|
ELEMENTARY FUNCTIONS CHap, 3

By differentiating cach side here with respect to z and then setting z = z;, deriye the
expression _

cos(z) 4 z2) = €c08 7y COS Z2 — SINZ| SINZ
that was stated in Sec. 37.
Verify identity (9) in Sec. 37 using
(a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 28 and the fact that the entire function

fiz) = sin® z +coszz -1

has zero values along the x axis.

. Use identity (9) in Sec. 37 to show that

; )
(@) 1 4+tan?z =sectz; (b) 1+ cot?z = csc? 2.

Establish differentiation formulas (3) and (4) in Sec. 38.

« In Sec. 37, use expressions (13) and (14) to derive expressions (15) and (16) for |sin 72

and |cos z|2. " 5 5 5 op
Suggestion: Recall the identities sin“x + cos® x = | and cosh® y — sinh*y = |,

Point out how it follows from expressions (15) and (16) in Sec. 37 for |sin z|? and |cos z|?
that

(@) |sinz| = [sinx|; (b) |cosz| > |cosx].
With the aid of expressions (15) and (16) in Sec. 37 for |sin z|? and |cos z|2, show that
(a) |sinhy| < [sinz| < coshy; (b) [sinhy| <|cosz| < cosh y.
(@) Use definitions (1), Sec. 37, of sin z and cos z to show that
2sin(z; + z2) sin(z) —z2) = cos 2z, — cos 2z;.

(b) With the aid of the identity obtained in part (a), show that if cos z; = cos z,, then at
least one of the numbers z; + z, and z, — Z2 is an integral multiple of 2.

Use the Cauchy-Riemann equations and the theorem in Sec., 21 to show that neither sinZ
nor cos Z is an analytic function of z anywhere.

Use the reflection principle (Sec. 29) to show that for all z,
(a) sinz =sinz: (b) TOSZ = cos 7.

Wilh' the aid .of expressions (13) and (14) in Sec. 37, give direct verifications of the
relations obtained in Exercise 12,

Show that 3

(a) m =cos(iz) forall z;

(b) sin(iz) = sin(iz) if and only if

Z=nmi (n=0,+1,42,..).
Find all roots of the equation sinz = cosh4 b i he
: . s = e d then't
Imaginary parts of sin z and cosh 4. S S S et AR

Ans. [ Z '
s, 3+2mr):1:4¢ (n=0,%1,%2, .. ).
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SEC. 42 DEFINITE Tnrre .
“FINITE INTEGRALS OF FUNCTIONS wir) 119

it 4 = = Ve :
we write @ = 0. b = 27 and use the same functj
R R - - unction w(r) = e'’ 27) as i

3 o]

b
/ w(t)dt = / erdr = ¢ J«o
Ja Jo [ 5 T A%

But, for any number ¢ such that 0 < ¢ < 27

lw(c)(b —a)| = [6%] 29 == T
, e find that the left- i . :
f‘"ﬁ()‘?“ ¢ left-hand side of €quation (5) is zero but that the right-hand side
is not.

EXERCISES
1. Use rules in calculus to establish the following rules when
w(r) = u(t) + iv(r)

is a complex-valued function of a real variable ¢ and w'(r) exists:

d
— | ZoW(L)] = 2 )/ T = X v 19 e
(a) (/[[ ow (1) ow (1), where zg = xg +iygis a complex constant;

d ,
(b) o w(—1) = —w'(—1) where w’(—r) denotes the derivative of w(r) with respecttoz,
evaluated at —1;

Suggestion: In part (a). show that each side of the identity to be verified can be

written
/ .
(xout" — you') + i (you' + xov’).

2, Evaluate the following integrals:

-] 2 2
(a) (1 4 ir)%dr: (b)/ (;—z) dr:
. |

0
"T/6 oo i
(c) / el dr: (d) / e ' dt (Rez > 0).
Jo 0
2 1 V3 i 1
s. o o —— =1 i —+ - d) -.
Ans. (a) 3 T6 () > ilnd; (c) 7 T2 (d) p

3. Show that if m and n are integers,
0 when m # n,

2r 4 il
/0 g e g = {2Jr when m = n. \
According to definition (2), Sec. 42, of definite integrals of complex-valued functions of

areal variable,
T

g & -
/ eI+0% gy = / e‘cosxdx + i/ e*sinxdx.
0 0 ¢

Evaluate the two integrals on the right here by evaluating the single integral on the left
and then using the real and imaginary parts of the value found.

Ans. —(1 4 €™)/2, (1 +e€")/2.
Generated by CamScanner
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5. Let w - o : . .
: (1) = u(t) + iv(r) denote a continuous complex-valued function defiy, od
mterval —aq <t < 4 “don 4y

@) Suppose that w (1) is even: that is. w(—1) = w(r) foreach point s in the givep inter
= Val,

Show that
/ U'(I)c/[::/ w(r)dt.
. Jo

-a

(0) Show that if u(7) is an odd function, one where w(—1) = —w(r) for each poin  ;
n

the given interval, then

/ w(t)dr = 0.

—da
Suggestion: In each part of this exercise, use the corresponding property of integralg

of real-valued functions of r, which is graphically evident.

43. CONTOURS
Integrals of complex-valued functions of a complex variable are defined on curves jj
the complex plane, rather than on just intervals of the real line. Classes of curves that
are adequate for the study of such integrals are introduced in this section.

A set of points z = (x, y) in the complex plane is said to be an arc if

(1) x=xitl, y=yd (a <t <b),

where x(7) and y(r) are continuous functions of the real parameter ¢. This definition
establishes a continuous mapping of the interval ¢ <t < b into the xy, or z, plane;
and the image points are ordered according to increasing values of 7. It is convenient

to describe the points of C by means of the equation

(2) z =.2(1) (a <t <b),
where
(3) 2(t) = x(t) +iv(t).

The arc C is a simple arc, or a Jordan arc,* if it does not cross itself ; that is, C i
simple if 2(7)) # z(r2) when £} # 1. When the arc C is simple except for the fact that
z(b) = z(a), we say that C is a simple closed curve, or a Jordan curve. Such a curve
is positively oriented when it is in the counterclockwise direction.

The geometric nature of a particular arc often suggests different notation for the
parameter ¢ in equation (2). This is, in fact, the case in the following examples.

*Named for C. Jordan (1838-1922), Pmnoun‘@-@’ﬁ]é”rated by CamScanner
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sEC 4 CONTOURS

ples us oW rite expression (13) 44
ni

L = / Z(t)dr.

. same length of C wo . ai 3
= [.ht. jation (;) represent U‘ld ht’ nhl‘“,'wd If representation (10) were to be used.
If qu‘, < ,'- h ‘p L ~ 4 differentiable arc and if z'(r) # 0 anywhere in the
r\"d] a <! 2, then the unit tangent vector -

Th

inte
)
i 12°(2)]

is well dcﬁncd. for all ¢ in that open interval. with angle of inclination arg z'(1). Also.
when T turns. n‘d()es it Cf)minUOUSly as the parameter r varies over the ent\irc interval

a <! = b. Th_” expression for T is the one learned in calculus when z(1) is inter-
Preled as a radius vector. Such an arc is said to be smooth. In referring to a smooth
acz=2)@a=1= b). then, we agree that the derivative Z' (1) is continuous on the
closed inters ala < T'S b apd nonzero throughout the open interval a < t < b.

A contour. Or piccewise smooth are, is an arc consisting of a finite number of
gmooth arcs joined end to end. Hence if equation (2) represents a contour, z(f) is
continuous, whereas its derivative z'(1) is piecewise continuous. The polygonal line
(4) is, for example. a contour. When only the initial and final values of z(t) are the
same, a contour ¢ - 1s called a simple closed contour. Examples are the circles (5) and
(6). as well as the boundary of a triangle or a rectangle taken in a specific direction.
The length of a contour or a simple closed contour is the sum of the lengths of the
smooth arcs thal make up the contour.

The points on any simple closed curve or simple closed contour C are boundary

oints of two distinct domains, one of which is the interior of C and is bounded. The
other, which is the exterior of C, is unbounded. It will be convenient to accept this

statement, known as the Jordan curve theorem, as geometrically evident; the proof is

not easy.”

EXERCISES

1. Show that if w(t) = u(t) + iv(¢) is continuous on an interval a < t < b, then

- —a b
(a) / w(—f)dtz/ w(t)dr;
J—=b a

b B
(b) / w(t)dt :/ w(g(7)]¢'(t) dt, where ¢(7) is the function in equation (9),

—

1

Sec. 43.
Suggestion: These identities can be obtained by noting that they are valid for real-

valued functions of 7.

———

"See pp. 115-116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited in
Appendix 1. The special case in which C is a simple closed polygon is proved on pp. 281-285 of Vol. 1

ofthe work by Hille, also cited in Appendix 1.
WOy Lhlle, BemCliess o Appenti Generated by CamScanner



( H Ap 4

124 INTEGRALS Lok
i srelockwise diree
in the countere e dm-klmn

le |
f the CIIt
, yd halt ©
e ”)L fl‘ hl h e Srese nt: l“l,n\ 'Ur ( \
etric rejf T b 4 )
- <~ 1

.m‘
2. Let € dend
and note that two param

. = () = b AL 7,
and - ) P . )
-=Z(y) =\ 4—y- +1
/ = , re
Verify that Z(y) = z[¢ () )]. whe o )
y (~ l’- < arctant < 5 )

1 -

¢(y) = arctan - 4A\_ cl
et soative. as required 1n the condit

his function (,f) has a positive derivative, @ ] d”l()ng

Also. show that this functic ‘

43. .
following equation (9). Sec. P
1e through the points (& a) and (B. b) t plane thy,

3. Derive the equation of the line t find the linear function ¢ (1) which can be used ,
)
are shown in Fig. 37. Then use 1t I ation (2) in that section into répresentatiop

resent
equation (9), Sec. 43. 10 It insform repre

(10) there.
b—a ap — r’nx
Ans. ¢(T) = ‘—:-_— T + };Jj . ‘
4. Verify expression (14). Sec. 43. for the derivative of Z(7) = 2l (T)].
Suggestion: Write Z(1) = x[p(r)] + ivlep(T)

valued functions of a real variable.

5, Suppose that a function f(z) is analytic at a point 2o =
- =z(t) (a <t < b). Show thal if w(r) = f[z(1)], then

w'(1) = (0] (1)

z(ty) lying on a smooth ar¢

when 1 = 1. _
Suggestion: Write f(z) = u(x,y) +iv(x, y) and z(r) = x(1) + iy(2), so that

w(t) = ulx(t), ()] + iv[x(@), y(©)].
Then apply the chain rule in calculus for functions of two real variables to write
w, = (u-rxf £3 u_\‘y’) 3 i(v.rxl g U_\-y, )»

and use the Cauchy-Riemann equations.

6. Let y(x) be a real-valued function defined on the interval 0 <x < 1 by means of the

equations

y(x) = {x35i"(”/x) when0 < x < 1,
0 when x = (.

(a) Show that the equation
i=x+iyx)  (O=<x<l)

fepresents an arc C that intersects the real axis at th
R . . & S < ~. l 2
and z = 0, as shown in Fig, 38, Gen eratepa Ib E{m(é

| and apply the chain rule for reg.

| 4

canner



CONTOUR INTEGRALS

FIGURE 38

(ﬂl} \tl‘!\ li‘ ¢ .
C 1 ; art ((l] IS, Iﬂ ‘nltl L smooth arc.
1l lh arc ( 11 ) PR

Sueeestion: To establi -
establish the continuity of y(x) at v = 0, observe that

3 .. T
XTSIn | — < 33
X -

. 0. A similar remark : b B G me
w remark applies in finding y'(0) and showing that y'(x) is con-

0 <

when x
at v = 0.

e I L
(INUOLS

44. CONTOUR INTEGRALS
We turn now to rn.legra!s of complex-valued functions f of the complex variable
Such an f..llc'__*rul is defined in terms of the values f(z) along a given contour C
extending froma pomntz =z, t0a point z = 25 in the complex plane

I- and its value depends, in general, on the contour C as we

q line integral
/C fl@dz o / f(2)dz,
; .

function /. It is written
of the integral is independent of
e integral can

s of a definite

It is. therefore,
11 as on the

ation often being used when the value
ur taken between two fixed end points. While th

the latter not
e limit of a sum,* we choose to define it in term

the choice of the conto

he defined directly as th
integral of the type introduced in Sec. 42.
rpreted as areas, and they have other

Definite integrals in calculus can be inte
interpretations as well. Except in special cases, no corresponding helpful interpretation,
geometric or physical, 18 available for integrals in the complex plane.

Suppose that the equation

(1) s=z(1) (@<t=<h)
14
represents a contour C. extending from a point Z; = z(a) to a point 2o = z2(b). We
jecewise CONHNUOUS (Sec. 42) on the intervala <t < b and

assume that f[z(2)] 18 p

Markushevich that s listed in Appendix 1.

245ff in Vol. I of the book by

Generated by CamScanner

*See, for instance, pp.
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!
EXAMPLE 2. Using the principal branch :
. ol > 0. —% < Arg » f
f expl(—1 +i)Logz] (1 \rg 2 <
e the »oral
of the power tunction let us evaluate the Intcy
{3) / - / & (l.-
rF (
vurcle (F 5)
where C 1s the positively oriented unit circle (Fig. 4.
— ¢ ( T < <T)
about the onigin.
FIGURE 45
When z(6) = ¢'%. it is easy to see that
(—1+4+i)(Inl w“u[-(,.rﬂ — I.(’~H.

_}’[:[H):- () = €

(4)
Inasmuch as the function (4) is piecewise continuous on —mr < 6 < 7, integral (3)

exists. In fact,
o7
I = i/ e 'dd =i[— (’“H]Trr =i(—e " +e7),

or
T _ e T
=i 2sinhm.

EXERCISES

For the functions f and contours C in Exercises 1 through 8, use parametric representations

for C, or legs of C, to evaluate

/Cf(z) dz.
. f(z) =(z+2)/zand Cis

(a) the semicircle z = 2¢" (0 <6 < 7);
(b) the semicircle z = 2¢' (1 < 6 < 277):

(c) thecircle z =2¢" (0 <9 < 27).
Ans. (a) —4 4 2ni: (b) 44 2mi;  (¢) 4ni.
Generated by CamScanner
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SEC EXAMPLES INVOLVING BRANCH CUTS
2. f1z)=12—1and C is the arc fi -
N ¢ arc from z = 0to z = 2 consisting of
) thesemicircle z = 1 + ¢ (7 < g < Sory:
Ly tha - - - '
) the seement - = x - .
g ¥ (0 < x < 2) of the real axis,

Ans.(a) 0:  (b) 0.

3 2) = mwexp(mrz) ¢ 1S 3 I !
B . an 1: Fh[T ),dnd C 1s the boundary of the square with vertices at the points 0. 1.
i.and 7, wL onientation of C being in the counterclockwise direction.
ins. 4e™ —1).
4. /(20 is defined by means of the equations

" 1 when v < 0
(2) = - '
f {4_\‘ when y > 0,

("isthe arc from z = —1 — i toz = 1 4 along the curve y = x°.

ins. : + 31

= | and C is an arbitrary contour from any fixed point z; to any fixed point 2> in

5.
the - plane.
AnS. 22 — 7}
6. /(z) is the principal branch

;' =exp(ilogz) (Jz] >0,—m < Argz <m)

of the power function ', and C is the semicircle z = e’ 0 <h <m).

Ans 1 +e™” _
Ans. ——_ﬁ;—(l —1).

7. f(z) is the principal branch

=~1=2 — exp[(—1 — 2i)Logz] (lz] >0, —7 < Argz < )

of the indicated power function, and C is the contour

e’ — 1

Ans. i

8. f(z) is the principal branch
-a=1 — exp[(a — 1)Logz] (|z] > 0, —m < Argz < T)

-~

of the power function -2=! where a is a nonzero real number, and C is the positively

oriented circle of radius R about the origin.
‘)Ru
Ans. i — sinax, where t
a

9. Let C denote the positively oriented unit circle |z| = 1 about the origin.

(a) Show that if £(z) is the principal branch

1

he positive value of R is to be taken.

27 =exp [—%Logz} (Iz] > 0, —m < Argz < )
Generated by CamScanner
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. then
Ul . , UICI1

/ f i T '1\:,.

(b) Show that if g(z) is the branch
_~3/4 — exp |- log: | (lz] > 0,0 < argz < 2m)
2 | J

of the same power function as in part (). then

/I g(:)‘!: ot ~4+41
JE

This exercise demonstrates how the value of an integral of a power function dcpcnd,\

in general on the branch that is used.
ercise 3. Sec. 42, evaluate the integral

/ :rn E"(l:.
JC

egers and C is the unit circle |z] = I, taken counterclockwise,

10. With the aid of the result in EX

where m and n are int
11. Let C denote the semicircular path shown in Fig. 46. Evaluate the integral of the function
f(z) = 7 along C using the parametric representation (see Exercise 2, Sec. 43)

(a) z = 2" (-% <6< %) L) 2= A=y +iy (-25y<2).

Ans. 4mi.
.‘.
27 ¢
C
[0 X
=2i
FIGURE 46

12. (a) Suppose that a function f(z) is conti
s z ntinuous on a smooth arc C, which has ic
representation z = z < ; P A &, WALGHLAS 4 pRcarmeLIte
all sentation & that(itlgcggc(lr)h(t i b); that 1s, flz(1)] is continuous on the interval
<t< @ = T = B) is the function described in Sec. 43, then
1

b
, B
fa flz®)]Z'(t) dr =-./a flZ(0))1Z (1) dr
where Z(7) = z[¢(1)].

(b) Point out how i identi a lid w
ol g o tf(:lloe\Z:Sthat.Ithe identity obtained i Part (a) remains valid when C
ny contour, not necessarily a smooth one, and f(z) is piecewisel : : ) on
y : se continuous

C. Thus show that '
at the value of the Integral of f(z) along C is the hen the
s same when

representation z = Z(1) (q < i
: < ST < B)isused. j
gEdsHon- Fn @ S used, instead of th 191
_ us ’ € origing
expression (14) i ! _) use the result jp Exercise 1(p r4l mal one. [
(14) in that section, e 1(b), Sec. 3. and then refer (0
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135

UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS

denote the circle centered : . ; i
circle centered at z with radius R. and use the parametrization
Z=2Z0+ Re"’ (—T <6 <)

10w that

/. (:_:())“‘ld:z 0 .whennzil.:{:l .....
B 27i whenn = 0.

({Put =~ — . - « . . .
(Put 2o 0 and thf:n compare the result with the one in Exercise 8 when the constantd
there is a nonzero integer.)

47. UPPER BOUNDS FOR MODULI OF
CONTOUR INTEGRALS

We turn now to an inequality involving contour integrals that is extremely important
in various applications. We present the result as a theorem but preface it with a needed
lemma involving functions w(t) of the type encountered in Secs. 41 and 42.

Lemma. If w(t) is a piecewise continuous complex-valued function defined on

an interval a <t < b, then
b
/ w(t)dt
Jd

This inequality clearly holds when the value of the integral on the left is zero.
Thus. in the verification, we may assume that its value is a nonzero complex number

b
< [ lw()ldr.

a

(1)

and write

b
/ w(t)dt =ryg e,

a

(2)
Solving for ry, we have

b
(3) r():/ e~ w(t)dt.

Now the left-hand side of this equation is a real number, and so the right-hand side is
too. Thus, using the fact that the real part of a real number is the number itself, we find

that

h )

b
ro = Re/ e w(t)dt.
a

Hence, in view of the first of properties (3) in Sec. 42,

b .
(4) rO_-—_./ Re[e"g”w(t)]dr.

But a
Re[e w(r)] < - (n2ERETALR bywGamScanner
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PROOF OF THE THEOREM 147

But f is continuous at the point -

.Hence, forege o .
§ exists such that ce. for each positive number ¢. a positive number

1f) ~ f(2)] <& Whenever |
Consequently, if the point 7

5 —~2| < 4.

+ Az is close enough to z so that |Az| < 8, then

Fz+ Az) — F(z) |
A, [ < —e¢lAz] = ¢
Az agiad=e
that 1s,
lim (2 + Az) — F(z) - f(2)
Az—0 AZ - 2
or F'(z) = f(2).
EXERCISES
1. Uge an antiderivative to show that for every contour C extending from a point z; to a
point 27,

- L
/(;’d:zm(:z'“—:'{“) (=i 1,2; 5. %

2. By finding an antiderivative, evaluate each of these integrals, where the path is any
contour between the indicated limits of integration:

i T42i . 3
(a) / 22dz; (b) / cos(l) dz; (¢) / (z—2)dz.
Jo Jo 2 J1

2 1
Ans. (a) ;(—] +i), (b)) e+ —: () 0.
-~ ()
3. Use the theorem in Sec. 48 to show that
(z—20)"'dz=0 (n==%1,%2,...)
JCy
when Cj is any closed contour which does not pass through the point zy. (Compare with
Exercise 13, Sec. 46.)

4. Find an antiderivative F>(z) of the branch f>(z) of z'/? in Example 4, Sec. 48, to show
that integral (3) there has value 2/3(—1 + i). Note that the value of the integral of the
function (2) around the closed contour C; — C in that example is, therefore, —44/3.

5. Show that

! 1 4e
o i = 18,
.[-1\’ dz > ( )

where the integrand denotes the principal branch

21 = exp(i Log 2) (Jz2l >0, —m < Argz < m)

'Y

re

of z' and where the path of integration is any contour fr.om 3= -—1 to z = | that, except
for its end points, lies above the real axis. (Compare with Exercise 6, Sec. 46.)

Suggestion: Use an antiderivative of the branch
| a 37
" = exp(ilogz) (I:l >0,-§ <argz < =

of the same power function.

-
L9
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Homework 8: Part 2

1: Let f(z) be a complex valued function, not necessarily analytic. Let z = z(¢)
be a smooth arc. Denote w(t) = f(z(t)).

(a) Prove the following chain rule:

of of =
/ _ 27 / o 1
w(t) = 2L () + 52 70, (1)
Note that in the above formula, we have used the following notation (com-
pare Exercise 8 on Page 71)

o _1(9 0N, o _1(0 0
62_2<8x ’ay>f’ az_2<ax“ay>f'

(b) If f(z) is analytic, then by (Homework Exercise 8 on Page 71) we have
% = 0. Show that in this case, equation (1) is reduced to the following
formula (compare Exercise 5 on Page 124):

0
w!(6) = 2L21(6) = £/ (=()2/ (0.
0z

2*: Show that w = sin(z) maps the vertical strip {z € C; —F < Re(z) < §} to

the region C\((—o0,—1]U[1,+00)) by showing the following steps.

(a) Show that
sin(z) = sinz coshy + i cos x sinh y.

(b) Use the identity cosh?y — sinh?y = 1 to show that w = sin(z) maps the
vertical line L. = {Re(z) = ¢} to one branch of the following hyperbola:

$2 y2

sin?(c)  cos?(c) =1

If ¢ < (resp. >)0, then L. is mapped to the left (resp. right) branch. If
c =0, then Lg is the y-axis, which is mapped to the v-axis in the w-plane
(w=u+iv).

e =
7 N

(a) z-plane (b) w-plane




(c) As cincreases from —7 to 7, visualize how the corresponding hyperbola
moves continuously from the left to the right, and how the opening changes

as follows:

ray (—oo, —1] — small toward to the left — large toward to the left —
vertical flat — large toward the right — small toward the right — ray
[1,400).
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sec. 47 UPPER Bounps FOR N
OR MODULI OF CONTOUR INTEGRALS 137

EXAMPLE 1. Let C be the arc of

; . the circ] - e ;
lies in the first quadrant (Fig. 47). Inequality (6)C Cilrllzllagugzegr?:]sﬁ(); tzh[; z = 2i that
=2
o TN
Jo 241 dz = 15"
This is done by noting first that if 7 s 4 point on C, then

lz—2l=|z+(~2)|5|z|+l—-2|:2+2=4
and
|z4+1|z||zl4—1|=15.

Thus, when z lies on C,

Z—2|_ -2 _ 4
E1f [l = 15
By writing M = 4/15 and observing that L

) = 7 is the length of C, we may no
inequality (6) to obtain inequality (7). £ J DOW IS

i

2i ¢

0 2 X  FIGURE47

EXAMPLE 2. Let Cy denote the semicircle
z = Re" (0<0 <m)

fromz = R to z = —R, where R > 3 (Fig. 48). It is easy to show that
(z+ 1Ddz

8 i =
®) e @+ HE )
without actually evaluating the integral. To do this, we observe that if z is a point
on CR,
lz+ 1| <zl +1=R+1,
24l = Jlzl2 -4 = R =4
and ¥
2
2 +9] = |zl =91 =R =9
Y

DY

R 0 3R ¥ FIGURE48
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. onCand f(2)1S the integrand 10 integral (8), then
This means that ifz 110] fﬂlij—’l_l_/ L i)‘*;llj ; .
If(@)] = Gﬁm =244z +9] | (R o i
er bound for |f(z)|on Ck- S.mcet eIl €Micire],
where Mg serves as ;ntloug][; i T eclium, ising

is w R, we may refe
R+ 1 and L.—:-JTR,

g TR
My = (Rz,_4)(R2-—9)

to write
—_wl < MgL
©) /CR 2+ D2 +9)
where , ( 1 . 1 )
e Bl T 5a
T(RP+R) R R? R

R4 R2 R2

R — oo, and limit (8) follows from inequality (9).

wh=meaE-9 Lo 2 (1-5)
%

This shows that MgL — 0 as

EXERCISES

1. Without evaluating the integral, show that
Y,
z+4 d
f ——l8 j <
cz°—1 cz2—-1

when C is the arc that was used in Example 1, Sec. 47.

6r
< .

(a)

T
< —
= 3

2. Let C denote the line segment from z = i to z = 1 (Fig. 49), and show that

dz
f —|<=4v2
&£
without evaluating the integral.

Suggestion: Observe that of all i o
ok the points on the i :dpoint i
closest to the origin, that distance o \/5/2 ne segment, the midp

S|

FIGURE 49
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UPPER B
OUNDS FOR MODULI 0F CONTOUR INTEGRALS 139

y of the triangle with vertices at the points 0, 3i, and —4,
1se direction (see Fig. 50), then

‘fc(ez—'z')dz

Suggestion: -z
ggestion: Note that |e? Il <e" + /x2 1 y? when z = x +iy.

~ oriented in the counterclockw

< 60.

y
3i

=gk o ¥ FIGURE 50

_4. Let Cg denote the upper half of the circle |z| = R (R > 2), taken in the counterclockwise

~ direction. Show that
272 —1
f R dz
cr 2+ 522 +4

Then, by dividing the numerator and denominator on the right here by R*, show that the

value of the integral tends to zero as R tends to infinity. (Compare with Example 2 in
Sec. 47.)

5. Let Cg be thecircle |z| = R (R > 1), described in the counterclockwise direction. Show

_/ that
InR
[ 082 1) o (TERE)
cr 2 R

and then use 1'Hospital’s rule to show that the value of this integral tends to zero as R
tends to infinity.

6. Let C, denote acircle [zl =p (0 <p < 1), oriented in the counterclockwise direction,
and sgppose that f(z) is analytic in the disk |z| < 1. Show that iF g~ represents any
particular branch of that power of z, then there is a nonnegative constant M, independent

of p, such that

- TRQR2+ 1)
~ (R2-1)(R2-4)

<27 M.\/p.

/ V2 f(2) dz
Co

i hes 0 as p tends to 0.
Th t the value of the integral here approac .
; ;}L:;;Jeg‘li?m- Note that since f(z) is analytic, and therefore continuous, throughoeut

the disk |z| < 1, it is bounded there (Sec. 18).
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But f is continuous at the point z. Hepce for each posit; e
- ) ositive nu
§ exists such that P mber ¢, a positive number

1f(s) - f(2)| <& whenever

|s — z| < 8.

if the point z 4 Az is close enough to z so that |Az| < 8, then
Fz+ Az) - F(g)

Consequently,

1
—f@)| < —s¢|Az| = ¢;

Az 1Az |Az|
that s,

e Flz4Ag)— Fiz)

Jim, =220 TO _
<
or F'(z) = f(2).
EXERCISES
1. Use an antiderivative to show that for every contour C extending from a point z; to a

~ " point z3,

1
n dz = n+l _ _n+l - y
/CZ == +1 (22 1) n=0,1,2,..)

2. By finding an antiderivative, evaluate each of these integrals, where the path is any
~ contour between the indicated limits of integration:

1+i T42i 7 3
(a) / 22dz g (b) f cos(~> dz; (c) / (z -2 dz.
0 0 2 1

1
Ans. (a) %(_1 +1i); (b) e+;; (c) O.

3. Use the theorem in Sec. 48 to show that
" (z—20)""'dz=0 (n==%1,%2,..)
Co

when Cy is any closed contour which does not pass through the point zo. (Compare with
Exercise 13, Sec. 46.)

4. Find an antiderivative F>(z) of the branch f>(z) of z'/< in Example 4, Se.c. 48, to show
——that integral (3) there has value 24/3(—1 + i). Note that the valqe of the integral of the
functionb(2) around the closed contour C, — Cy in that example is, therefore, —4+/3.

1 1+e™ 7" ]
/ 3 (1=,
- 2

where the integrand denotes the principal branch

7 = exp(i Log2) (Jz| > 0,—m < Argz < )

172

\ 5/ Show that
\/

of z' and where the path of integration is any contour fr_om §— _—1 to z = | that, except
for its end points, lies above the real axis. (Compare with Exercise 6, Sec. 46.)

jon: tiderivative of the branch
Suggestion: Use an an .

4
7' = exp(ilogz) (Izl > 0, - <argz < _f)

of the same power function.
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EXERCISES

_1. Apply the Cauchy-Goursat theorem to show that

/;f(z)dzzo

when the contour C is the unit circle |z| = 1, in either direction, and when

(@) f(z)=

-

“~

713 &) F@)=ze ™ (©) f(2)=

2+2+2
(d) f(z)=sechz; (e) f(z) =tang; () f(z) =Log(z+2).

2. V_Ifet Cy denote the positively oriented boundary of the square whose sides lie along the
]mes.x = =1, y = =1 and let C, be the positively oriented circle |z| = 4 (Fig. 65). With
the aid of the corollary in Sec. 53, point out why

f@dz= | f@dz
c, C

when
@ fO=3zry O Q=1 (t /22); © 10 =1
¥
&
¢,
‘ 1 4 x
FIGURE 65

\3.”If Cy denotes a positively oriented circle |z — z0|l = R, then

/ . 0 whenn = =%1,42, ...,
CU(Z—ZO) £=Y27i whenn=0,

according to Exercise 13, Sec. 46. Use that result and the corollary in Sec. 53 to show
that if C is the boundary of the rectangle 0 < x < 3,0 < y < 2, described in the positive
sense, then

\n—1 = 0 whenn=:i:l,:i:2,...,
/C(z-Z—l) dz = 27i whenn = 0.

4. Use the following method to derive the integration formula

00 , s
/ e ¥ cos2bx dx = ge_b (b > 0).
0
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22 d upper hori
~2? 5long the lower and.upp rizong
tegrals of € al legg

he in .
AR . 66 can be written

ular path in Fig.

a 2
- 2 2 . S % I'
2[) & dx = 2e" A e~ cos2bx dx
al legs on the right and left ¢y, .

(@) Show
of the rectang

i ic
and that the sum of the integrals along the vert

written "
P os - 2 i2ay
0
0

em, show that

Thus, with the aid of the Cauchy-Goursat theor

b
a 2 2 2
=l By -+b- ) .
/g ¢~ cos 2bx dx =e_b2/ eFdx+e " )/0 e’ sin2ay dy.
0
0

—a+bi a+bi

= o a X  FIGURE 66

(b) By accepting the fact that™
f ) e dx = ﬂ
0 2

and observing that

b b
j e’ sinZaydyl < f e dy,
0 0

obtain the desired integration formula by lettin infinity i :
a tend
the end of part (a). y g to infinity in the equation at

5." According to Exercise 6, Sec. 43, th
° 6, Sec. 43, the path C; from the origin t intz = &
2 the graph of the function defined by means of the equationgg SRS S

y(x) = {x3 sin(/x) whenQ < x < 1,
is a smooth arc that int ° : when.x =0
T e — alonn i;secm the ‘real axis an infinite number of times. Let C, denot¢
any smooth arc from Z;ghe f)rge?lll ?Xls from z = 1 back to the origin, and let C3 denoté
end points in common with %h 0 z = 1 that does not intersect itself and has only it
e arcs Cy and C, (Fig. 67). Apply the Cauchy-Goursdt

gg to pO}ar coordinates. Details are given " i
alculus,” 3d ed., pp. 680681, 1983.
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)!
» G
C
A"n\//\ 2\\
7 T 1
0 i3 .
e
FIGURE 67
theorem to show that if a function f is entire, then
f@dz= [ f)dz and / f@di=—- [ f@ dz
Cl . C3 Cg C3
Conclude that even though the closed contour C = C, + C, intersects itself an infinite
number of times,
/ fz)de=0.
c
i 6;,"Let C denote the positively oriented boundary of the half disk 0 < r < 1,0 < 8 < 7,
v

and let f(z) be a continuous function defined on that half disk by writing f(0) = 0 and
using the branch

: 3
f(2) = Jre®" (r >0,~5 <0< 7”)

of the multiple-valued function z'/2. Show that

/f(z)(lz:O
c

by evaluating separately the integrals of f(z) over the semicircle and the two radii which
make up C. Why does the Cauchy-Goursat theorem not apply here?

7. Show that if C is a positively oriented simple closed contour, then the area of the region
WV enclosed by C can be written
1
— | zdz.
2i ,/C

Suggestion: Note that expression (4), Sec. 50, can be used here even though the
function f(z) = Z is not analytic anywhere [see Example 2, Sec. 19].

8. Nested Intervals. An infinite sequence of closed intervals a, < x < b, (1 =0, 1,2,...)
is formed in the following way. The interval a; < x < ‘bl is either the ]eft-hflnd or
right-hand half of the first interval ap = x = by, and the interval @; < x < by is then
one of the two halves of a; < x < by, ete. Prcl))ve that there is a point xy which belongs

<Xx < Op.

to every one of the closed intervals a, < . |
SL)l/ggeStion - Note that the left-hand end points a, represent a bounded nondecreasing

< a, < ap+1 < bo; hence they have a limit A as n tends

$ f numbers, since do = 1en
:scfzz?affyosgow that the end points b, also have a limit B. Then show that A = B, and

write xo = A = B.
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en
m value of | f(z)]|on Cr, th
n!Mg

1" = "

maximi

(n = 1.2.)

(2)
Inequality (2) 1 called Cauchy’s inequality and is an immediate consequenc, 7

the expression
n! f(2)dz

(n) - —
fO@) =377 Je, @— 20"
itive integer. We need only apply the theorey,
the moduli of the values of contour integra]

(12= 1323"')a

hen n is a pos

in the theorem in Sec. 55w
bounds for

in Sec. 47, which gives upper

to see that
Mg

W) n!
" @)l = 5 e
in the statement of Theorem 3. This inequality is, of course, the same

drR (B =1,2:54)

where M 1s as
as inequality (2).

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the
lines x = £2 and y = £ 2. Evaluate each of these integrals:

et dz f cosz zdz
. b e A :
@ Jor—miD O ey e @ /C2z+ %
cosjlz e © tan(z/2)
c (2 — x¢)?

(d)

S dz (-2 < xp < ?2).
A d/:l”s' (@)2m; (bymif4; () —mi/2; (d)0; (e)imsec?(xp/2).
+ 2/ Find the value of the i : : .
¥ e e integral of g(z) around the circle |z — i| = 2 in the positive sense
1
(@) g(z) = ——; b -
22 e} ( ) g(z) = m
Ans. (a) m/2; (b) n/16.

\3/LetCb i i
3 e the circle |z| = 3, described in the positive sense. Show that if

25% i D
8(2) =/C - ds (2| # 3),

=g

the = 8mi i
hen g(2) = 8xi. What is the value of g(z) when |z| > 39

\1 Let C be any simple closed cont

write our, described in the positive sense in the z plane, and
3
8(2) =/ i ds
Show that g(z) c(s—2z)3 7"

N z1s inside C and that £(2) = 0 when z is outside.
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sgC. 57 SOME CONSEQUENCES OF THE EXTENSION 171

5. Shhow that if f is analytic within and on a simple closed contour C and zo is not on C,
then
f@de f f(z) dz
C =2 c (z—20)*
6. Let f denote a f:LlllCtIOI‘l that is continuous on a simple closed contour C. Following the
procedure used in Sec. 56, prove that the function

1 f(s)ds

2mi C =2

g(z) =

is analytic at each point z interior to C and that

' _ 1 f(S) ds
g (2) fc

T 27i Jo (s —2)?

at such a point.

7. Let C be the unit circle z = ¢! (=7 < 8 < ). First show that for any real constant 4,
“ eﬁz
— dz = 2mi.
c 2

Then write this integral in terms of 6 to derive the integration formula

¥4
/ ¢?*? cos(a sinf) df = .
0

8. Showthat P,(—=1) = (-D)"(n=0,1,2,.. .), where P, (z) arethe Legendre polynomials
in Example 3, Sec. 55.
Suggestion: Note that
(S2 _ l)n B (S _ 1)11
G+ D s+l

9. Follow the steps below to verify the expression

1 d
ro=L f(s)ds

i Jo (s —2)°

in Sec. 56.
(a) Use expression (2) in Sec. 56 for f’(z) to show that
flz+Aaz) = f'@) _1_[ fls)ds _ 1 ] 3(s — 2)Az — 2(Az)? £(s) ds
Az “miJeG=2° 2miJc(s—z-ADHs—2) :

(b) Let D and d denote the largest and smallest distances, respectively, from z to points
on C. Also, let M be the maximum value of | f(s)]on C and L the length of C. With
the aid of the triangle inequality and by referring to the derivation of expression (2)
in Sec. 56 for f'(z), show that when 0 < |Az| < d, the value of the integral on the

right-hand side in part (a) is bounded from above by
(3D|Az] +2lAzH)M 7
(d — |Az])?d?
parts (a) and (b) t0 obtain the desired expression for f”(2).

(c) Use the results in
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Homework 9: Part 2

1: Calculate the following integrals ({|z — zo| = R} denotes the circle with the
anti-clockwise orientation)

(a)

(b)

z—3
—dz.
/z1|_1 22— 1
/ (z —3)dz
o=z (=127

/ dz
lzj=2 (2 = 1)2(2 = 3)

2*: (' is a simple closed curve and D is the interior region of C. f is a complex
valued function defined on D. Assume that the real part and imaginary part of
f have continuous partial derivatives. Show that the calculation of Section 50
(using Green’s formula) is equivalent to the following Stokes’ theorem,

/Cf(z)dz:/Dg‘zClz/\dz.

Note that, by definition,

()

(d)

d(f(z)dz) =df Ndz = (gicdz + gjz_cdz> Ndz = %di Adz.

In particular, if furthermore f is analytic, then % = 0 and we have the Cauchy-
Goursat Theorem.
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EXAMPLE 1. Let C be the arc of the circle [zl =2 fromz =2 io z = 2i that

n the first quadrant (Fig. 47), Inequality (6) can be used to show that
| [ z—3
S 47r.
13

(7) Jc 2t + 1
This is done by noting first that if z is a point on C, then

g=2]= 2+ 1(=2)| = 7] + | =2 =242 =1

lies 1

and p
= =15

Thus, when z lies on C,

|z=2| jz—-2| 4
, ~4 = 4 o e

2 1 £ 411 — 15

By writing M = 4/15 and observing that L = 7 is the length of C, we may now use
inequality (6) to obtain inequality (7).

¥

20 ¢

0 2 ¥ FIGURE 47

EXAMPLE 2. Let Cy denote the semicircle
z=Re® (0<0=<m

fromz = R to 7 = —R, where R > 3 (Fig. 48). It is easy to show that

8) lim / Gl L
R—o0Jc, (22 +4)(22 +9)

without actually evaluating the integral. To do this, we observe that if z is a point
on Cy,

lz+ 1 <zl +1=R+1,
122 +4] > ||z]> — 4| = R* -4,

and

v

-.R 0 3
R *  FIGURE 48

1224 9| > [|z]* = 9] = R* = 9.

Generated by CamScanner



e R -
——

CHap,
138  INTEGRALS 1

Thi that if z is on Cg and f(z)is the integrand in integral (8), then
is means 718

- T T;z o = My
N = (22 +4)(2+9) T 12 +4]1224+9 T (RE—4)(R*-9)

i length of the semje:
where M serves as an upper bound for | f ()| on Cg. S.mce the leng € SeMicirg,
R : : . : sing
is 7 R, we may refer to the theorem In this section, using

Me=RE—2) (R -9
to write
e+Ddz | _ 40t
) iy (22+4)(Zz+9)
where
1 - (L L L)
(R +R) R _ Rz R
Mib=m_mHm—9 L - /1_2)
R R2 \ R2

This shows that MxL — 0 as R — oo, and limit (8) follows from inequality (9).

EXERCISES
1. Without evaluating the integral, show that
’ c+4 67 f dz | =«
43| £ == b =T
9 /cz3—lz_7 DN z=1|%3

when C is the arc that was used in Example 1, Sec. 47.

2. Let C denote the line segment from z = i to z = 1 (Fig. 49), and show that

dz
f — | <4v2
c 2z
without evaluating the integral.

Suggestion: Observe that of all the points on the line segment, the midpoint is
closest to the origin, that distance being d = +/2/2.

FIGURE 49
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3, Show that if C is the boundary of the trian

] _ ‘ gle with vertices at the points 0, 3i, and —4,
— oriented in the counterclockwise direction . '

(see Fig. 50), then

.[C(G:—Z)dz

Suggestion: Note that |e? — 7| < ¢* 4 VX2 + y? when z = x + iy,

=< 60.

)7
» 37

-4 0 e FIGURE 50

4. Let Cg denote the upper half of the circle |z| = R (R > 2), taken in the counterclockwise
direction. Show that

f De® r TRQR*>+1)
G +52+4 | TR -DhRI=4

Then, by dividing the numerator and denominator on the right here by R*, show that the
value of the integral tends to zero as R tends to infinity. (Compare with Example 2 in
Sec. 47.)

5. Let Cp be the circle |z] = R (R > 1), described in the counterclockwise direction. Show

\_/ that
L T +InR
/ Ofzdz <2JT(—),
ckr <

R
and then use I’'Hospital’s rule to show that the value of this integral tends to zero as R
tends to infinity.

6. Let C, denote a circle |z] = p (0 < p < 1), oriented in the counterclockwise direction,
and suppose that f(z) is analytic in the disk |z| < 1. Show that if z=!/2 represents any
particular branch of that power of z, then there is a nonnegative constant M, independent
of p, such that 5

<2rM./p.

f V2 f(2) dz
Cp

Thus show that the value of the integral here approaches 0 as p tend§ to 0.
Suggestion: Note that since f(z) is analytic, and therefore continuous, througheut

the disk |z| < 1, it is bounded there (Sec. 18).
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e of | f(@)on Cr, then

'M
[FP &) = % n=12,.. ).

maximum val

2)

Inequality (2) i called Cauchy’s inequality and is an immediate consequence o
n

the expression
]I! f(Z) dZ s a )
f(ﬂ)(z):.__- —.__——__—;_4_‘_1- (n-—— g Ly oos )y

0 c. (2—20)

2mi
. ihe theorem in Sec. 55 when 1 is a positive integer. We need only apply the theoren,
in Sec. 47, which gives upper bounds for the moduli of the values of contour integrals,

to see that .
n! R - \
If(")(ZON = EE'RJH—IZT(R gt = L2,....
where My is as in the statement of Theorem 3. This inequality is, of course, the same
as inequality (2).
EXERCISES

_ 1. Let C denote the positively oriented boundary of the square whose sides lie along the
~ lines x = +£2 and y = = 2. Evaluate each of these integrals:

e idz ]‘ cos z zdz

£ 2 b [ e dz; :

) cz—(mif2)’ ) cz@+8 L [c2z+ 1’
coshz tan(z/2)

d dz; S et =

(d) e Z (e) fc(z—xo)2 dz (=2 < xp < 2).

Ans. (a)2m; (B)mif4; () —7if2; ()0 (e)im sec?(xo/2).

2 I;lgd the value of the integral of g(z) around the circle |z — i| = 2 in the positive sens
en

1
( = —_— — e ——
a) g(2) a4 ) g(2) = T
Ans. (a) m/2; (b) m/16.

‘ ?3 Let C be the circle |z| = 3, described in the positive sense. Show that if

_ 25t ~5-2
0= [ T="2a ez,

) ";t_hen 8(2) = 8mi. What is the value of g(z) when |z| > 39
\4,/ i .
\d/ Let C be any simple closed contour, describ

write ed in the positive sense in the z plane, and
3
8(2) = ] L T ds.
Show that 2(2) c (s —2)?

= 6miz when z is ins;
N z1s1nside C and that £(z) = 0 when z is outside.
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5, Shhow that if f is analytic within and on a simple closed contour C and zq is not on C,
then

L(ZME_/ f(2) dz
c 2—2z9 c(z—z20)%

6. Let f denote a f_UﬂCUOH that is continuous on a simple closed contour C. Following the
procedure used in Sec. 56, prove that the function

1
g(z) = = f(S) 2
271’l cC §—2
is analytic at each point z interior to C and that
1 f(s)ds

W= | 22
¢ 27i Je (s — 2)?

at such a point.

.7./Let C be the unit circle z = ¢’ (— < 6 < 7). First show that for any real constant a,

/ ea:
/ — dz = 2mi.
¢ Z

Then write this integral in terms of  to derive the integration formula
T
f e*“*? cos(a sin6) do = 7.
0
8. Showthat P,(—1) = (=1)"(n =0, 1, 2,...), where P,(z) are the Legendre polynomials

in Example 3, Sec. 55.
Suggestion: Note that

(3‘2 _ l)n _ (S _ 1)n
(s+ D7 s+1°
_ 9. Follow the steps below to verify the expression

vy L f(s)ds
f (z)—m.]

¢ (v—2p°

in Sec. 56.
(a) Use expression (2) in Sec. 56 for f’(z) to show that
flz+A) - f'(z) 1 f)yds 1 ] 3(s — 2)Az — 2(Az)? |
'/; (s —z) ~ omi Je (S—z—Az)z(s—z)3f(S)dS' |

(b) Let D and d denote the largest and smallest distances, respectively, from z to points
on C. Also, let M be the maximum value of | f(s)| on C and L the length of C. With
the aid of the triangle inequality and by referring to the derivation of exprestion (2)
in Sec. 56 for f'(z), show that when 0 < |Az| < d, the value of the integral on the
right-hand side in part (a) is bounded from above by

(3D|Az| +2|Az))M
(d — |Az])2d?

(¢} Use the results in parts (a) and (&) to obtain the desired expression for £”(z).

Az i
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; : gl FlEN =
10. Let f be an entiré function such tha |f )| = omplex constant.

= where ai 1 .
/" pumber. Show that f fe] = 1(-111ZS inequality (Sec- 57) to show that théas;eccl?n,csl iderwan_ve
SiiggEaan Ust; (izlfl tﬁe plane. Note that the constant Mg in Y S Inequality
" s 7 whne
f"(z) is zero everyY

is less than or equal to A(lzol + R)-

58. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL

THEOREM OF ALGEBRA \ .

i be used to show that no entire function

s i ality in Theorem 3 of Sec. 57 can ctio

S;CU: htyasécr)lﬁgtl;nt 1}; bounded in the complex plz.me. Qur ﬁrs(tj .t?feoreltnwlzlere, which is
knovff)n as Liouville’s theorem, states this result in a slightly ditteren y.

Theorem 1. Ifafunction f is entire and bounded in the complex plane, then f (z)

is constant throughout the plane.

To start the proof, we assume that f is as stated and note that since f is c_antire,
Theorem 3 in Sec. 57 can be applied with any choice of 2o and R. In particular,
Cauchy’s inequality (2) in that theorem tells us that whenn = 1,

M
(1) 1f'(zo)| < —R’i.

Moreover, the boundedness condition on f tells us that a nonnegative constant M

exists such that | f(z)| < M for all z; and, because the constant My in inequality (1)
is always less than or equal to M, it follows that

M
2) | f'(zo0)| < =

where R can be arbitrarily large. Now the number

of the value of R that is taken. Hence that ine i itrari
1e of ; quality holds for arbitrarily large values
of R only if f'(z9) = 0. Since the choice of ot £

M in inequality (2) is independent

The following theorem is called
readily from Liouville’s theorem. ed the fundamental theorem of algebra and follows

1

Theorem 2, Any polynomiql

P(Z) =ag+azz+azz2 o — +anzn
of degree n (n > 1) pgq
that P(z5) = (. at least one zero. Thay s, there exists

(an #0)

at least one point 2o such

The proof here is b
: C icti
2. Then the quotient | / ;(Z%nitsri?;;“&“é Stl_]pp (;se that P(z) is not zero for any value of
& ntire. It is also bounded j v
: n the complex plan
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MAXIMUM MODULUS PRINCIPLE 177

SEC. 59

ExAMPLE. Consider the function f(z) = (z + 1)* defined on the closed

riangular region R with vertices at the points

2:05 2:2, and Z:i.

A simple geometric argument can be used to locate points in R at which the modulus
|f(2)] has its maximum and minimum values. The argument is based on the interpre-
ation of | f (2)] as the square of the distance d between —1 and any point z in R:

&’ =|f(@)| =z~ (D

As one can see in Fig. 74, the maximum and minimum values of d, and therefore
| f(2)], occur at boundary points, namely z = 2 and z = 0, respectively.

d] —2
R 0 2 x  FIGURE 74
EXERCISES

1/ Suppose that f(z) is entire and that the harmonic function u(x, y) = Re[f(z)] has an
upper bound i ; that is, u(x, y) < uo for all points (x, y) in the xy plane. Show that
u(x, y) must be constant throughout the plane.

Suggestion: Apply Liouville’s theorem (Sec. 58) to the function g(z2) = exp[f(2)].

\}/ Let a function f be continuous on a closed bounded region R, and let it be analytic and
not constant throughout the interior of R. Assuming that f(z) # 0 anywhere in R, prove
that [ f(z)| has a minimum value m in R which occurs on the boundary of R and never in
the interior. Do this by applying the corresponding result for maximum values (Sec. 59)
to the function g(z) = 1/£(2).

3. Use the function f(z) = z to show that in Exercise 2 the condition f(z) # 0 anywhere

in R is necessary in order to obtain the result of that exercise. That is, show that | f (z)|
can reach its minimum value at an interior point when the minimum value is zero,

4. Let R region 0 < x < 7,0 < y < 1 (Fig. 75). Show that the modulus of the entire
function f(z) = sinz has a maximum value in R at the boundary point z = (/2) + 1.
Suggestion: Write | f(z)|* = sin® x + sinh® y (see Sec. 37) and locate points in R

at which sin® x and sinh? y are the largest.

(n/2,1)

J

b4 X FIGURE 75
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5. Let f(z) = u(x, y)+iv(x, y) be a function thati§ coqtinuous o;aclosed bounded regj
R and analytic and not constant throughout th.e interior of R. Prove that the com
function u(x, y) has a minimum value in R which occurs on the boundary of g 4,
in the interior. (See Exercise 2.)

_6. Let f be the function f(z) = e* and R the rectangular region 0 < x < 1,0 < P

Iustrate results in Sec. 59 and Exercise 5 by finding poir?ts_ in R where the com
function u(x, y) = Re[ f(z)] reaches its maximum and minimum values,

Ponep;
d Never

POnepg

Ans.z=1,z=1+mi.

7. Let the function f(z) = u(x,y) + iv(x,y) be COHtinllf)US on a closed boundeg
region R, and suppose that it is analytic and not constant in the interior of R. Shoy
that the component function v(x, y) has maximum and minimum values in R which are
reached on the boundary of R and never in the interior, where it is harmonic,

Suggestion: Apply results in Sec. 59 and Exercise 5 to the function g(z) = — 1@

8. Let 79 be a zero of the polynomial

PR =a+az+a?+ - +a,7" Lo 2 U
of degree n (n > 1). Show in the following way that
P(2) =(z2—20)0(2)

where Q(z) is a polynomial of degree n — 1.
(@) Verify that

8 g = [~ eah 2y e i 2z 4287 k=2,3,..).

(b) Use the factorization in part (a) to show that

P(z) = P(z0) = (z — 20)0(2)

where Q(2) is a polynomial of degree n — 1, and deduce the desired result from this.
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then,
pn() =S(z) - § 2"
Z) = N(Z)=],z (z # 1).

Thus

N
lon() = 2
[l ==z
and it is clear from this that the remainders py (z) tend to zero when |z| < 1 but not
when |z| = 1. Summation formula (10) is, therefore, established.

EXERCISES

1. Use definition (1), Sec. 60, of limits of sequences to show that

1 ( 1 )
lim | — +i{ ) =i.
=00 _112

2. Let®, (n =1, 2, ...) denote the principal arguments of the numbers

(__1)”

5 n=1,2,..),

Zae= Lk

n

and point out why

lim ©, =0.

n—oQ
(Compare with Example 2, Sec. 60.)
\3/./Use the inequality (see Sec. 5) ||z,| — |z]| < |z, — z| to show that

if limz, =2z, then Ilim |z,|=|z|-
n—o0 n—0oo

4. /Write z = re'?, where 0 < r < 1, in the summation formula (10), Sec. 61. Then, with
< the aid of the theorem in Sec. 61, show that

00 2 00

rcosf —r :
Zr" cosnf = 3 and Zr” sinnf =
1 —2rcosf +r =

n=I
when 0 < » < 1. (Note that these formulas are also valid when r = 0.)
5. Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding result for a sequence of real numbers.

6. Show that

rsiné
1 —2rcosf + r?

oo o0 _
if S z=S then ) Z=S. )
n=I n=1
7. Let ¢ denote any complex number and show that

[o,¢] o
if ZZn =S, then ECZn = ey
n=1

n=1
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Homework 10: Part 2

1. Let w(t) be a complex valued function of a real variable ¢. Prove the
following inequality using the definition of integrals via Riemann sums:

b
< / [w(t)|dt.

Note that a different proof using a rotation trick was given in Section 47
of the textbook.

b
w(t)dt

2. Let f(z) be a complex valued function of a complex variable z. Prove the
following inequality by either using the definition of contour integrals via
Riemann sum or use a parametrization to reduce to the above case:

/C f(2)dz| < /C F(2)lldz].

Note that the right hand side is calculated by using a parametrization as:

/|f Jlldz| = /|f DIELOIL

|dz| = |2/ (t)|dt = /7' ()2 + i (£)2 dt =

being the arc-length differential element.

with



( ). 11‘/\ C
§ <, e e

J |

lfc? = < o [Haldel s & f lel=3

A

4

2. fen C A Ns
ng s o\l > X
1 18,4 \ (&(3}{-(0 C_) .q_—— @)42@)4:4

ogth of C= 5
> e %] < [l < 45
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v ,-(3btain the Taylor series
l\“ oo n
=D (z-11<o0)
e-=¢€ ZO Al
n=

for the function f(z) = €* by
(a) using f™(1) (n =0, 1, o AP |
sion of the function

z z 1
fO=737 3 1T+@Y4

o, 7 Z-—l
(b) writinge® =¢€" €.

3. Find the Maclaurin series expan

o0

—1)"
Ans. f(2) = Z 52_2_”_%2_24»+l (Iz| < \/'i).
n=0

4. With the aid of the identity (see Sec. 37)

, T
S = - Sln Z = e L]
Cos 2 )

expand cos z into a Taylor series about the point zo = 7 /2.

5. Use the identity sinh(z 4+ i) = —sinh z, verified in Exercise 7(a), Sec. 39, and the fact
that sinh z is periodic with period 277i to find the Taylor series for sinh z about the point
i = R,
s \2n+1
(z — i) :
AR, = Y — 77i| < o0).
" Xzzo o T

6. What is the largest circle within which the Maclaurin series for the function tanhz
converges to tanh z? Write the first two nonzero terms of that series.

. 7/ Show that if f(z) = sinz, then
fe0)=0 and F*VQO) = (=1)" (n=0,1,2,...).
Thus give an alternative derivation of the Maclaurin series (3) for sin z in Sec. 64.
8. Rederive the Maclaurin series (4) in Sec. 64 for the function f(z) = cos z by
(a) using the definition
el + it
e

in Sec. 37 and appealing to the Maclaurin series (2) for e? in Sec. 64 :
(b) showing that ?

Cosz =

1

n=0,1,2,..).
Use representation (3), Sec. 64, for sin z to write the Maclaurin series for the function

f®0 =(=D" and @+ =

f(2) = sin(z?),

and point out how it follows that

(4n)
0 - (2n+1) —
f™0)=0 and f 0 =0 (=19 - 5
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: LAURENT SERIES 197

10. Derive the expansions

l'
f

sinhz 1 2 I+l
T D
@F T ,,Zzo @n+ay <l <o)
sin(@®) 1 22 6 L0
®) 2 3_!+-5—!-_—';'!_+"' 0 < |z] < 00).

.11,/Show that when 0 < |z| < 4,

1 1 & "
42—22 _?4_.;—}_20431-}-2'

66. LAURENT SERIES

We turn now to a statement of Laurent’s theorem, which enables us to expand a

function : I ?mo a series involving positive and negative powers of (z — zo) when
the function fails to be analytic at z,,.

Theorem. Suppose that a function f is analytic throughout an annular domain
Ri < |z — 20l < Ry, centered at 2, and let C denote any positively oriented simple
closed contour around zo and lying in that domain (Fig. 80). Then, at each point in
the domain, f(z) has the series representation

O f@=) anz—z0)"+ > . - (R1 < |z =20l < Ry),
n=0 n=1 (Z - ZO)H
where
1 f(@)dz

(2 — =

) a, 77 /C @ — zo)™H n=0,12,...)
and
(3) By = 1_/ /&) az n=12..).

27i Jo (z — z9)~" !
§

FIGURE 80
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sc. 68 ExampLes 205

where C is any positively oriented simple closed contour around the origin. Since

bl — l,thena
/ e'* dz =27,
C

This methc?d of eyaluating Cerlta-in integrals around simple closed contours will be
developed in considerable detail in Chap. 6 and then used extensively in Chap. 7.

EXAMPLE 4. The function f(z) = 1/(z—i)2is already in the form of a Laurent
series, where zo = i. That is,

1 [e.0]
o D a—i"  (0<|z—i] <o0)

n=—0o

where c_» = 1 and all of the other coefficients are zero. From expression (5), Sec. 66,
for the coefficients in a Laurent series, we know that

1 f dz (n=0,%1,+2
Ch’ = “ . = ) ’ 3 v
2ni Jo (z —i)nt3 " )
where C is, for instance, any positively oriented circle |z — i| = R about the point

20 = i. Thus [compare with Exercise 13, Sec. 46]
dz _J0 when n # =2,
c(z—i)3 — | 2mi whenn = —2.

EXERCISES

1. Find the Laurent series that represents the function

1
fz) =2° sin(z?_-)

in the domain 0 < |z| < 0.
= (=) 1

2. Find a representation for the function
11 1
fO=1777"1+a/

in negative powers of z that is valid when 1 < |z| < 0. 3
o0 (_l)n—H
Ans. Zl -
n= P
3. Find the Laurent series that represents the function f(z) in Example 1, Sec. 68, when
I <z] < o0.

[o's)
(_l)n-{—l
Ans. E _ZZnT
n=1
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206  SERIES
‘ons in pOWErS of z for the function
:ag expansions 1
4. Give two Laurent series exp |
| )= — !
f&=21-2
i re valid.
. . which those expansions &
and specify the regions if which t o
N ! (0<lz|<l); ——Z—”- (1 < |z] < ).
A”S. Z: + -: + -55 n=3 p
n=0 £
5. The function § | |

—_—

f(z)=m=z—1 z-2

which has the two singular points Z = land z = 2,18 analytic in the domains (Fig. 84)
cdd B o

D : 2 = |g| =50,

. - 2
Dy = gl = L D, 1<|z| <2,
Find the series representation in powers of 2 for f(z) in each of thoioe domains,
oo X o . 1 e Bl
Ans. Z(?.’""' = 1¥z" i .Dy; Z—zm + —; in Dj; E T in D;,
n=0 n=0 n==! n=1
),‘
# s D
4 AN
/ s Dy N
/ 7 &, = \
/ 7 D \\ \\
l' 1" DY |
‘ \ @ T X
\ \ / ;
\ \ / /
\ ~ _7
\ i [ /
\ /
\\ //
\\ //
FIGURE 84

6. Show that when 0 < lz —1] <2,
(z—1" 1

z (e 0]
(z - D(z - 3) = _-320 2n+2 - 2(Z = 1)

n=i

7. (a) Let a denote a

real number, where — 1 i i
g < a < 1, and derive the Laurent series

Z(l" cosnf = M = i
n= 1 ~2aqcosg 442 20d Zan sinnf = gl

R o 25
1 - 2acosf +4*

n=|]

where —|
< @ < 1. (Compare with Exercise 4, Sec 61.)
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MAT 342 FALL 2014 Practice MIDTERM 11

NAME : 1D :

THERE ARE SIX (6) PROBLEMS. THEY HAVE THE INDICATED VALUE.
SHOW YOUR WORK
DO NOT TEAR-OFF ANY PAGE
NO CALCULATORS NO CELLS ETC.
ON YOUR DESK: ONLY test, pen, pencil, eraser.




2

"' WRITE YOUR NAME, STUDENT ID AND LECTURE N. BELOW !!!

NAME : ID :

1. (50pts)
(1) Calculate i, |i'| and |i|*. What’s the principal value of 77
(2) Does f(z) = 1/z have an antiderivative on the region C\[1, +00)? How about
the region C\[—1, 4+00)?



3

2. (50pts) Denote by D = {|z| < 1,Re(z) > 0} and by C' = 9D the boundary of D
with positive orientation with respect to D. Calculate the following integrals:

1)
/022dz.
)
S
3)

/C sin(z)dz.



4

3. (50pts)

Calculate the following integrals:

(1) .
e
dz.
/;+i|1 22 + 1

/ dz
s (2 = 1)3(2 = 3)3

(2)




4. (50pts)

(1) Assume that f(z) is an entire function satisfying Im(f(z)) > 1. What can you
say about the function f(z)? Explain the reason. How about with different
assumption Im(f(z)) < 1 or Re(f(z)) > 17

(2) Assume f(z) = u(z) + iv(z) is analytic and continuous on the closed disk
{|z| < 1}. Assume that u(z) obtains a local minimum or local maximum at
z = 0. What can you say about the function f(z)? Explain the reason.
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5. (50pts)

(1) Calculate the series:

(2) Calculate the limit:

lim Arg (z + (—1)”@) .

n—-4oo n



6. (20pts)(Extra credit)

Estimate the following quantity from above without calculating it:

)
V=t
z=10 2>+ 2+ 1
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NAME : ID :
1. (50pts)
(1) Calculate #, |#*| and [¢|". What's the principal value of #'7
(2) Does f(z) = 1/z have an antiderivative on the region €~+i-—~—*~c}3 How about
the region C\[—1.+2¢)? d:\(; ) -}UU MJ)
U ’

1) 1i= ety - o Ul tiEezon)) = ) oy sy
lﬁ‘]: @Q%wu‘) =g | . «
i’z ) s ol s el L o o gy
Poosipd vebhe of 7 Py g1~ erlai_ ilainn) ¥

(2)

i
Z2 dO% NOT }\MZ e 5 T

kil on e regin. C\(LI420) U fok ) =D,
Otherntse . Ho el of L abog Chaed curve i D, @
2o , H’&W@Ué/r jl?,:é 5’_6{8% [J?K )‘CZG: %)Lio |

2ale’®

On e vé’g#m« D, = C\ [—\,bo) N -

‘é‘ )Laj an wﬁé\MWQ 5#\@1 jiﬁ Mo %ﬁ&w:% LMLJL
of le: ‘
L&g@ = /éx’?(% f'%g. 0<ijg < 270 |

or ﬂgf);iw&.si-. 2076 < a’?<(_2n1'2)7b
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2. (50pts) Denote by 12 = {|z| < 1,Re(z) > 0} and by €' = @D the boundary of I
with positive orientation with respect to /). Calculate the following integrals:

(1)
/C."-‘!:.
J /‘\

./"l:"H:I:]. }) >

/.-»'in(:)d;
JO

2 =
- -TT At evE ~[~z)+) 20
- " . 2
f 2% z:f (u)zl(q‘)-dt: H‘f ookt = '7}-72—3],' =173

LZ) f ?‘*“JZ - f% /@-‘?9)2{_ € }Lg C{QZI% OlU" b;{% =70
f je*(d 2 )= j }Hz )cbé f (3] dt = 2] %20&“__”)_3:
o Blel= 243 =

(%) Berame safe) W‘“{yh o 5 ) bOVl C‘wdg’ 66%5@/ ‘t[/ﬂcwm
jc Sm[Z)olz? =]
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3. (50pts)

Calculate the following integrals:

(1) -
o7

dz.
,[:+,..] 2241

dz
g (2 —1)3(z —3)*

ng B : 2
(b‘ f el 3 - _,fi?ﬁtl @-1)e) ke
€7L ko
>

““QZ) J ‘_"z‘-ﬁ — e
T S 2z — —= -
— Lk,

@v L\.z i Jlg) 2,&@

22, Ola ) _ ‘ | 1
2! 'Jz\f @3)3] _| 7/“(“3){“4) @‘gh;‘L:'

(2)

e . | < <
e +)21) e R )2K\ — =32

A}

G retHv-EaTrS i



4. (50pts)
(1) Assume that f(2) is an entire function satisfying Im( f(z)) > 1. What can you

say about the function f(z)? Explain the reason. How about with different

assumption Im(f(z)) < 1 or Re(f(z)) > 17
' is analytic and continuous on the closed disk

(2) Assume f(z) = u(z) + w(z2)
imum or local maximum at

{|z| < 1}. Assume that u(z) obtains a local min
> = 0. What can you say about the function f(z)? Explain the reason.

() LG-&)):V&);.{ = _y <]
Fo)=utiv = 1= vrin = ef'ﬂ?): eV.e™
= ]e“'ﬂ""l e V<e! . Me fat &5 do cdhe
BY Liowille Thesem Jor entite fwbm, we fet eﬁt@zM:Ca
= )= -thg(. 2 comstont |
Swilbl, + vhen Do(il)<l, wider €77z @V
Hon |etf|=evV<e £ gﬁ[ ente = & = comtont
« When Peg('))il,“”“"“' o= o=V Jﬁdéa Constzand
@) [onssder e}:aeu‘ew_ I@I:Eu

2 1 ohbams @ (foal) Wosimm &t g0, then & obtuins o (foal)
howinum Gf 220, @ » okso onlfle o D S, %#e

Mobdus pricipls, &= ok =5 4 = cokind.
lf W obtats & (foal) wivivs 6t 220 Yo coniden e-f:é-u—iv

3 gk &fﬂg’ e some a»auwl Wejgé i e“"[:aw‘fud,:;;w_
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5. (50pts)

(1) Calculate the series:

(2) Calculate the limit:

nli_}}lm Arg (i + (—1)”%) :
o |
) X EEz ¢ — _i%"@?)w
e (2¢) Nooe mer (2y)™ = )
b I___ _2-57
=
o —< ) —]=2y
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6. (20pts)(Extra credit)

Estimate the following quantity from above without calculating it:

\/| 02 +z+l w
f z‘_\“ CL | _ j’ ¥ & &
= v € S_ 33‘:____
JL o 2y JR=), j?ﬁ;ﬂ /O[E'

<l Eabl ),
jf?l:lo 152[2_;8(‘_[‘\/0[?1

= |
LZ{JD ,027— )Ol ,

e 727@[ . 2207(3
89
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P ' . - ’I ] L
; f ;[[ ;mmrs in some ummhu domain about Zo, then it is the Laure,
converges to f(2)art

o
- thod of proof here is <imilar to the one used in proving . Theorem | Ty,
1e me
ot ¢ of this theorem tells us that there is an annular domain about zg such thy,
1ypothesis _

e
j‘(:_) == 3 "ln(: - :‘())”

f h point z in it. Let g(z) be as defined hy equation (4), but now allow n to p,
or eac Z . Let g(z

a neuaﬁ\r[; integer 100. Also, let C be any Ct ircle u]OUﬂd the am‘lUIUS centered at - 20
(md fﬂ\t.n in the positive sense. Then, using the index of summation m and adapting
the()tlem 1 in Sec. 71 to series involvi m both nunnwatwe and negatlve powers of
- — 70 (Exercise 10), write

/g(:)f(.‘)(::: Y (/ g(2)(z — z20)" dz,
JC ‘ m-=—X v e
or

| [ f(dz - / m s
9 R — e o Cimn 2(2)(2 - Z()) dz.
O} 2mi /( (z — z0)"*! ,”;x e

Since equations (6) are also valid when the integers m and n are allowed to be
negative, equation (9) reduces to

: f(2)dz
= e :0.:&1112“”,
2mi /C (z — :0)n+1 Cn (n )

which is expression (5), Sec. 66, for the coefficients ¢, in the Laurent series for f in
the annulus.

EXERCISES

1. By differentiating the Maclaurin series representation

,_Z =S¢ Ga<n,

n=0
obtain the expansions
l—z) Z(’H‘] (Jz| < 1) N
n=>0
and
2 oC
T =X+ (< 1),
n=(
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. 72 UNIQUENESS OF SERIES REPRESENTATIONS 219
2. By substituting 1/(1 — 2) for z in the expansion

T =2+ (2l <.

found in Exercise 1, derive the Laurent series representation

i_i(—l)"(n—l) |
B 2y (I <lz-1| < 0).
(Compare with Example 2, Sec. 71.)

3. Find the Tavlor series for the function

I 1 | 1
z 24+(2z-2 2 1+(z-2))2
about the point 2y = 2. Then, by differentiating that series term by term, show that
} 0

1 z—=2\"
S = e n (7)) a-2<o.

“~

4. Show that the function defined by means of the equations

T (1 —cosz)/z> whenz #0,
FA=\1n when z = 0

is entire. (See Example 1, Sec. 71.)

. Prove that if

wn

COS Z

— "~ —  whenz# %n/2,
72 - (m/2)*

f()= I
= when z = £7/2,

then f is an entire function.

6. In the w plane, integrate the Taylor series expansion (see Example 1, Sec. 64)

1 Z(—l)”(w— D" (w—=1l<D

u n=0

its ci ) = ) = 7 to obtain the
along a contour interior to its circle of convergence from w = I tou

representation
00 n+1
D"y -— 1 <1).
L()g:: -——"———L_l) ([" I ) b

n=I
7. Use the result in Exercise 6 to show that if

Log z .
R g S when z # 1
f(«—) = s _ l

-~

and f(1) = 1, then f is analytic throughout the domain

0 < |z] < o0, g < Argz <m.
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220 SERIES CHAp 5

) o VR — m) - -
8. Prove that if f is analytic at zo anc f(z0) = f'(20) = S Z0) = 0, thep the

function g defined by means of the equations
(2) -
_,,_,_j,‘_r,, — when zZ # 20,
(: . :U)-n + |
.:\.:"',‘ -— —_ ‘
) Fm+D (70)

l e when Z = 2o
p ‘ ¥
\ (m —+ 1)!

is analytic at Zo.

9. Suppose that a function f(z) has a power series representation

o0
n=0
inside some circle |z — 2ol = R. Use Theorem 2 in Sec. 71, regarding term by term

differentiation of such a series, and mathematical induction to show that

o LY |
f(n)(:) — Z M Atk (: _— :O)k (n = O, 1, 2, ‘% )

!
— k!

when |z — zo| < R. Then, by setting z = 2o, show that the coefficients a, (n =0, 1,2,...)
are the coefficients in the Taylor series for f about zo. Thus give an alternative proof of
Theorem 1 in Sec. 72.

10. Consider two series

0 00
b
$1(®) = E an(z —z0)" and S$3(2) = E —
0 ey N 20)"

yvhich converge in some annular domain centered at zo. Let C denote any contour lying
in that annulus, and let g(z) be a function which is continuous on C. Modify the proof
of Theorem 1, Sec. 71, which tells us that

fcg(z)Sn(Z) dz = Za,,fcg(z)(z —20)" dz,

n=0

to prove that .

/Cg(z)Sz(z)dz = Zb,,f _2@ dz

n=I| ¢ (z ~zg)"

Conclude from these results that if

o0

5(2) = Z cn(z—20)" = Zan(z —z0)" + i i

n=-—00 n=0 (z = 20)" .

n=1
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sec. 77 RESIDUE AT INFINITY 237

EXAMPLE. 1t1s easy to see that the singularities of the function

(1 - 3z)
(1 + z)(1 +214)

all lie inside the positively oriented circle C centered at the origin with radius 3. In
order to use the theorem in this section, we write

1 1 1 z—3
8 “f(-):—-.
@ 2°\z) G+ D@+

[nasmuch as the quotient

f2) =

z—3
(z+ D4 +2)

is analytic at the origin, it has a Maclaurin series representation whose first term is the
nonzero number —3/2. Hence, in view of expression (8),

1 /1 I 3 5 " 3 1 ,
“:f(':) - *54““124-6121 a3z e =—5-;+a1+azz+a3z =

for all z in some punctured disk 0 < |z| < Rp. It is now clear that

1 1 3
a0 L‘zf ()] ==

&

~

and so
. .3 _ 3
9) / z (1 =32) iy e= 2m’(———) = —3mi.
C(l+z)(]+2z4) 2
EXERCISES
1. Find the residue at z = 0 of the function
1 z—sinz cotz, sinh z
(a) -~ I_,; (b)zcos(:); (c ey fd) et (8)24(—1—3_2)'

Ans. (a) 1; (b) —1/2: (o) 0: (d —1/45; (e) 7/6.

2. Use Cauchy’s residue theorem (Sec. 76) to evaluate the integral of each of these functions

around the circle |z| = 3 in the positive sense:

| g1
wr '—Z) 2 -1,
(a) exP(g 2w %%(T)?; (© ¢ exP(z)' Da—zm .

Ans. (a) —2mi; (b) —2mife: () ni/3; (d) 27i.

3. In the example in Sec. 76, two residues Were used to evaluate the integral

-/_?_{__:-ij——dz
C 2(z— 1)

where C is the positively oriented circle |z| = 2. Evaluate this integral once again by

using the theorem in Sec. 77 and finding only one residue.
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CHAP, 6 “

a single residue, to evaluate the integra] of
— 2 in the positive sense:

1

238 RESIDUES AND POLES

4. Use the theorem in Sec. 77, involving -

of these functions around the circle |z|

4 } ‘
(a\ 1‘0 3; (b) ‘i_'js (C)

Ans. (a) =2mi; (b) 03 (¢c) 2mi.
| = I, taken counterclockwise, and use the followmg steps to

5. Let C denote the circle |z

show that
| i 1

f exp(: + ':') dz = 2xi Z;) m
c n=

</

aurin series for e° and referring to Theorem 1 in Sec. 71, which

(a) By using the Macl _ : :
gration that is to be used, write the above integral as

justifies the term by term inte

= 1 1\
ZBIH ‘/(.v txp(-\:’)d\,.
n=

(b) Apply the theorem in Sec. 76 to evaluate the integrals appearing in part (a) to arrive
at the desired result.
6. Suppose that a function f is analytic throughout the finite plane except for a finite number
of singular points zy, 22, . . ., ;. Show that

Res f(z) + Res f(2) + - -+ + Res f(z) + Res f(z) = 0.

=7
L=<n

7. Let the degrees of the polynomials
P@=a+aiz+a’+ - +a "  (a, #0)
and
Q(2) =bg+ bz + bz? + - - + by " (b # 0)

be such tt}at m > n + 2. Use the theorem in Sec. 77 to show that if all of the zeros of
Q(z) are interior to a simple closed contour C, then

P(z)
c 0@ ©=0
[Compare with Exercise 4(b).]
78. THE THREE TYPES OF ISOLATED \

SINGULAR POINTS

We saw in Sec. 75 that the theor
isolated singular point at z,,

» y of residues is based on the fact that if f has &
then f(z) has a Laurent serjes representation '

(1) f(Z)=Zan(Z—-Zo)"+*—bl-—+ b2 +...+_m_b"
n=0 2=2 (z—zp)2 (z — zo)"
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: - elop in gre
oo cections of this chapter, we shall develop in greater depth
In the remaining sectl . B et s :
theory of the three types of isolated singular p'omtsw\ pha
be on useful and efficient methods for identitying po
residues.

: SIS wij;
Jes and finding the correspgy ding

EXERCISES

1. In each case, write the principal part of
determine whether that point is a remova
or a pole:

the function at its isolated singular poin and
bie singular point, an essential singular Doint

COSZ 1

1 2 sinz
(a) zexp(-z-); (b) E—Z;; () z ! (@ z (€) (2—2)%

2. Show that the singular point of each of the following functions is a pole. Determine the
order m of that pole and the corresponding residue B.

i em e = e iy — e;p(zZ); (©) ffi(zlz))z
Ans. (@) m=1B=-1/2; (b) m=3, B=—-4/3; (¢) m=2,B=2¢
3. Suppose that a function f is analytic at zo, and write g(z) = f(2)/(z — 20). Show that
(a) if f(z0) # 0, then zg is a simple pole of g, with residue f(zo);
(b) if f(z¢) = 0, then z is a removable singular point of g.

Suggestion: As pointed out in Sec. 62, there is a Taylor series for f(z) about 2o

since f is analytic there. Start each part of this exercise by writing out a few terms of
that series.

4. Write the function

8a’ 72
f@)= (z_2a-|?ZZT (a > 0)
as
9@ 8a3z2
f@) = G—ap where ¢ (z) = ol

Point out why ¢(z) has a Taylor series representation about z = ai, and then use it to
show that the principal part of f at that point is

z—ai (z—ai)®  (z—ai)®

$"(ai)/2  _¢'@) (i) i/2 a/2 %

e 14 al
z—ai (z—ai) (z—ai)

80. RESIDUES AT POLES

.V(\i/het'l a function f has an isolated singularity at 4 point zq, the basic method fOf
i e_nt1fy1ng 20 as a pole and finding the residue there is to write t,he appropriate Laurer®
series and to note the coefficient of 1/(z — Zo). The followin e

i Vides
alternative characterizatio g theorem pro
n of poles and : - i often
more convenient. 2 a way of finding residues at poles that1s

Generated by CamScanner



PZI(I 3 T@AJ’ ones &} é‘ (éoﬁé@rﬁl. Q{ 53—‘2 o ;_ \/‘
_._l__..:_ l — ‘ _ , @ n 8_2 h £ n 1
2T @R 2(,+;}—_,a)—~§'t€0é" = ) Lg% /:—M
D,Hawwk “E@nn Lj derm / ?f@f\< 5
>
__i —_— h S\l i ., M
it
2 “l—l:_— " NH) (=2
2= S tlEB - 120eE) . kil
4 )=l :
J[?)-< = aasz_;:tﬂ@f’.‘:l—%*%—‘ -
‘:_11— =)
ez — I (f*-‘g,— +2 )
= \—- L & e"”
= = 3 4 +
s i {_Dﬂgn / W D
- ,%SW Lnalyire @emg gc C so entie
T - L _—..
| W 4w Sﬂ )" ’W ]}<l ] ?/\‘ 5 :
: | T )
JW%% derm-. r\“’/

t | gp SEN ff gndw  El<l

P Dadd 4 1 AT LT

i w he» Lo N+ (gﬂ)“
l - I . — Lfﬁ%-. f.;&l) S
gy Eer )
“ T My fed)”
L he+| ne) h

Generated by CamScanner



— “‘"'__"—"\\.6 &=
L A T ()
{-[&) ((‘)*— = ':’ &o) ~0 .j ZE) = {Qn-ﬂ ?] -’d_l_ :%[ ?) +
R {{?) [Mﬂ) j !'Mﬁ [;h+3)
(g_za)rrrﬂ i Q’)\—ﬁ ).! + @1+2)! (?ﬁ Zc) _'_ %_*?)é,l [? g ) ""

= 2 4R ow o el of 2
[dﬂ&&ﬂﬂeﬂdldhu42

)7237 ,
-1 (a) 1
— -
C - e Z‘TiEZ ‘gL{)~?+22~ Yo do) 42
' /
= ka3t = |
D) zwfl)= - Ly
-[a)b-é? (/ ETeﬂ -+ a&&%rt_ ): R “L_+ L
=€ 1 2423
= Bes 2w (3) =
() ?—s;? - (?__31723+ Lo )
= HEAS A
=N Z-ShR
> ?ijs == )
e AT o P i S M 7 P A A5 2

Generated by CamScanner



P, ] m tetzg . s l~'§rzz+$z‘*—--—-
G4 — o i -

84—‘&‘\18 -
2+ (=- Setrgen.).

£

~ 1 terL
- ‘g; %’_ ‘_I_ )—lg?_{L BE e
e N %2\)
:_L _ 2 féo
@s—(li8+ g2t ) 1+ +{fe QLEM J¥ (et . )

= (14 L)y (o
| Jet (i 44 Rt et 4 o)

) }-—*—‘L. g ‘3{—)_ .
8&*( B2 ‘)"\Zo\ﬂig#_{_()[@é)) /{l 1

—

- gy w=
=g dd S w0l )
SE L 40k) = p e |
| &= 84\__4—\?
©) sz _ n
24(-2) = 3p TR )
\‘- ! 2 ;
) ( &L i __éz'(H‘?g+Ié§gﬁ“")'/l+@l+@4+u)
e S }—f- : .H) 2
23 40 ) =Ly 7
=+ Lo
=5 ey @z
2o ?4(’;8)) - ?

Generated by CamScanner



Py . $
r=37.04). j((sz): ‘925 _ C: lzl=3 —)—

Mezd 5 saguboty e dls €cle - 220

-..'z ;
e ~— }‘-Z_";_' 2—"' “L l
2 T — = - — ——
< S ST E T s Efjt[l?)h_ )
= e~¢
{2 = 2 Q%LmQZ) (»l)~~.2752

(b) 7[?)‘ e Thee 2 one s‘%&wy, 2=

Z-)* -
¥ = G-1)-|
ey N e ()~ -
@Fl){ 2 \a — e *—4_’
Cg ‘.) (?—-O?‘ “Q[E'%i ?L‘}‘J‘—_'h)

= P €F - | ] \
2=0 G T =7 : e i !
) c /’?! =5 @_Ua 0(8 =20 @2) %_g_l

CC)L 5.0° Q\M; £=0
gz,e:l?— = e ( el dlod )
I+ s L '&)a‘{'—‘_t\‘)g‘l‘”'): ZZ+2+§_+-§L'~@L+' -

S A - J
= Pgé262)~ / >f oe¥dz= 2z z_}ggé?eé;%;‘:%f

24
A 2= The e 2 5»39&,,,;,% e He Covele . §~—2

Coramil, 2= —?-‘i-“ Hz
VR =22~ Z(?z) &2 2{1-?) e E‘ = (+2) 4 (H?'F&)*" )

:"j‘ll’f“(.}‘f‘“i* )“\7 g‘ag:;“ ;

Generated by CamScanner




Noed ) 2-L-

":7?@%0[[2):%) = f i

(2]:2 2

Generated by CamScanner



P& . (a). ‘?‘9‘"{9{?): 8'[{+%+%é)2+‘§] Jng— )
=& = L s +3( - REy Fublal Siguley E0.

— 09
— = ____
R e %
naipal part — _ & by« |
P '}l Pl)%»—gﬁga&?ﬂﬁ {)a,y{_ %_‘_ (n"rl!'?" A%/R(#%J”ﬂ'/y'
“L@Hm = ¥Zoo ZZ Qi @%@Wl Q.}ja&zw‘? )

) = bl e
R B

I

EH-)® @) D)t | |
e T &) gﬂ“) = (Bl 34 s

Aﬁ, past %LWFM{) -_{_ = -l &g ple ﬁlm’ﬁé@r .

CC) ;f}’\,}? ’?“3‘?2 '{_ érl
= 2

Pﬂ‘nu‘}mg FM = = 2y B lesmevadle SW"“’? ‘

= § S8 L2t

[

_—-L- 2 [
Les < + T

in?cﬂ }%W‘l': ‘E’L = Rop B @ Poleu({ ovdler- )

-—j""" = C PR prweall pat :%gl?i)? = —g:z%\apaégalw
3§

Generated by CamScanner



IREIKC qf(e):%;?_ C: lel=3 @7 , -

ﬂme B tne g.t-ﬁd’mﬁ(lj Mz chL &ircle Z=0.

N 72
8 -2+ - -

L et L g ]

o F R R Ry UL
|

|

| sy e % , -2 ,

lbey 22 B2 = 2/21-5-% iz :227'-[»0:—2/‘{2‘.

-2 ,
- e é % Thee B ome Shelondy 2= |

.,_? - -
e B Ry 5 NS
| T Ty = (-4
5 & “eldp-dti-)

o3 -2 \

! =) Pgé-g._‘- | -

2=, (B2~ = L : ¢ Rl
| &0 &) ¢ . 227 ) Res S

€). wet Sigelay. 220

.Zz_e%r: 2( J
" 1+=-+~'—(§/+ = 2 4@d L Lty

= Pz% (Ezg‘l
> 2 ?01.? ot I
| f 2 3@ ée T:‘?
( ?:I
| TR . Thee bre g"j’*&u?’% wide o Covele . &=
CM’GWJ, L= - -&.l_, e
2z <

ol s e M o St k5 i e e i i e o i

ol 222; £ 2t
Fig = ?ﬂ 2 Wlﬂﬁz @L‘f‘fi' @2

2-(2-2)
- p% | - 2+t _ B
= 2oz g J2ep = T3

i flﬂvs o 2= xi RS Gengrated Py Gar Sognner



D POLES

:46 R.\'I'E\':

- ‘ > SC¢ 16
fite out a few terms in the Laurent series
e 1S 1 {8 W = )

the desired residue . L (22
L[| ‘"J--r‘+-~)i::‘~.(;;‘4.*>,..,
fl) = I - ' I = 5 4 6! J < - 6!
] ] - : of :, 25 (0 < 2] « 50)
= = - 3 6!

S ‘ > of order 3. the re
s hat f(2) has 2 simple pole at = = 0. not a pole of order 3, the reside
1S SNOWS . 4

- =0 being B =1 V3
EXAMPLE 5. Since -2inh 7 is entire and its zeros are (Sec. 39)
n=0,£1,%2,.

7z = nmi
the point 2 = 0 is clearly an isolated singularity of the function
¢
|
e = -2sinhz
Here it would be a mistake to write
¢(2)
() = —— where ) =
f(@= 2 whe ¢(2) ey
and try to use the theorem in Sec. 80 with m = 2. This is because the function ¢-
¢ not even defined at z = 0. The needed residue, namely B = —1/6, follows at once
from the Laurent series
] ] 1 1 7
=5-¢ 7 it WU<kl<m
z2sinhz 22 6 360"

that was obtained in Exercise 5. Sec.73. The singularity at z = 0 is, of course, a pole
of the third order, not the second order.

EXERCISES

1. In each case, show that any singular point of the function is a pole. Determine the order
m of each pole, and find the corresponding residue B.

2+ 1 22 +2 Z 4 e’
(@) —; (b) ; ( ); :
2249 z—1 (©) 2z + @ 22+t
_ 3+
Ans. (a)m:l.B:T; by m=1,B=3;, (¢c)m=3,B=- lb:

(d) m:l,B::I:—l—.
2n

2. Show that )
plf |+
(a) RPL", i 7_2— (12l > 0,0 < argz < 27);
T+2

(bh) Res—ﬂg—“— =
=i (2% +1)? 8

172 :
1 —1
(c) Res—h_:h .
= (2t 1) 7 (|2 > 0,0 < argz < 27).
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EXAMPLES 247

A [ Ondinnras' A . <

1
Ans. @) m=3,B = —: b)m=2 8= —1
6 L] 2-
_ Find the value of the integral

[ 323 +2 :
c(z=1)(z2+9) “©

taken counterclockwise around the circle (a) [z - 2]
Ans. (@) mi; (b) 6mi.

. Find the value of the integral

=2;(b) |z| = 4.

f dz
c2(@z+4)’
taken counterclockwise around the circle @) |zl =2;(b) |z+ 2| =3.

Ans. (a) mi/32; (b) 0.

./ Evaluate the integral

coshmrz
£
cz(2+1)
when C is the circle |z] = 2, described in the positive sense.
Ans. 4mi.

. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of f(z)
around the positively oriented circle |z| = 3 when

G . =T
2(z=DQ2z+5) l+z
Ans. (a) 9mi; (b) 2mi.
. Let zo be an isolated singular point of a function f and suppose that
¢(2)

where m is a positive integer and ¢(z) is analytic and nonzero at zo. By _applying
the extended form (3), Sec. 55, of the Cauchy integral formula to the function ¢(z),
show that

(@) f(z) =

f@@=

3

as stated in the theorem of Sec. 80. )
Suggestion: Since there is a nelgh!?orhood |z
analytic (see Sec. 25), the contour used in the exten

the positively oriented circle |z — 20l = e/X5€Nerated by CamScanner

— zo| < ¢ throughout which ¢(z) is
ded Cauchy integral formula can be
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264  APPLICATIONS O

eoral on the right in equation (3) tends to 0 g5 p g

at when R > I, 5

Next, we show that the int

. R h
to 0o. To do this, we observe t .
5+ 1z |z

So, if z is any point on Cg: kL ;
____l_f_-<MR where MR—Rﬁ—l’
|f(Z)| = |Z6+ ll =

and this means that

4)
ince the number
ici Cr. (See Sec. 47.) Since
7 R being the length of the semicircle Cr s

f@) dz| < Mp7R,

JCr

nd since the degree of the numerator is lesg than |

yotient must tend to Zero as R tends to 00, Mope
ator by R® and write

is a quotient of polynon?ials in r[f taq
the degree of the denominator, tha .
precisely, if we divide both numerator and denomi

it is evident that Mzm R tends to zero. Consequently, in view of inequality (4),

lim | f(z)dz=0.

R—00 &,

It now follows from equation (3) that

I R dx _21-:
RI—’H;O./-Rx6+1_ 3

R
P.V./ ir __ %
_rx8+1 3

Since the integrand here is even, we know from equation (7) in Sec. 85 that
L T
) | =%
g x*41 B

EXERCISES

Use residues to derive the integration formulas in Exercises 1 through 6.

/00 dx i
1. =_.
0o x241 2

2 /WL_”
" P+ g

or

.
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EXAMPLE 265

~ dx T
3. [ 41 =2\/§'
oo y2dx b4
4. [ x4+ 1 =€_

e x=dx -
’ L (xX2+1D(x24+4) " §°

N

|

5

o 6% B -
A (x2+9)(x2+4)2 ~ 200
Use residues to find the Cauchy principal values of he integrals in Exercises 7 and 8

7 [%32+2x+2

g / xdx
"o (24 D24+ 2x+2)°
Ans. —m /5.

9, Use aresidue and the contour shown in Fig. 101, where R > 1, toestablish the integration

formula
/x‘ dx _ 2n
g FL g8
y
Reizm,%
0 R =x
FIGURE 101

10. Let m and n be integers, where 0 < m < n. Follow the steps below to derive the
integration formula

(a) Show that the zeros of the polynomial z¥" 4 1 lying above the real axis are

2k + D _ _
ck=exp[:T k=0,1,2,....n—1)

and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 83, show that

ZQm 1

E{—ec?zz"ﬁ—l ~

ol Gkt Da k=0,1,2,....8—1)
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9
~1
'

JORDAN'S LEMMA

£XERCISES

Use residues 1o derive the integration formulas in Exercises 1 through §
%) ougn o,

pem cosxdx - ob -
— = €
I ]_x (x?+a°)(x?+b2) g2 _p2 T N T) (a>hb=>0).

X cos ax b g
4 / dr_;e “ a>0).
0

241

cos ax

ol TR dr= 4[‘“ +ab)e™" (a>0.b>0).

-

%0 xsinax i S
4. /_?C 14 dx = —<e "sina (a > (),

x y3sinax _ :
Use residues to evaluate the integrals in Exercises 6 and 7,
xsinxdx
v [x D+’
xsinxdx
b / @+ DI+

Use residues to find the Cauchy principal values of the improper integrals in Exercises 8
through 11.

8. sinx dx
/ xX24+4x+5

T -,
Ans. ——sin 2.

e
9 /‘“’ xsinxdx
C o X2+ 2x 42

Ans. E(sinl + cos 1).

10. f°° (x+1)cosxdx
o X244x+5

Ans. — (sin 2 —cos2).

e
11./ _oesvdx 5 .
oo (X +a)2 + b?

12. Follow the steps below to evaluate the Fresnel integrals, which are important in diffrac-

tion theory:
= I 1 [z
/ cos(x?) dx —--/0 sin(x“) dx = AR

0
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MAT 342 FALL 2014 PRACTICE FINAL EXAM

NAME : 1D :

THERE ARE NINE (9) PROBLEMS. THEY HAVE THE INDICATED VALUE.
SHOW YOUR WORK
DO NOT TEAR-OFF ANY PAGE
NO CALCULATORS NO CELLS ETC.
ON YOUR DESK: ONLY test, pen, pencil, eraser.

Q|| COf| || S| TY| H=|| W DN —

—_

Tota




"' WRITE YOUR NAME, STUDENT ID. BELOW !!!

NAME : ID :

1. (50pts) (a): Find complex numbers z such that e/* = 2(1 — 7).
(b): Solve for z such that cos(z) = 2.



2. (50pts)

(a): What’s the image Dy of the region D; = {z € C;0 < Re(z) < 7} under the
map w = 127

(b): What’s the image of the region D (from above) under the map w = e*?



4

3. (50pts)

(a): Suppose f(z) = u + v is analytic. If we know that u(z) = 23 — 3xy?, what
equations does v satisfy? Solve them to get v = v(z).

(b): Assume that f is an entire function. If there is an analytic function g(z)
satisfying f(z) = e9*), show that f(z) has no zero point. Calculate ¢'(z) in terms of
the function f(z). Reversely if f(z) has no zero point on C, does there exist such a

9(2)?



4. (50pts) Calculate the following contour integrals.

(a):
/|Z . SLOFR

2 1
——d
/0 cos?(z) :

/ zZdz.
|z|=3

(b):

along any path from 0 to 2.

(c):



6

5. (50pts) (a): Find the Taylor series of the following function centered at 0.
z
(= —2)*
What’s the radius of convergence?
(b): Find the Taylor series of the above function centered at 1. What’s the conver-
gence of radius?



7

6. (50pts) Find the Laurent series centered at 0 of the following function in the
given region.

2
(z=1)%(2-2)
(a)]z| <1 (Bl < |z <2 (¢)|z| >2
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7. (50pts) Calculate the contour integrals using residues:

(a): |
/|z:3 (z—1)%(z — Q)dZ-

/ z
25 dZ.

(b):




8. (50pts) Classify the isolated singularities and calculate their residues:

(a) L(igz at z = 1.
(b) co§(1/z) at z = 0.
(c) _sin(z)_ at z = .

(z —m)!
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9. (50pts) Calculate the following integrals (a):

o0 2?2
—dx.
/_oo:c4+1 !

e cos(2z)
| w

/27r do
0o 3+2cosf

X.
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!!! WRITE YOUR NAME, STUDENT ID BELOW !!!

NAME : ID:

1. (50pts) Let 2y = —1 + 1, 2p = /2 ¢'%.
(a): Calculate 2 - 2 (write the result in the form of @ + bi).

B2l T ek tindl (i)
So €&z L) (1) =] At)z s L
< . _@.. « _"@- ~ :
' Z':ﬁ-e%} , B&m 30 ‘rzﬁel%:z@ :’-2:—-21
(b): Calculate 2}/ and sketch the roots on a regular polygon.

. g e
g z-lt1= [z e
2 ok o m’) L=, |
) -g*;,_ 2—'61- z-J-( +2Z) 26 C@ o, 1,2

k0. = 3T L4)=28# )=o) 7
kel G2 @ = 277 (1) (cht £4) 5

= ‘(-l+f3\— -5)= 275 (£ +i(5))

)gz Q_.c,(e@ 6o = ¥ (i) (-1 -8 -

= 375 (A -1 W) = 2 ()R




3
2. (50pts) Determine whether the limit exist:

(a)

s or not. If it exist, then calculate it.

. _SH\e p— e
et @ 2) @ci)% @‘ 7\)a

] [SAY:-X = - 1
: An&T ) B o T e )

mma&ﬁd}#&a% diedims are not Hesome = s Ina cloes

hot st .
(b) .
2h—=1
o TS
/&\v\ 2 s ZQ—?/ = \
&e'h Bl T 2o (k) go ZHT
— ] — __L — 2

e ————— e T ————
Generated by CamScanner




4
3. (50pts)
(1) Sketch the region given by:
—% <Argz <0, 1<|z| <2

(2) Find the image of the above region under the mapping w = 2°.




5
4. (50pts)

(a) Find the domain of the following function. Explain why the following function
is analytic in its domain and calculate f )

fz) = et

Doven = JoeC s ef1}=C\ i} 7

<4, 2 Ccmlﬁht = &'_L &4@%‘&( o2 oelifrc 4
= s an nggﬁ(
W -

Chaan rele-- 3[2) _ es« qu) S o))

2~
oaa &
— 24l ;-] 2t 12
— e 24 (_ @3:) - “@—'2_\‘)5_ e"éjl—

(b) If g(2) is an analytic function analytic function in a domain D and Im(g(z))
is constant on D , what can you say about g(2)? Explain your reason.

Let Bl2)=ub)+ivE),
By scuophon, 1) = yEI= et =Ca
}22/ Wz‘]— B&Wﬂt 65(.14@&“0\15 : V)m__Vlé; =

- L\
= V = 5
W J=0 =3 0[&:0@ LQ:MM.:C(
’Mg:*—v;or—o

S0 86) = (iC, 2 6 Cowstest duschon

1

lo

Generated by camscanner



6

5. (59pt8) Find the points where the function f(z) is differentiable and then calcu-
late f'(2) at those points. Is the function analytic at those points? (z = z+yi = re”)

@) J()= (2 +17) + (@ = p)i
Wbl vewd. e 4287
N ,
%’220::——( - {“h:_% So 3(‘(2)55 drHMﬂL[Q m@a{

2= | -—3< ?:““5‘“‘5,7\. <
FlA-51)= oo |y = 600 =14 &
_ . 2
J2) 75 et diffedl in eny neghboded < i) hot analie it awy pord

(b)  f(re®) =e’cos(lnr) —i-e’sin(lnr), 7r>0,0<0 < 2.

Wr, 0)= esllur) . Viro)=—€%sull. P‘J‘
U == QQ-Q\M«P)'?L U= 69'0‘3(’&?)‘
Voo tin o), Um-ePsll]

= {WV: Vo= —elenllet). s o (p e Gre satfie
Up Z~rViz b cos( fur) o 50, 0<b<2z,

= {(2) 25 wralybt  af amy poit o He dovam
QE (dHflertiolle) g { >0, o<beaz}

fre’®) = e {utsvy)= g %o (Lsalle] | M)
— _ el riclls) gy
&

- -0 = ‘ ¥
(UL(Z): ob o-tr _ Q—Z\‘t%z? :>z;(/[2)~1 E"ilﬂj’?-%:qﬁ[g)

Generaied by camscanner
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11! WRITE YOUR NAME, STUDENT ID BELOW "

NAME : ID:

1. (50pts) Let 2 = —-1—i, 2= V2 e'i.
(a): Calculate z - 22 (write the result in the form of a + bi).

il -‘]+\L ?1_5[&3%“'75'}‘_)‘5( +7“) H’z(
0 E 2= fl) (W)= -l 0-l=-2

3Z

o —2‘ —_ 245 X s X
- 22p e Tocpetipet=20m )

(b): Calculate z}7® and sketch the roots on a regular polygon.

R
L e
Zo—l-i= e %,

1




3

2. (50pts) Determine whether the limit exists or not. If it exist, then calculate it.

(a)
. (z—1)2
=z 1)
- —)* W2 w=pd? 2 =210
2= W2 Wwzre
/ZIWV\ @I — ( )a i /é\,m.——z__:: - e
Z->1 @ﬂ)l (8—1)—90 @-1) Wep W o 100

= ,@\n e~He _ 4o

The vt clivg diflerent diechions cie nof te sare=> e it cles

het exipt.
(b) .
AT
2 \ /é /é
s \,\,\ — ' >
2737:» e+ ‘)[‘?2 X Zﬂ
= | ke e 8

ey T 2T

o 27 [ Hosptal )
/@k 9 L i /é\» = /g\f\g E%_{
2—787'247 € >e'F e .

| .

(S __.-‘-—_-—
- PR T o =TT

e
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4
3. (50pts)
(1) Sketch the region given by:
—g— <Argz<0, 1<[z] <2

(2) Find the image of the above region under the mapping w = 2°.

e

N
|
el s i % : "‘7;J<Afg w/ SO
ORI 7
/ I’

Ll ) <wl<2

— -

 —

r
|
[

CamsScanner



5

4. (50pts)
(a) Find the domain of the following function. Explain why the following function
is analytic in its domain and calculate f'(2):

fl2) =€
Dtm,,n = )}ZGC‘ g —{% o C\ ‘—l}
el Guotic = T3 andlic LG Feutt w’”‘?’“'%e?l

GELM\\ fe - : [Z @, ) Q«Z [‘(E;)\S?ﬂ”
+( )%

-
= @) esﬂ

(b) If g(z) is an analytic function analytic function in a domain D and Im(g(z))
is constant on D , what can you say about g(z)? Explain your reason.

Lot g - W) +ivle)
Ry assuapben, L. (560))= V)= L4t =0

ufuj: \/3\/:0 *—-_:P 0[}15-0 = U= Lovdfoad = C(
——VeZ O

o A= Giils 7 & combant Junction.

1

&w%

By Chly - Penaun quobrs.  Vhzugeo
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5. (50pts) Find the points where the function f(z) is differentiable and then calcu-
late f'(z) at those points. Is the function analytic at those points? (z = z+yi = re¥)

(@)  f(2) = (2 —y*) + (z + y)i 0
UboY)= X% ¥*, ving)=wy ‘@; 20, Y= TOF
M"E}Wm @iw’h ond ¢ -

fzhzl_j I()o =L+ s q&?%wﬁ&wﬂu&gm@m&
2e T g 2=L 44
3[ [ 'I"L7 Upa 9V, L, Lify — (Z,)O-H /E%fi ,‘H\‘
"ﬁ{g ) M J}H&QM M M(j MnjLLW‘wO'( >Q[[g 25 wa amlj{f(&%ajg
(b)  f(re®) = sinlnr) +ie cos(lnr) , 7> 0,0< 6 < 2. port

Wre)=eballr) , Vint)z et-cs(l.r)
Uz 69&35%‘“)7[‘: , Uup=e% sllr).
Ves ~Ealll), Vo= & >llur)
= { da o= GQC%(/&‘“) e CR @’vts cne Saﬂ(fsq‘v‘év(
Uo = —yv,. = e¥<nllur)
- A t 1 “LLQ Cﬁm""uh
> {fe) Qﬁléﬁ%) Gy el T, p<tacy
U[/(I’Q}b) _7‘9 (uv»‘HVr ~ e~7‘9. (ﬁfé’i{_@:}_ L 5 fii‘*_[gﬁ_:)
- 89 @Mnf‘)-—z Vo Qh[[f«r) Gk 7/ __(E)

reae =




“xofa ( redit PWLW

% \‘\au
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N WRITE
YOUR NAME, STUDENT ID AND LECTURE N. BELOW !!!
NAME .

1D &
1. (50pts) (a): Calculate the principal value of (1 4+ 7)(+)

471 = ﬁe izli-l' = Lnj (H)‘.):«ZJS—[- 3\@/}1‘1‘):‘?&2-}2‘-%
PV (YW= oldlgln) _ oin) b2 1)

= AE) +(5h0+ )

cthr3) [ n[£L2+5) 41" n(t4212))

(b): Choose the branch of log z as
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Calculate log(1 +)? and 2log(1 + 7). Are they equal to each other?
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2.(50pts) Let C denote the upper semicircle of the circle |z| = 7 oriented anti-

clockwisely. (a). Calculate
z) " dz. '
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(b). Calculate the contour integral: [, sin(z)dz.
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3. (50pts) (a). Factorize the polynomial 2% — 1 into linear factors.

2| = (24)- B+ 2h) = B-(-[ -3 f—g‘")) (e- (;%_Jgg—)t)) ~
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(b). Calculate the integral:
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4. (50pts)(a). Calculate the integral:

dz T
-/I‘z—1|=1 (2-1)% 4

g
J 2 @*)’ f f2-1)=) @+D3[z-

5
= 2 R —~5J
;! A2 ]zcl"" T3 () 4] ) o

_ 3%y 3
>S T 32 T 8
(b). Calculate the series oy
n=1__2_n——
= 3" 25 ik O G ,{
e = @) -5 &)
[ A

Generated by CamScanner



PN

6

5.(50pts) (a). Assume f(z ) = u(2) +iv(z) is analytic on the closed disk {|2] < 2}-

Assume that u(2) obtains a minimum at z = 1. What can you say about the function
f(2)? Explain your reason.
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b). A
(b). Assume that f(2) is an entire function satisfying |f(z)| < A|z| + B for every

z € C, for some uniform
constants A
f\mctlon §(2)? Explain oy >0 and B > 0. What can you say about the
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6. (10pts)(Extra credit)

istimate the following quantity from above without calculating it:
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Ad ANALYTIC FUNCTIONS

in the form f(2) = ulr. 8) + ivir. 8)

I N Py 0
Ans. f(z2) = (r . --)mw’+z(r — — ) sin#.
F r

8 By refe iring to the discussion in Sec. 14 related t© Fig. 19 there, find a domain in the

© plane whose image under the tmmtommtwn w ==z !\ the square domam in the y

plane bounded by the linesu = l.u = 2. v = L, and v = 2. (See Fig. 2. Appendix 2)
6. Find and sketch, showing \‘nrres'pondmg orientations. the images of the hyperbolas

¢d = y? = ¢t (e < 0) and xy=¢ (02 < 0)

under the transformation w = ¢
Lse rays indicated by dashed half lines in Fig. 21 to show that the transformation w =

maps the first quadrant onto the upper half plane, as shown in Fig. 21.

Sketch the region onto which the sector r < 1, 0 < # < /4 is mapped by the transfor-
fnahion (a) w (b)) w = :,‘; (c) w = :4‘

9, One interpretation of a function w = f(z) = u(x, y) +iv(x.y) is that of a vector field in

the domain of definition of f. The function assigns a vector w, with components u(x, y)
to each point z at which it is defined. Indicate graphically the vector fields

I

and vix, v),
represented by

() u xSl tp = —

<

15. LIMITS

[ et a function f be defined at all points z in some deleted neighborhood of a point ;.
The statement that f(z) has a limit wg as z approaches zo, or that

(1) Jlim. fézh sy

means that the point w = f(z) can be m
point z close enough to zq but W
in a precise and usable form.

Statement (1) means m& :

4 such that
(2) |f(@) =

Geometrically, this defi
o, there is a demad 5"
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DERIVATIVES 55

not exist. [Note that it is not sufficient
10 si
z = (0, y). as it was in Example 2, Sec. Isn;'ply SRR IO P

Prove statement (8) in Theorem 2 of Sec. 16 using
(a) Thc;nrcm I'in Sec. 16 and properties of limits of real-valued functions of two real
variables;
(k) definition (2), Sec. 15, of limit.
|

Use definition (2), Sec. 15, of limit to prove that '
if ler}‘ f(2) =wg, then lim | f(2)| = [wol. \

Suggestion: Observe how inequality (2). Sec. 5, enables one to write
£ (@) = lwoll < |f(z) — wol.
Write Az = z — zp and show that

z]_i’ngu f(z) = wy if and only if A1§m0f(zc. + Az) = wo.

Show that
lim f(2)g(x) =0 if lim f(z) =0
and if there exists a positive number M such that |g(z)| < M for all z in some neighbor-

hood of zp.
[ Ise the theorem in Sec. 17 to show that

= 0.

2 |
i : (b) hm =08 (c) hmz 1

(@) lim ———= =4 iz = 1P ierate =1

z—00(z — 1)2

With the aid of the theorem in Sec. 17, show that when

il e
Tiz) = Z I . be #0),

(a) ’lim T(z)=00 ife=0;
(h) 11m T(zy= = and hm T(z) =00

z—e»- l‘

State why limits m.volv,_mg the

Show that a set S 18 unbmm, ed
at infinity contains at least one p

Let f be a function whose

a point zo. The derivai
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DERIVATIVES 55

not exist. [Note that it is not sufficient
10 si
z = (0, y). as it was in Example 2, Sec. Isn;'ply SRR IO P

Prove statement (8) in Theorem 2 of Sec. 16 using
(a) Thc;nrcm I'in Sec. 16 and properties of limits of real-valued functions of two real
variables;
(k) definition (2), Sec. 15, of limit.
|

Use definition (2), Sec. 15, of limit to prove that '
if ler}‘ f(2) =wg, then lim | f(2)| = [wol. \

Suggestion: Observe how inequality (2). Sec. 5, enables one to write
£ (@) = lwoll < |f(z) — wol.
Write Az = z — zp and show that

z]_i’ngu f(z) = wy if and only if A1§m0f(zc. + Az) = wo.

Show that
lim f(2)g(x) =0 if lim f(z) =0
and if there exists a positive number M such that |g(z)| < M for all z in some neighbor-

hood of zp.
[ Ise the theorem in Sec. 17 to show that

= 0.

2 |
i : (b) hm =08 (c) hmz 1

(@) lim ———= =4 iz = 1P ierate =1

z—00(z — 1)2

With the aid of the theorem in Sec. 17, show that when

il e
Tiz) = Z I . be #0),

(a) ’lim T(z)=00 ife=0;
(h) 11m T(zy= = and hm T(z) =00

z—e»- l‘

State why limits m.volv,_mg the

Show that a set S 18 unbmm, ed
at infinity contains at least one p

Let f be a function whose

a point zo. The derivai
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EXERCISES
\y Use definition (3), Sec, 19, to give adirect proof that
dw

. — Al

=1 whe —p
e hen  w o= 27,

-

2. Use results in Sec. 20 to find f'(z) when

S

@) f@) =32 -2 +4; (0) f(2) = Q22 4 i),

T 1. ) l
(c) f(”)_2:+l (\.#—5): d) f(z) = {4z ) (z # 0).

1

-
i

- 3./ Using results in Sec. 20, show that
(@) a polynomial

PO =awm+az+a + - fa,z" (ay # 0)
of degree n (n > 1) is differentiable everywhere, with derivative
P'(2) =a) + 2az 4+ + nayz"",;
(b) the coefficients in the polynomial P(z) in part (a) can be written

P'(0 P"(0 >(n)
ap = P(O). a) = —#‘ ay = (0) ! (()).

4. Suppose that f(z9) = g(zp) = 0 and that f(zy) and &'(z0) exist, where g'(zo) # 0. Use
~definition (1), Sec. 19, of derivative to show that

S@  f(z0)

lun = i
-0 g(z)  g'(z0)

Ceay (’,:
21 ' n!

5. Derive expression (3), Sec. 20, for the derivative of the sum of two functions.
6. Derive expression (2), Sec. 20, for the derivative of z" when n is a positive integer
by using
(a) mathematical induction and expression (4), Sec. 20, for the derivative of the product
of two functions;
(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).

7. Prove that expression (2) Sec 20, for the derivative of z" remains valid when n is a

negative integer (n = —1, ..), provided that z 3 0.
Suggestion: Write m = —n and use the rule for the derivative of a quom.m of two
functions.
8. Use the method in Example 2, Sec. 19, to show that f'(z) does not exist at any point
z when

(@) f(z2) =Rez; (b) f(z) =1Imz.
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62 ANALYTIC FUNCTIONS

uncti ‘hose values are
9. Let f denote the function whose values

z2/z when z#0,
f(z) =

0 when z=0.
0. then Aw/Az = 1 at each nonzero point on the rca:]und imagingy,
- ¥ > —_— [ G T N . el - : ¥
St U ane. Then show that Aw/Az = ] at each nonzerg Poing

. y Av‘ l 1 » . » IO Py red”
e AT Olrn?j_& v.—pA v in that plane (Fig. 29). Conclude from these obscr\.dhom
(Ax, Ax)onthehi B ==

'0) does not exist. Note that to obtain this result, it 1s not Tufflcx(cgl 10 consjde,
: oes SL. G B . . , P
(h.;t { (rii()l]l’l! and vertical approaches to the origin in the Az plane. (Compare wig,
only horizontal ¢

Exercise 5, Sec. 18, as well as Example 2, Sec. 19.)

Ay
(Ax, Ax)
(0, Ay)
- =, 5 i
mxn] St ¥ FIGURE 29

10. With the aid of the binomial formula (13) in Sec. 3, point out why each of the functions

n

nl2n dzn

Py} = @Z-1)" (=0,1,2,..)

is a polynomial (Sec. 13) of degree n*. (We use the convention that the derivative of

order zero of a function is the function itself.)

21. CAUCHY-RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives of

the component functions u and v of a function

(1) J(@) =u(x,y)+iv(x, y)

must satisfy at a point zo = (xo, yy) when the derivative of f exists there. We also

show hovsf to express /"(zp) in terms of those partial derivatives.
Starting with the assumption that f’(z,) exists, we write

0 =Xo+iyo, Az=Ax+iAy,
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qt functions are

here = # 0- the compone . sin 26
i cos2V . T e T
Yy = — and r2
o
= . 2sin 20
Since 7 c0s 26 - —— =T,
_(,0 = — g —
= -__________:_.._-- p— H o ’-

riy r-

‘ons in the theorem are satisfied at every nonzer,

. ~ondit iny
¢ other condi over, according to t
f exists W hen - # 0. More ‘ he ‘hCOre,P

and since the othel
derivative of

¢ the

-=r€ e~ 2
rcos20 .2sin20 _ _ , -id e e A
, il B $i e 3 (rei®)? ~ T3
f (2) = & = = 3 ! e 23
EXAMPLE 2. The theorem can be used to show that any branch

£ = \ﬂ:em/z r>0 a<6l<a + 2m)

of the square root function -1/2 has a derivative everywhere mn its domain of definitiop

Here

a
u(r. 8) = \/r cos P
Inasmuch as
7 2]
= — COS— = Uy
ri, 5 5

. 0
and  v(r, 8) = /7 sin 5
6
and up = -—%—F sin 5= —rv,

and since the remaining conditions in the theorem are satisfied, the derivative f'(;
exists at each point where f(z) is defined. The theorem also tells us that

@)= i (——— CcOS — + i ——=sin
2/r

and this reduces to

S 6
fiz)=

2/r 2

EXERCISES

1. Use the theorem in Sec. 21 to show that
(@) f(z2) =
(€) f(2) =2x +ixy?;
2. Use the theorem in Sec. 23 to show that
and find f"(z) when
(@) f(D=iz+2
(€ flg)=2%

Ans. (b) f"(z) = Fiz)

= o i
grae (cos~ + i sin

0 ]

2);

g)_ 1]
2)  2Jrei®? " 2f(z)’

2Jr

f'(z) does not exist at any point if
b) f@)=2z-73; s
(dY fiz) =&"e,

o T Sy P e ey T b A

ey o

R N . R e SRS

f'(z) and its derivative f”(z) exist everywhere:

®) f(2) =e"e;
(d) f(z) =cosxcoshy —isinxsinhy-

) f"(z)Genfenated by CamScanner





