
MAT 331: Computer Assisted Mathematical Problem Solving
Fall 2015

Raluca Tanase

Course Information

Home
 Course Information
 Lectures & Projects

Course Description

Exploration of the use of the computer as a tool to gain insight into complex mathematical
problems through a project-oriented
approach. Students learn both the relevant mathematical
concepts and ways that the computer can be used (and sometimes
misused) to understand them.
 Interesting applications of mathematics to computer science are also discussed. Some of the
specific topics that we will try to study this semester include linear algebra, graph theory
and Markov chains, number theory and
cryptography, dynamical systems, fractals, differential
equations and computer graphics.

Click here to download a copy of the course syllabus.
Please visit the course website on Blackboard.

Lectures & Office Hours

Lectures: Tuesdays & Thursdays 11:30-12:50pm in Mathematics S235;
Office hours: Tuesdays 10:30 - 11:30am in MLC;

Wednesdays 12 - 1pm and Thursdays 1 - 2:30pm in Math Tower 4-120, or by appointment.

Software

We will use Mathematica, which is a computational software program developed by Wolfram Research and used in many
scientific, engineering,
 mathematical and computing fields, based on symbolic mathematics. Mathematica has a
comprehensive documentation
that we will make use of. Mathematica 10.2 is available for most operating systems (Windows,
Macintosh, Linux, etc.).

Stony Brook students can download the Windows/Mac/Linux version of
Mathematica from Softweb.
You need your Stony Brook
netID and netID password to log in to Softweb. To obtain an Activation Key for Mathematica you must visit the
Wolfram User
Portal.
 If it's your first time visiting the Wolfram User Portal, you must create a Wolfram ID and
 follow the steps in there to
request an Activation Key.

In addition, you can use any of the campus SINC sites, or you can access the
Virtual SINC site.

Grading Policy

There will be no exams. Grades will be computed using the following scheme:

Homework – 20%
Lab Activity – 15%
Projects – 65%

Students are expected to attend class regularly and to keep up with the material
 presented in the lecture and the assigned
reading. There will be roughly four or
 five homework assignments (containing short exercises involving mathematical proofs
and Mathematica code) as well as three or four projects. You may work together on
your homework assignments and projects,
and you are encouraged to do so. However,
all solutions must be written up independently.

A project is more like a term paper
and you will be expected to devote a significant amount of time to doing it, as well
as taking
care with the presentation. The project should contain a detailed description
of the problem or topic, what means were used to

https://blackboard.stonybrook.edu/
http://reference.wolfram.com/language/
http://softweb.cc.stonybrook.edu/
https://user.wolfram.com/portal/login.html
https://user.wolfram.com/portal/login.html
http://it.stonybrook.edu/services/virtual-sinc-site

Last updated October 2015

solve it, the mathematical solution
and the computer program (interactive model in Mathematica). The last project of the
class
may include also a short oral presentation at the end of the semester.

Last updated December 2016

Raluca Tanase

Institute for Mathematical Science
Stony Brook University

office: Math Tower 4-120
phone: (631) 632-4005
e-mail: rtanase@math.stonybrook.edu

Home
 Research
 Teaching
 MAT 331
 MAT 303

About me

I am currently a Milnor Lecturer at the Institute for Mathematical Sciences
at Stony Brook University. I obtained my Ph.D. in
Mathematics from Cornell University in 2013, under the supervision of John H. Hubbard.
I also have a M.S. in Computer Science
from Cornell University and a M.S. in Mathematics
from Scoala Normala Superioara, Bucharest.

I got my B.Sc. degree in Mathematics from the University of Bucharest,
and my B.Eng. in Computer Science and Engineering
from the Polytechnic University of Bucharest.

Research Interests

Dynamical Systems and Ergodic Theory, Complex Analysis in one or several variables,
Computer Science especially Databases and Large Scale Architecture Systems.

For a more detailed description of my research interests, please take a look at my research page.

Teaching

This spring I am teaching MAT 331, an introductory course about the interplay between mathematics and computer science.
Click
here for the old version of this course from Fall 2015.
Last fall I taught MAT 303, an introductory course in ordinary differential
equations and their applications.
To see a list of courses that I have taught in the past at Cornell University and Stony Brook
University
please click here or select "Teaching" from the top menu.

Other events

I organized a Special Session on "Holomorphic Dynamics" at the AMS Sectional Meeting at Stony Brook University, March 19–
20, 2016.

http://www.math.stonybrook.edu/~rtanase/research.html
http://www.math.stonybrook.edu/~rtanase/teaching.html
http://www.math.stonybrook.edu/~rtanase/calc303/index.html
http://www.math.stonybrook.edu/institute-mathematical-sciences
http://www.math.cornell.edu/
http://www.cs.cornell.edu/
http://www.imar.ro/~snsb/
http://www.unibuc.ro/e/
http://www.upb.ro/en/faculties.html
http://www.math.stonybrook.edu/~rtanase/research.html
http://www.math.stonybrook.edu/~rtanase/calc303/m303-Fa16.html
http://www.math.cornell.edu/
http://www.math.stonybrook.edu/
http://www.math.stonybrook.edu/
http://www.math.stonybrook.edu/~rtanase/teaching.html
http://www.math.stonybrook.edu/~rtanase/AMS-IMS.html
http://www.ams.org/meetings/sectional/2234_special.html

MAT 331: Computer Assisted Mathematical Problem Solving
Fall 2015

Raluca Tanase

Lectures, Homework & Projects

Home
 Course Information
 Lectures & Projects

Schedule

A set of lecture notes for each class is available in .pdf format and .nb (Mathematica notebook).
Please log in to Blackboard
with your netID and password to download the solutions to the homework assignments.

Date Topic Reading Assignments

Aug 25 Introduction & Syllabus Intro (
nb,
pdf
)

HW 1
Due Sept 10

Solutions
Aug 27 Getting started with Mathematica (Linear Algebra) Notes (
nb,
pdf
)

Sept 1 Getting started (Functions, Conditional Statements) Notes (
nb, pdf
)

Sept 3 Loop Constructions & Graph Theory in Mathematica Notes (
nb,
pdf
)

HW 2
Due Sept 24

Solutions

Sept 8 no class (Labor Day)

Sept 10 Graph Theory in Mathematica Notes (
nb,
pdf
)

Sept 15 Mathematics of Web Search Notes (
nb, pdf
)

Sept 17 Building interactive models Notes (
nb,
pdf
), Map

Sept 22 Local variables & Interactive models Notes (
nb,
pdf
)

Project 1
Due Oct 18

Sept 24 Eigenvalues and eigenvectors of a matrix Lectures 1 & 2

Sept 29 Perron-Frobenius Theorem & Page Rank Lectures 3
& 4

Oct 1 Project Discussion Notes (
nb,
pdf
)

Oct 6 Module & DynamicModule Notes (nb,
pdf)

Oct 8 Symbolic & Numerical Solvers Notes (
nb,
pdf
)

HW 3
Due Oct 29
Solutions

Oct 13 Differential equations Lecture (
pdf
)

Oct 15 Solving Differential Equations with Mathematica Notes (
nb,
pdf
)

http://www.math.stonybrook.edu/~rtanase/files/Intro.nb
https://blackboard.stonybrook.edu/bbcswebdav/pid-3474898-dt-content-rid-18930999_1/xid-18930999_1
http://www.math.stonybrook.edu/~rtanase/files/Notes-1.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes2.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes3.nb
https://blackboard.stonybrook.edu/bbcswebdav/pid-3474898-dt-content-rid-22103949_1/xid-22103949_1
http://www.math.stonybrook.edu/~rtanase/files/Notes4.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes5.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes6.nb
http://www.math.stonybrook.edu/~rtanase/files/Map.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes7.nb
http://www.math.cornell.edu/%7Emec/Winter2009/RalucaRemus/Lecture1/lecture1.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture2/lecture2.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/lecture4.html
http://www.math.stonybrook.edu/~rtanase/files/ProjectDiscussion.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes8.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes9.nb
https://blackboard.stonybrook.edu/bbcswebdav/pid-3474898-dt-content-rid-22103949_1/xid-22103949_1
http://www.math.stonybrook.edu/~rtanase/files/ODE.nb

Last updated November 2015

Oct 20 Systems of Linear & Nonlinear Differential Equations Lecture (
pdf
)

Project 2
Due Nov 18

Oct 22 Solving Systems of Diff Equations in Mathematica Notes (
nb,
pdf
)

Oct 27 Stability of Equilibrium Points Notes (
nb,
pdf
)

Oct 29 Phase Portraits for Systems of Nonlinear ODEs Notes (
nb,
pdf
)

Nov 3 Limits Cycles and Chaotic Behavior Notes (
nb,
pdf
)

Nov 5 Exercise: Using Locator in Interactive Models Notes (
nb,
pdf
)

Nov 10 An Introduction to Cryptography Notes (
nb,
pdf
)

Lab Exercises
Nov 12 Modular Arithmethic & Affine Ciphers Notes (
nb,
pdf
)

Nov 17 Cryptanalysis of Monoalphabetic/Polyalphabetic Ciphers
 Notes (
nb,
pdf
)

Vigenere (
nb,
pdf
)

Nov 19 Euler's Theorem and the RSA Cryptosystem Lecture (
pdf
)

Project 3
Due Dec 7

Nov 24 RSA Notes (
nb,
pdf
)

Nov 26 no class (Thanksgiving)

Dec 1 Digital Signatures Notes (
nb,
pdf
)

Dec 3 Project Discussion & Further Directions

Dec 9 Project Presentation - Wednesday, December 9, 5:30-7:30pm

http://www.math.stonybrook.edu/~rtanase/files/ODE2.nb
http://www.math.stonybrook.edu/~rtanase/files/ODE3.nb
http://www.math.stonybrook.edu/~rtanase/files/ODE4-net.nb
http://www.math.stonybrook.edu/~rtanase/files/ODE5-net.nb
http://www.math.stonybrook.edu/~rtanase/files/LocatorExercise.nb
http://www.math.stonybrook.edu/~rtanase/files/Crypt1.nb
http://www.math.stonybrook.edu/~rtanase/files/Crypto2.nb
http://www.math.stonybrook.edu/~rtanase/files/CryptoTest.nb
http://www.math.stonybrook.edu/~rtanase/files/Vigenere.nb
http://www.math.stonybrook.edu/~rtanase/files/RSA-1.nb
http://www.math.stonybrook.edu/~rtanase/files/DigitalSignature-net.nb

MAT 331: COMPUTER-ASSISTED MATHEMATICAL PROBLEM SOLVING

FALL 2015

GENERAL INFORMATION

Instructor. Raluca Tanase
Email: raluca.tanase@stonybrook.edu
Office: Math Tower 4-120; Phone: (631) 632-4005
Office hours: Tuesdays 10:30–11:30am in MLC; Thursdays 1:00-2:30pm in Math Tower 4-120.

Lectures. Tuesdays & Thursdays 11:30–12:50pm in Mathematics S-235.

Blackboard. Grades and some course administration will take place on Blackboard. You will
also use Blackboard to submit the projects and homework. Please log in using your NetID at
http://blackboard.stonybrook.edu.

Courses Description. Exploration of the use of the computer as a tool to gain insight into
complex mathematical problems through a project-oriented approach. Students learn both
the relevant mathematical concepts and ways that the computer can be used (and sometimes
misused) to understand them. Interesting applications of mathematics to computer science
are also discussed. Some of the specific topics that we will try to study this semester include
linear algebra, graph theory and Markov chains, number theory and cryptography, dynamical
systems, fractals, differential equations and computer graphics.

Prerequisites. C or higher in MAT 203 or 205 or 307 or AMS 261.

TECH Objective. MAT 331 fulfills the ”Understand Technology (TECH)” objective:

1. Demonstrate an ability to apply technical tools and knowledge to practical systems and
problem solving.

2. Design, understand, build, or analyze selected aspects of the human-made world. The
human-made world is defined for this purpose as artifacts of our surroundings that are
conceived, designed, and/or constructed using technological tools and methods.

WRTD Objective. Students may use two of their MAT 331 projects to satisfy part of the
Upper Division Writing Requirement for the major, or the “Write Effectively within One’s
Discipline (WRTD)” objective for the Stony Brook Curriculum (SBC):

1. Collect the most pertinent evidence, draw appropriate disciplinary inferences, organize
effectively for one’s intended audience, and write in a confident voice using correct
grammar and punctuation.

Students who want to use two of the MAT 331 projects for this purpose should sign up for
MAT 459: Write Effectively in Mathematics as a zero-credit course, with me as instructor.

Software. Most lectures will be held in the Math computer lab (Math Tower S-235). No
previous experience with computers is needed.

We will use Mathematica, which is a computational software program developed by Wolfram
Research and used in many scientific, engineering, mathematical and computing fields, based on
symbolic mathematics. Mathematica has a comprehensive documentation, also available online
at http://reference.wolfram.com/language/.

Mathematica 10 is available for most operating systems (Windows, Macintosh, Linux, etc.).
Stony Brook students can download the Windows/Mac/Linux version of Mathematica from
Softweb: http://softweb.cc.stonybrook.edu/. You need your Stony Brook netID and netID
password to log in to Softweb. To obtain an Activation Key for Mathematica you must visit
the Wolfram User Portal https://user.wolfram.com/portal/login.html. If it’s your first

http://blackboard.stonybrook.edu/
http://reference.wolfram.com/language/
http://softweb.cc.stonybrook.edu/
https://user.wolfram.com/portal/login.html

time visiting the Wolfram User Portal, you must create a Wolfram ID and follow the steps in
there to request an Activation Key.

In addition, you can use any of the campus SINC sites, or you can access the Virtual SINC
site at http://it.stonybrook.edu/services/virtual-sinc-site.

Reading resources. We will try to follow several sources, depending on the topic which we are
covering. A set of notes written by Scott Sutherland and Santiago Simanca is available online at
http://www.math.stonybrook.edu/~scott/Book331/331book.pdf. For the first part of the
course we will use a set of lecture notes written by Raluca Tanase and Remus Radu about The
Mathematics of Web Search, available at http://www.math.cornell.edu/~mec/Winter2009/

RalucaRemus/. Other useful materials and lecture notes will be posted on the course website
on Blackboard as we advance in the semester.

Grading policy. There will be no exams. Grades will be computed using the following scheme:

• Lab 15%
• Homework 20%
• Projects 65%

Students are expected to attend class regularly and to keep up with the material presented in
the lecture and the assigned reading. There will be roughly four or five homework assignments
(containing short exercises involving mathematical proofs and Mathematica code) as well as
three or four projects. You may work together on your homework assignments and projects,
and you are encouraged to do so. However, all solutions must be written up independently. A
project is more like a term paper and you will be expected to devote a significant amount of
time to doing it, as well as taking care with the presentation. The project should contain a
detailed description of the problem or topic, what means were used to solve it, the mathematical
solution and the computer program (interactive model in Mathematica). The last project of
the class may include also a short oral presentation at the end of the semester.

Extra Help. You are welcome to attend the office hours and ask questions about the lectures
and about the homework. In addition, math tutors are available at the Math Learning Center
(MLC): http://www.math.stonybrook.edu/MLC.

Information for students with disabilities. If you have a physical, psychological, medical
or learning disability that may impact your course work, please contact Disability Support
Services, ECC (Educational Communications Center) Building, Room 128, (631) 632-6748, or
at the following website http://studentaffairs.stonybrook.edu/dss/index.shtml. They
will determine with you what accommodations, if any, are necessary and appropriate. All
information and documentation is confidential.

Academic integrity. Each student must pursue his or her academic goals honestly and be
personally accountable for all submitted work. Representing another person’s work as your own
is always wrong. Faculty is required to report any suspected instances of academic dishonesty
to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology
& Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required
to follow their school-specific procedures. For more comprehensive information on academic
integrity, including categories of academic dishonesty please refer to the academic judiciary
website at http://www.stonybrook.edu/uaa/academicjudiciary.

Critical Incident Management. Stony Brook University expects students to respect the
rights, privileges, and property of other people. Faculty are required to report to the Office
of University Community Standards any disruptive behavior that interrupts their ability to
teach, compromises the safety of the learning environment, or inhibits students’ ability to
learn. Faculty in the HSC Schools and the School of Medicine are required to follow their
school-specific procedures. Further information about most academic matters can be found

http://it.stonybrook.edu/services/virtual-sinc-site
http://www.math.stonybrook.edu/~scott/Book331/331book.pdf
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/
http://www.math.stonybrook.edu/MLC
http://studentaffairs.stonybrook.edu/dss/index.shtml
http://www.stonybrook.edu/uaa/academicjudiciary

in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee
Handbook.

MAT 331: Computer Assisted Mathematical Problem Solving
Spring 2017

Raluca Tanase

Course Information

Home
 Course Information
 Lectures & Projects

Course Description

Exploration of the use of the computer as a tool to gain insight into complex mathematical
problems through a project-oriented
approach. Students learn both the relevant mathematical
concepts and ways that the computer can be used (and sometimes
misused) to understand them.
 Interesting applications of mathematics to computer science are also discussed. Some of the
specific topics that we will try to study this semester include linear algebra, graph theory
and Markov chains, number theory and
cryptography, dynamical systems and fractals, differential
equations and computer graphics.

Click here to download a copy of the course syllabus.
Please visit the course website on Blackboard.

Lectures & Office Hours

Instructor: Raluca Tanase
Lectures: Tuesdays & Thursdays 11:30-12:50pm in Mathematics S235;
Office hours: Tuesdays 1-2pm in MLC (next to the computer lab)

Thursdays 1-3pm in Math Tower 4-120, or by appointment.

Teaching Assistant: Nancy Hong
Office hours: Wednesdays 12-1pm in Mathematics S235 (computer lab).

Software

We will use Mathematica, which is a computational software program developed by Wolfram Research and used in many
scientific, engineering,
 mathematical and computing fields, based on symbolic mathematics. Mathematica has a
comprehensive documentation
that we will make use of. Mathematica 10.3 is available for most operating systems (Windows,
Macintosh, Linux, etc.).

Stony Brook students can download the Windows/Mac/Linux version of
Mathematica from Softweb.
You need your Stony Brook
netID and netID password to log in to Softweb. To obtain an Activation Key for Mathematica you must visit the
Wolfram User
Portal.
 If it's your first time visiting the Wolfram User Portal, you must create a Wolfram ID and
 follow the steps in there to
request an Activation Key.

In addition, you can use any of the campus SINC sites, or you can access the
Virtual SINC site.

Grading Policy

There will be no exams. Grades will be computed using the following scheme:

Homework – 20%
Lab Activity – 15%
Projects – 65%

Students are expected to attend class regularly and to keep up with the material
 presented in the lecture and the assigned
reading. There will be roughly
 five homework assignments (containing short exercises involving mathematical proofs
 and
Mathematica code) as well as three or four projects. You may work together on
your homework assignments and projects, and

http://www.math.stonybrook.edu/~rtanase/m331-sp17/m331-Sp17-schedule.html
http://www.math.stonybrook.edu/~rtanase/m331-sp17/m331-Syllabus-Sp17.pdf
https://blackboard.stonybrook.edu/
http://reference.wolfram.com/language/
http://softweb.cc.stonybrook.edu/
https://user.wolfram.com/portal/login.html
https://user.wolfram.com/portal/login.html
http://it.stonybrook.edu/services/virtual-sinc-site

Last updated February 2017

you are encouraged to do so. However,
all solutions must be written up independently.

A project is more like a term paper
and you will be expected to devote a significant amount of time to doing it, as well
as taking
care with its presentation. The project should contain a detailed description
of the problem or topic, what means were used to
solve it, the mathematical solution and proofs,
and the computer program (interactive model in Mathematica). The last project
of the
class may include also a short oral presentation at the end of the semester.

Getting Started with Mathematica

Mathematica

“For more than 25 years, Mathematica has defined the state of the art in
technical computing and provided the principal computation environment for
millions of innovators, educators, students, and others around the world.”

Mathematica is based on the Wolfram Language, that you may have already seen
when you used the online tool Wolfram Alpha http://www.wolframalpha.com.

A comprehensive Documentation for Mathematica is available online at
http://reference.wolfram.com/language/

Mathematica provides a simple framework for doing interactive models.
Wolfram Demonstration Projects http://demonstrations.wolfram.com/

In this course, we will learn how to use Mathematica to do a variety of numeric
and symbolic computations. Then we will learn how to turn our static
computations into dynamic interactive models.

Mathematica Notebooks (*.nb)
When Mathematica is first started, it displays an empty notebook with a blinking cursor. You can start
typing in it right away. Let’s start by doing a simple computation:

1 + 3 + 2"5

14

Mathematica by default will interpret your text as input. After you enter Mathematica input into the
notebook, type Shift+Return (it’s the same as Shift+Enter) to make Mathematica process your input. If
your keyboard has a numeric keypad, you can use its Enter key instead of Shift+Return.

With a notebook interface, you just type in your computation, say 1+3+2*5. Mathematica will label your
input with In[n]:=1+3+2*5. It labels the corresponding output Out[n]=14. Labels are added automatically
and they reflect the order in which the input is evaluated by the Mathematica Kernel. By default,
input/output pairs are grouped using rectangular cell brackets displayed in the right margin.

Notebooks as Documents

Notebooks as Documents
Mathematica notebooks are structured interactive documents that are organized into a sequence of
cells. Each cell may contain text, graphics, sounds or Mathematica expressions in any combination. The
extent of each cell is indicated by a bracket on the right.

Particularly in larger notebooks, it is common to have chapters, sections and so on, each represented
by groups of cells. Having a structured document makes it easier later one to convert your notebook
into a slide presentation. The various kinds of cells available are listed in Format->Style. The grouping
of cells in a notebook is indicated by nested brackets on the right. Font, color, spacing and other proper-
ties of the appearance of cells can also be changed from Format.

Example of a Section

Section

Subsection 1 (click Alt-Return to create below another cell of the same type)

Subsection II

This subsection has a lot of text and some numbered lists. The text
is blue because this cell has not been properly formated to text,

so Mathematica sees it as some sort of long command. As we continue to type in,
Mathematica will suggest that we convert the cell to text or to free !
form linguistic input.

1. Numbered list
1.1. And a sublist

1.2.

2. The first list continues here

Subsection III

Notebook Style
To change the style of a cell, click the cell bracket. The bracket is higlighted. Select a style from
Format->Style. The cell will immediately reflect the change.

To change the overall look of a notebook, choose Format->Stylesheet. Select a stylesheet from the
menu. All cells in the notebook will change appearance, based on the definitions in the new stylesheet.

Free-Form Input
Free-Form Input allows users to enter plain English and get immediate results, as well as the Mathemat-
ica correct input for further exploration—without the need for syntax.

In the beginning, you can learn Mathematica syntax by entering a query in plain English and then
viewing the free-form queries translated in precise Mathematica commands.

2 Intro.nb

In the beginning, you can learn Mathematica syntax by entering a query in plain English and then
viewing the free-form queries translated in precise Mathematica commands.

Click on the Cell Insertion Assistant (+ Sign at the left) and choose Free-Form Input. Alternatively, click
Insert->Inline Free Form Input. An orrange square with an equal sign will appear in the cell. The cursor
will be blinking to the right of the orange square.

Use Plain English after the equal sign to describe the command that you would like to do, say
"integral of cos x""

After clicking Shift+Enter, we will see the command that Mathematica translated our free-form input into.
You need to have an active Internet Connection to use Free-Form Input. Use the + Sign to the right of
the Free-Form Input to show all results.

integral of cos x
Integrate[Cos[x], x]

"

Sin[x]

Using Palettes
Here is one way to enter a particular expression.

2^10 + 1#2 + Sqrt[2]

2049

2
+ 2

We can use the Palettes to typeset various basic commands and text.
Select Palettes->Basic Math Assistant, or Palettes->Classroom Assistant. We can then write

expressions like square roots "# , integrals ∫#
%# and many others, by simply using the predefined

templates from the Palletes. The same mathematical expression from above can be written more
elegantly as follows:

210 +
1

2
+ 2

2049

2
+ 2

To get a numerical approximation of the expression we need to use N[..]. The percent sign % refers to
the output of the last evaluation that Mathematica performed.

N[%]

1025.91

Matrices and Linear Algebra
The Mathematica front end provides an Insert&Table/Matrix submenu for creating and editing arrays
with any specified number of rows and columns. Once you have such an array, you can edit it to fill in
whatever elements you want.

Intro.nb 3

The Mathematica front end provides an Insert&Table/Matrix submenu for creating and editing arrays
with any specified number of rows and columns. Once you have such an array, you can edit it to fill in
whatever elements you want.

Some examples of vectors and matrices:

A = 
1 0 0
1 1 1



{{1, 0, 0}, {1, 1, 1}}

IdentityMatrix[3]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

From these examples, we can see that Mathematica treats a matrix like a list of
lists.

Transpose[A]

{{1, 1}, {0, 1}, {0, 1}}

Transpose[A] finds the transpose of the matrix A and displays it as a list of lists.
To see the transpose in standard matrix form, use the command MatrixForm[..]
with argument Transpose[A].

MatrixForm[%]

1 1
0 1
0 1

Vectors

A vector in Mathematica is a list.

w = {1, 2, 3}

{1, 2, 3}

MatrixForm[w]

1
2
3

We can also use the Insert->Table/Matrix submenu to create a column vector with a given number of

elements, as a matrix with n rows and one column
$
$
$

. If we use this template, the vector is interpreted

as a list of lists.

4 Intro.nb

We can also use the Insert->Table/Matrix submenu to create a column vector with a given number of

elements, as a matrix with n rows and one column
$
$
$

. If we use this template, the vector is interpreted

as a list of lists.

v =
1
2
3

{{1}, {2}, {3}}

Matrix and Vector Operations
We can perform matrix addition A+B and scalar multiplication 3A in the usual way. We can use either a
space or the symbol * to do the multiplication between the scalar 3 and the matrix A.

MatrixForm[3 A]

 3 0 0
3 3 3



MatrixForm[A + A]

 2 0 0
2 2 2



However, to do matrix multiplication we cannot use the symbol * , instead we
have to use a dot!

A.Transpose[A]

{{1, 1}, {1, 3}}

A.w

{1, 6}

A.v

{{1}, {6}}

MatrixForm[A.v]

 16 

Intro.nb 5

Mathematica can also do symbolic computations:

M = {{a, b}, {c, d}}; x = {x1, x2};
MatrixForm[M.x]

 a x1 + b x2
c x1 + d x2



For square matrices, we can compute the power of a matrix An using the command
MatrixPower[matrix, power]

B = {{1, 1}, {1, 1}}; MatrixPower[B, 2]

{{2, 2}, {2, 2}}

M3 = MatrixPower[M, 3];
MatrixForm[M3]

a a2 + b c + b (a c + c d) a (a b + b d) + b b c + d2

c a2 + b c + d (a c + c d) c (a b + b d) + d b c + d2

6 Intro.nb

MAT 331: Homework 1

Problem 1.1

Write a command in Mathematica to generate a square nxn matrix M, whose diagonal elements Miiare
equal to n-1 and the other elements Mij i≠j are equal to 1. Test it for n=3 and n=10.

Problem 1.2

Demonstrate that two matrices do not commute in general, i.e. that AB ≠ BA, by defining two 5x5 ran-
dom matrices using the function Table, computing both sides (AB and BA) using matrix multiplication,
and comparing the outputs using the function TrueQ[...] in Mathematica. Of course, there exist matrices
which do commute so you will have to chose your examples well. This means that you may have to
generate several random 5x5 matrices, before you hit a pair for which AB ≠ BA.

Problem 1.3

1. Use free-form input to find some Mathematica functions which help you find the dimensions of
a matrix (that is, the number of columns and rows).

2. Write a function g[A_,B_] that takes as input two matrices A and B and checks whether the
number of columns of A is the same as the number of rows of B. If the dimensions match, then
the function returns the product AB, otherwise it returns the message “Error, the matrices
cannot be multiplied”.

Problem 1.4

Mathematica has built-in routines for finding the eigenvalues and eigenvectors (real and complex) of a
numerical square matrix. Recall that If A is an n × n matrix, then the number λ𝜆 is an eigenvalue of A if
there exists a non-zero vector x such that Ax=λ𝜆x. The vector x is called an eigenvector of A with corre-
sponding eigenvalue λ𝜆. There are at most n distinct eigenvalues of the matrix A, and at most n linearly
independent eigenvectors with real or complex entries.

0.1. The function Eigenvalues[A] returns a list with the eigenvalues of the square matrix A.

0.2. Sometimes it is necessary to know the eigenvectors of a square matrix A, as well as its eigenvalues.
This can be done using the function Eigensystem[A], which finds both the eigenvalues and a
complete linearly independent set of eigenvectors for each eigenvalue. The output is given in the
form { list of eigenvalues, list of eigenvectors }.

1. Use the function Eigensystem[...] to find the eigenvalues and a set of linearly independent
eigenvectors for the matrix M that you defined in Problem I.I. You may choose n=3 and n=10
in Problem I.I.

2. Define a matrix P whose columns are the eigenvectors returned by the function
Eigensystem[...]. Display P in matrix form, then compute the product P-−1MP where P-−1is the
inverse of the matrix P. What do you observe?

3. Let MTbe the transpose of the matrix M. Find the eigenvalues and eigenvectors of MTand M.
What do you observe? What can you say about the eigenvalues and the eigenvectors of
MTand M in case M is a random matrix?

Problem 1.5

One of the main applications of matrix algebra is to solve systems of linear equations, usually in a large
number of variables. A system of m such equations in the n variables x1, x2, ..., xn, can be written
explicitly:
a11x1 + a12x2 + ... + a1 n xn = b1

a21x1 + a22x2 + ... + a2 n xn = b2
...
am1x1 + am2x2 + ... + amn xn = bm

The same system can be written in the more convenient matrix notation as Ax=b, where A is the m × n
coefficient matrix, x is the (column) vector of length n containing the variables, and b is the (column)
vector of length m of the coefficients on the right hand sides of the equalities.
By general theory, a system of linear equations has no solution, exactly one solution or infinitely many
solutions. In Mathematica, we can use the command Solve[expression,variables], to solve the system
Ax=b for the variable x.

In the code below we define a 2x2 matrix A and a vector b of length 2, both with random entries 0 or 1.
Then we use the function Solve[A.x==b,x] to solve the system Ax=b, where x is a vector of 2 variables
x[1] and x[2]. The function Solve returns an empty list if there is no solution, a list with one solution if the
system has one solution, or a list which contains the dependecy between the free variables and the
dependent variables if the system has infinitely many solutions (like x[1]=-x[2]).

A = Table[RandomInteger[], {i, 2}, {j, 2}]; Print["A=" MatrixForm[A]];
b = Table[RandomInteger[], {j, 2}]; Print["b=" MatrixForm[b]];
X = Table[x[j], {j, 2}];
Solve[A.X ⩵ b, X]

Run the code several time to generate a couple of random 2x2 matrices and see how the solution set is
displayed. Then modify the code above to answer the following questions:

1. Let A be a random 3x3 matrix with integer coefficients. Find the solution set of the system

Ax=
1
0
0

.

2. Find the inverse of a random 3x3 matrix A with integer coefficients (if it exists!), without using
the Mathematica function Inverse[...]. Recall that the matrix A is called invertible if there exists
a (unique) 3x3 matrix B such that AB=BA=I3, where I3 is the identity matrix. If A is invertible,
then the matrix B is called the inverse of the matrix A, and it is denoted by A-−1.

2 HW1.nb

Getting Started with Mathematica

Basic calculations and variables
Mathematica is a powerful tool for doing mathematics. It can handle both symbolic and numeric expres-
sions. In the simplest case you can use it just like a calculator: you type in questions, and Mathematica
prints back answers.

27 + 5^3

You can also use variables or put several commands, separated by semicolons, on one line. A semi-
colon also has the effect of suppressing the corresponding output. To write the power as a superscript,
go to Palettes->Basic Math Assistant.

In[21]:= x = 5; y = 27; y + x3

Out[21]= 152

We can also write each command on a separate line (enter/return) within the same cell.

x = 5
y = 27;
y + x3

Writing several commands not separated by semicolons on the same line can lead to different results.
By default, a space between two expressions is interpreted as multiplication! Try writing something like
x=5 27+x^3! What do you get?

You might have noticed that Mathematica assigns numbers to every command you input and to the
corresponding output. In particular, all results are stored and you can use them in any following calcula-
tions as long as you do not quit Mathematica (more precisely the kernel).

Out[1] 3

In addition, the shortcut % can be used to refer to the previous result

% & 3

Moreover, Mathematica is case sensitive.

X + x

Symbolic versus Numeric Computations

a = 210 + 1
2
+ 2 + Pi

b = N[a]
c = N[a, 10]

d = 210 + 1
2
+ 2.0 + Pi

You can use the N[..] command to get a numeric answer. In addition, this allows to give the number of
digits you want as an optional argument.

Exercise 1 : Use the sinus function Sin[..] to compute sinus of angle 2, with
precision of one hundred decimal points

Matrices and Linear Algebra
The Mathematica front end provides an Insert->Table/Matrix submenu for creating and editing arrays
with any specified number of rows and columns. Once you have such an array, you can edit it to fill in
whatever elements you want.

Some examples of vectors and matrices:

Mathematica treats a matrix like a list of lists. To see it in standard matrix form, use the command
MatrixForm[..]

A =  1 0 0
1 1 1 

IdentityMatrix[3]
MatrixForm[%]

A vector can be given as a list.

w = {1, 2, 3}
MatrixForm[w]

We can also use the Insert->Table/Matrix submenu to create a column vector with a given number of

elements, as a matrix with n rows and one column
!
!
!

. If we use this template, the vector is interpreted

as a list of lists.

v =
1
2
3

2 Notes-1-e.nb

Matrix and Vector Operations

https : // reference.wolfram.com/language/guide/MatrixOperations.html
We can perform matrix addition A+B and scalar multiplication 3A in the usual way. However, to do
matrix multiplication we cannot use the symbol * , instead we have to use a dot!

A + A; MatrixForm[%]
MatrixForm[3 A]
A.A
A.Transpose[A]

A.w
A.v
MatrixForm[A.w]
MatrixForm[A.v]

Transpose[matrix] -- Computes the transpose
MatrixPower[matrix, power] -- For square matrices, we can compute the power of a matrix An
Eigenvalues[matrix] -- Finds the eigenvalues of a square matrix
Eigensystem[matrix] -- Finds finds both the eigenvalues and a complete linearly independent set of
eigenvectors for each eigenvalue.
Eigenvectors[matrix] -- Finds the eigenvectors of a square matrix

B = {{1, 1}, {1, 1}}; MatrixPower[B, 3]

Exercise 2 : Find the eigenvalues and eigenvectors of matrix B.

Changing Elements

To access different matrix or vector elements use [[..]]

In[7]:= w = {10, 20, 30}; w[[1]]

Out[7]= 10

In[8]:= B = {{10, 20}, {30, 40}};
B[[1]]

Out[9]= {10, 20}

Notes-1-e.nb 3

In[10]:= B[[1]][[1]]
B[[1, 1]]

Out[10]= 10

Out[11]= 10

To change elements of a matrix or vector:

In[12]:= w[[1]] = 100; w

Out[12]= {100, 20, 30}

Length[..] -- returns the number of elements in a list.

Exercise 3 : What is the length of w? How about the length of B?

Exercise 4 : Write a Mathematica command that gives the sum of the elements of
the vector w.

Other ways of generating a matrix:

Table[f, {i,m}, {j,n}] builds an mxn matrix by evaluating the function f with
arguments i and j, where i ranges from 1 to m and j ranges from 1 to n. The lower
bound is implicitly 1, so we only specify the upper bound.
The following commands generate random 4x4 matrix with entries between 0 and 1:

In[13]:= Rn = Table[Random[], {i, 4}, {j, 4}]

Out[13]= {{0.727347, 0.0091694, 0.716267, 0.20713}, {0.597192, 0.089866, 0.550936, 0.0729925},
{0.24518, 0.516913, 0.86244, 0.519886}, {0.823348, 0.798585, 0.986709, 0.0177835}}

In[14]:= Ri = Table[RandomInteger[], {4}, {4}]

Out[14]= {{1, 0, 1, 0}, {1, 1, 0, 1}, {1, 1, 1, 1}, {0, 0, 1, 0}}

We may also want to define our own function f.

In[15]:= f[i_, j_] := i + j

In this expression the underscore represents a pattern. A single underscore will match a single expres-
sion (argument) and x is the name of the pattern (it can be used to refer to the matched expression on
the right hand side). The colon tells Mathematica not to evaluate the right hand side. It will only be
evaluated when you invoke the function. This is why you get no output. Now you can use your function:

4 Notes-1-e.nb

In[16]:= f[2, 3]

Out[16]= 5

Try to assign some values to i and j, then compute f[2, 3]. What do you notice? Does f use the global or
the local values of i and j when computing f[2, 3]?

In[17]:= i = 0;
j = ,2;
f[2, 3]

Out[19]= 5

♢ Warning: Do not omit the colon when defining functions!

In[22]:= g[x_] = x2 + Sin[x]

Out[22]= 25 + Sin[5]

Can you explain this result? What is the function g? You can look at the definition of a function by using
a question mark:

? f

? g

To clear the definition of function g, use the command Clear[g].

We can then use function f to generate a 4x4 matrix whose i,j entry is i+j.

In[23]:= NewM = Table[f[i, j], {i, 4}, {j, 4}];
MatrixForm[NewM]

Out[24]//MatrixForm=
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

Exercise 5: Generate a 5x5 matrix C
 with Cij=i if i>=j and
 Cij=0 otherwise
The syntax of the “If” command in Mathematica is
 If[condition, t, f] -- the “If” command returns t if condition evaluates to true and f if condition evaluates
to false.

If[3 > 4, 10, 5]

If[3 < 4, 10, 5]

Notes-1-e.nb 5

Functions, Conditional Statements

Functions
Mathematica has a large amount of functions already built in. The arguments of a function are put in
between square brackets and separated by commas. Some basic functions are given below. Note that
all built in functions and variables start with capital letters. To avoid potential conflicts it is a good idea to
start your own functions and variables with lower case letters.

 Sqrt[x] square root (Sqrt[x])
 Exp[x] exponential (e^x)
 Log[x] natural logarithm (Subscript[log, e] x)
 Log[b, x] logarithm to base b (Subscript[log, b] x)
 Sin[x], Cos[x], Tan[x] trigonometric functions (with arguments in radians)
ArcSin[x], ArcCos[x], ArcTan[x] inverse trigonometric functions
 Abs[x] absolute value
 Round[x] closest integer to x

For example, we can compute:

Exp[3]
N[Exp[3]]
Round[Sqrt[5]]

User defined functions

We can define our own functions as follows:

f[x_] := x2 + Sin[x]

In this expression the underscore represents a pattern. A single underscore will match a single expres-
sion (argument) and x is the name of the pattern (it can be used to refer to the matched expression on
the right hand side). The colon tells Mathematica not to evaluate the right hand side. It will only be
evaluated when you invoke the function. This is why you get no output. Now you can use your function:

f[angle] + Pi

f[2 Pi]

Try to assign some value to x, then compute f[2Pi]. What do you notice? Does f use the global or the
local values of x when computing f[2Pi]?

x = 5;
f[2 Pi]

♢ Warning: Do not omit the colon when defining functions!

g[x_] = x2 + Sin[x]

Can you explain this result? You can look at the definition of a function by using a question mark:

? f

? g

To clear the function or variable definitions, use Clear[..]

Clear[x, f, g]

f[i_, j_] := i + j

The function f gives the sum of two variables. It works for any type of arguments that can be added in
Mathematica. Let us evaluate f with some integer arguments, and then with some vector arguments.

f[2, 3]
f[{1, 2, 3}, {3, 4, 5}]

The condition operator /;

Many functions are only valid if certain conditions are met. Mathematica can handle
such situations. The Condition operator ((;) can be used to make sure a pattern is
used only if a condition is met.

fun[x_] := 0 (; x < 0
fun[0] := 1
fun[x_] := Log[x] (; x > 0

You can list all definitions associated with a function as before. In particular, this will also show the order
in which the definitions are applied.

? fun

Exercise: Compute fun[0], fun[-5] and fun[9].

You can also place the condition operator in the argument of the function

f1[x_ #; x < 0] := 0
f1[0] := 10
f1[x_ #; x > 0] := Log[x]

2 Notes2.nb

f1[5]

Some functions only make sense for some type of input, like integers.

IntegerQ[expr] true if expr is an integer, false otherwise
EvenQ[expr] even number
OddQ[expr] odd number
PrimeQ[expr] prime number
NumberQ[expr] explicit number of any kind
NumericQ[expr] numeric quantity
VectorQ[expr] a list representing a vector
MatrixQ[expr] a list of lists representing a matrix
FreeQ[expr, form] form matches nothing in expr
MatchQ[expr, form] expr matches the pattern form
TrueQ[expr] tests whether expr is true

f3[x_ (; NumberQ[x]] := x^3

Evaluate the function f3

f3[3]

f3[{1, 2, 3}]

Plotting a function
Documentation available at

http : ## reference.wolfram.com # language # ref # Plot.html

Plot[f3[x], {x, +3, 3}]

!3 !2 !1 1 2 3

!30

!20

!10

10

20

30

There are a number of options that can be used with the Plot command, see the Mathematica documen-
tation for a comprehensive list of available options and examples. For instance, AxesLabel specifies
labels for the x and y axes. PlotStyle sets the style of the curve. You can fill in the space between the
curve and the x-axis using the option Filling.

Notes2.nb 3

There are a number of options that can be used with the Plot command, see the Mathematica documen-
tation for a comprehensive list of available options and examples. For instance, AxesLabel specifies
labels for the x and y axes. PlotStyle sets the style of the curve. You can fill in the space between the
curve and the x-axis using the option Filling.

Plot[f3[x], {x, +3, 3}, AxesLabel , {"x+axis", "f3[x]"},
PlotStyle , {Red, Thick}, Filling +> Axis]

Plot[f1[x], {x, +3, 3}]

Conditional Statements

If[condition, t, f] - the “If” command returns t if condition evaluates to true and
 f if condition evaluates to false.

3 > 4

If[3 > 4, 10, 5]

If[3 < 4, 10, 5]

Elementary numerical relations :
 == (is equal to) != (is not equal to)
 < (is less than) <= (is less than or equal to)
 > (is greater than) >= (is greater than or equal to)

Elementary logical relations :
 || (or) && (and) ! (not)

x = 2; If[x - 0, Print["x is 0"], Print["x is different from 0"]]

Exercise : Write some If[..] command that tests whether x is a prime number
between 10 and 20. If true, it prints x, otherwise, it prints x + 1.

4 Notes2.nb

Exercise : Write some If[..] command that tests whether x is a prime number
between 10 and 20. If true, it prints x, otherwise, it prints x + 1.

More on Conditional Statements

Sometimes we only need to perform an action when the condition is true, so we
can use the command If[..] with only two arguments.

x = 0; If[x - 0, Print["x is 0"]]

If we want to execute more commands when x is 0, we put a semicolon ; between the successive
commands.

x = 0; If[x - 0, Print["x is 0."]; x = x + 2;
Print["We have assigned the value 2 to x."],
Print["x is not 0"]]

Switch

Switch[expr,form1,value1,form2,value2,…,_,default] - compares expr with each of
the form form1, form 2, ... , giving the value associated with the first form it
matches. If expr does not match any form, then the default value is returned.

expr = 3;
Switch[expr,

1, Print["expr is 1"],
2, Print["expr is 2"],
3, Print["expr is 3"],
_, Print["expr has some other value"]]

Recall from last time

Table[f, {i,m}, {j,n}] builds an mxn matrix by evaluating the function f with
arguments i and j, where i ranges from 1 to m and j ranges from 1 to n. The lower
bound is implicitly 1, so we only specify the upper bound.
The following commands generate random 4x4 matrix with entries between 0 and 1:

Notes2.nb 5

Rn = Table[Random[], {i, 4}, {j, 4}]

Ri = Table[RandomInteger[], {4}, {4}]

We can also define our own functions and use them to generate matrices with certain patterns.

Clear[f];
f[i_, j_] := i + j

We can then use function f to generate a 4x4 matrix whose i,j entry is i+j, using the command Table[..]

NewM = Table[f[i, j], {i, 4}, {j, 4}];
MatrixForm[NewM]

6 Notes2.nb

Getting Started with Mathematica (II)
Loops (For, While, Do)
Control structures (Break, Return)
Graphs and adjacency matrices

Loops and control structures

Do[expr,{i,max}] - evaluates expr repetitively, with i varying from 1 to max in steps
of 1
Do[expr,{i,min,max,di}] - evaluates expr with i varying from min to max in steps of
di.
Do[expr,{i,list}] - evaluates expr with i taking on values from a list
Do[expr,{n}] - evaluates expr n times

Examples with Do:

Print the first 10 positive integers:

Do[Print[i], {i, 10}]

Print only the odd integers between 4 and 10

Do[Print[i], {i, 5, 10, 2}]

Do[If[Mod[i, 2] != 0, Print[i]], {i, 4, 10, 1}]

Loops and control structures (Break, Return)

We can use some control flow functions to terminate the loop:
Break[] - causes the loop to terminate
Return[expr] - causes the loop/function to terminate and returns the value expr

We can use some control flow functions to terminate the loop:
Break[] - causes the loop to terminate
Return[expr] - causes the loop/function to terminate and returns the value expr

Print the first odd integer between 4 and 10

Do[If[Mod[i, 2] != 0, Print[i]; Break[]], {i, 4, 10, 1}]

Print the first odd integer between 4 and 10

Do[If[Mod[i, 2] != 0, Return[i]], {i, 4, 10, 1}]

Loops (For)

For[start,test,incr,body] - evaluates start, then repetitively evaluates body and incr,
 until test fails

For[i = 1, i < 4, i++, Print[i]]

First i is assigned the value 1. As long as the condition i < 5 remains true, i is
incremented by 1 (i++ is just a shortening for i = i + 1) and the body of the
function For is executed (that is, we print the integer i).

v = {1, 2, 5, 4, 10}

Recall that to access the first element of the list, we use v[[1]].

v[[1]]

We can use a For loop to find the product, as follows

prod = 1;
For[i = 1, i ≤ Length[v], i++, prod = prod*v[[i]]];
prod

Mathematica also has a built-in command for finding the product of the elements of
a list/vector.

Product[v[[i]], {i, Length[v]}]

Loops (While)

2 Notes3.nb

Loops (While)

While[condition, body] - evaluates body repetitively, so long as condition is True

n = 17; While[(n = Floor[n,2]) ≠ 0, Print[n]]

Even if the last value printed by the While function is 1, the current value of n is
not 1, as one may assume, but 0. This value was not printed when we ran the
While command, because when n is 0, the condition n != 0 is false, so the body of
the function While (which would have been Print[0]) is not executed.

n

0

In the Wolfram Language, both While and For always evaluate the loop test before
evaluating the body of the loop. As soon as the loop test fails to be True, While
and For terminate. The body of the loop is thus only evaluated in situations where
the loop test is True.

While[False, Print["False"]]

The command While[False, Print["False"]] does not print anything, because the
test condition is always False, so the body of the function is never executed.

The functions While and For in the Wolfram Language are similar to the control
structures While and For in languages such as C++. Notice, however, that there
are a number of important differences. For example, the roles of comma and
semicolon are reversed in Wolfram Language For loops relative to C++ language
ones.

Exercise: Find the sum of the elements of a matrix.

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
MatrixForm[A]

Notes3.nb 3

We can use Do:

sumElements = 0;
Do[sumElements = sumElements + A[[i]][[j]],

{i, 1, Length[A]}, {j, 1, Length[A]}];
Print[sumElements]

We can use two For loops to find the sum, as follows:

sumElements = 0;
For[i = 1, i ≤ Length[A], i++, For[j = 1, j ≤ Length[A],

j++, sumElements = sumElements + A[[i]][[j]]]];
Print[sumElements]

We can use two While loops:

sumElements = 0;
i = 1;
While[i ≤ Length[A],

j = 1;
While[j ≤ Length[A],
sumElements = sumElements + A[[i]][[j]];
j++];

i++
];

Print[sumElements]

We can also use a built-in command in Mathematica for computing the sum, whose
syntax resembles that of a Do command.

Sum[A[[i]][[j]], {i, 1, 3}, {j, 1, 3}]

Graphs

Definition: A graph G={V, E} consists of a set of vertices V (also called nodes) and
a set of edges E. If there is an edge between the nodes u and v if and only if there
is an edge between v and u, then G is called an undirected graph. Otherwise it is
called a directed graph.

4 Notes3.nb

Definition: A graph G={V, E} consists of a set of vertices V (also called nodes) and
a set of edges E. If there is an edge between the nodes u and v if and only if there
is an edge between v and u, then G is called an undirected graph. Otherwise it is
called a directed graph.

In Mathematica, a graph is represented either by a list of rules of the form {vi-
>vj,...}, where vi and vj are vertices, and vi->vj is the edge between vi and vj, or by
the adjacency matrix of the graph.

G = Graph[{1 /> 2, 3 1 2, 3 1 4, 4 1 1}]

1

2

3

4

You can write click on the graph to set the display properties
of the graph (layout, size, arrow shape, vertex shape, etc.)
You can also plot the graph by explicitly listed the display options.

GraphPlot[G, VertexLabeling /> True,
DirectedEdges 1 {True, "ArrowheadsSize" /> 0.15},
PlotStyle /> Dashed]

Notes3.nb 5

Adjacency matrix

The adjacency matrix of a graph G is built by the following rule : the (i, j) entry in
the matrix is 1 if there is an edge between i and j in the graph G, and 0 otherwise.

AdjacencyMatrix[G]

SparseArray Specifiedelements: 4
Dimensions: {4, 4}



By default, if the graph does not have a lot of edges, its adjacency matrix in Mathe-
matica is given as a sparse array (only the non-zero elements are listed), but we
can convert it to the regular form by using MatrixForm. In practice, for directed
graph we will use more often the transpose of the adjacency matrix.

MatrixForm[AdjacencyMatrix[G]]

0 1 0 0
0 0 0 0
0 1 0 1
1 0 0 0

Random Graphs

We can construct a random graph using a random matrix with 0 and 1.

Ri = Table[RandomInteger[], {4}, {4}]

{{0, 1, 0, 1}, {0, 1, 0, 1}, {1, 0, 1, 1}, {0, 1, 0, 1}}

RG = GraphPlot[Ri, VertexLabeling & True, DirectedEdges & True]

1

23

4

6 Notes3.nb

MAT 331: Homework 2

Problem 2.1

In this problem we will explore some of the basic definitions and Mathematica functions for graphs. A
walk in a graph consists of an alternating sequence of vertices and edges x0, e1, x1,.., en, xn such that
ei=xi-−1→xi is an edge between vertex xi-−1and vertex xi. A walk is closed if x0=xn and open otherwise.
The number of edges is the length of a walk. The vertices and edges may be repeated in a walk. A path
is (usually defined as) an open walk with no repeated vertices. A cycle is a closed walk with no repeated
vertices, other than the first and last vertex. The problem of finding the shortest path between two
vertices is very relevant to practical problems, such as finding the way out of a maze or navigating a
road network. Cycles are also very important if traversing the whole graph in some way and coming
back to the same place is desired instead.
Another relevant feature of graphs representing real systems is community structure, or clustering, i. e.
the organization of vertices in clusters, with many edges joining vertices of the same cluster and compar-
atively few edges joining vertices of different clusters. Such clusters, or communities, can be considered
as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the
organs in the human body. Detecting communities is of great importance in sociology, biology and
computer science, disciplines where systems are often represented as graphs.

Consider the directed graph G depicted below (you may need to click on Enable Dynamics first, to view
the graph):

1

9

3

27

5

4

8

6
10

1. Use the function Graph[...] to generate the graph G. The option GraphStyle→”SmallNetwork” will give
the same display style as above, but you are free to explore additional attributes as well.

2. Find the strongly connected components of G. Use HighlightGraph[...] to color the vertices of the
graph according to the component they belong to.

3. Use the function FindGraphCommunities[...] to find a list of communities in the graph G. This
function returns a list of communities, where each community is a list of vertices. The communities
are ordered by their length, with the largest community first. Use the command HighlightGraph[...] to
color the vertices of the graph according to the community they belong to.

4. ShortestPath[G, v1, v2] returns a list of vertices representing the shortest path between nodes v1
and v2. Use this function to find the shortest path between node 6 and node 9 and then use
HighlightGraph[...] to highlight the shortest path between these nodes. First highlight only the
vertices, then highlight the edges of the shortest path. Use GraphicsRow[...] to print the two
highlighted graphs on the same row.

5. GraphDiameter[G] gives the greatest distance between any pair of vertices in the graph G. What is
the diameter of G? Explain.

Problem 2.2

Consider the graph G from problem 2.1. The command FindCycle[G,{n}] returns a cycle of length n in
graph G. Use this function to find a cycle of length 3 in G. Suppose next that we want to find all cycles
of length 3 in G. There are several ways to do that, but we will choose to work with the adjacency matrix
of G for this task. Use your prefered loop structures in Mathematica (Do, While, For) to find how many
cycles of length exactly 3 are in the graph G and to print all of these cycles. A cycle should be displayed
as a list of edges of the form {a→b, b→c, c→a}. Do not print the same cycle three times! For example,
{a→b, b→c, c→a}, {b→c, c→a, a→b}, {c→a, a→b, b→c} are different ways of writing the same cycle,
which should be counted only once.

Problem 2.3

Write a function transition[...] that takes as input a directed graph H with any number of nodes, repre-
sented as a list of directed edges, and returns the transition matrix of H. Recall that the (i,j) entry of the
transition matrix reflects the probability of transition from node i to node j. A preliminary version of the
algorithm for computing the transition matrix of a graph is done is the lecture notes. There are some
special cases which were not covered in the lecture (like the case of nodes with no outgoing edges).
Test your function on the graph from problem 1, as well as on a randomly generated directed graph with
10 nodes and 20 edges.

Problem 2.4

Let H be any undirected graph. If H is a connected, acyclic graph (acyclic means that it contains no
cycles) then we say that H is a tree. Trees are very useful for storing, sorting and quering information
that has a natural hierarchical structure. For instance, the file system (folders, subfolders, documents,
etc.) in a computer uses a tree architecture.

To build some intuition about trees, use TreePlot[H, VertexLabeling→True, DirectedEdges→False] to
plot any graph which has the properties listed above. GraphPlot[...] can also be used for plotting trees,
however the layout is slightly different.

Show that a graph H is a tree if and only if any one of the following properties is satisfied:

1. Every pair of distinct vertices of H is connected by a unique path.

2. The graph H is connected, but deleting any edge disconnects H.

3. The graph H is acyclic, but adding any edge to H forms a cycle.

4. The graph H is connected and has n-1 edges, where n is the number of vertices of H.

Problem 2.5

In this problem, we want to use the command Manipulate[...] to create nice interactive models. We can
wrap Manipulate[...] around any Wolfram command. The output you get from evaluating a Manipulate
command is an interactive object containing one or more controls (sliders, etc.) that you can use to vary
the value of one or more parameters.

2 HW2.nb

In this problem, we want to use the command Manipulate[...] to create nice interactive models. We can
wrap Manipulate[...] around any Wolfram command. The output you get from evaluating a Manipulate
command is an interactive object containing one or more controls (sliders, etc.) that you can use to vary
the value of one or more parameters.

1. RandomGraph[{m,n},k] generates k random undirected graphs with m vertices and n edges; if we
want to generate directed graphs, we need to set the attribute DirectedEdges to True, as shown in
the lecture notes. Your first task is to create a nice interactive model that can generate k (directed or
undirected!) graphs with m vertices and m(m-−1)

2
 edges. The possible values for k should be 1 and 4.

The parameter m can be any positive integer between 4 and 10, with default value 6. You should
have one extra parameter, called Directed, that can take the values True or False.

2. Let us now focus on part 4 of problem 2.1 and turn it into an interactive model as well. We do not
want to change the graph G, but we would like to build an interactive model such that for any given
choice of nodes v and u in G, we display the graph G with the shortest path between u and v
highlighted. Use the command Manipulate[...] to create a nice interactive model with controls for the
parameters u and v.

HW2.nb 3

Graph Theory with Mathematica
Construction and representation
Visualization of graphs
Properties of graphs
Connectivity, strong connectivity
Adjacency & Transition Matrices
Making interactive models

Slide 1of10 Graphs

Definition: A graph G={V, E} consists of a set of vertices V (also called nodes) and
a set of edges E.

Graphs provide a structural model that makes it possible to analyze and
understand how many separate systems act together. Systems with symmetric
relations are represented by undirected graphs, while the others can be modeled
usind directed graphs.
Applications:

technological networks (the internet, power grids, telephone networks,
transportation networks, …)

social networks (social graphs, affiliation networks, …)
information networks (World Wide Web, citation graphs, patent

networks, …),
biological networks (biochemical networks, neural networks, food webs,

…), and many more.

In Mathematica, graphs are integrated in the Wolfram language, so they cand be
used as input and output without importing any libraries. A graph is represented
either by a list of rules of the form {vi->vj,...}, where vi and vj are vertices, and vi-
>vj is the edge between vi and vj, or by the adjacency matrix of the graph. In the
Mathematica documentation (Graphs and Networks) you can find the graph
representations, graph functions, algorithms and lots of examples.

2

Slide 2of10 Recall the graph definitions from last time

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}]

1

2

3

4

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}, GraphStyle & "SmallNetwork"]

You canwrite click on the graph to set the display properties
of the graph (layout, size, arrow shape, vertex shape, etc.)
You can also plot the graph by explicitly listed the display options.

GraphPlot[G, VertexLabeling $> True,
DirectedEdges & {True, "ArrowheadsSize" $> 0.15},
PlotStyle $> Dashed]

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}];
Gplot = GraphPlot[G, VertexLabeling $> True,

DirectedEdges & {True, "ArrowheadsSize" $> 0.15},
PlotLabel & "G is a graph with 4 vertices"]

 3

Slide 3of10 Adjacency matrix

Definition: The adjacency matrix of a graph G is built by the following rule : the (i,
j) entry in the matrix is 1 if there is an edge between i and j in the graph G, and 0
otherwise.

The adjacency matrix of the graph can be obtained using the function
AdjacencyMatrix[...]

AdjacencyMatrix[G]

SparseArray Specifiedelements: 4
Dimensions: {4, 4}



By default, if the graph does not have a lot of edges, its adjacency matrix in Mathe-
matica is given as a sparse array (only the non-zero elements are listed), but we
can convert it to the regular form by using MatrixForm. In practice, for directed
graph we will use more often the transpose of the adjacency matrix.

MatrixForm[AdjacencyMatrix[G]]

0 1 0 0
0 0 0 0
0 1 0 1
1 0 0 0

Exercise : Define a graph H with the following set of edges and use Mathematica
to compute its adjacency matrix.
 Edges : 2 -> 3, 4 -> 5, 1 -> 6, 6 -> 2, 6 -> 5, 6 -> 1, 6 -> 3, 6 -> 4, 5 -> 1

4

Slide 4of10 Displaying graphics in the same row/column

We want to get a little fancy this time and display the graph and the adjacency
matrix on the same row:

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}];
Gplot = GraphPlot[G, VertexLabeling $> True,

DirectedEdges & {True, "ArrowheadsSize" $> 0.15},
PlotLabel & "G is a graph with 4 vertices"];

Adj = MatrixForm[AdjacencyMatrix[G]];
GraphicsRow[{Gplot, Adj}]

GraphicsRow[{Text["The graph"],
Gplot, Text["has adjacency matrix"], Adj}]

 5

Slide 5of10 Random Graphs

We can construct a random graph using a random matrix with 0 and 1.

Ri = Table[RandomInteger[], {4}, {4}]

{{0, 1, 0, 1}, {0, 1, 0, 1}, {1, 0, 1, 1}, {0, 1, 0, 1}}

RG = GraphPlot[Ri,
VertexLabeling & True, DirectedEdges & True]

1

23

4

6

Mathematica also has a command for building random undirected graphs:
RandomGraph[{m,n}] -- where m is the number of vertices and n is the number of
edges.
RandomGraph[{m,n},k] -- generates k random graphs with m vertices and n edges.
If we want to make the graph directed, we need to set the attribute DirectedEdges
to True.

RandomGraph[{5, 7}]

RandomGraph[{5, 7}, DirectedEdges $> True]

Mathematica can also generate graphs with a special form, for instance graphs for
which any two vertices are connected by an edge; these are called complete
graphs).

CompleteGraph[5]

 7

Slide 6of10 Properties of Graphs - Strong Connectivity

Definition: A graph is connected if for any two vertices u and v, there is a path in
the graph from u to v OR from v to u. A graph is strongly connected if for any
two vertices u and v, there is a path in the graph from u to v AND from v to u.

Proposition: Let G be a graph and A its adjacency matrix. If there is a positive
integer k such that the matrix S = I+A + A2 + A3 + … +Ak is positive (has only
positive entries), then the graph is strongly connected.

Idea of the proof: The entry on row i and column j of thematrix Ak represents the
number of paths of length k from i to j. If the (i,j) entry is positive, it means that
there exists at least one path of length k from i to j.

Testing strong connectivity using the adjacency matrix and Mathematica:

First we compute S= I+A + A2 + A3 + … +Ak. It’s enough to consider
k=dimension(A)

S = IdentityMatrix[Length[Ri]] +
Sum[MatrixPower[Ri, k], {k, 1, Length[Ri]}]

{{1, 15, 0, 15}, {0, 16, 0, 15}, {4, 22, 5, 26}, {0, 15, 0, 16}}

Now we must check the entries of the matrix S to see if there are any 0 elements.
If for some i and j the (i,j) entry is equal to 0, it means that there is no path from
node i to node j, so the graph is not strongly connected.

con = 1;
Do[If[S[[i]][[j]] == 0, con = 0;

Break[]], {i, 4}, {j, 4}];
If[con > 0, Print["Strongly connected"],
Print["Not strongly connected"]]

Not strongly connected

8

con = 1;
Do[If[S[[i]][[j]] == 0, con = 0; Return[{i, j}]],

{i, 4}, {j, 4}];
If[con > 0, Print["Strongly connected"],
Row[{"Not strongly connected, for example, there is no

path from node ", %[[1]], " to node ", %[[2]]}]]

Not strongly connected, for example, there is no path from node
1 to node 3

Comments about the previous code: First we assume that the graph is strongly
connected, so we introduce a variable con and make it equal to 1. We use a Do
loop to check whether there are any 0 entries in the matrix S. Notice the use of
Return[{i,j}] in the Do loop. When the first 0 element of the matrix S is found, we
set con to 0, exit the Do loop and return the pair {i,j}. We can later use {i,j} to
indicate that the graph fails to be strongly connected because there is no path from
node %[[1]] to node %[[2]]. If no element of the matrix is 0, then the value of the
variable con is never changed, so it remains equal to 1 after the Do command.

 9

Slide 7of10 Connected components of a graph

We can also use Mathematica to get the connected components of a graph:

Gr = RandomGraph[{10, 20}, DirectedEdges & True];
ConnectedComponents[Gr]
HighlightGraph[Gr, ConnectedComponents[Gr]]

{{2, 5, 6, 7, 8, 9, 10}, {1, 3, 4}}

1

2

3

4

5

6

7

8 9

10

Mathematica lets you copy the graph and use it anywhere else in your code. You
can even assign it to some other variable, or use it in computations.

Grrr =
1

2

3
4

56
7

8 9

10

MatrixForm[AdjacencyMatrix[Grrr]]

0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0

10

Slide 8of10 Transition Matrices

Definition: In a directed graph, for every vertex i there is a number of edges that
enter that vertex (i is a head) and a number of edges that exit that vertex (i is a
tail). Thus we define the indegree of vertex i as the number of edges for which
vertex i is a head. Similarly, the outdegree of vetex i as the number of edges for
which i is a tail.

Mathematica has built-in functions for the indegree and the outdegree of the
vertices of a graph:
VertexInDegree[graph] -- returns a list with the indegrees of the vertices of the
graph specified in the argument
VertexOutDegree[graph] -- returns a list with the indegrees of the vertices of the
graph

Definition: The transition matrix A of a directed graph is defined as follows. If

there is an edge from i to j and the outdegree of vertex i is di, then on column i

and row j we put
1
di

. Otherwise we mark the entry on column i and row j with

zero.

Random Walk on a Graph: We use the transition matrix to model the behavior of
a random surfer on a graph. The surfer chooses a node at random, then walks on
the outgoing edges to other nodes for as long as he/she wishes. At each step the
probability that the surfer moves from node i to node j is zero if there is no link

from i to j and
1
di

otherwise. Recall that di is the outdegree of vertex i.

Question: What is the probability that a random surfer that starts at one of the
nodes of the graph visits say, node j ?

 11

Slide 9of10 Finding the Transition Matrix using Mathematica

Let us try to produce the transition matrix of a directed graph, using the adjacency
matrix. Notice that for the transition matrix, we first look at the column, then at
the row. So we need to work with the transpose of the adjacency matrix instead.

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1, 4 & 2, 4 & 3}];
Gplot = GraphPlot[G, VertexLabeling $> True,

DirectedEdges & {True, "ArrowheadsSize" $> 0.07}]
Lin = VertexInDegree[G];
Print["Lin=", Lin]
Lout = VertexOutDegree[G]; Print["Lout=", Lout]

1

2

3

4

Lin={1, 3, 1, 1}

Lout={1, 0, 2, 3}

A = AdjacencyMatrix[G];
TA = Transpose[A];
Print["The transpose matrix is TA=" MatrixForm[TA]]

The transpose matrix is TA=

0 0 0 1
1 0 1 1
0 0 0 1
0 0 1 0

f[i_, j_] := TA[[i]][[j]],Lout[[j]]

12

Trans = Table[f[i, j], {i, Length[TA]}, {j, Length[TA]}];
MatrixForm[Trans]

0 Indeterminate 0 1
3

1 Indeterminate 1
2

1
3

0 Indeterminate 0 1
3

0 Indeterminate 1
2 0

Exercise : Find the transition matrix of a graph. The code in yellow computes the
transition matrix, but some cases are overlooked.

 13

Slide 10of10 Making interactive models

Using the command Manipulate[...] we can turn a static computation or graph into a
dynamic and sophisticated model. We can wrap Manipulate[...] around any Wolfram
command to create an interactive model. We need to introduce a parameter that we
want to manipulate and some bounds for that parameter.

Parameter ranges are given inside curly brackets:
{x, 4, 7} -- specifies an interval [4,7] that the parameter x belongs to.
{x, {4,7}} -- specifies a discrete set of values that x can take on.
{{x, 5, “Some text describing the meaning of the parameter x”}, 4,7}
 -- x belongs to the interval [4,7] and the default value is 5

Manipulate[
GraphPlot[Table[RandomInteger[],

{n}, {n}], VertexLabeling & True,
DirectedEdges & True],

{n, 4, 7}]

n

1 2

3

4

If you click the plus sign at the end of the slider, you get a set of video controls. You
can introduce a particular value of the parameter and hit Enter to jump to that value.
When you do a presentation, you can also hide the Wolfram commands and show
only the interactive model.

Help->Demonstrations gives you a list of pre-built Wolfram Demonstration
Projects. You can browse by topic and see the available templates. You can then
download the project as a .cdf, which means that you get an interactive version that
you can run locally on your computer, or you can download the author code, which
means that you get a notebook (.nb) with the necessary code to generate the model.

14

Help->Demonstrations gives you a list of pre-built Wolfram Demonstration
Projects. You can browse by topic and see the available templates. You can then
download the project as a .cdf, which means that you get an interactive version that
you can run locally on your computer, or you can download the author code, which
means that you get a notebook (.nb) with the necessary code to generate the model.

 15

The Mathematics of Web Search
Random walk on a graph
Search Engine
Page Rank Algorithm
Perron-Frobenius Theorem
Power Method

Slide 1of10 Transition Matrices

Definition: In a directed graph, for every vertex i there is a number of edges that
enter that vertex (i is a head) and a number of edges that exit that vertex (i is a
tail). Thus we define the indegree of vertex i as the number of edges for which
vertex i is a head. Similarly, the outdegree of vetex i as the number of edges for
which i is a tail.

Mathematica has built-in functions for the indegree and the outdegree of the
vertices of a graph:
VertexInDegree[graph] -- returns a list with the indegrees of the vertices of the
graph specified in the argument
VertexOutDegree[graph] -- returns a list with the indegrees of the vertices of the
graph

Definition: The transition matrix A of a directed graph is defined as follows.
If there is an edge from i to j and the outdegree of vertex i is di, then on

column i and row j we put
1
di

. Otherwise we mark the entry on column i

and row j with 0.

Random Walk on a Graph: We use the transition matrix to model the behavior of
a random surfer on a graph. The surfer chooses a node at random, then walks on
the outgoing edges to other nodes for as long as he/she wishes. At each step the
probability that the surfer moves from node i to node j is zero if there is no link

from i to j and
1
di

otherwise. Recall that di is the outdegree of vertex i.

Question: What is the probability that a random surfer that starts at one of the
nodes of the graph visits say, node j ?

2 Notes5.nb

Slide 2of10 Search Engine

- gather information from Web pages.
Crawlers crawl the Web following hyperlinks and they index the documents they
find:
 document ! {list of words, links, etc}

- process and store information in a database
Indexer - computes the forward index
 document ! {number of occurances of each word}
 Sorter - computes the inverted index
 keyword ! {doc1, doc2, ... , docn}

- query the database in order to answer user’s queries
Query engine
 - uses the inverted index to compile a list of documents relevant to the
keywords and phrases of the query.
 - lists the documents found in decreasing order, according to their relevance
(“best” documents first)
 Relevance QueryQ(Page ") = I(", Q) × P("),
 where I($, Q) is a text-based ranking (on-page score of $ for query Q) and
 P($) is the quality factor of the page, or the page rank, independent of the
textual content of the page.
 P($) is a number between 0 and 1, so multiplication by P($) acts as a
damping on the document score of $.

Notes5.nb 3

Slide 3of10 Page Quality

- based on the reference(citation) ranking
- independent of the textual content of the page
- each page is assigned a quality value, based on the amount and quality of
the citing pages.

The underlying assumption is that more important websites are likely to
receive more links from other websites and therefore, the importance of
any website can be judged by looking at the number and quality of the
pages that link to it.

A Web citation is simply a link (page i “cites” page j is there is a link from
page i to page j). In the next picture, Page 1 cites Pages 2, 3 and 4, Page 2
cites Pages 2 and 3, Page 3 cites Page 1, and finally Page 4 cites Pages 1
and 3.

4 Notes5.nb

- based on the reference(citation) ranking
- independent of the textual content of the page
- each page is assigned a quality value, based on the amount and quality of
the citing pages.

The underlying assumption is that more important websites are likely to
receive more links from other websites and therefore, the importance of
any website can be judged by looking at the number and quality of the
pages that link to it.

A Web citation is simply a link (page i “cites” page j is there is a link from
page i to page j). In the next picture, Page 1 cites Pages 2, 3 and 4, Page 2
cites Pages 2 and 3, Page 3 cites Page 1, and finally Page 4 cites Pages 1
and 3.

Notes5.nb 5

Slide 4of10 Web Graph

Nodes = Web sites
Edges = Hyperlinks between web sites

We can “translate” our baby Internet model with 4 pages into a directed graph
with 4 nodes, one for each web site. When web site i references j, we add a
directed edge between node i and node j in the graph. For the purpose of
computing their page rank, we ignore any navigational links such as back, next
buttons, as we only care about the connections between different web sites.

G = Graph[
{1 $ 2, 1 $ 3, 1 $ 4, 3 $ 1, 2 $ 3, 2 $ 4, 4 $ 1, 4 $ 3},

GraphStyle $ "SmallNetwork", VertexSize $ 0.15]

Lout = VertexOutDegree[G];
A = AdjacencyMatrix[G];
TA = Transpose[A];
Lout = VertexOutDegree[G];
f[i_, j_] := If[Lout[[j]] ≠ 0, TA[[i]][[j]]&Lout[[j]], 0]
T = Table[f[i, j], {i, Length[TA]}, {j, Length[TA]}];
GraphicsRow[{G, MatrixForm[T]}]

1

2

3

4

0 0 1 1
2

1
3
0 0 0

1
3

1
2
0 1

2
1
3

1
2
0 0

6 Notes5.nb

Slide 5of10 Page Rank Algorithm

Suppose that initially the importance is uniformly distributed among the 4 nodes,

each getting ¼. Denote by v the initial rank vector, having all entries equal to

¼. Each incoming link increases the importance of a web page, so at step 1, we
update the rank of each page by adding to the current value the importance of
the incoming links. This is the same as multiplying the transition matrix T with v .

At step 0, the importance is uniformly distributed, v=(¼, ¼, ¼, ¼)
At step 1, the new importance vector is v 1 = Tv.
At step 2, the updated importance vector is v 2 = Tv 1=T(Tv)=T 2 v
.................
At step k, the updated importance vector is v k = T k v

The following code in Mathematica tests this convergence process:

v = {0.25, 0.25, 0.25, 0.25}

{0.25, 0.25, 0.25, 0.25}

For[k = 1, k ≤ 20, k++, Print[MatrixPower[T, k].v]]

Notes5.nb 7

{0.375, 0.0833333, 0.333333, 0.208333}

{0.4375, 0.125, 0.270833, 0.166667}

{0.354167, 0.145833, 0.291667, 0.208333}

{0.395833, 0.118056, 0.295139, 0.190972}

{0.390625, 0.131944, 0.286458, 0.190972}

{0.381944, 0.130208, 0.291667, 0.196181}

{0.389757, 0.127315, 0.290509, 0.192419}

{0.386719, 0.129919, 0.289786, 0.193576}

{0.386574, 0.128906, 0.290654, 0.193866}

{0.387587, 0.128858, 0.290244, 0.193311}

{0.3869, 0.129196, 0.29028, 0.193625}

{0.387092, 0.128967, 0.290377, 0.193564}

{0.387159, 0.129031, 0.290296, 0.193514}

{0.387053, 0.129053, 0.290325, 0.193568}

{0.38711, 0.129018, 0.290328, 0.193544}

{0.387101, 0.129037, 0.290318, 0.193545}

{0.38709, 0.129034, 0.290324, 0.193552}

{0.3871, 0.12903, 0.290323, 0.193547}

{0.387096, 0.129033, 0.290322, 0.193548}

{0.387096, 0.129032, 0.290323, 0.193549}

The sequence converges to a vector w ≃ {0.3870, 0.1290, 0.2903, 0.1935}. Note
that this is only an approximation!

w = {0.3870, 0.1290, 0.2903, 0.1935};
Print["The sum of the entries of w is approximately ",
w[[1]] + w[[2]] + w[[3]] + w[[4]]]

The sum of the entries of w is approximately 0.9998

8 Notes5.nb

Slide 6of10 Page Rank Algorithm

◆ The limit vector w must satisfy the equation Tw=w '
 If v k!w as k!∞ then Tv k!Tw as k!∞ (because the map x!Tx is
continuous with respect to x).
 However, Tv k=v k+1 and v k+1!w as k!∞ !
 Therefore Tw=w, so w belongs to the eigenspace of T corresponding to the
eigenvalue 1.

eigen = Eigensystem[T]

We do not have to compute all of the eigenvalues and eigenvectors of T,
because only the eigenspace corresponding to the eigenvalue 1 is relevant for
our convergence problem.

evector = eigen[[2]][[1]];
Print[
"The eigenvectors corresponding to the eigenvalue 1

are scalar multiples of the vector ", evector]

The eigenvectors corresponding to the

eigenvalue 1 are scalar multiples of the vector 2,
2

3
,
3

2
, 1

We normalize so that the sum of the elements is equal to 1.

w2 = 1)(evector[[1]] + evector[[2]] +
evector[[3]] + evector[[4]]), evector

N[
w2]


12

31
,

4

31
,

9

31
,

6

31


{0.387097, 0.129032, 0.290323, 0.193548}

This gives the exact value of the limit vector  12
31 ,

4
31 ,

9
31 ,

6
31 .

Notes5.nb 9

Slide 7of10 Meaning of the Page Rank vector

The limit vector w is called the Page Rank vector of our graph. It provides a
ranking system for the nodes of the graph. Each node is assigned an importance
factor, based on the amount and relative importance of the nodes that link to it.

In our example, Node 1(Page 1) has page rank 0.38 so it is the most important
page. Page 3 has a score of 0.29. Page 2 has importance factor 0.12, so it is the
least important, and Page 4 has importance factor 0.19.

Random Surfer Model: The page rank of Page i represents the probability that a
random surfer on the Internet that opens a browser to any page and starts
following hyperlinks, visits Page i.

10 Notes5.nb

Slide 8of10 Perron-Frobenius Theorem

If M is a positive, column stochastic nxn matrix, then the following
statements are true:

1. The number 1 is an eigenvalue of M, of multiplicity one (that is, if u and
v are two eigenvectors corresponding to the eigenvalue 1, then u is a
scalar multiple of v).

2. The eigenvalue 1 is the largest eigenvalue of M; all the other
eigenvalues of M are strictly less than 1 in absolute value.

3. Any eigenvector corresponding to 1 has either positive or negative
entries.

4. There exists a unique probabilistic eigenvector w corresponding to the
eigenvalue 1.

Recall the following definitions:
 A square matrix is called column stochastic if all its entries are greater than or
equal to 0, and the sum of the entries in each column is 1.
 A matrix is called positive if all of its entries are strictly greater than 0.
 A vector is called probabilistic (or a probability distribution vector) if all its
entries are greater than or equal to 0 and the sum of all entries is 1.

Notes5.nb 11

Slide 9of10 Power Method Convergence Theorem

Let M be a positive, column stochastic nxn matrix. Denote by w its unique
probabilistic eigenvector corresponding to the eigenvalue 1.
Let v be the column vector with all entries equal to 1/n . Then the sequence v,
Mv, ... , M kv converges to the vector w as k goes to ∞.
Let z be any probabilistic vector of size n. Then the sequence z, Mz, ... , M kz
converges to the vector w as k goes to ∞.

12 Notes5.nb

Slide 10of10 Sketch of the proof

Proposition 1: If v is a probabilistic vector and M is a positive and column
stochastic matrix, then Mv is a probabilistic vector with only positive entries.

idea of proof: If v is a probabilistic vector of dimension n, and M is a column
stochastic matrix, then Mv is also a probabilistic vector.
 If v is a non-negative vector and M is a positive matrix, then Mv
has only positive entries.

Definition: Let u and v be two vectors of size n. We define the distance between
u and v to be the non-negative real number d (u, v) = 12 ∑i=1

n ui$vi|. Here ui and
vi denote the i-th entries in the vectors u, and respectively v.
Definition: Consider now a sequence of vectors vk , k>0, of size n. We say that
the sequence of vectors vk converges to w as k tends to ∞, if d(vk, w)!0 as k!∞.

Proposition 2 (Contraction): Let M be a positive and column stochastic nxn
matrix. There exists a number r, 0<r<1, such that if v and u are two probabilistic
vectors of size n, then d(Mv, Mu)⩽(1-r) d(v,u). Therefore the distance between u
and v decreases after left multiplication by M.

Proposition 3: Let M be a positive and column stochastic nxn matrix and v any
probabilistic vector of size n. Denote by vk=MKv. Then the sequence vk
converges exponentially fast to a unique limit vector w.

idea of proof: Banach Fixed point Theorem!
Let j and k be any two positive integer. We can estimate the distance between
any two terms of the sequence vj and vj+k in the following way:
 d(vj+k, vj) = d(Mj+kv, Mjv) ⩽ (1-r) jd(Mkv, v) ⩽ (1-r) jd(vk,v) ⩽ (1-r) j& 0
as j!∞, because 1-r is strictly less than 1.
Therefore the sequence {vk}k⩾0 is a Cauchy sequence in * n, so there exists a
vector w in * n such that vk!w as k!∞. The limit w is unique! Suppose by
contradiction, that there would be (at least) two limit vectors, w and z. Then
both w and z must satisfy Mw=w and Mz=z. Then we must also have the
inequalities 0 ⩽ d(w, z) = d(Mw, Mz) ⩽ (1-r)d(w,z) < d(w,z), because 1-r is strictly
less than 1. We reached a constradiction, d(w, z)<d(w, z), which shows that our
initial assumption was false and w and z must be equal.

Notes5.nb 13

Proposition 3: Let M be a positive and column stochastic nxn matrix and v any
probabilistic vector of size n. Denote by vk=MKv. Then the sequence vk
converges exponentially fast to a unique limit vector w.

idea of proof: Banach Fixed point Theorem!
Let j and k be any two positive integer. We can estimate the distance between
any two terms of the sequence vj and vj+k in the following way:
 d(vj+k, vj) = d(Mj+kv, Mjv) ⩽ (1-r) jd(Mkv, v) ⩽ (1-r) jd(vk,v) ⩽ (1-r) j& 0
as j!∞, because 1-r is strictly less than 1.
Therefore the sequence {vk}k⩾0 is a Cauchy sequence in * n, so there exists a
vector w in * n such that vk!w as k!∞. The limit w is unique! Suppose by
contradiction, that there would be (at least) two limit vectors, w and z. Then
both w and z must satisfy Mw=w and Mz=z. Then we must also have the
inequalities 0 ⩽ d(w, z) = d(Mw, Mz) ⩽ (1-r)d(w,z) < d(w,z), because 1-r is strictly
less than 1. We reached a constradiction, d(w, z)<d(w, z), which shows that our
initial assumption was false and w and z must be equal.

14 Notes5.nb

Making interactive models

Manipulate[...]
Using the command Manipulate[...] we can turn a static computation or graph into
a dynamic and sophisticated model. We can wrap Manipulate[...] around any Wol-
fram command to create an interactive model. We need to introduce a parameter
that we want to manipulate and some bounds for that parameter.

Parameter ranges are given inside curly brackets:
{x, 4, 7} -- specifies an interval [4,7] that the parameter x belongs to.
{x, {4,7}} -- specifies a discrete set of values that x can take on.
{{x, 5, “Some text describing the meaning of the parameter x”}, 4,7} -- x belongs
to the interval [4,7] and the default value is 5

Help->Demonstrations gives you a list of pre-built Wolfram Demonstration Pro-
jects. They all use the command Manipulate[...]. You can browse by topic and see
the available templates. You can then download the project as a .cdf, which means
that you get an interactive version that you can run locally on your computer, or
you can download the author code, which means that you get a notebook (.nb)
with the necessary code to generate the model.

■ Example 1. Make an interactive model that computes n^2, for n in the interval
[1,4].

☺ Solution

In[1]:= Manipulate[n^2, {n, 1, 5}]

If you click the plus sign at the end of the slider, you get a set of video controls. You can introduce a
particular value of the parameter and hit Enter to jump to that value. When you do a presentation, you
can also hide the Wolfram commands and show only the interactive model.

We can also set a default value for n when we call Manipulate[..].

In[2]:= Manipulate[n^2, {{n, 3}, 1, 5}]

Out[2]=

n

9

☺ We can indicate the domain of n in different ways!
In the following example, n takes values between 1 and 4 in steps of 0.25 and respectively in steps of 1.
The Manipulate command creates a slider.

Manipulate[n^2, {n, 1, 5, 0.25}]

Manipulate[n^2, {n, 1, 5, 1}]

Instead of incrementing n in steps of 1, we can enumerate the list of possible values for n. The Manipu-
late command will create a button for each possible value.

In[3]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5}}]

Out[3]=

n 1 2 3 4 5

16

If the list of possible values for n is too large, then a drop - down list will be created.

In[4]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5, 6, 7, 8, 9}}]

Out[4]=
n 5

25

If no interval for n is given, Manipulate will create an empty text box where you can type in the value for
n, then click Enter to obtain the result .

2 Notes6-e.nb

In[5]:= Manipulate[n^2, {n}]

Out[5]=

n 100

10000

■ Example 2. Make an interactive model that draws a random directed graph with
n vertices, for n between 4 and 7.

In[6]:= Manipulate[
RandomGraph[{n, 5}, GraphStyle $ "SmallNetwork", ImageSize $ Medium],
{n, {4, 5, 6, 7}}]

Out[6]=

n 4 5 6 7

1

2

34

5

If we do not want the graphics to rescale every time we generate a new graph, we can set the dimen-
sions of the graphical object ImageSize -> {1000, 300}. Or we can set the dimensions of the window
diplayed by Manipulate[..] using ContentSize -> {1000, 300}.

In[7]:= Manipulate[
GraphPlot[Table[RandomInteger[], {n}, {n}],
VertexLabeling $ True, DirectedEdges $ True, ImageSize $ {1000, 300}],

{n,
4,
7}]

Notes6-e.nb 3

Manipulate[
RandomGraph[{n, 5}, GraphStyle $ "SmallNetwork", ImageSize $ Medium],
{n, {4, 5, 6, 7}},
ContentSize $ {1000, 500}]

How to manipulate several functions of several parameters

■ Example 3. Make an interactive model that draws the graphs of the functions
cos(mx) and sin(nx), where m is a continuous parameter in the interval [1,2], and
n a discrete parameter in the set {4,5,6,7}.

In[9]:= Manipulate[
GraphicsRow[{

Plot[Cos[m & x], {x, 0, 2 & Pi}],
Plot[Sin[n & x], {x, 0, 2 & Pi}] }],

{n, {4, 5, 6, 7}},
{m, 1, 2}

]

Out[9]=

n 4 5 6 7

m

1 2 3 4 5 6

!1.0

!0.5

0.5

1.0

1 2 3 4 5 6

!1.0

!0.5

0.5

1.0

It is possible to have correlated sliders.

Manipulate[
Column[{"Graphs of Cos(mx) and Sin(nx)",

Plot[Cos[m & x], {x, 0, 2 & Pi}],
Plot[Sin[n & x], {x, 0, 2 & Pi}] }],

{n, m, 2 & m},
{m, 1, 2}

]

Recall :
Recall that we can define a graph by specifying the list of vertices and the list of edges and other option-
s.The generic command is Graph[VertexList, EdgeList, Options]. Sometimes it is desired to label the
nodes of the graph using something other than numbers.

4 Notes6-e.nb

Recall that we can define a graph by specifying the list of vertices and the list of edges and other option-
s.The generic command is Graph[VertexList, EdgeList, Options]. Sometimes it is desired to label the
nodes of the graph using something other than numbers.

In[14]:= G = Graph[{1, 2, 3, 4}, {1 & 2, 2 & 3, 2 & 4, 4 & 3, 4 & 1, 4 & 2},
VertexLabels & {1 & "a", 2 & "b", 3 & "c", 4 & "d"},
EdgeLabels & {(1 & 2))> "Edge ab"}]

Out[14]=

VertexList[..] and EdgeList[..] give the list of vertices and respectively the list of edges of a graph.
PropertyValue[..] can be used to retrieve the list of labels.

In[15]:= VertexList[G]
EdgeList[G]

Out[15]= {1, 2, 3, 4}

Out[16]= {1 # 2, 2 # 3, 2 # 4, 4 # 3, 4 # 1, 4 # 2}

In[17]:= PropertyValue[G, VertexLabels]
PropertyValue[G, EdgeLabels]

Out[17]= {3 $ c, 4 $ d, 2 $ b, 1 $ a}

Out[18]= {1 # 2 $ Edge ab}

If the ordered list of labels is desired, one can use Sort[..].

In[19]:= L = PropertyValue[G, VertexLabels];
Sort[L, Greater]
Sort[L]

Out[20]= {3 $ c, 4 $ d, 2 $ b, 1 $ a}

Out[21]= {1 $ a, 2 $ b, 3 $ c, 4 $ d}

Notes6-e.nb 5

In[22]:= HighlightGraph[G, {1, 4, 2 & 3}]

Out[22]=

In[23]:= HighlightGraph[G, {Style[{1, 4}, Green], 2 & 3}, VertexSize & Medium]

Out[23]=

Exercise
Open the Mathematica notebook Map.nb (MetroStationMap).The variable called Metro is a list of 5
graphs with the metro networks in Seoul, New York, Paris, Mexico City and London. The vertices of the
graphs are labeled with the names of the metro stations.

■ (a). Write an interactive program using Manipulate[...] that has a control button with five values
1,2,3,4,5. When the user selects a given value, you display the name of the city and the corresponding
metro map.

■ (b). Expand the model from part (a) with a second control which gets populated with the vertices of the
corresponding graph. When the user selects a vertex from the list, you show the corresponding metro
station highlighted in green (or with increased size) on the metro network.

■ (c). Make an interactive model from part (b) with nodes v an u as parameters, that highlights the short-
est path from v to u, if there exists such a path in the graph, otherwise it only highlights the two vertices.

■ (d). Make an interactive model that highlights a vertex v of G2 together with its parents and children (i.e.
if there is an edge v->u, then v is called a parent node and u a child node). The function Neighborhood-
Graph[...] might be of help.

6 Notes6-e.nb

■ (e). Optional (Combined Interactive Model): Parameters: nodes v and u, and an extra parameter
“option” with values {b,c,d}. If “option” b is selected, then the model outputs the same thing as part (b), If
“option” c is selected, then the model outputs the same thing as part (c) etc. If you skiped some part,
say (d), then you should allow only two values for “option”, {b,c}.

Partial Answer:

NameCity = {"Seoul", "New York", "Paris", "Mexico City", "London"};

Notes6-e.nb 7

Manipulate[
Column[{"Metro Map ", NameCity[[i]], HighlightGraph[Metro[[i]],

FindShortestPath[Metro[[i]], u, v], VertexSize $ 1.5]}],
{i, {1, 2, 3, 4, 5}}, {{u, 1}, VertexList[Metro[[i]]]},
{{v, 1}, VertexList[Metro[[i]]]}]

i 1 2 3 4 5

u

v

Metro Map
Paris

La
Defense

Charles
de

Gaulle
Etoile

Franklin
Delano

Roosevelt

Villiers

Porte
Dauphine

Trocadero Champs
Elysee

Clemenceau

Miromesnil

Concorde

Invalides

Louvre

Madeleine

Sevres
Babylone

Chatelet
les

Halles

Pyramides

Hotel
de

Ville

Gare
de

Lyon

Reaumur
Sebastopole

Odeon Jussieu

Bastille
Arts
et

Metiers

Reuilly
Diderot

Oberkampf

Republique

Gare
d

Austerlitz

Bercy

Nation

Daumesnil

Château
de

Vincennes

Mairie
de

Montreuil

Pere
Lachaise

Gambetta
Place
des

Fetes

Belleville

Jaures

Strasbourg
St

Denis
Gare
de
l

Est

OperaRichelieu
Drouot

Louis
Blanc

Gare
du

Nord
La

Chapelle

Stalingrad
Bobigny
Pablo

Picasso

La
Courneuve

8
mai

1945

Barbes
Rochechouart

Marcadet
Poissonniers

Pigalle

Porte
de
la

Chapelle

Porte
de

Clignancourt

Gare
Saint- Lazarre

Plache
de

Clichy

Havre
CaumartinPont

de
Levallois
Becon

La
FourcheSaint

Denis
Universite

Asnieres
Genevilliers

Gabriel
Peri

Michel
Ange

Auteuil
Molitor

La
Motte

Picquet
Grenelle

Boulogne
Pont
de
St

Cloud
Pont
de

Sevres

Balard
Duroc

"Pasteur

Montparnasse
Bienvenue

Chatillon
Montrouge

Denfert
Rochereau

Raspail

Mairie
d

Issy

Porte
d

Orleans

Place
d

Italie

Maison
Blanche

Villejuif
Louis

Aragon

Mairie
d

Ivry

Olympiades

Creteil
"Prefecture

8 Notes6-e.nb

Lab project - Making Interactive Models

■ Example 1. Make an interactive model that computes n^2, for n in the interval
[1,4].

☺ Solution 1

Manipulate[n^2, {n, 1, 4}]

Once an interactive model is created, you can copy and run the model in a new notebook. You do not
need to copy the code.

We can indicate the domain of n in different ways (each way will generate a different type of control
button, slider, popup menu, checkbox, etc.)

Manipulate[n^2, {n, 1, 4, 0.25}]

Manipulate[n^2, {n, 1, 4, 1}]

Manipulate[n^2, {n, {1, 2, 3, 4}}]

Options for the controls can also be given within the specification for the variables.
The option setting ControlType -> type attempts to use controls of the specified type. Possible control
types include: Animator, Checkbox, CheckboxBar, ColorSetter, ColorSlider, InputField, Manipulator,
PopupMenu, RadioButton or RadioButtonBar, Setter or SetterBar, Slider, Slider2D, TogglerBar, Trigger,
and VerticalSlider, None. More information can be found in the Mathematica Documentation.
The option setting ControlPlacement -> pos specifies that controls should be placed at position pos
relative to expr. Possible settings for position are Bottom, Left, Right, and Top.

In[24]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5, 6, 7, 8}, ControlType % SetterBar}]

Out[24]=

n 1 2 3 4 5 6 7 8

16

In[25]:= Manipulate[n^2,
{n, {1, 2, 3, 4, 5, 6, 7, 8}, ControlType &> PopupMenu, ControlPlacement % Left}

]

Out[25]=
n 4 16

In[26]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5, 6, 7, 8}, ControlType % VerticalSlider}]

Out[26]=

n

16

☹ Solution 2

Manipulate[
temp = n;
temp = temp^2;
temp,
{n, 1, 4}

]

Notice that the cell reevaluates itself continuously (the right cell bracket is contantly blinking), even
when we do not change the position of the slider. You can confirm this by going to Evaluation->Find
Currently Evaluating Cell. This happens because the variable temp has its value changed during the
evaluation (temp =temp^2), even if the value of n has not changed.

☺ Solution 3
The problem can be solved by making the global variable “temp” be local variable inside a Module.
Nothing you do to local Module variables will cause reevaluating, because it is part of the definition of
Module that values of local variables do not survive from one invocation to the next.

2 Notes7.nb

Manipulate[Module[{temp},
temp = n;
temp = temp^3;
temp],

{n, 1, 4}
]

☹ Solution 4

Manipulate[
f[x_] := x^2;
f[n],
{n, 1, 4}]

☺ Solution 5

Manipulate[Module[{g},
g[x_] := x^2;
g[n]],

{n, 1, 4}]

The function g is now a local variable, so it does not cause any extra reevaluations. Notice that it is not
defined outside of Module[...], so if you try to call g[3] say, somewhere below, the function g will not be
recognized.

g[3]

☺ Solution 6

Manipulate[
f[x_] := x^2;
f[n],
{n, 1, 4}, TrackedSymbols * {n}]

We can keep the function f global, without causing any reevaluations of Manipulate, if we explicitly
indicate that the only variable whose values we should keep track of is the parameter n (by default,
Manipulate[...] tracks both f and n). The example above reevaluates only when n changes its value as a
result of moving the slider.

☹ Solution 7

h[x_] := x^2
Manipulate[
h[n],
{n, 1, 4}]

We can also define the function h(x)=x^2 globally, before Manipulate[..]. At first glance, it looks like
everything works well and without causing any reevaluations of Manipulate.
The downfall is that the definition of the function h (which is called later in the body of Manipulate) is not
saved together with the output of Manipulate. To see this, open a new Mathematica notebook, and set
“Evaluation->Notebook’s Default Context” to “Unique to this notebook”. Then copy ONLY the ouput of
Manipulate (that is, ONLY the interactive model, absolutely NO code) in the new notebook. Try chang-
ing the slider. What do you notice?

Notes7.nb 3

We can also define the function h(x)=x^2 globally, before Manipulate[..]. At first glance, it looks like
everything works well and without causing any reevaluations of Manipulate.
The downfall is that the definition of the function h (which is called later in the body of Manipulate) is not
saved together with the output of Manipulate. To see this, open a new Mathematica notebook, and set
“Evaluation->Notebook’s Default Context” to “Unique to this notebook”. Then copy ONLY the ouput of
Manipulate (that is, ONLY the interactive model, absolutely NO code) in the new notebook. Try chang-
ing the slider. What do you notice?

☺ Solution 8

h[x_] := x^2
Manipulate[
h[n],
{n, 1, 4}, SaveDefinitions % True]

The option “SaveDefinitions'True” forces any function definitions used by Manipulate to be saved
with the output. The output can be copied and directly run in a new notebook. Try it!

■ Exercise 1. Make an interactive model that reads the value of two variables, total
and sum, represented by two different controls, and outputs their sum,
total+sum. Does the example below do that?

Manipulate[
total = total + step;
{step, total},
{{total, 0}, &1000, 1000, 1}, {{step, 0}, &10, 10, 1},
FrameLabel % "Good or bad?"]

■ Exercise 2. A way to compute the sum of the first m positive integers in
Mathematica is to do a For loop, like the one written below. Turn the code
below into an interactive model where m will be allowed to take any values in
the set {10, 20, 30, 40, 50}.

m = 5;
s = 0;
For[i = 1, i ≤ m, i++, s = s + i];
s

■ Exercise 3. Interactive models with graphs. This is the exercise from last time,
plus some additional tasks.

Open the Mathematica notebook MetroStationMap.The variable called Metro is a list of 5 graphs with
the metro networks in Seoul, New York, Paris, Mexico City and London. The vertices of the graphs are
labeled with the names of the stations.

NameCity = {"Seoul", "New York", "Paris", "Mexico City", "London"}

4 Notes7.nb

■ (a). Write an interactive program using Manipulate[...] that has a control button with five values
1,2,3,4,5. When the user selects a given value, you display the name of the city and the corresponding
metro map. Because your program uses some global variables defined outside Manipulate (like
Metro), you should also set SaveDefinitions!True.

■ (b). Expand the model from part (a) with a second control which gets populated with the vertices of the
corresponding graph. When the user selects a vertex from the list, you show the corresponding metro
station highlighted in green (or with increased size) on the metro network. Make the control type a
PopupMenu.

■ (c). Make an interactive model from part (b) with nodes v an u as parameters, that highlights the short-
est path from v to u, if there exists such a path in the graph, otherwise it only highlights the two vertices.
Use the function FindShortestPath[...].

■ (d). Make an interactive model that highlights a vertex v together with its parents and children (i.e. if
there is an edge v->u, then v is called a parent node and u a child node). The function Neighborhood-
Graph[...] might be of help.

■ (e). A Metro hub is a metro station which has direct connections to five or more other metro stations.
Make an interactive model where the metro hubs are highlighted with VertexSize->1.2
Use for example VertexInDegree[..] to count the number of incoming edges for each node. You may
also need to use the function Sort[..] (check also the Mathematica documentation on Sort).

■ (f). Optional: Combined Interactive Model: Parameters: nodes v and u, and an extra parameter
“option” with values {b,c,d,e}. If “option” b is selected, then the model outputs the same thing as part (b),
If “option” c is selected, then the model outputs the same thing as part (c) etc. If you skiped some part,
say (d), then you should allow only two values for “option”, {b,c,e}. You may need to use some condi-
tional statements like If or Switch.

Notes7.nb 5

MAT 331: Project 1

Project description:

The PageRank algorithm provides the basis for Google’s web search tools. As we described in the
lecture, PageRank is a recursive algorithm, and it works by counting the number and quality of links to a
page to determine a rough estimate of how important the website is. The underlying assumption is that
more important websites are likely to receive more links from other websites and therefore, the impor-
tance of any website can be judged by looking at the number and quality of the pages that link to it.
Components of the PageRank vector serve as “importance” weights for web pages, independent of their
textual content, solely based on the hyperlink structure of the web.
In this project we are interested in the theoretical foundations of the PageRank algorithm, in computing
the Page Rank of small-scale graphs and in the effects of particular aspects of web graph structure on
the Page Rank vector.

Tasks:

1. Browse the web and read a little bit about the importance of the PageRank algorithm for web
searches. Ranking algorithms such as PageRank have also found applications in other areas
(population models, article citations, hotel ranking systems, etc.). Give examples of the applications
of Page Rank to search engines and to other real life problems. Please include all relevant
references.

2. Describe how the Page Rank algorithm works. Investigate possible ways to compute the Page Rank
vector of a graph (that is, computing eigenvalues, or rather applying the Power Method) and describe
their advantages and drawbacks as the size of the graph gets bigger and bigger.

3. Explain the mathematics behind PageRank. The algorithm can be explained using ideas from
several fields of Mathematics, like probability, linear algebra, dynamical systems or analysis. You can
choose the mathematical language that you feel more confortable with. Feel free to use external
sources and articles and include references for any relevant theorems and proofs that you may
decide to use. If you decide to follow the steps explained in the lecture notes, then take a look at the
lemmas listed at the end and fill in the proofs.

4. You will next build an interactive model in Mathematica for calculating the Page Rank vector of small
scale web graphs, with nodes representing websites and edges representing hyperlinks. The number
of nodes is assumed reasonably small, so that your algorithm works relatively fast. Your model
should work with random graphs, graphs with dangling nodes, as well as some fixed test graphs,
given below. The basic model should display the graph with the first five most important nodes
highlighted in different colors and the (modified?) transition matrix A of the graph. The extended
model should include a step-by step computation of the page-rank vector (at each step, one
computes Ak v and highlights the most important 5 vertices according to the page-rank
approximation Ak v). There are several aspects that your interactive model should take into account:

◼ You should include controls that enable the user to select the desired type of graph and the
number of nodes.

◼ The damping factor p should be given as a parameter, with values between 0.01 and 0.5.

◼ The power k should also be given as a parameter, with values between 1 and 20, and with step
size 1.

5. Give some brief instructions on how your model should be tested (how to use the controls, etc.).

6. Conclusions. Formulate your findings after testing your interactive model on a couple of examples. Is
the Page Rank vector in agreement with your natural understanting of the relative importance of
nodes? What values of the damping factor seem to give more accurate rankings? You can also copy
paste in here any interesting examples that you may have discovered when testing your model.

7. References. Include all relevant references here.

General considerations:

You wil be graded on the quality and maturity of your mathematical explanations, as well as on the
efficiency of the Mathematica code that you develop. Your interactive model should reevaluate itself
only when the controls are changed (i.e. we change the position of a slider, etc.). When possible, try to
avoid performing unnecessary computations (for example, do not use Eigensystem[A] if you are only
interested in the eigenspace corresponding to the eigenvalue 1; you may choose not to use MatrixPow-
er[A,k] if you have to compute Ak for many succesive values of k; etc.) Try to have a nice coding style
and use functions when appropriate. Use different names for your variables! Do not include all intermedi-
ate output that you may have obtained by testing small parts of your code. All your code, including
functions/variable definitions and Manipulate[..] should be contained in one single Mathematica cell
bracket. Before you start working on your project, look also through the Wolfram Demonstration Pro-
jects, to get an idea of how a project should look like.

Mathematics:

When explaining the Mathematics behind the Page Rank Algorithm, if you decide to follow the plan
outlined in the lectures, don’t forget to give justifications for the following statements:
0.1. If A is a column stochastic nxn matrix and v∈ℝn is a probabilistic vector, then Av is a probabilistic

vector.

◼ Hint: By the definition of matrix multiplication, the i-th entry of the vector Av is (Av)i = ∑ j=1n aij vj.

0.2. If A is a positive nxn matrix and v∈ℝn a probabilistic vector with non-negative entries, then Av is a
vector with all entries positive.

0.3. If A is a column stochastic nxn matrix, B is the nxn matrix with all entries equal to 1 and p∈(0,1], then
the matrix (1-p)A + p 1

n
B is positive and column stochastic. The number p is called the damping

factor.

0.4. Let u and v be two vectors in ℝn. Define the distance between u and v to be

d (u, v) = 1
2 ∑i=1

n ui -−vi|.

Show first that d verifies the three properties of a distance (metric):

■ d (u, v) = d (v, u)

■ d(u, v) ⩽ d(u, w) + d(w, v) where u,v,w are any three vectors in ℝn.

■ d(u, v) ⩾ 0 for any two vectors u,v and d(u, v) = 0 if and only if u = v.

0.5. Next assume that u and v are two probabilistic vectors in ℝn. Show that the distance function is
bounded

■ d(u, v) ⩽ 1.

Assume that u and v are two probabilistic vectors in ℝn. Let S = {1⩽i⩽n, ui> vi} be the set of indices i
for which the i-th entry of u is striclty greater than the j-th entry of v.

2 Project1.nb

■ Show that S is a proper subset of {1,2,...,n}, that is, S is nonempty and S≠{1,2,...,n}.

■ Show that d(u, v)= ∑
i∈S

ui -−vi and that d(u, v)<1.

0.6. Let A be a positive column stochastic nxn matrix. Show that there exists a real number r, with 0<r<1,
such that d(Au, Av) ⩽ (1-r) d(u, v), for any two probabilistic vectors u and v in ℝn.

◼ Hint: Consider the sets S={1⩽i⩽n, ui> vi} and Q={1⩽i⩽n, (Au)i> (Av)i}. Use Lemmas 0.1 and 0.4 to
show that these are proper subsets of {1,2,...,n}. Next show that there exists a number r with 0<r<1
such that for any fixed column j of the matrix A, we have the inequality ∑

i∈Q
aij < 1-r. The number r can

be chosen so that 0<r<min 0⩽i,j⩽n{aij}. Then use the definition of matrix multiplication and Lemma 0.4.

0.7. Use Lemma 0.5 to show that if A is a positive column stochastic matrix, then there exists a unique
probabilistic eigenvector corresponding to the eigenvalue 1.

0.8. Let A be a positive column stochastic nxn matrix. Let v be a probabilistic vector of size n. Use
Lemma 0.5 and Lemma 0.6 and the ideas discussed in the lecture to show that the sequence v,
Av, A2 v... , Ak v converges to the unique probabilistic eigenvector corresponding to the eigenvalue 1.

Some test graphs:

In[1]:= G1 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20},
{1 → 4, 1 → 6, 1 → 10, 1 → 11, 2 → 6, 2 → 13, 3 → 1, 3 → 7, 3 → 11, 4 → 1, 4 → 11,
5 → 2, 6 → 1, 6 → 15, 7 → 1, 7 → 14, 8 → 6, 8 → 16, 9 → 1, 9 → 10, 9 → 14, 10 → 1,
11 → 3, 12 → 8, 13 → 5, 13 → 6, 14 → 1, 14 → 3, 14 → 9, 15 → 13, 15 → 16,
16 → 12, 16 → 6, 15 → 17, 17 → 10, 17 → 18, 18 → 19, 18 → 20, 19 → 20, 20 → 19},

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[1]=

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17
18

19

20

Project1.nb 3

In[2]:= G2 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{2 → 1, 2 → 6, 3 → 1, 3 → 7, 4 → 1, 4 → 11, 5 → 2, 5 → 9, 6 → 1, 6 → 15,
7 → 1, 7 → 14, 8 → 1, 8 → 4, 8 → 6, 9 → 10, 9 → 14, 10 → 2, 10 → 1, 11 → 12,
11 → 3, 12 → 8, 13 → 5, 14 → 1, 14 → 3, 15 → 13, 15 → 16, 16 → 12},

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[2]=

1

2

3

4

5 6

7

8

9 10 11

12

13

14

15
16

4 Project1.nb

In[3]:= G3 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{1 → 4, 1 → 10, 1 → 6, 2 → 1, 2 → 6, 2 → 13, 3 → 1, 3 → 7, 4 → 1,
4 → 11, 5 → 2, 5 → 9, 6 → 15, 7 → 1, 7 → 14, 8 → 1, 8 → 4, 8 → 6,
8 → 16, 9 → 10, 9 → 14, 10 → 2, 10 → 1, 11 → 12, 11 → 3, 12 → 8,
13 → 5, 13 → 6, 14 → 1, 14 → 3, 15 → 13, 15 → 16, 16 → 12, 16 → 6 },

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[3]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Project1.nb 5

In[4]:= G4 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
{1 → 4, 1 → 10, 1 → 11, 2 → 6, 2 → 5, 2 → 13, 3 → 1, 3 → 7, 3 → 11, 4 → 1,
4 → 11, 5 → 2, 5 → 6, 6 → 5, 7 → 1, 7 → 14, 8 → 5, 9 → 1, 9 → 10, 9 → 14,
10 → 1, 11 → 3, 12 → 5, 13 → 5, 13 → 2, 13 → 6, 14 → 1, 14 → 3, 14 → 9},

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[4]=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

6 Project1.nb

Project1 (discussion)

The project is based on the Perron-Frobenius Theorem

Theorem: If M is a positive, column stochastic nxn matrix then the following
statements are true:

■ The number 1 is an eigenvalue of M, of multiplicity one
■ The eigenvalue 1 is the largest eigenvalue of M; all the other eigenvalues of M are

strictly less than 1 in absolute value.
■ There exists a unique probabilistic eigenvector w corresponding to the eigenvalue 1.
■ (Power Method Convergence) Let v be a probabilistic eigenvector. Then the sequence

v, Mv, ... , M kv converges to w as k goes to ∞.

Page Rank Algorithm

We use the Perron - Frobenius Theorem to give a rigorous mathematical
justification for the Page Rank Algorithm.

The PageRank algorithm provides the basis for Google' s web search tools. As we
described in the lecture, PageRank is a recursive algorithm, and it works by
counting the number and quality of links to a page to determine a rough estimate
of how important the website is. The underlying assumption is that more
important websites are likely to receive more links from other websites and
therefore, the importance of any website can be judged by looking at the number
and quality of the pages that link to it. Components of the PageRank vector serve
as "importance" weights for web pages, independent of their textual content, solely
based on the hyperlink structure of the web.

Back to the Web Graph

The Web Graph is not necessarily strongly connected, so its transition matrix
need not be positive or column stochastic! The Web graph could have
disconnected components or dangling nodes (nodes with no outgoing edges)
which would correspond to 0 column vectors in the transition matrix.

The Web Graph is not necessarily strongly connected, so its transition matrix
need not be positive or column stochastic! The Web graph could have
disconnected components or dangling nodes (nodes with no outgoing edges)
which would correspond to 0 column vectors in the transition matrix.

Some of the graphs in the project might also have these problems, especially the
randomly generated ones. Then we cannot simply find the “unique” probabilistic
eigenvector corresponding to the eigenvalue 1 and say that this is the Page Rank
vector of our graph. We first need to adjust our algorithm slightly, to make it
work also for graphs with dangling nodes and disconnected components

Dangling nodes

☹ Consider the graph depicted below. Its transition matrix is given on the right,
and we can see that it is not column stochastic or positive either!

H = Graph[{1 $ 2, 3 $ 2},
GraphStyle $ "SmallNetwork", VertexSize $ 0.15];

TransitionH = Transpose[AdjacencyMatrix[H]];
GraphicsRow[{H, MatrixForm[TransitionH]}]

1

2

3

0 0 0
1 0 1
0 0 0

☹ Perron-Frobenius Theorem cannot be directly applied! Still, let us see if the Power
Method converges to something useful.

u = {1'3, 1'3, 1'3}; MatrixForm[u]
For[k = 1, k ≤ 3, k++,
Print[MatrixForm[MatrixPower[TransitionH, k].u]]]

1
3
1
3
1
3

2 ProjectDiscussion.nb

0
2
3
0
0
0
0
0
0
0

We notice that the sequence of vectors u, Au, ..., Ak u converges to the 0-vector. There-
fore, in this case, the rank of every page is 0. This is counterintuitive, as page 2 has 2
incoming links, so it must have some importance!

☺ A solution to the Dangling Nodes Problem
Change the transition matrix of the graph so that it becomes column stochastic. More
specifically, change any 0-column in the transition matrix with a column where all elements
are equal to 1/n.
This models the behavior of a random surfer that after viewing a web page with no outgo-
ing edges, will simply choose another page from the Web with equal probability 1/n and go
there.

For[i = 1, i ≤ 3, i++, TransitionH[[i, 2]] = 1'3];
MatrixForm[TransitionH]

0 1
3

0

1 1
3

1

0 1
3

0

u = {1'3, 1'3, 1'3}
For[k = 1, k ≤ 40, k++, Print[N[MatrixPower[TransitionH, k].u]]]


1

3
,
1

3
,
1

3


{0.111111, 0.777778, 0.111111}

{0.259259, 0.481481, 0.259259}

{0.160494, 0.679012, 0.160494}

{0.226337, 0.547325, 0.226337}

{0.182442, 0.635117, 0.182442}

{0.211706, 0.576589, 0.211706}

ProjectDiscussion.nb 3

{0.192196, 0.615607, 0.192196}

{0.205202, 0.589595, 0.205202}

{0.196532, 0.606937, 0.196532}

{0.202312, 0.595376, 0.202312}

{0.198459, 0.603083, 0.198459}

{0.201028, 0.597945, 0.201028}

{0.199315, 0.60137, 0.199315}

{0.200457, 0.599087, 0.200457}

{0.199696, 0.600609, 0.199696}

{0.200203, 0.599594, 0.200203}

{0.199865, 0.600271, 0.199865}

{0.20009, 0.59982, 0.20009}

{0.19994, 0.60012, 0.19994}

{0.20004, 0.59992, 0.20004}

{0.199973, 0.600053, 0.199973}

{0.200018, 0.599964, 0.200018}

{0.199988, 0.600024, 0.199988}

{0.200008, 0.599984, 0.200008}

{0.199995, 0.600011, 0.199995}

{0.200004, 0.599993, 0.200004}

{0.199998, 0.600005, 0.199998}

{0.200002, 0.599997, 0.200002}

{0.199999, 0.600002, 0.199999}

{0.200001, 0.599999, 0.200001}

{0.2, 0.600001, 0.2}

{0.2, 0.599999, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

Disconnected components

4 ProjectDiscussion.nb

Disconnected components

☺ Solution: Let T be the transition matrix of the Web graph. T is an nxn matrix,
where n is huge. Fix a positive constant p between 0 and 1, called the damping
factor (a typical value for p is 0.15). Define the Page Rank matrix (also known as
the Google matrix) of the graph to be

M=(1-p)T+p

1
n

1
n .. 1

n

..
1
n

1
n .. 1

n

Theorem: If T is a column stochastic matrix, then M is a positive and column
stochastic matrix.

The matrix M models the behaviour of the random surfer as follows: most of the
time, a surfer will follow links from the current page he/she is viewing. From a
page i, the surfer will follow the outgoing links and move on to one of the
neighbors of page i. A smaller, but positive percentage of the time, the surfer will
dump the current page and choose arbitrarily a different page from the web and
“teleport” there. The damping factor p reflects the probability that the surfer
quits the current page and goes to a new one. Since he/she can teleport to any
web page, each page has equal probability 1n to be chosen. So the Internet graph

becomes strongly connected.

An example of a graph with disconnected components

G2 = Graph[{1, 2, 3, 4, 5, 6, 7},
{1 $ 2, 2 $ 1, 3 $ 4, 4 $ 3, 4 $ 5, 5 $ 4, 5 $ 3, 3 $ 5, 3 $ 6,
6 $ 4, 7 $ 5, 7 $ 4, 3 $ 7}, GraphStyle $ "SmallNetwork"]

ProjectDiscussion.nb 5

12

3

4
5

6

7

Find the transition matrix first and compute its eigenvalues:

Lout = VertexOutDegree[G2];
TA = Transpose[AdjacencyMatrix[G2]];
f[i_, j_] := If[Lout[[j]] != 0, TA[[i]][[j]]'Lout[[j]], 0];
T = Table[f[i, j], {i, Length[TA]}, {j, Length[TA]}];
MatrixForm[T]

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1

2
1
2 0 0

0 0 1
4 0 1

2 1 1
2

0 0 1
4

1
2 0 0 1

2

0 0 1
4 0 0 0 0

0 0 1
4 0 0 0 0

Eigenvalues[T]

-1, 1, 1, -
1

2
,
1

4
-1 + / 3 ,

1

4
-1 - / 3 , 0

Eigensystem[T]

-1, 1, 1, -
1

2
,
1

4
-1 + / 3 ,

1

4
-1 - / 3 , 0,

{-1, 1, 0, 0, 0, 0, 0}, 0, 0, 4,
13

3
,
11

3
, 1, 1, {1, 1, 0, 0, 0, 0, 0},

{0, 0, 0, -1, 1, 0, 0}, 0, 0, -1 + / 3 , -/ 3 , -1, 1, 1,

0, 0, -1 - / 3 , / 3 , -1, 1, 1, {0, 0, 0, -1, 1, -1, 1}

The eigenspace corresponding to the eigenvalue 1 is now two-dimensional! So
there are many probabilistic eigenvectors corresponding to the eigenvalue 1. So
for different choices of initial probabilistic vectors u2 and u3, the sequences u2,
Tu2, ... T^ku2.... and u3, Tu3, ... T^ku3 can converge to different limits, as one can
see below:

6 ProjectDiscussion.nb

The eigenspace corresponding to the eigenvalue 1 is now two-dimensional! So
there are many probabilistic eigenvectors corresponding to the eigenvalue 1. So
for different choices of initial probabilistic vectors u2 and u3, the sequences u2,
Tu2, ... T^ku2.... and u3, Tu3, ... T^ku3 can converge to different limits, as one can
see below:

n = Length[T];
u2 = Table[1'n, {n}];
For[k = 1, k ≤ 10, k++, Print[N[MatrixPower[T, k].u2]]]

{0.142857, 0.142857, 0.142857, 0.321429, 0.178571, 0.0357143, 0.0357143}

{0.142857, 0.142857, 0.25, 0.178571, 0.214286, 0.0357143, 0.0357143}

{0.142857, 0.142857, 0.196429, 0.223214, 0.169643, 0.0625, 0.0625}

{0.142857, 0.142857, 0.196429, 0.227679, 0.191964, 0.0491071, 0.0491071}

{0.142857, 0.142857, 0.209821, 0.21875, 0.1875, 0.0491071, 0.0491071}

{0.142857, 0.142857, 0.203125, 0.219866, 0.186384, 0.0524554, 0.0524554}

{0.142857, 0.142857, 0.203125, 0.222656, 0.186942, 0.0507813, 0.0507813}

{0.142857, 0.142857, 0.204799, 0.220424, 0.1875, 0.0507813, 0.0507813}

{0.142857, 0.142857, 0.203962, 0.221122, 0.186802, 0.0511998, 0.0511998}

{0.142857, 0.142857, 0.203962, 0.221191, 0.187151, 0.0509905, 0.0509905}

u3 = {1'2, 1'2, 0, 0, 0, 0, 0};
For[k = 1, k ≤ 10, k++, Print[N[MatrixPower[T, k].u3]]]

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

ProjectDiscussion.nb 7

Let us now choose a damping factor p different from 0 and redo the previous
computations.

B = Table[1'n, {n}, {n}];
p = 0.2;
M = (1 - p)4T + p4B; MatrixForm[M]
For[k = 1, k ≤ 10, k++, Print[MatrixPower[M, k].u2]]

0.02857 0.82857 0.02857 0.02857 0.02857 0.02857 0.02857
0.82857 0.02857 0.02857 0.02857 0.02857 0.02857 0.02857
0.02857 0.02857 0.02857 0.42857 0.42857 0.02857 0.02857
0.02857 0.02857 0.22857 0.02857 0.42857 0.82857 0.42857
0.02857 0.02857 0.22857 0.42857 0.02857 0.02857 0.42857
0.02857 0.02857 0.22857 0.02857 0.02857 0.02857 0.02857
0.02857 0.02857 0.22857 0.02857 0.02857 0.02857 0.02857

{0.142857, 0.142857, 0.142857, 0.285714, 0.171429, 0.0571429, 0.0571429}

{0.142857, 0.142857, 0.211429, 0.194286, 0.194286, 0.0571429, 0.0571429}

{0.142857, 0.142857, 0.184, 0.217143, 0.171429, 0.0708571, 0.0708571}

{0.142857, 0.142857, 0.184, 0.218971, 0.180571, 0.0653714, 0.0653714}

{0.142857, 0.142857, 0.188389, 0.216046, 0.179109, 0.0653714, 0.0653714}

{0.142857, 0.142857, 0.186633, 0.216338, 0.178816, 0.0662491, 0.0662491}

{0.142857, 0.142857, 0.186633, 0.216923, 0.178933, 0.0658981, 0.0658981}

{0.142857, 0.142857, 0.186914, 0.216549, 0.179027, 0.0658981, 0.0658981}

{0.142857, 0.142857, 0.186802, 0.216643, 0.178933, 0.0659542, 0.0659542}

{0.142857, 0.142857, 0.186802, 0.21665, 0.17897, 0.0659318, 0.0659318}

For[k = 1, k ≤ 20, k++, Print[MatrixPower[M, k].u3]]

8 ProjectDiscussion.nb

{0.428571, 0.428571, 0.0285714, 0.0285714, 0.0285714, 0.0285714, 0.0285714}

{0.371429, 0.371429, 0.0514286, 0.08, 0.0571429, 0.0342857, 0.0342857}

{0.325714, 0.325714, 0.0834286, 0.102857, 0.0845714, 0.0388571, 0.0388571}

{0.289143, 0.289143, 0.103543, 0.125714, 0.101943, 0.0452571, 0.0452571}

{0.259886, 0.259886, 0.119634, 0.144366, 0.117669, 0.04928, 0.04928}

{0.23648, 0.23648, 0.133385, 0.158702, 0.129957, 0.0524983, 0.0524983}

{0.217755, 0.217755, 0.144035, 0.170229, 0.139728, 0.0552485, 0.0552485}

{0.202776, 0.202776, 0.152554, 0.179568, 0.147569, 0.0573784, 0.0573784}

{0.190792, 0.190792, 0.159426, 0.186964, 0.153861, 0.0590823, 0.0590823}

{0.181205, 0.181205, 0.164901, 0.1929, 0.158875, 0.0604567, 0.0604567}

{0.173535, 0.173535, 0.169281, 0.19765, 0.162894, 0.0615517, 0.0615517}

{0.1674, 0.1674, 0.172789, 0.201447, 0.166108, 0.0624277, 0.0624277}

{0.162491, 0.162491, 0.175594, 0.204486, 0.168679, 0.0631292, 0.0631292}

{0.158564, 0.158564, 0.177838, 0.206917, 0.170736, 0.0636902, 0.0636902}

{0.155423, 0.155423, 0.179633, 0.208862, 0.172382, 0.0641389, 0.0641389}

{0.15291, 0.15291, 0.181069, 0.210417, 0.173698, 0.064498, 0.064498}

{0.150899, 0.150899, 0.182218, 0.211662, 0.174751, 0.0647852, 0.0647852}

{0.149291, 0.149291, 0.183137, 0.212658, 0.175594, 0.065015, 0.065015}

{0.148004, 0.148004, 0.183872, 0.213454, 0.176268, 0.0651988, 0.0651988}

{0.146975, 0.146975, 0.18446, 0.214092, 0.176807, 0.0653458, 0.0653458}

Tips for the project:
◼ Create a graph (random or taken from a list). Use the command Graph[{List of

vertices}, {List of Edges}] to create a graph starting from a set of vertices and edges.
You can also create a graph starting from the adjacency matrix if you use the command
AdjacencyGraph[Matrix]. Do not use GraphPlot[...] to create graphs, use it only for
display, because it creates a Graphics object, and not a Graph object. So you will end
up with an object that can be nicely plotted, but most of the Mathematica algorithms for
graphs will not work with Graphics objects.

◼ Find the Transition Matrix of the graph, using the function that you wrote for HW2.
Change the Transition Matrix to get rid of the Dangling Nodes (that is, change the 0-
columns, if any).

◼ If n is the number of vertices of your graph, then generate an nxn matrix with all
elements equal to 1/n.

ProjectDiscussion.nb 9

◼ Find the unique probabilistic eigenvector corresponding to the eigenvalue 1. Since you
have to higlight the most important 5 vertices, you may need to sort your page-rank
vector. Sort[List] will give the elements in increasing order. Sort[List, Greater] sorts
the list in decreasing order, as you can see by executing the one-line code below. You
can then use the top 5 values to highlight the most important nodes in the graph.

Sort[{0.2, 0.55, 0.1, 0.8}, Greater]

◼ To show a step-by-step computation of the page-rank vector, one needs to start with a
probabilistic eigenvector u and multiply u by succesive powers of the (modified)
Transition Matrix. At first run, you can assume that k<=10 and color the vertices
according to the ranks given by u, Tu, T^2u, ... ,T^ku. The sequence should converge
exponentially fast to the page-rank vector, so you should see the relative rankings
stabilizing after a couple of steps. If you discover than a bigger value of k is needed, you
can adjust k afterwards.

◼ Make sure first that your project works on the test graphs (and other fixed graphs). Then
make it work for random graphs.

◼ Working with random graphs inside Manipulate[...] can be a little bit tricky if you have a
couple of sliders. In particular, you may discover that a new graph is generated each
time you move a slider, even if the slider has no connection with the graph. The
examples below should help see why.

10 ProjectDiscussion.nb

Tips for the project:
◼ Create a graph (random or taken from a list). Use the command Graph[{List of

vertices}, {List of Edges}] to create a graph starting from a set of vertices and edges.
You can also create a graph starting from the adjacency matrix if you use the command
AdjacencyGraph[Matrix]. Do not use GraphPlot[...] to create graphs, use it only for
display, because it creates a Graphics object, and not a Graph object. So you will end
up with an object that can be nicely plotted, but most of the Mathematica algorithms for
graphs will not work with Graphics objects.

◼ Find the Transition Matrix of the graph, using the function that you wrote for HW2.
Change the Transition Matrix to get rid of the Dangling Nodes (that is, change the 0-
columns, if any, to columns with all entries 1/n).

◼ If n is the number of vertices of your graph, then generate an nxn matrix with all
elements equal to 1/n.

◼ Find the unique probabilistic eigenvector corresponding to the eigenvalue 1. Since you
have to higlight the most important 5 vertices, you may need to sort your page-rank
vector. Sort[List] will give the elements in increasing order. Sort[List, Greater] sorts
the list in decreasing order, as you can see by executing the one-line code below. You
can then use the top 5 values to highlight the most important nodes in the graph.

Sort[{0.2, 0.55, 0.1, 0.8}, Greater]

◼ To show a step-by-step computation of the page-rank vector, one needs to start with a
probabilistic vector u and multiply u by succesive powers of the (modified) Transition
Matrix. At first run, you can assume that k<=10 and color the vertices according to the
ranks given by u, Tu, T^2u, ... ,T^ku. The sequence should converge exponentially fast
to the page-rank vector, so you should see the relative rankings stabilizing after a couple
of steps. If you discover than a bigger value of k is needed, you can adjust k afterwards.

◼ Make sure first that your project works on the test graphs (and other fixed graphs). Then
make it work for random graphs.

◼ Working with random graphs inside Manipulate[...] can be a little bit tricky if you have a
couple of sliders. In particular, you may discover that a new graph is generated each
time you move a slider, even if the slider has no connection with the graph. The
examples below should help see why.

Manipulate[...]

In the practice lab we saw that certain global variable assignment can cause
Manipulate[...] to reevaluate itself more than needed. The first two examples
below are relevant for this problem.

Manipulate[
z = 10;
z = z + n,
{n, 1, 10}]

z = 10;
Manipulate[
z = z + n,
{n, 1, 10}]

So we need to make z a local variable inside Module[{Variables}, Body-of-Module] to
prevent reevaluations. If z is the only local variable, then we can write: Module[{z}, z=10;
z=z+n]

Manipulate[Module[{z},
z = 10;
z = z + n],

{n, 1, 10}]

Functions with local variables
Sometimes, we need to do more computations in the body of a function, that span several
lines of code. Perhaps we also need auxiliary variables to do those computations. We will
declare these variables as local variables inside Module[...].
Suppose we want to construct a function that takes as input a list, sorts the list in decreas-
ing order, and checks whether the sum of the biggest 3 elements minus the sum of the
smallest 3 elements is bigger than 10.

2 Notes8.nb

f6[L_] := Module[{aux, sum},
aux = Sort[L, Greater];
Print[aux];
aux2 = Sort[L];
Print[aux2];
sum = (aux[[1]] + aux[[2]] + aux[[3]]) *

(aux2[[1]] + aux2[[2]] + aux2[[3]]);
Return[sum]

]

f6[{1, 2, 6, 3, 7, 8}]

{8, 7, 6, 3, 2, 1}

{1, 2, 3, 6, 7, 8}

15

If we test it on a list with less than 2 elements, we get an error.

f6[{1, 2}]

So, we redefine this function to cover this case.

f6[L_] :=
"Error! The given list has less than 3 elements" ,; Length[L] < 3

f6[{1, 2}]

Error;The given list has less than 3 elements

Working with random elements inside Manipulate - Easier
or Harder?

How about generating random elements inside the body of Manipulate[...]? Should the
code below reevaluate itself as fast as possible, each time generating a new random
integer?

Manipulate[
x = RandomInteger[n],
{n, {10, 100}}

]

Every time you evaluate RandomReal[...] or RandomInteger[...] or RandomGraph[...],
you get a different answer, and you might think that an assignment like x=Ran-
domReal[...] inside Manipulate[...] should therefore constantly update itself as fast as
possible. But this would normally not be useful, and would in fact have negative conse-
quences for a number of algorithms that use randomness internally. For this reason, these
functions are not "ticklish", in the sense that they do not trigger updates. If you want to
see actually new random numbers, you have to use Refresh to specify how frequently you
want the output updated.

Notes8.nb 3 Every time you evaluate RandomReal[...] or RandomInteger[...] or RandomGraph[...],
you get a different answer, and you might think that an assignment like x=Ran-
domReal[...] inside Manipulate[...] should therefore constantly update itself as fast as
possible. But this would normally not be useful, and would in fact have negative conse-
quences for a number of algorithms that use randomness internally. For this reason, these
functions are not "ticklish", in the sense that they do not trigger updates. If you want to
see actually new random numbers, you have to use Refresh to specify how frequently you
want the output updated.

Harder because ...
In the next example, we want to build an interactive model with two controls, n and u, that
generates a random graph called K with n vertices and 2n edges and highlights vertex u of
graph K.

⌚ Problem: A new graph should be generated only when we change n, the number of
nodes. However, when the vertex u is changed, the graph changes as well! So each time
we change u, we highlight vertex u of a different graph.

Manipulate[
K = RandomGraph[{n, 2.n}];
HighlightGraph[K, {u}, GraphStyle / "SmallNetwork"],
{n, {5, 6, 7, 8}},
{u, 1, n, 1}

]

n 5 6 7 8

u

1

2

3

4

5

6

4 Notes8.nb

Making K a local variable inside Module[...] does not solve the problem, because
the line K=RandomGraph[...] did not trigger by itself any reevaluations!

Manipulate[Module[{K},
K = RandomGraph[{n, 2.n}];
HighlightGraph[K, {u}, GraphStyle / "SmallNetwork"]],

{n, {5, 6, 7, 8}},
{u, 1, n, 1}

]

n 5 6 7 8

u

1

2 3

4

5

Notes8.nb 5

Making K a local variable inside a DynamicModule[...] solves the problem.

Manipulate[DynamicModule[{K},
K = RandomGraph[{n, 2.n}];
Dynamic[HighlightGraph[K, {u}, GraphStyle / "SmallNetwork"]]],

{n, {5, 6, 7, 8}},
{u, 1, n, 1}

]

n 5 6 7 8

u

1

2

3

4

5 6

DynamicModule[{x,y,…},expr]
represents an object which maintains the same local instance of the symbols x, y,
… in the course of all evaluations of Dynamic objects in expr.

Variables specified in a DynamicModule will by default have their values
maintained from one dynamic update to the next.

Conclusion

For the project, you may consider using the following syntax:

Define functions & global variables

Manipulate[
 DynamicModule[{ graph g},
 Define graph g etc. according to the user choice;
 Dynamic[GraphicsRow[{
 Module[{all other local variables},
 Your page - rank computations here;
 HighlightGraph[...]
]
 }]]
],
 controls for sliders etc.,
 SaveDefinitions->True
]

6 Notes8.nb

Define functions & global variables

Manipulate[
 DynamicModule[{ graph g},
 Define graph g etc. according to the user choice;
 Dynamic[GraphicsRow[{
 Module[{all other local variables},
 Your page - rank computations here;
 HighlightGraph[...]
]
 }]]
],
 controls for sliders etc.,
 SaveDefinitions->True
]

Using Dynamic[...]
Let us define the variable t and then perform a simple computation, like t^2+5.

t = 10;

This is a static output:

t^2 + 5

This is a dynamic output:

Dynamic[t^2 + 5]

At first glance, the static output and the dynamic output look the same. However, notice
what happens to the output of Dynamic[t^2+5] when we change the value of t.

t = 6;

The output of Dynamic[t^2+5] has changed to reflect the current value of t. The output of
t^2+5 remains the same, until we compile it again (Shift+Enter). Run also the following
lines to understand the difference between static and dynamic output.

MousePosition[]

Dynamic[MousePosition[]]

Dynamic[...] can give infinite loops :

x = 0;
Dynamic[x = x + 1]

However, an assignment like t = RandomReal[...] inside Dynamic[...] does not constantly
update itself as fast as possible, because this function is not "ticklish", in the sense that it
does not trigger updates.

Notes8.nb 7

However, an assignment like t = RandomReal[...] inside Dynamic[...] does not constantly
update itself as fast as possible, because this function is not "ticklish", in the sense that it
does not trigger updates.

t = 0;
Dynamic[t = RandomReal[10]]

Using DynamicModule[...] and Dynamic[...]
Suppose now that we want to evaluate a polynomial expression like ax^2+bx+c such that
the output always reflects the current value of x. The coefficients a, b and c are assumed
fixed, so any changes to these coefficients later on in the notebook should not trigger any
retroactive dynamic updates of the expression ax^2+bx+c.

a = 1;
b = 2;
c = 3;
x = 0;
Dynamic[a # x^2 + b # x + c]

Try now to change the value of x to 1, then to change the value of c to 1000. What do you
notice?

x = 1;

c = 1000;

Let us now clear our variables and try again, this time using a DynamicModule[...].

Clear[a, b, c, x]

DynamicModule[{a, b, c},
a = 1;
b = 2;
c = 3;
x = 0;
Dynamic[a.x^2 + b.x + c]]

Try again to change the value of x to 1, then to change the value of c to 1000. What do you
notice?

Exercise

Now suppose we want to use Manipulate[...] to display the value of ax^2+bx+c,
where a,b,c are parameters with values between 1 and 10, and x is a randomly
generated number. We first try the following code:

8 Notes8.nb

Now suppose we want to use Manipulate[...] to display the value of ax^2+bx+c,
where a,b,c are parameters with values between 1 and 10, and x is a randomly
generated number. We first try the following code:

Manipulate[
x = RandomInteger[n];
Row[{"x=", x, " a.x^2+b.x+c=", a.x^2 + b.x + c}],
{a, 1, 10}, {b, 1, 10}, {c, 1, 10}, {n, {10, 20, 30, 40, 50}}]

a

b

c

n 10 20 30 40 50

x=5 a%x^2+b%x+c=66.86

Exercise: Rewrite the code above, so that the value of x gets updated ONLY when
the parameter n is changed.

Notes8.nb 9

Solvers
Problem 1.5 (Homework I)

One of the applications of matrix algebra is to solve systems of linear equations, usually in a large
number of variables. A system of m such equations in the n variables x1, x2, ..., xn, can be written
explicitly:
a11x1 + a12x2 + ... + a1 n xn = b1

a21x1 + a22x2 + ... + a2 n xn = b2
...
am1x1 + am2x2 + ... + amn xn = bm

The same system can be written in the more convenient matrix notation as Ax=b, where A is the m × n
coefficient matrix, x is the (column) vector of length n containing the variables, and b is the (column)
vector of length m of the coefficients on the right hand sides of the equalities. By general theory, a
system of linear equations has no solution, exactly one solution or infinitely many solutions. In Mathemat-
ica, we can use the command Solve[expression,variables], to solve the system Ax=b for the variable
x={x1,x2, ... , xn}.

Problem 1.5 (Homework I)
◆ Find the inverse of a random 3x3 matrix A with integer coefficients (if it exists!), without using

the Mathematica function Inverse[...]. Recall that the matrix A is called invertible if there exists
a (unique) 3x3 matrix B such that AB=BA=I3, where I3 is the identity matrix. If A is invertible,
then the matrix B is called the inverse of the matrix A, and it is denoted by A%1.

Solution:
To find the inverse using the function Solve, we can solve three systems of equations

AX =
1
0
0

, AY =
0
1
0

and AZ =
0
0
1

. If all three systems have unique solutions,

then the inverse matrix is the 3 x3 matrix with columns X, Y and Z.

A = {{1, 2, 3}, {1, 5, 6}, {7, 8, 9}}; Print["A=" MatrixForm[A]];
b1 = {1, 0, 0}; b2 = {0, 1, 0}; b3 = {0, 0, 1};
X = Table[x[j], {j, 3}];
Y = Table[y[j], {j, 3}];
Z = Table[z[j], {j, 3}];
(' Solve three systems ')
S1 = Solve[A.X) b1, X]
S2 = Solve[A.Y) b2, Y]
S3 = Solve[A.Z) b3, Z]
n1 = 0; n2 = 0; n3 = 0;
(' Test if all three systems have unique solutions ')
If[S1 ≠ {}, n1 = Dimensions[S1][[2]]];
If[S2 ≠ {}, n2 = Dimensions[S2][[2]]];
If[S3 ≠ {}, n3 = Dimensions[S3][[2]]];
If n1) n2) n3) 3,

(' invertible! ')
Print["Matrix A is invertible"];
soln = {Values[S1][[1]], Values[S2][[1]], Values[S3][[1]]};
inv = Transpose[soln];
Print "and the inverse matrix is A-1=", MatrixForm[inv], "."

" Inverse test: ",

MatrixForm[A], MatrixForm[inv], "=", MatrixForm[A.inv],
(' not invertible ')
Print["Matrix A is not invertible"]



Transformation rules
The solution returned by Solve[...] is a list of lists of transformation rules.

S1 = Solve[A.X) b1, X]

x[1] $
1

6
, x[2] $ %

11

6
, x[3] $

3

2


The association x[1] # 1

6
 is called a transformation rule.

How can we extract the useful value “1/6” from the transformation rule?

"Naive Idea"

S1[[1]]

S1[[1]][[1]]

S1[[1]][[1]][[2]]

"Better Idea"

2 Notes9.nb

Values[S1]

Keys[S1]

We can get rid of one set of curly brackets by using the command Flatten[...]

Flatten[Values[S1]]

However, we lost the connection between the name of the variables and the numeric solutions obtained.

Transformation rules & Replacement Operator “/.”
expr /. rule lhs->rhs Applies a transformation rule lhs->rhs to expression expr
The replacement operator (pronounced “slash-dot”) applies rules to expressions.

In[1]:= Sin[x] $. x # 4

Out[1]= Sin[4]

If you give a list of rules, you get a list of results. Each rule will be tried once on
each part of the expression.

In[2]:= Sin[x + y] $. {x # 4, y # 3}

Out[2]= Sin[7]

In[3]:= Sin[x + y] $. {x # Pi, y # Pi $ 2}

Out[3]= %1

In[4]:= x + x^2 + y (x + x^3 $. {x^3 # x, y # x, x # 20}

Out[4]= 420 + 21 x

If you give a list of lists of rules, you get a list of results.

Sin[x] $. {{x # 0}, {x # 1}, {x)> 2}, {x # 3}, {x # 4}}

In[5]:= Sin[x + y] $. {{x # Pi, y # Pi $ 2}, {x # 4, y # 3}}

Out[5]= {%1, Sin[7]}

Short exercise : Use the transformation rule to change the 0 - rows of a matrix like {{1,2,3},
{0,0,0}, {0,1,0}, {0,0,0}, {0,2,3}} with 1 - rows.

Back to the homework exercise

Notes9.nb 3

Back to the homework exercise

In[6]:= Clear[X, x];
A = {{1, 2, 3}, {1, 5, 6}, {7, 8, 9}};
X = Table[x[i][j], {i, 3}, {j, 3}];
solution = Solve[A.X) IdentityMatrix[3], Flatten[X]]

Out[9]= x[1][1] $
1

6
, x[1][2] $ %

1

3
, x[1][3] $

1

6
, x[2][1] $ %

11

6
,

x[2][2] $
2

3
, x[2][3] $

1

6
, x[3][1] $

3

2
, x[3][2] $ %

1

3
, x[3][3] $ %

1

6


In[10]:= X /. Flatten[solution]

Out[10]= 
1

6
, %

1

3
,
1

6
, %

11

6
,
2

3
,
1

6
, 

3

2
, %

1

3
, %

1

6


In[11]:= MatrixForm[X /. Flatten[solution]]

Out[11]//MatrixForm=
1
6

% 1
3

1
6

% 11
6

2
3

1
6

3
2

% 1
3

% 1
6

Solving equations

Clear[x]

Mathematica can solve various kinds of equations. For example set

In[12]:= eqn = x2 + 2 a x + b , 0

Out[12]= b + 2 a x + x2 * 0

Note that the Set operator (=) has lower precedence than the Equal operator
(==). To solve this equation for x you use the command

In[13]:= sol = Solve[eqn, x]

Out[13]= x $ %a % a2 % b , x $ %a + a2 % b 

Note that the result is given as a list with two lists of rules. Each sublist represents
a distinct solution. To verify that this is indeed a solution of the quadratic equation,
we can substitute the solution back into the equation and simplify the result.

4 Notes9.nb

Note that the result is given as a list with two lists of rules. Each sublist represents
a distinct solution. To verify that this is indeed a solution of the quadratic equation,
we can substitute the solution back into the equation and simplify the result.

In[14]:= eqn $. sol

Out[14]= 2 a %a % a2 % b + %a % a2 % b
2

+ b * 0, 2 a %a + a2 % b + %a + a2 % b
2

+ b * 0

In[15]:= Simplify[eqn /. sol]

Out[15]= {True, True}

You can now also use the solutions for other computations. Suppose you want to
evaluate some function f1 on the solution set:

f1[x] /. sol

Short exercise: We know that sol contains the roots of the quadratic polynomial (given as a
list of transformation rules) and we want to check (using transformation rules!) that the sum
of the two roots is -2a and the product of the two roots is b.

Numerical Solvers

NSolve[expr, vars] -- attempts to find numerical approximations to the solutions
of the system expr of equations or inequalities for the variables vars.
NSolve[expr,vars,Reals] -- finds solutions over the domain of real numbers.

Example: Find the solutions of a polynomial equation of degree 5

Solve[x^5 - 2 x + 3) 0, x]

x $ Root3 % 2 #1 + #15 &, 1,

x $ Root3 % 2 #1 + #15 &, 2, x $ Root3 % 2 #1 + #15 &, 3,

x $ Root3 % 2 #1 + #15 &, 4, x $ Root3 % 2 #1 + #15 &, 5

NSolve[x^5 - 2 x + 3) 0, x]

{{x $ %1.42361}, {x $ %0.246729 % 1.32082 .}, {x $ %0.246729 + 1.32082 .},
{x $ 0.958532 % 0.498428 .}, {x $ 0.958532 + 0.498428 .}}

NSolve[x^5 - 2 x + 3) 0, x, Reals]

{{x $ %1.42361}}

Functions with no name (pure functions #)

Notes9.nb 5

Functions with no name (pure functions #)

#^5 &
When solving equations where solutions do not have any closed form, you may see these kind of
functions returned by Mathematica. These are functions with no name, or pure functions.

represents the first variable (first argument) in a pure function

#n represents the n^th variable (argument) in a pure function
& the ampersand marks the end of the pure function

The name of a function is irrelevant if you do not intend to refer to the function again, so the Wolfram
language lets you define functions with no names. Pure functions in the Wolfram Language can take
any number of arguments. The Wolfram Language allows you to avoid using explicit names for the
arguments of pure functions, and instead to specify the arguments by giving “slot numbers” . In a Wol-

fram Language pure function, #n stands for the nth argument you supply. # stands for the first
argument.

#^5 & is simply the function that takes any number and raises it to power 5. We can use this
function to compute 2^5 for example.
#1+#2 & is a function that computes the sum of two numbers.

#^5 &[2]
32

#1 + #2 &[1, 2]
3

Example : Sort the list L = {{1, 2}, {2, 5}, {1, 1}, {4, 8}, {3, 4}, {9,0}, {7,6}} in ascending order, according
to the following criterion : {a, b} < {c, d} iff b < d

L = {{1, 2}, {2, 5}, {1, 1}, {4, 8}, {3, 4}, {9, 0}, {7, 6}};
Sort[L] ((the first two sort commands don't help,
as they sort by the first term of the pair ()
Sort[L, Greater]
Sort[L, #1[[2]] < #2[[2]] &]

Short Exercise: Sort a list of the form S = {{1, 1 -> 2}, {2, 2 -> 5}, {1, 1 -> 1}, {4, 4 ->
8}, {3, 3 -> 4}, {9, 9 -> 0}, {7, 7 -> 6}} according to the following criterion: {a, a->b} <
{c, c->d} iff b<d

Newton' s Method

6 Notes9.nb

Newton' s Method

Numeric solvers that are used for finding real roots usually implement Newton' s
Method.
Newton' s Method is a method for finding successively better approximations to the roots (or zeroes) of
a real - valued differentiable function f : [a,b] -> R. Suppose that f has a single root in the interval [a,b].
The idea of the method is as follows: one starts with an initial guess which is reasonably close to the
true root, then the function is approximated by its tangent line (which can be computed using the tools
of calculus), and one computes the x-intercept of this tangent line (which is easily done with elementary
algebra). This x-intercept will typically be a better approximation to the function’s root than the original
guess, and the method can be iterated.

Suppose we have some current approximation xn. The equation of the tangent line to the curve y = ƒ(x)
at the point (xn, f (xn)) is
y = f ’(xn)(x-xn) + f(xn).
To find the intersection point of the tangent line with the x-axis we set y=0 and solve for x. We get

 xn+1 = xn "
f (xn)
f ' (xn)

. We get a sequence of succesive approximations x1, ... xn, xn+1, ... of the root of

the function f, in the interval [a,b].
 The method will usually converge, provided this initial guess x1 is close enough to the unknown zero,
and that ƒ’(x1) ≠ 0 (i.e. the tangent line is not horizontal).

Notes9.nb 7

MAT 331: Homework 3

Problem 3.1

The replacement operator /. (slash-dot) applies a transformation rule to an expression. If you give a list
of rules, each rule will be tried once on each part of the expression. If you give a list of lists of rules, you
get a list of results; each sublist is treated like an independent set of rules.

x^2 + x^3 + y^2 + z /∕. {x_ -−> 2}

x^2 + x^3 + y^2 + z /∕. {x -−> 2, y → 3, z → 1}

x^2 + x^3 + y^2 + z /∕. {{x → 2}, {x → 2, y → 3, z → 1}, {x → 0, z → 0}}

) x^2 + x^3 + y^2 + z /∕. {x_^n_ → a}

1. Write a replacement rule that when applied to the expression f[x] + g[x] outputs Sin[x] +
Cos[3].

2. Write a transformation rule that replaces any expression of the form Function[variable] with
Cos[3].

Problem 3.2

Mathematica can solve various kinds of equations, symbolically or numerically. The result will be dis-
played as a list of transformation rules. We can then use the replacement operator /. (slash-dot) to apply
these rules to any gven expression.

Consider now the cubic polynomial x3+ax2+bx+c. Use Mathematica to find the roots x1, x2 and x3. Then
use transformation rules to compute the three symmetric expressions x1+x2+x3, x1x2+x2x3+x3x1 and
x1x2x3. Use Simplify[...] to simplify the computations. What can you conclude about the relation between
the three expressions and the coefficients of the polynomial?

Problem 3.3

Consider the differential equation y' (x) = 1 + y (x).

1. Use VectorPlot[...] and StreamPlot[...] to plot the vector field of the differential equation. Try several
display options (i.e. change the size of the arrows, make the picture larger, change the colors, etc.) to
see which one gives the most accurate picture.

2. Next use DSolve[...] to solve the differential equation y’(x) = 1 + y(x), with initial condition y(0)=1. The
result will be a list of transformation rules. Define a function YSol[x_] that returns the solution found
by DSolve[...]. Evaluate YSol numerically at x=0 and x=0.1. Then plot the function YSol.

3. Check that YSol is indeed a solution of the differential equation y’(x) = 1 + y(x) by using Mathematica
to compute the derivative of the function YSol.

4. Now go back to the picture that you have obtained in part 1, using StreamPlot[..]. Color the solution of
the differential equation y’(x) = 1+y(x) corresponding to the initial condition y(0)=1 on top of the
stream plot picture.

2 HW3.nb

Solving Differential Equations

Example 1: Solve the ODE dy
dx

= x2

1"y2

This ODE was solved last week using separation of variables:
1 " y2)dy = x2dx
and the general solution was found (by integration) to be

y " y3

3
+ c = x3

3
, where c is a constant parameter.

The implicit curves

 y " y3

3
+ c = x3

3
 are called the integral curves of the differential equation.

Example 2 (Initial value problem):
Solve the ODE dy

dx
= x2

1"y2 , with initial condition y(0)=-1.1

Otherwise said, we need to find the unique solution of the ODE that passes
through the point (x0,y0)=(0,-1.1)

Given a point (x0,y0), to find the solution that passes through the point (x0,y0)

means to solve the equation y0 " y0
3

3
+ c = x0

3

3
 and find the value of the

parameter c.

Vector field plot

Pick any point P=(x0, y0) and compute the tangent line at P to the solution curve
passing through the point P. The slope of the tangent line at P is

m = dy
dx


P
= x0

2

1"y0
2 , so the equation of the tangent line at P is y- y0 = m(x-

x0).

VectorPlot[{vx, vy}, {x, xmin, xmax}, {y, ymin, ymax}]
generates a vector plot of the vector field as a function of x and y.

VectorPlot[{vx, vy}, {x, xmin, xmax}, {y, ymin, ymax}]
generates a vector plot of the vector field as a function of x and y.

VectorPlot[{1, x^2#(1 % y^2)}, {x, %3, 3},
{y, %3, 3}, VectorScale ({Tiny, Small, None}]

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

2 ODE.nb

The option VectorScale determines the length and arrowhead size of field vectors
that are drawn.

Stream Plot

StreamPlot[{vx, vy}, {x, xmin, xmax}, {y, ymin, ymax}]
generates a stream plot of the vector field as a function of x and y.

StreamPlot[{1, x^2#(1 % y^2)}, {x, %3, 3}, {y, %3, 3}]

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

Plot the integral curves of the ODE
dy
dx

= x2

1"y2 , with the integral curve that

passes through the point (0, -1.1) plotted in red.

ODE.nb 3

Plot the integral curves of the ODE
dy
dx

= x2

1"y2 , with the integral curve that

passes through the point (0, -1.1) plotted in red.

StreamPlot[
{1, x^2#(1 % y^2)}, {x, %3, 3}, {y, %3, 3},
StreamScale (Tiny,
StreamPoints ({{{{0, %1.1}, Red}, Automatic}}]

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

Exact Solutions

DSolve[eqn,y ,{x,xm in,xm ax}]
solves a differential equation for the function y, with the independent variable x
between xmin and xmax.

4 ODE.nb

DSolve[eqn,y ,{x,xm in,xm ax}]
solves a differential equation for the function y, with the independent variable x
between xmin and xmax.

DSolve returns results as lists of rules. This makes it possible to return multiple
solutions to an equation. For a system of equations, possibly multiple solution
sets are grouped together inside curly brackets { }. You can use the rules to
substitute the solutions into other calculations.

It may not always be possible to compute exact solutions of an ODE.

DSolve[{y'[x] * x^2#(1 % y[x]^2), y[0] * %1.1}, y, {x, 0, 5}]

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadtoan emptysolution."

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadtoan emptysolution."

y " Function{x},

& 18 & ' 18 3 + & 21!3 53.163 ' 27. x3 + '89.6954 ' 2870.8 x3 + 729 x6
2!3

+

21!3 3 53.163 ' 27. x3 + '89.6954 ' 2870.8 x3 + 729 x6
2!3



6 × 22!3 53.163 ' 27. x3 + '89.6954 ' 2870.8 x3 + 729 x6
1!3



Numerical Solutions

NDSolve[eqns, y, {x, xmin, xmax}]
finds a numerical solution to the ordinary differential equations eqns for the
function y with the independent variable x in the range xmin to xmax. The
output of NDSolve is a list of transformation rules.

sol1 = NDSolve[
{y'[x] * x^2#(1 % y[x]^2), y[0] * %1.1}, y, {x, 0, 5}]

y " InterpolatingFunction Domain: {{0., 5.}}
Output: scalar



ODE.nb 5

The solution to the initial value problem from Example 2 is unique. In this case, the
output of NDSolve is a nested list with one transformation rule. The
transformation rule describes y as a (numerically computed) function of x.
Conceptually, think of the transformation rule as something like y % f[x_]

! Recall : To apply a transformation rule (or a set of transformation rules) to an
expression, we use the Replacement operator “/.” (slash-dot).

y[2] #. sol1

{'2.35757}

We can also plot the function returned by NDSolve[..], just as we plot any other
function in the Wolfram language, using the command Plot[..]. Compare the graph
below to the stream line that we had plotted in red in the last StreamPlot[..].

Plot[y[x] #. sol1, {x, 0, 3}, PlotRange (All]

0.5 1.0 1.5 2.0 2.5 3.0

!3.0

!2.5

!2.0

!1.5

!1.0

The command Flatten[..] removes one set of curly brackets.

Flatten[sol1]
y[2] #. Flatten[sol1]

y " InterpolatingFunction Domain: {{0., 5.}}
Output: scalar



'2.35757

If we plan to use the function returned by NDSolve several times, it makes sense
to give it a name, so we do not have to apply the replacement operator "/." (slash -
dot) every time.

6 ODE.nb

If we plan to use the function returned by NDSolve several times, it makes sense
to give it a name, so we do not have to apply the replacement operator "/." (slash -
dot) every time.

f[z_] := Module[{sol0, x, y},
sol0 =
NDSolve[{y'[x] * x^2#(1 % y[x]^2), y[0] * %1.1}, y, {x, 0, 5}];

y[z] #. Flatten[sol0]
]

f[2]

'2.35757

Plot[f[z], {z, 0, 3},
AxesLabel ({"x%axis", "y%axis"}, PlotStyle ({Red, Thick}]

0.5 1.0 1.5 2.0 2.5 3.0
x!axis

!3.0

!2.5

!2.0

!1.5

!1.0
y!axis

Exercise: Study the ODE
dy
dx = 4 x!x3

4+y3
1. Plot the vector field using StreamPlot[...] in the region x ∈ [-3.5, 3.5], y ∈ [-3.3, 3.3]. On

the same plot, plot the tranjectory starting at the point (0, 1) in Red, and the tranjectory
starting at the point (1, -1.5) in Green.

2. Find the discontinuities of the vector field using NSolve[expr,vars]. This command
attempts to find numerical approximations to the solutions of the system expr of
equations or inequalities for the variables vars.

3. Use NDSolve[...] to solve the ODE from example 2,
dy
dx

= 4 x!x3

4+y3 , with initial condition

y(0)=1. The range for the variable x is assumed to be [-3,3]. Plot the function that
NDSolve returns, on the domain [-3,3].

ODE.nb 7

MAT 331: Project 2

Project description

In this project we will use Mathematica to solve several problems involving differential equations. Differ-
ential equations are currently used to model a wide range of phenomena from biology, physics, chem-
istry, computer science, economic analysis, etc. The theory of differential equations has become an
essential tool in all areas of science, particularly since computers became commonly available.

Problem 1

The fish and game department in a certain state is planning to issue hunting permits to control the deer
population (one deer per permit). It is known that if the deer population falls below a certain level m, the
deer will become extinct. It is also known that if the deer population rises above the carrying capacity M,
the population will decrease back to M through disease and malnutrition. Consider the following model
for the growth rate of the deer population P as a function of time t:

dP
dt

= r P(M-− P) (P-−m)

where P is the deer population and r=0.00003 is a constant of proportionality. The values of the other
parameters are M=100 and m=55.

1. Plot the vector field of the differential equation using VectorPlot[..]. Then plot the vector field using
StreamPlot[..]; identify the constant solutions and color them in red using StreamPlot[..]. Try a window
size of 100x130 (in the txP plane). What happens to the solutions as time t increases, t→∞? Color a
couple of trajectories to illustrate the possible behaviors, then explain the plot.

2. Solve the system of differential equations for the initial condition P(20)=110. If DSolve[...] does not
work, then a numeric approximation may be the next best thing to hope for, so use Mathematica to
find a numerical approximation of the true solution, then plot it.

3. If the initial deer population is 140, about how many hunting permits should be issued so that the
deer population does not become extinct?

4. Write a small interactive model using Manipulate[..] and Locator[..], that initially plots the
StreamPlot[..] from part 1, and then on click, colors the solution curve that passes through the point
where the user clicked.

Problem 2

In this problem, we will visualize a famous phenomenon in dynamics of nonlinear differential equations,
called the Poincaré-Andronov-Hopf bifurcation. It exhibits the birth of a limit cycle through a change in
the stability of the equilibrium point. Consider the nonlinear system 𝒮 of differential equations given
below, where α𝛼 is a real parameter:

x ' = y -− x(x^2 + y^2 -− α𝛼) (1)
y ' = -−x -− y(x^2 + y^2 -− α𝛼) (2) . Its linearization

at (0, 0) is denoted byℒ and given by
x ' = α𝛼x + y (1)
y ' = -−x + α𝛼y (2)

1. Find the equilibrium points of the nonlinear system. Find the eigenvalues of the coeffient matrix of the
linearized system at the equilibrium points in terms of the parameter α𝛼.

2. Look at the linear system ℒ and sssume that the value of the parameter α𝛼 is -1/4.

2.0.1. Assume that the system satisfies the initial condition x(0) = -10 and y(0) = 20. Use DSolve[..]
to find the solution of the corresponding initial value problem, then plot the correspoding
trajectory in the xy plane.

2.0.2. For your trajectory in part 2.0.1, draw the graphs of x versus t and y versus t on the same
graph.

2.0.3. For your trajectory in part 2.0.1, draw the corresponding graph in the three-dimensional txy-
space.

* In parts 2.0.1 - 2.0.3, it is important that you choose appropriate appropriate ranges for x,y,t and
approriate scales for your plot.

3. By using Manipulate[...] and StreamPlot[..], do an interactive model of the vector field of the system,
with the parameter α𝛼 taking values in the closed interval [-2, 2]. The interactive model will show the
Phase Portrait of the nonlinear system 𝒮 , the Phase Portrait of the linear system ℒ and the
eigenvalues at the equilibrium points.

4. Analyze the type and stability of the equilibrium points of the nonlinear system 𝒮 for all values of the
parameter α𝛼. Use the interactive model to find the values of the parameter α𝛼 where the qualitative
nature of the solutions for the system changes.

5. Use the Interactive model to find the values of the parameter α𝛼 for which the system develops limit
cycles. Then prove mathematically the existence of the limit cycle by changing the system into polar
coordinates and solving it.

General considerations:

No previous knowledge of differential equations is assumed is this project, except for the theory devel-
oped in the lecture notes posted on Blackboard. Please read the lab notes on Blackboard to find what
Mathematica commands are used for solving differential equations and visualizing Phase Portraits.
More examples and tutorials about solving differential equations and plotting vector fields can be found
in the Mathematica documentation (Help → Wolfram Documentation).

2 Project2.nb

Systems of Differential Equations

Solving systems of first order differential equations

Example: Solve the system  x ' = x+ y (1)
y ' = 4 x+ y (2)

The functions x and y are functions of time t and the derivatives are also taken

with respect to the variable t.  x ' (t) = x(t) + y(t) (1)
y ' (t) = 4 x(t) + y(t) (2) .

Vector field plot

The vector field plot gives valuable information about the asymptotic behaviour
of solutions:

StreamPlot[{x + y, 4 x + y}, {x, %5, 5},
{y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4

A = {{1, 1}, {4, 1}}; (* coefficient matrix of the system *)
Eigensystem[A]

{{3, "1}, {{1, 2}, {"1, 2}}}

2 ODE2.nb

The eigenvalues of the coefficient matrix A are real and distinct (3 and -1), so the
general solution of the system of differential equations is

 x(t)
y(t)  = c1 e3 t

1
2
 + c2 e%t

%1
2
, where c1 and c2 are constant parameters.

There are two special solutions when c1=0, and respectively when c2 = 0. We will
color these special solutions in red, and respectively in orange.

L = Eigenvectors[A];
Rc1 = {L[[1]], Orange}
Lc1 = {%L[[1]], Orange}
Rc2 = {L[[2]], Red}
Lc2 = {%L[[2]], Red}

{1, 2}, 

{"1, "2}, 

{"1, 2}, 

{1, "2}, 

ODE2.nb 3

StreamPlot[{x + y, 4 x + y}, {x, %5, 5},
{y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{Rc1, Rc2, Lc1, Lc2, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4

DSolve

DSolve[eqn,y ,x]
solves a differential equation for the function y, with independent variable x.
DSolve[eqn,y ,{x,xm in,xmax}]
solves a differential equation for the function y, with the independent variable x
between xmin and xmax.
DSolve[{eqn1,eqn2,…},{y1,y2,…},…]
solves a list of differential equations for y1, y2,

DSolve returns results as lists of rules. This makes it possible to return multiple
solutions to an equation. For a system of equations, possibly multiple solution
sets are grouped together inside curly brackets { }. You can use the rules to
substitute the solutions into other calculations.

4 ODE2.nb

DSolve returns results as lists of rules. This makes it possible to return multiple
solutions to an equation. For a system of equations, possibly multiple solution
sets are grouped together inside curly brackets { }. You can use the rules to
substitute the solutions into other calculations.

How to use the output of DSolve[...]

● sol1 = DSolve[
{x'[t] & x[t] + y[t], y'[t] & 4 x[t] + y[t]}, {x, y}, t]

x & Function{t},
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2],

y & Function{t}, (!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]

When the second argument of DSolve is specified as y, the solution is returned as
a transformation rule y->Function[...], where the right hand side of the rule is a
pure function (a function with no name). A general solution contains arbitrary
parameters labeled C[i] that can be varied to produce particular solutions for the
equation.

f = Function{t},
1
2

-)t 1 + -4 t C[1] +
1
4

-)t %1 + -4 t C[2]

(*copy paste*)

Function{t},
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2]

How to use the solution returned by DSolve[...]

g = x *. Flatten[sol1]
h = y *. Flatten[sol1]

The command Flatten[...] will get rid of the additional curly brackets. Instead of
using two command lines, we can use only one:

{g, h} = {x, y} *. Flatten[sol1]

Function{t},
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2],

Function{t}, (!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]

ODE2.nb 5

To obtain a particular solution, we can give values to the constants C[1] and C[2].

? C

C[i] is thedefaultformforthe ith parameteror
constantgeneratedin representingtheresultsofvarioussymboliccomputations. '

{g0, h0} = {x, y} 1. Flatten[sol1] 1. {C[1] & 0.1, C[2] & 0.1}

Function{t},
1

2
(!t 1 + (4 t 0.1 +

1

4
(!t "1 + (4 t 0.1,

Function{t}, (!t "1 + (4 t 0.1 +
1

2
(!t 1 + (4 t 0.1

We can plot the solution that we have obtained using ParametricPlot[...].

ParametricPlot[{g0[t], h0[t]}, {t, %1, 0.1}, AxesOrigin & {0, 0}]

0.02 0.04 0.06 0.08 0.10 0.12

!0.10

!0.05

0.05

0.10

0.15

6 ODE2.nb

Several ways to call DSolve[...]

● sol2 =
DSolve[{x'[t] 3 x[t] + y[t], y'[t] 3 4 x[t] + y[t]}, {x[t], y[t]}, t]

x[t] &
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2],

y[t] & (!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]

We can also relabel the parameters generated by DSolve[...], see the example
below and the Mathematica documentation on Generated Parameters.

● sol3 = DSolve[{x'[t] 3 x[t] + y[t], y'[t] 3 4 x[t] + y[t]},
{x[t], y[t]}, t, GeneratedParameters & (Subscript[d, #] &)]

x[t] &
1

2
(!t 1 + (4 t d1 +

1

4
(!t "1 + (4 t d2, y[t] & (!t "1 + (4 t d1 +

1

2
(!t 1 + (4 t d2

We can no longer use the same command as before to extract the solutions, {x,y}
/. Flatten[sol2], because the replacement rule is now of the form x[t]->Rule, and
not of the form x->Rule. Notice also that we defined the functions g2 and h2 using
“=” and not “:=”.

Clear[t];
g2[t_] = x[t] 1. Flatten[sol2]
h2[t_] = y[t] 1. Flatten[sol2]
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2]

(!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]

When an adequate number of initial conditions are specified, DSolve[...] returns
particular solutions to the given equations.

● sol4 = DSolve[{x'[t] 3 x[t] + y[t],
y'[t] 3 4 x[t] + y[t], x[0] 3 2, y[0] 3 0}, {x[t], y[t]}, t]

x[t] & (!t 1 + (4 t, y[t] & 2 (!t "1 + (4 t

{x1[t_], y1[t_]} = {x[t] , y[t]} 1. Flatten[sol4]

(!t 1 + (4 t, 2 (!t "1 + (4 t

ODE2.nb 7

ParametricPlot[{x1[t], y1[t]}, {t, %2.5, 1.5}]

5 10 15 20 25

!20

20

40

8 ODE2.nb

Other examples of systems of first order differential
equations

StreamPlot[{x + y, y}, {x, %5, 5},
{y, %5, 5}, StreamScale & Automatic, StreamPoints &
{{{{0, 1}, Red}, {{1, 1}, Green}, {{%3, 2}, Orange}, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4

ODE2.nb 9

StreamPlot%3 x + 2 y, 2 x % 2 y,
{x, %5, 5}, {y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}

!4 !2 0 2 4

!4

!2

0

2

4

10 ODE2.nb

StreamPlot[{y, %x}, {x, %5, 5}, {y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4

Exercise 1 (from last class):

Study the ODE
dy
dx = 4 x!x3

4+y3 .

1. Plot the vector field using StreamPlot[...] in the region x ∈ [-3.5, 3.5], y ∈ [-3.3, 3.3]. On
the same plot, plot the tranjectory starting at the point (0, 1) in Red, and the tranjectory
starting at the point (1, -1.5) in Green.

ODE2.nb 11

2. Find the discontinuities of the vector field using NSolve[expr,vars]. This command
attempts to find numerical approximations to the solutions of the system expr of
equations or inequalities for the variables vars.

3. Use NDSolve[...] to solve the ODE from example 2,
dy
dx

= 4 x!x3

4+y3 , with initial condition

y(0)=1. The range for the variable x is assumed to be [-3,3]. Plot the function that
NDSolve returns, on the domain [-3,3].

Exercise 2 (predator-prey system):

Consider the system usually described as a predator - prey model (Voltera, 1931):

dx
dt = 0.2 x! 0.7 xy, dy

dt = !0.4 y+ 0.5 xy.
where you can think of the function x(t) as representing a population of rabbits that natu-
rally grow at a rate proportional to their population (that is, exponential growth in the
absence of predators) and the function y(t) as representing a population of foxes that
naturally decline (that is, exponential decay in the absence of prey). The term xy in both
equations is proportional to the number of likely encounters of the two population in a
certain environment. Encounters are detrimental to the rabbits and beneficial to the foxes.
1. Plot the vector field using StreamPlot[...] in the region that makes sense for the given

problem. On the same plot, plot the tranjectory starting at the point (0, 1) in Red, the
tranjectory starting at the point (1, 0) in Green, the trajectory starting at (1,1) in Orange,
and the trajectory starting at (5, 2) in Purple.

2. What do you notice? How do the solutions look like?
3. Assume that initially there are 5 rabbits and 2 foxes. Use NDSolve[...] or DSolve[...] to

find the solution corresponding to this initial condition. Try plotting the solution that
NDSolve returns.

12 ODE2.nb

StreamPlot1,
4 x % x3

4 + y3
, {x, %3.5`, 3.5`}, {y, %3.3`, 3.3`}

!4 !2 0 2 4

!3

!2

!1

0

1

2

3

NSolve[4 + y^3 3 0, y]
{{y & "1.5874}, {y & 0.793701 " 1.37473 /}, {y & 0.793701 + 1.37473 /}}

ODE2.nb 13

The line y = -1.5874 on the StreamPlot represents a line of discontinuity of the
vector field. Notice how the direction of the arrows changes, and tha the slopes of
the integral curves are ∞ or -∞.

StreamPlot1,
4 x % x3

4 + y3
, {x, %3.5`, 3.5`}, {y, %3.3`, 3.3`},

StreamPoints & {{{{0, 1}, Red}, {{1, %1.5}, Green}, Automatic}}

!4 !2 0 2 4

!3

!2

!1

0

1

2

3

NDSolve[{y'[x] & (4 x) x^3) * (4 + y[x]^3), y[0] & 1}, y, {x,)3, 3}]

y & InterpolatingFunction Domain: {{!3., 3.}}
Output: scalar



14 ODE2.nb

Plot[Evaluate[y[x] *. NDSolve[
{y'[x] & (4 x) x^3) * (4 + y[x]^3), y[0] & 1}, y, {x,)3, 3}]], {x,)3, 3}]

!3 !2 !1 1 2 3

0.6

0.8

1.0

1.2

1.4

1.6

s1 = StreamPlot[{0.2 x % 0.7 x y, %0.4 y + 0.5 x y},
{x, 0, 1}, {y, 0, 1}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 0}, Green},

{{1, 1}, Orange}, {{5, 2}, Purple}, Automatic}}];
s2 = StreamPlot[{0.2 x % 0.7 x y, %0.4 y + 0.5 x y},

{x, 0, 9}, {y, 0, 9}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 0}, Green},

{{1, 1}, Orange}, {{5, 2}, Purple}, Automatic}}];
GraphicsRow[{s2, s1}, ImageSize & {900, 400}]

0 2 4 6 8

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ODE2.nb 15

● Clear[x, y, x1, y1, t];
sol5 = NDSolve[{x'[t] 3 0.2* x[t] % 0.7*x[t]*y[t],

y'[t] 3 %0.4 *x[t] + 0.5 *x[t]* y[t],
x[0] 3 5, y[0] 3 2}, {x[t], y[t]}, {t, 1, 10}]

x[t] & InterpolatingFunction Domain: {{1., 10.}}
Output: scalar

[t],

y[t] & InterpolatingFunction Domain: {{1., 10.}}
Output: scalar

[t]

{x1[t_], y1[t_]} = {x[t] , y[t]} 1. Flatten[sol5];
ParametricPlot[{x1[t], y1[t]}, {t, 1, 10}]

0.001 0.002 0.003

4.932

4.933

4.934

4.935

16 ODE2.nb

Stability of Equilibrium Solutions
Equilibrium (Critical point, Steady State Solution)
Types of critical points
Stability for systems of first order linear differential
equations

Exercise (predator-prey system):

Consider the system usually described as a predator - prey model (Voltera, 1931):

dx
dt = 0.2 x" 0.7 xy, dy

dt = "0.4 y+ 0.5 xy.

where you can think of the function x(t) as representing a population of rabbits that natu-
rally grow at a rate proportional to their population (that is, exponential growth in the
absence of predators) and the function y(t) as representing a population of foxes that
naturally decline (that is, exponential decay in the absence of prey). The term xy in both
equations is proportional to the number of likely encounters of the two population in a
certain environment. Encounters are detrimental to the rabbits and beneficial to the foxes.
1. Plot the vector field using StreamPlot[...] in the region that makes sense for the given

problem. On the same plot, plot the tranjectory starting at the point (0, 1) in Red, the
tranjectory starting at the point (1, 0) in Green, the trajectory starting at (1,1) in Orange,
and the trajectory starting at (5, 2) in Purple.

2. What do you notice? How do the solutions look like?
3. Assume that initially there are 5 rabbits and 2 foxes. Use NDSolve[...] or DSolve[...] to

find the solution corresponding to this initial condition. Try plotting the solution that
NDSolve returns.

Systems of first order linear differential equations

Consider a system S of linear differential equations  x ' = ax+by (1)
y ' = cx+dy (2)

The functions x and y are functions of time t and the derivatives are also taken

with respect to the variable t.  x ' (t) = ax(t) +by(t) (1)
y ' (t) = cx(t) +dy(t) (2) .

Definition: The phase portrait (obtained in Mathematica using the command
StreamPlot) of a systems of linear differential equations is a representative set of
its solutions (trajectories, integral curves), plotted as parametric curves (with t as
the parameter) on the Cartesian plane xy, tracing the path of each particular
solution (x, y) = (x(t), y(t)), "∞ < t < ∞ .

Definition: The phase portrait (obtained in Mathematica using the command
StreamPlot) of a systems of linear differential equations is a representative set of
its solutions (trajectories, integral curves), plotted as parametric curves (with t as
the parameter) on the Cartesian plane xy, tracing the path of each particular
solution (x, y) = (x(t), y(t)), "∞ < t < ∞ .

Similar to a vector field (obtained in Mathematica using the command VectorPlot),
a phase portrait is a graphical tool to visualize how the solutions of a given system
of differential equations would behave in the long run. We can classify the behavior
of solutions and the type and stability of the equilibrium solution of a given linear
system by looking at the phase portrait and analyzing the properties of the

coefficient matrix A =  a b
c d

.

Equilibrium Solution

Definition: An equilibrium solution of the system S is a point (x,y) where x’=0
and y’=0. An equilibrium solution is a constant solution of the system, and is
sometimes also called a critical point.

For our linear system of differential equations, an equilibrium solution occurs at
each solution of the system (of homogeneous algebraic equations) ax+by=0 and

cx+dy=0. Equivalently, we need to solve the matrix equation A x
y
= 0

0
. As we

have seen, such a system has exactly one solution, located at the origin  0
0
, if

and only if the matrix A is invertible. If A is not invertible, then there are infinitely
many solutions. Recall also that A is invertible if and only if the determinant of the
matrix det(A) is different from 0 if and only if 0 is an eigenvalue of A. If det (A) = 0,
then there are infinitely many solutions. The condition det(A) is equivalent to the
fact that 0 is an eigenvalue of A.

Recall also that the following statements are equivalent:
A is invertible ⇔ the determinant of the matrix det (A) is different from 0 ⇔ 0 is
an eigenvalue of A.

Classification and Stability of Critical Points

2 ODE3-net.nb

Classification and Stability of Critical Points

Assume that det(A) ≠ 0. Let + and , be the two eigenvalues of A.

Case 1: The eigenvalues + and , are real and different.

As discussed in the lecture notes, the general solution of the system of linear
differential euations is

 x(t)
y(t)  = c1 e+tv + c2 e,tw,

where c1 and c2 are constant parameters, and v and w are eigenvectors
corresponding to the eigenvalues + and ,.

a) The eigenvalues + and , are both negative.
The origin is called a sink (attracting point, stable node, stable point, nodal sink).
All trajectories converge to 0 when t/∞.

A = #3, 2 ,  2 , #2;
Print["The eigenvalues are: ", Eigenvalues[A]]
Print["The eigenvectors are: ", Eigenvectors[A]]

StreamPlot#3 x + 2 y, 2 x # 2 y,
{x, #5, 5}, {y, #5, 5}, StreamScale + Automatic,

StreamPoints + 
1
2
, 1, Red, 

#1
2
, #1, Red,

# 2 , 1, Green,  2 , #1, Green, , Automatic

ODE3-net.nb 3

The eigenvalues are: {$4, $1}

The eigenvectors are: $ 2 , 1, 
1

2

, 1

"4 "2 0 2 4

"4

"2

0

2

4

b) The eigenvalues + and , are both positive.
The origin is called a source (repelling point, unstable node, unstable point, nodal
source). All trajectories diverge away from 0 when t/∞.

c) The eigenvalues + and , have different signs, say +>0 and ,<0. The origin is
called a saddle.

The trajectories given by the eigenvectors of the negative eigenvalue ,<0 initially
start at infinite distance away, but converge to the origin exponentially fast
(x(t),y(t)) = c2 e,tw. The trajectories given by the eigenvectors of the positive
eigenvalue +>0 diverge from the origin exponentially fast (x(t),y(t)) = c1 e+tv.
Every other trajectory moves towards the origin following the attracting direction
w, but never converges to the origin, as it changes direction and diverges from the
origin following the repelling direction v.

4 ODE3-net.nb

The trajectories given by the eigenvectors of the negative eigenvalue ,<0 initially
start at infinite distance away, but converge to the origin exponentially fast
(x(t),y(t)) = c2 e,tw. The trajectories given by the eigenvectors of the positive
eigenvalue +>0 diverge from the origin exponentially fast (x(t),y(t)) = c1 e+tv.
Every other trajectory moves towards the origin following the attracting direction
w, but never converges to the origin, as it changes direction and diverges from the
origin following the repelling direction v.

The example discussed during last class was a saddle, see the lecture notes for the code :

"4 "2 0 2 4

"4

"2

0

2

4

Case 2: The eigenvalues + and , are complex conjugate.

As discussed in the lecture notes, the general solution of the system of linear
differential equations is

 x(t)
y(t)  = c1 eat(u cos(bt) - vsin(bt)) + c2 eat(u sin(bt) + vcos(bt)),

where c1 and c2 are constant parameters,
+ = a+ib, , = a-ib,
and w + = u+iv and w , = u-iv are eigenvectors corresponding to the eigenvalues
+ and ,.

a) The eigenvalues + and , have real part Re(+)=Re(,)<0.
The origin is called a spiralling sink. All trajectories spiral toward 0 when t/∞.

ODE3-net.nb 5

a) The eigenvalues + and , have real part Re(+)=Re(,)<0.
The origin is called a spiralling sink. All trajectories spiral toward 0 when t/∞.

b) The eigenvalues + and , have real part Re(+)=Re(,)>0.
The origin is called a spiralling source. All trajectories spiral away from 0 when t/
∞.

A = {{0, 1}, {#1, 1}};
Print["The Eigenvalues are complex conjugate",
N[Eigenvalues[A], 1], " with positive real part"]

Print["Eigenvectors: ", e = Eigenvectors[A]]

StreamPlot[{y, #x + y}, {x, #5, 5},
{y, #5, 5}, StreamScale + Automatic,
StreamPoints + {{{{1, 0}, Red}, {{#1, 0}, Red}, {{0, 1}, Green},

{{1, 1}, Green}, {{#3, 2}, Orange}, Automatic}}]

6 ODE3-net.nb

The Eigenvalues are complex conjugate
{0.5 + 0.9), 0.5 $ 0.9)} with positive real part

Eigenvectors: $
1

2
) ) + 3 , 1, 

1

2
) $) + 3 , 1

"4 "2 0 2 4

"4

"2

0

2

4

ODE3-net.nb 7

c) The eigenvalues + and , have real part Re(+)=Re(,)=0.
The origin is called a center. All trajectories are closed circles around the origin.

A = {{0, 1}, {#1, 0}};
Print["The eigenvalues are ", Eigenvalues[A]]
Eigenvectors[A]

StreamPlot[{y, #x}, {x, #5, 5}, {y, #5, 5}, StreamScale + Automatic,
StreamPoints + {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}]

The eigenvalues are {), $)}

{{$), 1}, {), 1}}

"4 "2 0 2 4

"4

"2

0

2

4

Case 3: The eigenvalues + and , are real and + = , .

8 ODE3-net.nb

Case 3: The eigenvalues + and , are real and + = , .

a) The eigenvalue + has algebraic and geometric multiplicity 2 (there exists two
linearly independent eigenvectors v and w of +).

The general solution is  x(t)
y(t)  = c1 e+tv + c2 e+tw.

All the theory from Case 1 holds true, and the origin is called a sink if +<0 and
respectively a source if +>0. In the Phase Portrait, every nonzero solution looks
like a straight line in the direction given by the vector c1v + c2w.

b) The eigenvalue + has algebraic multiplicity 2 and geometric multiplicity 1.

The general solution is  x(t)
y(t)  = c1 e+tv + c2 e+tw + t e+tv), where v is an

eigenvector, and w is a generalized eigenvector (see the lectures notes for the
definition of a generalized eigenvector).
When +<0, the origin is called a degenerate sink. All trajectories converge to the
origin. With only one linearly independent eigenvector, the Phase Portrait looks
like a combination between Case 1(a) and Case 2(a). The origin is called a
degenerate source when +>0.

A = {{1, 1}, {0, 1}};
Print["The command Eigenvalues returns ",
Eigenvalues[A], " so 1 is the only

eigenvalue and it has algebraic multiplicity 2"]
Print["The command Eigenvectors returns ", e = Eigenvectors[A],
" but the only eigenvector is ", e[[1]]]

StreamPlot[{x + y, y}, {x, #5, 5},
{y, #5, 5}, StreamScale + Automatic,
StreamPoints + {{{{1, 0}, Red}, {{#1, 0}, Red}, {{0, 1}, Green},

{{1, 1}, Green}, {{#3, 2}, Orange}, Automatic}}]

The command Eigenvalues returns {1, 1}
so 1 is the only eigenvalue and it has algebraic multiplicity 2

The command Eigenvectors returns {{1, 0}, {0, 0}} but the only eigenvector is {1, 0}

ODE3-net.nb 9

"4 "2 0 2 4

"4

"2

0

2

4

10 ODE3-net.nb

Interactive examples with StreamPlot

Interactive plot of the vector field of various systems of linear differential
equations.

In[3]:= Manipulate[
Column[{

Row[{
Text[" MATRIX "],
MatrixForm[m],
Text[" EIGENVALUES "],
N[Eigenvalues[m], 1],
Text[" EIGENVECTORS "],
Row[{

MatrixForm[N[Eigenvectors[m][[1]], 1]],
MatrixForm[N[Eigenvectors[m][[2]], 1]]

}]
}],

StreamPlot[m.{x, y}, {x, #1, 1}, {y, #1, 1}, StreamScale + Large,
StreamColorFunction + "Rainbow", ImageSize + Large]

}],
{{m, ({{1, 0}, {0, 2}})},
{({{1, 0}, {0, 2}}) + "Nodal source",
({{1, 1}, {0, 1}}) + "Degenerate source",
({{0, 1}, {#1, 1}}) + "Spiral source",
({{#1, 0}, {0, #1}}) + "Nodal sink",
({{#1, 0}, {0, #2}}) + "Nodal sink", ({{#1, 1}, {0, #1}}) +
"Degenerate sink", ({{0, 1}, {#1, #1}}) + "Spiral sink",

({{0, 1}, {#1, 0}}) + "Center", ({{1, 0}, {0, #2}}) + "Saddle"}}
]

ODE3-net.nb 11

Out[3]=

m Nodalsink

MATRIX  $1 0
0 $2

 EIGENVALUES {$2., $1.} EIGENVECTORS  0
1.

 1.
0



"1.0 "0.5 0.0 0.5 1.0

"1.0

"0.5

0.0

0.5

1.0

12 ODE3-net.nb

Phase Portraits of Nonlinear
Differential Equations

Nonlinear Differential Equations:

Consider the system  x ' = f (x, y) (1)
y ' = g(x, y) (2) where f and g are functions of two

variables x and y. Assume that f and g are not both linear.

The functions x and y are functions of time t and the derivatives are also taken

with respect to the variable t.  x ' (t) = f (x(t), y(t)) (1)
y ' (t) = g(x(t), y(t)) (2) .

A linear system  x ' = ax+by (1)
y ' = cx+dy (2) with invertible coefficient matrix has only

one equilibrium point (critical point, steady state solution) at (x,y)=(0,0).
Analyzing the stability of this equilibrium solutions gives complete information
about the Phase Portrait of the ODE (the trajectories).

Unlike a linear system, a nonlinear system could have none, one, two, three, or
any number of critical points. Like a linear system, however, the critical points
are found by setting x’ = y’ = 0, and solve the resulting system f(x,y)=0 and
g(x,y)=0.

Since there might be multiple critical points present on the phase portrait, each
trajectory could be influenced by more than one critical point. This results in a
much more chaotic appearance of the phase portrait. Consequently, the type and
stability of each critical point need to be determined locally (in a small
neighborhood on the phase plane around the critical point in question) on a case-
by-case basis. The trajectories will appear very differently than those of the linear
systems, except very near the critical points.

General Strategy :

We approximate the nonlinear system by a linear system near the equilibirum
points.
Suppose that (a, b) is an equilibrium point, that is f(a, b) = g(a, b) = 0.

We approximate the nonlinear system by a linear system near the equilibirum
points.
Suppose that (a, b) is an equilibrium point, that is f(a, b) = g(a, b) = 0.

x ' = f (x, y) ≃ f (a.b) + 'x f (a, b) (x(a) + 'y f (a, b) (y(b) =
'x f (a, b) (x(a) + 'y f (a, b) (y(b)

(1)

y ' = g(x, y) ≃ g(a, b) + 'xg(a, b) (x(a) + 'y g(a, b) (y(b) =
'xg(a, b) (x(a) + 'y g(a, b) (y(b)

(2)

The critical point can be translated to 0 via the coordinate change x := x - a and
y := y - b and still retains all of its properties. The approximated system becomes
a linear system:

x ' = 'x f (a, b) x + 'y f (a, b) y (1)
y ' = 'xg(a, b) x + 'y g(a, b) y (2) with coefficient matrix

J(a,b) = 
∂x f(a, b) ∂y f(a, b)
∂x g(a, b) ∂y g(a, b)

 .

The matrix J(x,y) = 
∂x f(x, y) ∂y f(x, y)
∂x g(x, y) ∂y g(x, y)

is called the Jacobian

matrix of the system. It contains the first order partial derivatives of f and g
evaluated at the point (x,y).

We can use the eigenvalues of the matrix Jacobian matrix to decide the type and
stability of the critical point (a,b). Let " and # be the two eigenvalues. Assume
that " and # are different from 0.

Eigenvalues Linear System Nonlinear System

λ, μ
Real

! !

λ > μ > 0 Nodal Source (Unstable) Nodal Source (Unstable
λ < μ < 0 Nodal Sink (Stable) Nodal Sink (Stable)
λ > 0 > μ Saddle point (Unstable) Saddle point (Unstable
λ = μ > 0 Degenerate Source or Nodal Source (Unstable)

depending of the geometricmultiplicity of #
Source (Degenerate, Nodal, Spiral Source
depending on the nonlinear terms and the #

λ = μ < 0 Degenerate Sink or Nodal Sink (Stable)
depending of the geometricmultiplicity of #

Sink (Degenerate, Nodal, Spiral Sink) (Stable
depending on the nonlinear terms and the #

2 ODE4-net.nb

λ, μ
Complex

! !

Re (λ) > 0 Spiral Source (Unstable) Spiral Source (Unstable
Re (λ) < 0 Spiral Sink (Stable) Spiral Sink (Stable)
Re (λ) = 0 Center (Stable) Center, Spiral Sink , Spiral Source

(Stability cannot be determined based on)

Check also the Bifurcation Diagram on Wikipedia.

Hyperbolic critical point

Definition: The equilibrium is said to be hyperbolic if all eigenvalues of the
Jacobian matrix have non - zero real parts.

Hyperbolic equilibria are robust : Small perturbations do not change qualitatively
the phase portrait near the equilibria. Moreover, local phase portrait of a
hyperbolic equilibrium of a nonlinear system is equivalent to that of its
linearization. This statement has a mathematically precise form known as the
Hartman - Grobman Theorem.

Examples of nonlinear differential equations:

Example 1. Solve the system  x ' = x(1(y) (1)
y ' = y(x(1) (2)

Usually an explicit solution cannot be found, but you can still ask Mathematica to
find a numeric solution using the NDSolve command.

DSolve[{x'[t] . x[t] (1 / y[t]),
y'[t] . y[t] (x[t] / 1), x[0] . 1, y[0] . 1}, {x[t], y[t]}, t]

Solve::ifun:
Inverse functionsare beingused by Solve, so somesolutionsmay notbe found; use Reduce forcompletesolutioninformation.)

Solve::ifun:
Inverse functionsare beingused by Solve, so somesolutionsmay notbe found; use Reduce forcompletesolutioninformation.)

Solve::ifun:
Inverse functionsare beingused by Solve, so somesolutionsmay notbe found; use Reduce forcompletesolutioninformation.)

General::stop: Furtheroutputof Solve::ifun willbe suppressedduringthiscalculation.)

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadtoan emptysolution.)

{}

ODE4-net.nb 3

NDSolve[{x'[t] . x[t] (1 / y[t]), y'[t] . y[t] (x[t] / 1),
x[0] . 2, y[0] . 1}, {x[t], y[t]}, {t, 0, 10}]

x[t] & InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

[t],

y[t] & InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

[t]

The most reliable information here comes from the Vector Field Plot.

StreamPlot[{x (1 / y), y (x / 1)},
{x, /5, 5}, {y, /5, 5}, StreamScale 1 Automatic,
StreamPoints 1 {{{{4, 1}, Red}, Automatic}}]

#4 #2 0 2 4

#4

#2

0

2

4

What is the nature of the equilibrium solutions?

4 ODE4-net.nb

What is the nature of the equilibrium solutions?

1. Set x' = 0 and y' = 0. In this case, it is easy to solve the equation by hand: x(1-
y)=0 and y(x-1)=0 implies (x,y)=(0,0) or (x,y)=(1,1). For more complicated
cases, we will use Solve[..] or NSolve[..]

EqPoints = Solve[{x (1 / y) . 0, y (x / 1) . 0}, {x, y}]

{{x & 0, y & 0}, {x & 1, y & 1}}

2. Next we find the Jacobian matrix of the system. In this case, it is easy to
compute it by hand:

 J(x,y) = 
∂x (x (1 / y)) ∂y (x (1 / y))
∂x (y (x / 1)) ∂y (y (x / 1))

= 1 / y /x
y x / 1



In more complicated cases, we will ask Mathematica to compute the Jacobian
matrix for us, as follows :

The commands D[f[x], {x}] or f'[x] give the dervative of f with respect to x. If
f is a function of several variables, D[f[x, y], {x}] or ∂y(f[x, y]) gives the
partial derivative of f with respect to x. Try them out!

∂yx y + y^2

D[y^2, {y}]

The following code computes the Jacobian matrix:

Clear[f, J, x, y]
f[x_, y_] := {x (1 / y), y (x / 1)}
J[f_] :=
Module[{A = Table[0, 2, 2]},
A[[1, 1]] = D[f[x, y][[1]], {x}];
A[[1, 2]] = D[f[x, y][[1]], {y}];
A[[2, 1]] = D[f[x, y][[2]], {x}];
A[[2, 2]] = D[f[x, y][[2]], {y}];
Return[A]]

J[f]

{{1 * y, *x}, {y, *1 + x}}

3. We evaluate the Jacobian matrix at the two equilibrium points and find its
eigenvalues:

ODE4-net.nb 5

3. We evaluate the Jacobian matrix at the two equilibrium points and find its
eigenvalues:

B = J[f] 5. Flatten[EqPoints[[1]]];
Print["The Jacobian Matrix at the equilibrium point (0,0) is ",
MatrixForm[B]]

Print["The eigenvalues of B are ", Eigenvalues[B]]

The Jacobian Matrix at the equilibrium point (0,0) is  1 0
0 *1



The eigenvalues of B are {*1, 1}

T = J[f] 5. Flatten[EqPoints[[2]]];
Print["The Jacobian Matrix at the equilibrium point (1,1) is ",
MatrixForm[T]]

Print["The eigenvalues are ", Eigenvalues[T]]

The Jacobian Matrix at the equilibrium point (1,1) is  0 *1
1 0



The eigenvalues are {0, *0}

6 ODE4-net.nb

By analyzing the Real and Imaginary Part of the Eigenvalues, we conclude that the
point (0, 0) is a saddle (the Jacobian matrix has two real eigenvalues, one smaller
than 0, one greater than 0) whereas the point (1, 1) is a center (the Jacobian
matrix has two complex conjugate eigenvalues with Real part equal to 0, and the
Phase Portrait depicts closed circular trajectories). This gives us information about
the shape of trajectories in a vecinity of the equilibrium solutions.

Example 2:

Consider the system  x ' = y(x(x^2+ y^2) (1)
y ' = (x(y(x^2+ y^2) (2) . Study the nature of the

critical point (x,y)=(0,0).

Clear[h]
h[x_, y_] := {y / x (x^2 + y^2), /x / y (x^2 + y^2)}
NSolve[{y / x (x^2 + y^2) . 0, /x / y (x^2 + y^2) . 0}, {x, y}]
MatrixForm[J[h]]
Eigenvalues[J[h] 5. {x 1 0, y 1 0}]

{{x & 0., y & 0.}}

*3 x2 * y2 1 * 2 x y
*1 * 2 x y *x2 * 3 y2

{0, *0}

ODE4-net.nb 7

StreamPlot[{y / x (x^2 + y^2), /x / y (x^2 + y^2) }, {x, /2, 2},
{y, /2, 2}, StreamPoints 1 {{{{1, 0}, Red}, Automatic}}]

#2 #1 0 1 2

#2

#1

0

1

2

8 ODE4-net.nb

sol = NDSolve[{x'[t] == y[t] / x[t] (x[t]^2 + y[t]^2),
y'[t] == /x[t] / y[t] (x[t]^2 + y[t]^2),
x[0] . 1, y[0] . 0}, {x[t], y[t]}, {t, 0, 1000}]

ParametricPlot[{x[t], y[t]} 5. Flatten[sol],
{t, 0, 100}, PlotPoints 1 100]

x[t] & InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t],

y[t] & InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t]

#0.4 #0.3 #0.2 #0.1 0.1 0.2 0.3

#0.3

#0.2

#0.1

0.1

0.2

0.3

∂x(y / x (x^2 + y^2)) + ∂y(/x / y (x^2 + y^2))

*4 x2 * 4 y2

Clear[h]
h[x_, y_] := {y + x (x^2 + y^2), /x + y (x^2 + y^2)}
MatrixForm[J[h]]
Eigenvalues[J[h] 5. {x 1 0, y 1 0}]

3 x2 + y2 1 + 2 x y
*1 + 2 x y x2 + 3 y2

{0, *0}

ODE4-net.nb 9

StreamPlot[{y + x (x^2 + y^2), /x + y (x^2 + y^2) },
{x, /2, 2}, {y, /2, 2}]

#2 #1 0 1 2

#2

#1

0

1

2

10 ODE4-net.nb

Conclusions : The linearized system has a center at the origin. The nonlinear
system does not have a center.

Example 3

Consider the system  x ' = x+ y(x(x^2+ y^2) (1)
y ' = (x+ y(y(x^2+ y^2) (2) . Find all critical points

and study their nature.

Clear[h]
h[x_, y_] := {x + y / x (x^2 + y^2), /x + y / y (x^2 + y^2)}
NSolve[{y / x (x^2 + y^2) . 0, /x / y (x^2 + y^2) . 0}, {x, y}]
MatrixForm[J[h]]
Eigenvalues[J[h] 5. {x 1 0, y 1 0}]
StreamPlot[h[x, y], {x, /2, 2}, {y, /2, 2}]

{{x & 0., y & 0.}}

1 * 3 x2 * y2 1 * 2 x y
*1 * 2 x y 1 * x2 * 3 y2

{1 + 0, 1 * 0}

#2 #1 0 1 2

#2

#1

0

1

2

Conclusions : The origin is an spiral source (unstable spiral point) for both the
linear system and the nonlinear system. One may therefore think that all
trajectories different from 0 should spiral out to infinity. This is clearly not the
case, as far away from the origin, the arrows are pointing inward. Moreover, there
is a closed trajectory (a circle) and all trajectories different from (0,0) spiral
towards this circle (limit cycle). You can find the equation of this limit cycle by
switching to polar coordinates x=rcos', y=rsin'.

ODE4-net.nb 11

Conclusions : The origin is an spiral source (unstable spiral point) for both the
linear system and the nonlinear system. One may therefore think that all
trajectories different from 0 should spiral out to infinity. This is clearly not the
case, as far away from the origin, the arrows are pointing inward. Moreover, there
is a closed trajectory (a circle) and all trajectories different from (0,0) spiral
towards this circle (limit cycle). You can find the equation of this limit cycle by
switching to polar coordinates x=rcos', y=rsin'.

The literature on the existence and properties of limits cycles is very rich:
Poincare - Bendixon Theorem
Suppose f and g have continuous partial derivatives.
a) Every closed trajectory must enclose at least one critical point. If it encloses
exactly one critical point, then this cannot be a saddle point.
b) If (x f + (yg has the same sign in a disk D, then there can be no closed trajectory
of the system lying entirely inside D.
c) Suppose that U is a connected open subset that contains no critical point of the
system. Let U denote the set U together with its boundary. If the vector field in U
points towards the interior of U, then U contains a closed trajectory.
d) Suppose that U is a connected open subset that contains no critical point of the
system. Let U denote the set U together with its boundary. If there exists some
trajectory that never leaves the set U (is trapped inside U), then U must
necessarily contain a closed trajectory.

Exercise :

Consider the system  x ' = y (1)
y ' = (y(2 sin(x) (2) . Find all critical points (x,y) of the

system which belong to the region -2$ < x,y < 2$. Study the nature of these
critical points (type, stability). Use only Mathematica commands, even when
computing the solutions!

12 ODE4-net.nb

Phase Portraits of Nonlinear
Differential Equations

Nonlinear Differential Equations:

Consider the system  x ' = f (x, y) (1)
y ' = g(x, y) (2) where f and g are functions of two

variables x and y.

The critical points (equlibrium points, steady state solutions) are found by setting
x' = y' = 0,
and solving the resulting system f(x, y) = 0 and g(x, y) = 0.

We approximate the nonlinear system by a linear system near the equilibirum
points.
Suppose that (a, b) is an equilibrium point, that is f(a, b) = g(a, b) = 0. The
linearized system is:

x ' = %x f (a, b) x + %y f (a, b) y (1)
y ' = %xg(a, b) x + %y g(a, b) y (2) whose coefficient matrix is the Jacobian

matrix J(a,b) = 
∂x f(a, b) ∂y f(a, b)
∂x g(a, b) ∂y g(a, b)

 .

We can use the eigenvalues of the matrix Jacobian matrix to decide the type and
stability of the critical point (a,b) (sink, source, saddle, etc.).

Jacobian Matrix

The following code from last class helps compute the Jacobian matrix of a
function f of two variables x and y:

In[1]:= Clear[f, J, x, y]
() Jacobian))
J[f_] :=
Module[{A = Table[0, 2, 2]},
A[[1, 1]] = D[f[x, y][[1]], {x}];
A[[1, 2]] = D[f[x, y][[1]], {y}];
A[[2, 1]] = D[f[x, y][[2]], {x}];
A[[2, 2]] = D[f[x, y][[2]], {y}];
Return[A]]

() Example))
f[x_, y_] := {x (1 - y), y (x - 1)}
J[f]

Out[4]= {{1 " y, "x}, {y, "1 + x}}

Example 2:

Consider the system  x ' = y' x(x^2+ y^2) (1)
y ' = 'x' y(x^2+ y^2) (2) . Study the nature of the

critical point (x,y)=(0,0).

In[5]:= Clear[h]
() Define the function h))
h[x_, y_] := {y - x (x^2 + y^2), -x - y (x^2 + y^2)}

() Find the critical points of the system))
sol = Solve[{y - x (x^2 + y^2) / 0, -x - y (x^2 + y^2) / 0}, {x, y}];
Print["Critical point: ", sol]

()Find the Jacobian matrix))
Print["The Jacobian Matrix is ", MatrixForm[J[h]]]

() Evaluate the Jacobian matrix
at the only critical point (0,0)))

A = J[h] 0. Flatten[sol];
Print["The Jacobian Matrix at (0,0) is ", MatrixForm[A]]
Print["Eigenvalues: ", Eigenvalues[A]]

2 ODE5-net.nb

Critical point: {{x % 0, y % 0}}

The Jacobian Matrix is  "3 x2 " y2 1 " 2 x y
"1 " 2 x y "x2 " 3 y2



The Jacobian Matrix at (0,0) is  0 1
"1 0



Eigenvalues: {,, ",}

The only critical point for the nonlinear system is (0, 0). The eigenvalues of the
Jacobian matrix at (0, 0) are i and - i (complex conjugate with Real part equal to 0),
so the origin is a center for the linearized system. Let’s see if (0,0) is a center for
the nonlinear system as well.

In[13]:= () Phase Portrait for the linear system))
StreamPlot[{y, -x }, {x, -2, 2}, {y, -2, 2},
StreamPoints 1 {{{{1, 0}, Red}, Automatic}}]

Out[13]=

'2 '1 0 1 2

'2

'1

0

1

2

ODE5-net.nb 3

In[14]:= () Phase Portrait for the nonlinear system))
StreamPlot[{y - x (x^2 + y^2), -x - y (x^2 + y^2) }, {x, -2, 2},
{y, -2, 2}, StreamPoints 1 {{{{1, 0}, Red}, Automatic}}]

Out[14]=

'2 '1 0 1 2

'2

'1

0

1

2

4 ODE5-net.nb

In[19]:= () Find the trajectory that passes through the point (1,0)))
sol = NDSolve[{x'[t] == y[t] - x[t] (x[t]^2 + y[t]^2),

y'[t] == -x[t] - y[t] (x[t]^2 + y[t]^2),
x[0] / 1, y[0] / 0}, {x[t], y[t]}, {t, 0, 1000}]

ParametricPlot[{x[t], y[t]} 0. Flatten[sol],
{t, 0, 60}, PlotPoints 1 100]

Out[19]= x[t] % InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t],

y[t] % InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t]

Out[20]=

'0.4 '0.2 0.2 0.4

'0.4

'0.2

0.2

In[21]:= () Poincare-Bendixon criterion))
∂x(y - x (x^2 + y^2)) + ∂y(-x - y (x^2 + y^2))

Out[21]= "4 x2 " 4 y2

Conclusions : The linearized system has a center at the origin. The nonlinear
system does not have a center! The origin is a spiral sink.

Example 3

Consider the system  x ' = x+ y' x(x^2+ y^2) (1)
y ' = 'x+ y' y(x^2+ y^2) (2) . Find all critical points

and study their nature.

ODE5-net.nb 5

Consider the system  x ' = x+ y' x(x^2+ y^2) (1)
y ' = 'x+ y' y(x^2+ y^2) (2) . Find all critical points

and study their nature.

In[22]:= Clear[h]
h[x_, y_] := {x + y - x (x^2 + y^2), -x + y - y (x^2 + y^2)}

() Find the critical points))
NSolve[{y - x (x^2 + y^2) / 0, -x - y (x^2 + y^2) / 0}, {x, y}]

MatrixForm[J[h]];
Eigenvalues[J[h] 0. {x 1 0, y 1 0}]
StreamPlot[h[x, y], {x, -2, 2}, {y, -2, 2}]

Out[24]= {{x % 0., y % 0.}}

Out[26]= {1 + ,, 1 " ,}

Out[27]=

'2 '1 0 1 2

'2

'1

0

1

2

Conclusions : The origin is an spiral source (unstable spiral point) for both the
linear system and the nonlinear system. One may therefore think that all
trajectories different from 0 should spiral out to infinity. This is clearly not the
case, as far away from the origin, the arrows are pointing inward. Moreover, there
is a closed trajectory (a circle) and all trajectories different from (0,0) spiral
towards this circle (limit cycle). You can find the equation of this limit cycle by
switching to polar coordinates x=rcos,, y=rsin,.

6 ODE5-net.nb

Conclusions : The origin is an spiral source (unstable spiral point) for both the
linear system and the nonlinear system. One may therefore think that all
trajectories different from 0 should spiral out to infinity. This is clearly not the
case, as far away from the origin, the arrows are pointing inward. Moreover, there
is a closed trajectory (a circle) and all trajectories different from (0,0) spiral
towards this circle (limit cycle). You can find the equation of this limit cycle by
switching to polar coordinates x=rcos,, y=rsin,.

Polar Coordinates

i. We do the coordinate change:

x = r Cos[θ] , y = r Sin [θ] , 0 ≤ r < ∞, 0 ≤ θ < 2 π

where r and , are functions of time t.

ii. We need to compute x' and y' as functions of r, ,, r’, ,’
a) We can do it by hand, using the Chain Rule. We get x’ = r’Cos["] - r Sin["]"’ and y’ = r’Sin["] + r
Cos["]"’
b) We use transformations rules in Mathematica to do the change of variables:

x'[t] 0. x 1 (r[#] Cos[θ[#]] &)
y'[t] 0. y 1 (r[#] Sin[θ[#]] &)

Cos[θ[t]] r′[t] " r[t] Sin[θ[t]] θ′[t]

Sin[θ[t]] r′[t] + Cos[θ[t]] r[t] θ′[t]

Changing the system from Example 3 to polar coordinates

We know that x2 + y2 = r2 , so can use the symmetries of the system
x ' = x + y ' x x2 + y2 (1)
y ' = 'x + y ' y x2 + y2 (2)

to create more terms of the form x2 + y2 that can be easily “translated” into r2. Therefore, we can look at
the following sys-
tem:-

xx'+ yy' =
xx + y ' xx2 + y2 + y'x + y ' yx2 + y2 = x2 + y2 ' x2 + y2 x2 + y2 = r21' r2

(1)

yx'' xy' = yx + y ' xx2 + y2 ' x 'x + y ' y x2 + y2 = x2 + y2 = r2 (2)
Let' s see how the left hand sides xx’ + yy’ and yx’ - xy’ look like in polar coordinates:

ODE5-net.nb 7

In[28]:= rule = {x 1 (r[#] Cos[θ[#]] &), y -> (r[#] Sin[θ[#]] &) };
Simplify[x[t] x'[t] + y[t] y'[t] 0. rule]
Simplify[y[t] x'[t] - x[t] y'[t] 0. rule]

Out[29]= r[t] r′[t]

Out[30]= "r[t]2 θ′[t]

In polar coordinates, the system becomes:

r r ' = r21' r2 (1)
'r2 , ' = r2 (2)

 which can be simplified to
r ' = r1' r2 (1)
, ' = '1 (2)

Analyze the system written in polar coordinates :

The equation " ' = $1 , solves to
"(t) = $t + c, where c is any real constant.

The critical points of r ' = r1 $ r2 are:
r=0 (the origin of the old phase portrait) and
r=1 (the unit circle in the old phase portrait).

Therefore, a periodic solution of the system is
r(t) = 1, "(t) = $t + c.
(As time t increases, a point moves clockwise on the unit circle)

From the equation r ' = r1 $ r2, we also see that:
r’ > 0 when r<1 (thus inside the unit circle the trajectories go outwards)
r’ < 0 when r>1 (thus outside the unit circle the trajectories are directed inwards)

What about the other trajectories?
When r ≠ 1 and r ≠ 0, we can use separation of variables to solve the equation:
dr
dt

= r1 $ r2.

We write
dr

r1$r2
= dt and we can integrate each term separately.

In[31]:= Integrate[10(r (1 - r^2)), r]

Out[31]= Log[r] "
1

2
Log1 " r2

The equation becomes log(r) ' 1

2
log1' r2 = t + k, where k is any real constant,

with solution given by r(t)= !k+t

1+!2 (k+t)

8 ODE5-net.nb

The equation becomes log(r) ' 1

2
log1' r2 = t + k, where k is any real constant,

with solution given by r(t)= !k+t

1+!2 (k+t)

In[32]:= solr = SimplifySolve Log[r] -
1

2
Log1 - r2 == t + k, r

Print[
"The function r is always positive, so the solution is: ", r 0. solr[[2]]]

Out[32]= r % "
4k+t

1 + 42 (k+t)
, r %

4k+t

1 + 42 (k+t)


The function r is always positive, so the solution is:
4k+t

1 + 42 (k+t)

Poincare - Bendixon Theorem

The literature on the existence and properties of limits cycles is very rich:

Poincare - Bendixon Theorem
Suppose f and g have continuous partial derivatives.
a) Every closed trajectory must enclose at least one critical point. If it encloses
exactly one critical point, then this cannot be a saddle point.
b) If %x f + %yg has the same sign in a disk D, then there can be no closed trajectory
of the system lying entirely inside D.
c) Suppose that U is a connected open subset that contains no critical point of the
system. Let U denote the set U together with its boundary. If the vector field in U
points towards the interior of U, then U contains a closed trajectory.
d) Suppose that U is a connected open subset that contains no critical point of the
system. Let U denote the set U together with its boundary. If there exists some
trajectory that never leaves the set U (is trapped inside U), then U must
necessarily contain a closed trajectory.
e) Every trajectory is attracted by a fixed point, or it goes to infinity, or it
accumulates on a limit cycle.

This theorem has no analogue in higher dimensions. In systems with phase space of
dimension strictly greater than 2, more things can happen: trajectories may be
attracted to complex geometrical objects (strange attractors), which leads to
chaotical behavior.

Nonlinear Equations with several variables :

ODE5-net.nb 9

Nonlinear Equations with several variables :

In 1963, Lorenz studied a very simple model of the atmosphere. This model
exhibits chaotic behavior:

Lorenz equation

In[34]:= tmax = 20;

sol = NDSolve

x'[t] / -10 (x[t] - y[t]), y'[t] / -x[t] z[t] + 28 x[t] - y[t],

z'[t] / x[t] y[t] -
8

3
z[t], x[0] / 30, y[0] / 10, z[0] / 40,

{x, y, z}, {t, 0, tmax}, MaxSteps 1 5000;

10 ODE5-net.nb

The 3D vector field can be plotte using the command VectorPlot3D

In[36]:= VectorPlot3D-10 (x - y), -x)z + 28 x - y, x) y -
8

3
z,

{x, -10, 10}, {y, -10, 10}, {z, -10, 10},

VectorScale 1 {Small, Automatic, None}

Out[36]=

'10

'5

0

5

10

'10

'5

0

5

10

'10

'5

0

5

10

ODE5-net.nb 11

The solution can the be plotted using ParametricPlot3D as follows:

In[37]:= Clear[x, y, z, t]
ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} 0. sol],
{t, 0, tmax}, PlotPoints 1 3000, Axes 1 False, PlotRange 1 All]

Out[38]=

12 ODE5-net.nb

In[39]:= Clear[x, y, z, t]

Manipulate

ParametricPlot3D

Evaluate{x[t], y[t], z[t]} 0. NDSolve

x'[t] / -10 (x[t] - y[t]), y'[t] / -x[t] z[t] + 28 x[t] - y[t],

z'[t] / x[t] y[t] -
8

3
z[t], x[0] / 30, y[0] / 10, z[0] / 40,

{x, y, z}, {t, 0, T}, MaxSteps 1 5000,

{t, 0, T}, PlotStyle 1 Red,

{{T, 2}, 0.1, 20}, SynchronousUpdating 1 False,

SaveDefinitions 1 True

Out[40]=

T

'10

0

10

20

30

'10

0

10

20

10

20

30

40

ODE5-net.nb 13

Interactive Models with Stream Plot
and Locator

Exercise

Consider the system  x ' = y (1)
y ' = %y%2 sin(x) (2) .

Make an interactive plot of the Phase Portrait when -3! < x < 3! , -2! < y <
2!, which can highlight the trajectory corresponding to the initial condition
chosen by the user.

Solution 1

Manipulate[
StreamPlot[{y, #2 Sin[x] # y},
{x, #3 π, 3 π}, {y, #2 π, 2 π}, ImageSize ' Large,
StreamPoints ' {{{{a, b}, Red}, Automatic}}],

{a, #3 π, 3 π},
{b, #2 π, 2 π}

]

a

b

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

The disadvantage of solution 1 is that every time we drag the slider to change the
initial condition, the entire phase portrait gets re - plotted, not just the trajectory
selected by the user.

Solution 2

2 LocatorExercise.nb

Solution 2

Show[g1, g2, …]
shows several graphics combined.

splot = StreamPlot[{y, #2 Sin[x] # y}, {x, #3 π, 3 π}, {y, #2 π, 2 π},
ImageSize ' Large, StreamColorFunction ' "Rainbow"];

line = Plot[1, {x, #3 π, 3 π}, PlotStyle ' Red];
Show[splot, line]

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

LocatorExercise.nb 3

In[46]:= a = 1; b = 4;
splot = StreamPlot[{y, #2 Sin[x] # y},

{x, #3 π, 3 π}, {y, #2 π, 2 π}, ImageSize ' Large];
sol = NDSolve[{x'[t]) y[t], y'[t]) #2 Sin[x[t]] # y[t],

x[0]) a, y[0]) b}, {x, y}, {t, 0, 10}]
trajectory = ParametricPlot[Evaluate[{x[t], y[t]} *. sol],

{t, 0, 10}, PlotStyle ' Red];
Show[splot, trajectory]

Out[48]= x " InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

,

y " InterpolatingFunction Domain: {{0., 10.}}
Output: scalar



Out[50]=

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

4 LocatorExercise.nb

Manipulate[
sol = NDSolve[{x'[t]) y[t], y'[t]) #2 Sin[x[t]] # y[t],

x[0]) a, y[0]) b}, {x, y}, {t, 0, 10}];
trajectory = ParametricPlot[Evaluate[{x[t], y[t]} *. sol],

{t, 0, 10}, PlotStyle ' Red];
Show[splot, trajectory],
{a, #3 π, 3 π }, {b, #2 π, 2 π} ,
SaveDefinitions ' True]

LocatorExercise.nb 5

a

b

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

Solution 3

6 LocatorExercise.nb

Solution 3

Locator[{x,y}] represents a locator object at position (x,y) in a graphical
object.

Locator[Dynamic[pos]]
takes the position to be the dynamically updated current value of pos, with this
value being reset if the locator object is moved.

Graphics[Text["some text", {0, 7}]]

LocatorExercise.nb 7

Let' s write an interactive model that shows the previous StreamPlot, with a
dynamic variable called point, which is linked to Locator.

Manipulate[
Show[splot],
{point, Locator},
SaveDefinitions % True]

Out[51]=

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

8 LocatorExercise.nb

Let' s first see what Locator can do.

In[54]:= Manipulate[
Show[splot, Graphics[Text[point, {0, 7}]]],
{{point, {2, 3}}, Locator},
SaveDefinitions % True

]

Out[54]=

{4.66, 3.94}

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

Let's use Locator inside the interactive model. When the user clicks on a point in
the Phase Portrait, we solve the differential equation corresponding to the initial
condition selected by the user, and highlight the corresponding trajectory in the
Phase Portrait. We can include also a slider for the time t (that controls how
much of the trajectory we should plot)

LocatorExercise.nb 9

Let's use Locator inside the interactive model. When the user clicks on a point in
the Phase Portrait, we solve the differential equation corresponding to the initial
condition selected by the user, and highlight the corresponding trajectory in the
Phase Portrait. We can include also a slider for the time t (that controls how
much of the trajectory we should plot)

splot = StreamPlot[{y, #2 Sin[x] # y},
{x, #3 π, 3 π}, {y, #2 π, 2 π}, ImageSize ' Large];

Manipulate[
trajectory = ParametricPlot[

Evaluate[{x[t], y[t]} *.
NDSolve[{x'[t]) y[t], y'[t]) #2 Sin[x[t]] # y[t],

x[0]) point[[1]], y[0]) point[[2]]},
{x, y}, {t, 0, T}]], {t, 0, T}, PlotStyle ' Red];

Show[splot, trajectory],
{{T, 10}, 0, 100},
{{point, {1, 0}}, Locator},
SaveDefinitions ' True]

10 LocatorExercise.nb

T

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

LocatorExercise.nb 11

Cryptography
Cryptology (Greek “kryptos” = hidden, secret, “logos”= study, science)
Cryptography (“kryptos”=secret, “graphein”=writing)

Definition:

Cryptography is the study of hiding information. Cryptography is the science of
concealing the content of communication between parties, where the channel
between them is controlled in some way by an unfriendly third party.

Alice Bob
Eve

Cipher (cryptosystem)

Decryption

plaintext # ciphertext ciphertext # plaintext

Encryptio
n

Cipher (Cryptosystem)

- a pair of algorithms that create the encryption from plaintext to ciphertext,
and the reversing process (decryption from ciphertext to plaintext)
- the algorithms have a secret parameter called key (ideally known only to Alice
and Bob, and which changes from one message exchange to the next).

Cryptanalysis

Cryptanalysis

- study of methods for obtaining the meaning of encrypted information without
access to the key normally required to do so (study of how to crack encryption
algorithms).
- Eve (Eavesdropper, Enemy, Evil third party) intercepts the ciphertext. She may
know the cipher (the algorithms for encryption, decryption, but does not know
the key). Eve can have a “passive role” (attemps to recover the plaintext, or to
deduce the key), or an “active role” (alter the message sent over the channel).

History of Cryptography

Classical Crytopgraphy
- simple methods of encryption and decryption using only pen and paper an
perhaps simple mechanical aids.
- non-standard hieroglyphs carved into monuments from the Old Kingdom of
Egypt (1900 BC),
- clay tablets from Mesopotamia (1500 BC)
- Hebrew scholars - simple monoalphabetic substitution ciphers (500-600 BC)
(replace first alphabet letter with last, second letter with next to last, ...)
- Ancient Greeks
 - transposition ciphers (500 BC) (Spartan Scytale - thin strip of parchment
wrapped around a cylindrical rod called scytale; the diameter of the scytale was
known only by the sender and the receiver)
 - Polybius square (205-123 BC) (pairs of numbers substitute for letters
- Romans - Caesar Cipher (50 BC, Gallic Wars) - Shift ciphers +k

Medieval Cryptography

- polyalphabetic substitution
- Alberti’s Cipher Disk
- Vigènere cipher (~16th century) correspondents agree on a keyword, which
controls letter substitution depending on which letter of the key word is used.

WW1 (ADFGVX)

2 Cryptography-net.nb

WW1 (ADFGVX)

- correspondents knew an encoding table for letters & ciphers and a keyword;
letters A, D, F, G, V, X were chosen deliberately because they sound very
differently when transmitted via Morse code
- to encipher: the plaintext is coded using the letters A,D, F, G, V, X via the
chart. The resulting pre-ciphertext is then enciphered using a keyword columnar
transposition cipher.
- to decipher: reverse the transposition and decode using the chart.

● A D F G V X
A F L 1 A O 2
D J D W 3 G U
F C I Y B 4 P
G R 5 Q 8 V E
V 6 K 7 Z M X
X S N H 0 T 9

plaintext: WE WILL WIN
pre$ciphertext:
DFGXDFFDADADDFFDXD

A R M S
1 2 3 4
D F G X
D F F D
A D A D
D F F D
X D " "

keyword: ARMS
ciphertext:
DDADX GFAF FFDFD XDDD

WW2
- cable and radio transmissions were encrypted
- Enigma - cryptographic machine used by the Germans (Enigma accepted letters
as keyboard input and implemented a polyalphabetic substitution cipher using an
electro-mechanical rotor machine with rotating disks; it produced output by
lighting electrical lamps beneath lettered windows)

Modern Cryptography

- Ciphering operations are too complex to be made by hand; computers are
needed. Complex ciphering can be obtained by composition of a certain number
of simpler ciphering functions.
- Claude Shanon (1949) established solid theoretical basis for cryptology and
cryptanalysis (confusion/diffusion).
 Confusion - make the relation between the key and the ciphertext as complex
as possible.
 Diffusion - data diffusion: changing one letter in the plaintext will change many
letters in the ciphertext
 - key diffusion: changing even a tiny part of the key should change
each bit (letter) in the ciphertext with a given probability.
- Symmetric Key Cryptography
 - the sender and the receiver share the same key; the key is communicated
separately over a different channel.
 - 1970 Data Encryption Standard (DES) symmetric block cipher
 - 2001 Advanced Encryption Standard (AES)
 AES and Triple DES (with 128, 256-bit keys) are used in banking, ATM
transactions, e-commerce, industry, mobile communications

- Asymmetric (public) Key Cryptography
 - new methods of distributing cryptographic keys (no secure channel is
needed)
 - asymmetric key algorithms use a pair of mathematically related keys (one
public, one private), each of which decrypts the encryption performed by the
other; the private key cannot be deduced from the public key by any
computational method other than trial and error. Cracking the encrypted
message without the private key requires a major computational task.
 - based on number theory
 - Digital Signatures, Public Certificates, Authentication Protocols (SSL, SSH)
 - E-banking (secure bank transfers), E-commerce (cards), protection against
collection of personal data by various companies, PGP email encryption,
Operating Systems, Cryptographic Protection of classified documents, etc.

Cryptography-net.nb 3

Modern Cryptography

- Ciphering operations are too complex to be made by hand; computers are
needed. Complex ciphering can be obtained by composition of a certain number
of simpler ciphering functions.
- Claude Shanon (1949) established solid theoretical basis for cryptology and
cryptanalysis (confusion/diffusion).
 Confusion - make the relation between the key and the ciphertext as complex
as possible.
 Diffusion - data diffusion: changing one letter in the plaintext will change many
letters in the ciphertext
 - key diffusion: changing even a tiny part of the key should change
each bit (letter) in the ciphertext with a given probability.
- Symmetric Key Cryptography
 - the sender and the receiver share the same key; the key is communicated
separately over a different channel.
 - 1970 Data Encryption Standard (DES) symmetric block cipher
 - 2001 Advanced Encryption Standard (AES)
 AES and Triple DES (with 128, 256-bit keys) are used in banking, ATM
transactions, e-commerce, industry, mobile communications

- Asymmetric (public) Key Cryptography
 - new methods of distributing cryptographic keys (no secure channel is
needed)
 - asymmetric key algorithms use a pair of mathematically related keys (one
public, one private), each of which decrypts the encryption performed by the
other; the private key cannot be deduced from the public key by any
computational method other than trial and error. Cracking the encrypted
message without the private key requires a major computational task.
 - based on number theory
 - Digital Signatures, Public Certificates, Authentication Protocols (SSL, SSH)
 - E-banking (secure bank transfers), E-commerce (cards), protection against
collection of personal data by various companies, PGP email encryption,
Operating Systems, Cryptographic Protection of classified documents, etc.

Example: The Caesar cipher

One of the oldest cryptosystems is due to Julius Caesar. The Caesar cipher is
defined over the alphabet {A,B,C, ..., Z}, encoded numerically as integer numbers
between 0 and 25, {A$0, B$1, ..., Z$25}. The key k can be any integer between
0 and 25. The cipher shifts each letter in the text cyclicly over k places. The
encoding function is Ek(x) = x + k (mod 26) and the decoding function is
Dk(x) = x $ k (mod 26). The notation x mod 26 means the remainder of the
division of x by 26.

4 Cryptography-net.nb

One of the oldest cryptosystems is due to Julius Caesar. The Caesar cipher is
defined over the alphabet {A,B,C, ..., Z}, encoded numerically as integer numbers
between 0 and 25, {A$0, B$1, ..., Z$25}. The key k can be any integer between
0 and 25. The cipher shifts each letter in the text cyclicly over k places. The
encoding function is Ek(x) = x + k (mod 26) and the decoding function is
Dk(x) = x $ k (mod 26). The notation x mod 26 means the remainder of the
division of x by 26.

Define the Caeser cipher over integer numbers {0, 1, ..., 25}

Clear[CaesarEncode, CaesarDecode]

CaesarEncode[x_ ?IntegerQ, k_] := Mod[x + k, 26]
CaesarDecode[x_ ?IntegerQ, k_] := Mod[x & k, 26]

SetAttributes[CaesarEncode, Listable];
SetAttributes[CaesarDecode, Listable];

Alphabet1 = Table[i, {i, 0, 25}]
CaesarEncode[Alphabet1, 3]

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 1, 2}

ASCI code of alphabet letters

The Mathematica functionsToCharacterCode[..] and
From CharacterCode[..] convert symbols to their ASCI code and back (letter
A has value 65, letter B has value 66, , letter a has value 97, letter b has value
98, etc.).

FromCharacterCode[65]

FromCharacterCode[{97}]

ToCharacterCode["A"]

ToCharacterCode["AaBbCc"]

ToUpperCase["AaBbCc"]

Cryptography-net.nb 5

ToCharacterCode[ToUpperCase["AaBbCc"]]

Select[{4, 46, 2}, (0 <= # ≤ 25) &]

Define the Caesar cipher over strings

Encode and decode a given string using the simple encoding A=0, ... , Z=25
(stripping all other characters).

CaesarEncode[x_ ?StringQ, k_] := Module[{n, numerictext},
numerictext = ToCharacterCode[ToUpperCase[x]] & 65;
numerictext = Select[numerictext, (0 <= # ≤ 25) &];
n = Mod[numerictext + k, 26];
FromCharacterCode[n + 65]

]

CaesarDecode[x_ ?StringQ, k_] := Module[{n, numerictext},
numerictext = ToCharacterCode[x] & 65;
n = Mod[numerictext & k, 26];
FromCharacterCode[n + 65]

]

?CaesarEncode

plain = "TYPE YOUR TEXT HERE";
CaesarEncode[plain, 2]

VARGAQWTVGZVJGTG

CaesarDecode["VARGAQWTVGZVJGTG", 2]

TYPEYOURTEXTHERE

Cryptanalysis of the Caesar cipher

An easy way to break the ciphersystem is to try out all possible keys. This method
is called exhaustive key search, or brute-force approach.

Example : The text “TFEXIRKLCRKZFEJPFLALJKSIFBVPFLIWZIJKTZGYVI” has
been encoded using a Caesar cipher with some unknown key k. Decrypt it.

6 Cryptography-net.nb

Lab Exercises

Cryptanalysis of Caesar Ciphers:
An easy way to break the ciphersystem is to try out all possible keys. This method is called exhaustive
key search, or brute-force approach.

Exercise: The text “TFEXIRKLCRKZFEJPFLALJKSIFBVPFLIWZIJKTZGYVI” has been encoded using
a Caesar cipher with some unknown key k. Decrypt it.

Cryptanalysis of Affine Ciphers:

a) By exhaustive key search, or brute-force approach (try all possible keys):
The follwing text "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX" has been encoded using an
Affine Cipher. Decode the text.

b) By the method of a known ciphertext:
Exercise: Suppose that an affine cipher E(x) = ax+b (mod 26) enciphers “H” as “X” and “Q” as “Y”. Find
the key. Use the key to decode the ciphertext “HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG”, which
has been encoded using the same cipher.

Hint: Solve a system of two linear equations mod 26.

c) By frequency analysis:
Exercise: Suppose that you have intercepted the following ciphertext
“QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFA
FPXZUSFHNDGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVP
VRXWQWQVSVWWVICIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQ
VXZTJVPDGOVIWQVUVIZDWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW”
.
You know that it has been encoded using an affine cipher, but you don' t know the key. Use frequency
analysis to break the cipher.

Cryptanalysis of Vigenere Ciphers:
Exercise: The following ciphertext was produced using a Vigenere cipher with a keyword of unknown
length k.
“KIVQXTCQQVRPQOSGWEKVMTRYNHJVUVVKBMDPKVHKWBUWFVZFNOPQOSGWEKVMTRYNH
JGDPKOV”.
◼ Write a function that computes the index of coincidence of a ciphertext.

◼ Find an approximation of the length of the keyword, using Friedman's test. Now you know that
approximatively k Caesar ciphers were used to encode the text.

◼ Try to break all of them. If frequency analysis does not work, then use the additional information that
the cipher block “PQOSG” is an encoding for the plaintext “SOLVE”.

◼ Decode the ciphertext.

2 LabEx.nb

Cryptography with Mathematica

Modular Arithmetic
Definition: Let m be any positive integer. We say that two integers a and b are congruent modulo m if b-
a is divisible by m. In other words, the division of a by m gives the same remainder as the division of b
by m. We write a=b (mod m), or a ≡ b (mod m), or a-b ≡ 0 (mod m).

Equivalence Relation:

◼ reflexive: a ≡ a (mod m)

◼ symmetric: if a ≡ b (mod m) then b ≡ a (mod m)

◼ transitive: if a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m)

Division Principle: Let m be any positive integer. Let b be any integer. Then there exist unique num-
bers q and r such that b=qm+r, and 0 ≤ r < m.
Smallest representative: b ≡ r (mod m) and we think of r as the simplest representative of the equiva-
lence class of b modulo m.

The set of smallest representatives modulo m is denoted by !m={0,1,2,3....,m-1}.

On#m we have two operations + (addition) and ' (multiplication), with the following properties :

◼ If a, b and c are integers and a ≡ b (mod m), then a + c ≡ b + c (mod m)

◼ If a, b, c, d are integers and a ≡ b (mod m) and c ≡ d (mod m) then ac ≡ bd (mod m)

◼ Special case: If a and b are integers and n is a positive integer, then an ≡ bn (modm).

Definition: A multiplicative inverse of an integer a modulo m is an integer b such that ab ≡ 1 (mod m).
 We write a(1≡ b (mod m).

Examples :

◼ 2*3 ≡ 6 ≡ 1 (mod 5), so 2"1≡ 3 (mod 5) and 3"1≡ 2 (mod 5)

◼ 2 is not invertible modulo 6. Suppose, by contradiction, that there exists a number x such that 2x ≡ 1
(mod 6), then 2x-1 is divisible by 6, so in particular 2x-1 is divisible by 2, which is false, because 2x-1
is odd.

Theorem: If p⩾2 is a prime number, then any number a in {1,2,...p-1} has a multiplicative inverse in #p
Theorem: Let m⩾2 be any positive number, and a be a number in {1,2,...m-1}. Then a has a multiplica-
tive inverse in #m if and only if a and m are relatively prime.

◼ Suppose that a and b are relatively prime, and let us consider the set of remainders:

a*0 (mod m), a*1 (mod m), a*2 (mod m), ... , a* (m-1) (mod m)

Notice that remainders are all distinct. Otherwise, suppose that a*i ≡ a*j (mod m) for some i and j
with 0<i<j<m. Then a(j-i) ≡ 0 (mod m), a(j-i) is divisible by m. But a and m are relatively prime, so j-i
must be divisible by m. However this is not possible, because 0<j-i<m.

In conclusion {a*0 (mod m), a*1 (mod m), a*2 (mod m), ... , a* (m-1) (mod m)} ={0,1,2,..., m-1}, so
there exists a number k such that a*k ≡ 1 (mod m).

◼ Suppose now that a*b ≡ 1 (mod m) and let us show that a and m must be relatively prime.

Suppose by contradiction, that a and m are not relatively prime and let a= a1*c and m=m1*c, where
1<m1<m.

a*b ≡ 1 (mod m) $ a1*c*b ≡ 1 (mod m) $ a1*c*b*m1 ≡ m1 (mod m)

$ (a1*b)*(c*m1) ≡ m1 (mod m) $ 0 ≡ m1 (mod m), which is false because m1 is not divisible by
m.

Modular Arithmetic in Mathematica
PowerMod[a,b,m] - gives abmod m.
PowerMod[a,-1,m] - finds the inverse of a modulo m; returns an error message “a is not invertible
modulo m” is the integer a is not invertible modulo m.
PowerMod[a,1/r,m] - finds a modular r root of a.

In[74]:= PowerMod[3, "1, 7]

Out[74]= 5

In[75]:= PowerMod[3, "1, 6]

PowerMod::ninv: 3 is notinvertiblemodulo 6. %

Out[75]= PowerMod[3, #1, 6]

Mathematica is able to solve modular equations using Solve[{List of Equations}, {List of Variables},
Modulus->m]

In[76]:= Solve[{3 x % 1}, {x}, Modulus ' 7]

Out[76]= {{x & 5}}

In[77]:= Solve[{2 x % 1}, {x}, Modulus ' 26]

Out[77]= {}

In[78]:= Solve[{2 x % 2}, {x}, Modulus ' 26]

Out[78]= {{x & 1 + 13 C[1]}}

Affine ciphers
An affine cipher is an enchipherment scheme of the form Ea,b(x) = ax + b (mod 26) and
Da,b(x) = a!1(x & b) (mod 26), where a and b are integer numbers between 0 and 25, and a and 26 must
be relatively prime.

These are the admissible values for the first key (key a):

2 Crypto2.nb

Select[Table[i, {i, 25}], (GCD[26, #] % 1) &]

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

An example of a good key : a = 3

Table[Mod[3 + i, 26], {i, 0, 25}]

{0, 3, 6, 9, 12, 15, 18, 21, 24, 1, 4, 7, 10, 13, 16, 19, 22, 25, 2, 5, 8, 11, 14, 17, 20, 23}

An example of a bad key: a = 2

Table[Mod[2 + i, 26], {i, 0, 25}]

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}

Remark: Note that when a = 1, the Affine Cipher is just the Caesar Cipher discussed in the last lecture

Encoding and Decoding

Clear[AffineEncode, AffineDecode]

AffineEncode[x_ ?IntegerQ, a_, b_] := Mod[a + x + b, 26]
AffineEncode[x_ ?StringQ, a_, b_] :=
Module[{n, numerictext},
numerictext = ToCharacterCode[ToUpperCase[x]] " 65;
numerictext = Select[numerictext, (0 <= # ≤ 25) &];
n = Mod[a + numerictext + b, 26];
FromCharacterCode[n + 65]

]

AffineDecode[x_ ?IntegerQ, a_, b_] := Mod[PowerMod[a, "1, 26] + (x " b), 26]
AffineDecode[x_ ?StringQ, a_, b_] :=
Module{n, numerictext},
numerictext = ToCharacterCode[x] " 65;
n = ModPowerMod[a, "1, 26] + numerictext " b, 26;
FromCharacterCode[n + 65]



Listable is an attribute that can be assigned to a function to indicate that the function should automati-
cally be applied to lists that appear as its arguments. For example, Sin is listable, so Sin[{1, 2, 3, 4}]
evaluates to {Sin[1], Sin[2], Sin[3], Sin[4]}

SetAttributes[AffineEncode, Listable];
SetAttributes[AffineDecode, Listable];

Crypto2.nb 3

AffineEncode[3, 5, 1]
AffineDecode[16, 5, 1]
AffineEncode[{0, 1, 2, 3, 4, 5}, 5, 1]
AffineEncode["What to encode today?", 7, 11]
AffineDecode["JILOOFNYZFGNOFGLX", 7, 11]

16

3

{1, 6, 11, 16, 21, 0}

JILOOFNYZFGNOFGLX

WHATTOENCODETODAY

Simple substitution/Monoalphabetic substitutions
With the method of a simple substitution one chooses a fixed permutation p of the alphabet letters {a, b,
…, z} and applies that permutation to all letters in the plaintext.

E(x) = p(x)
D(x) = p(1(x)

Cipher =
{"A" ' "K", "B" ' "E", "E" ' "Z", "N" ' "A", "Z" ' "C", "C" ' "B", "K" ' "N"}

{A & K, B & E, E & Z, N & A, Z & C, C & B, K & N}

DecodeA = "A" 5. Cipher ' "A"

K & A

We can generate the English alphabet in several ways: from the ASCII codes, or by using the Mathemat-
ica function Alphabet[..].

alphabet = Table[FromCharacterCode[i], {i, 65, 65 + 25}]

{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

In[79]:= alphabet = ToUpperCase @ Alphabet["English"]

Out[79]= {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Now we can display the backwards correspondence between the permuted (encrypted) alphabet and
the original one.

DecodeCipher = Tablealphabet[[i]] 5. Cipher ' alphabet[[i]], {i, 1, 26}

{K & A, E & B, B & C, D & D, Z & E, F & F, G & G, H & H, I & I, J & J, N & K, L & L, M & M,
A & N, O & O, P & P, Q & Q, R & R, S & S, T & T, U & U, V & V, W & W, X & X, Y & Y, C & Z}

4 Crypto2.nb

Encoding and Decoding

StringReplace[“string”,s(sp] or StringReplace[“string”,{s1(sp1,s2(sp2,…}]
replaces the string expressions s by sp whenever they appear as substrings of
string.

Clear[EncodeP, DecodeP]

EncodeP[x_] := StringReplace[ToUpperCase[x], Cipher]
DecodeP[x_] := StringReplace[ToUpperCase[x], DecodeCipher]

EncodeP["ANOTHER CIPHER"]

DecodeP["KAOTHZR BIPHZR"]

Cryptanalysis of Affine Ciphers:

a) By exhaustive key search, or brute-force approach (try all possible keys):
The follwing text "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX" has been encoded using an
Affine Cipher. Decode the text.

b) By the method of a known ciphertext:
Exercise: Suppose that an affine cipher E(x) = ax+b (mod 26) enciphers “H” as “X” and “Q” as “Y”. Find
the key. Use the key to decode the ciphertext “HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG”, which
has been encoded using the same cipher.

Hint: Solve a system of two linear equations mod 26.

c) By frequency analysis:
Exercise: Suppose that you have intercepted the following ciphertext
“QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFA
FPXZUSFHNDGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVP
VRXWQWQVSVWWVICIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQ
VXZTJVPDGOVIWQVUVIZDWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW”
.
You know that it has been encoded using an affine cipher, but you don' t know the key. Use frequency
analysis to break the cipher.

Crypto2.nb 5

Cryptanalysis of Affine ciphers

Affine ciphers
An affine cipher is an enchipherment scheme of the form Ea,b(x) = ax + b (mod 26) and
Da,b(x) = a!1(x % b) (mod 26), where a and b are integer numbers between 0 and 25, and a and 26 must
be relatively prime.

These are the admissible values for the first key (key a):

In[38]:= GoodKeys = Select[Table[i, {i, 25}], (GCD[26, #] (1) &]

Out[38]= {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Note that there are exactly 12 such numbers (the Euler characteristic of 26 is (2 - 1) (13 - 1) = 12).

Encoding and Decoding

Clear[AffineEncode, AffineDecode]

In[48]:= AffineEncode[x_ ?IntegerQ, a_, b_] := Mod[a + x + b, 26]
AffineEncode[x_ ?StringQ, a_, b_] := Module[{n, numerictext},

numerictext = ToCharacterCode[ToUpperCase[x]] - 65;
numerictext = Select[numerictext, (0 <= # ≤ 25) &];
n = Mod[a + numerictext + b, 26];
FromCharacterCode[n + 65]

]

In[50]:= AffineDecode[x_ ?IntegerQ, a_, b_] := Mod[PowerMod[a, -1, 26] + (x - b), 26]
AffineDecode[x_ ?StringQ, a_, b_] := Module{n, numerictext},

numerictext = ToCharacterCode[x] - 65;
n = ModPowerMod[a, -1, 26] + numerictext - b, 26;
FromCharacterCode[n + 65]



In[43]:= AffineEncode["Looks like Affine chiphers are pretty easy", 17, 5]

Out[43]= KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX

In[44]:= AffineDecode["KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX", 17, 5]

Out[44]= LOOKSLIKEAFFINECHIPHERSAREPRETTYEASY

Associations

Associations
Association (<|....|>) - Along with lists, associations are fundamental constructs in the Wolfram Lan-
guage. They associate keys with values, allowing highly efficient lookup and updating, even with mil-
lions of elements. Associations provide generalizations of symbolically indexed lists, associative arrays,
dictionaries, hashmaps, structs, and a variety of other powerful data structures.
Association[key->val] associates keys with values
Association[{k->v, b->y}] key k is associated with value v, key b with value y, etc.
Convert a list of rules to an association using Association[List]. Convert an association back to list
using Normal[Association].

Numeric correspondents of alphabet letters:

In[16]:= NumAlphabet =
Association @ Table[FromCharacterCode[i] 5 i - 65, {i, 65, 65 + 25}]

Out[16]= #A $ 0, B $ 1, C $ 2, D $ 3, E $ 4, F $ 5, G $ 6, H $ 7,
I $ 8, J $ 9, K $ 10, L $ 11, M $ 12, N $ 13, O $ 14, P $ 15, Q $ 16,
R $ 17, S $ 18, T $ 19, U $ 20, V $ 21, W $ 22, X $ 23, Y $ 24, Z $ 25%

If we want to obtain the frequency of letter A, we can now call TA["A"] in place of TA[[1]].

In[17]:= NumAlphabet["H"]

Out[17]= 7

In[18]:= NumAlphabet[[8]]

Out[18]= 7

Keys[..] and Values[..] can be used to obtain the keys or the values of an Association.

In[23]:= Keys[NumAlphabet]
Values[NumAlphabet]

Out[23]= {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Out[24]= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Table of frequency of letters from the English alphabet

In[8]:= T = {"A" 5 0.0804, "B" 5 0.0154, "C" 5 0.0306, "D" 5 0.0399,
"E" 5 0.1251, "F" 5 0.0230, "G" 5 0.0196, "H" 5 0.0549,
"I" 5 0.0726, "J" 5 0.0016, "K" 5 0.0067, "L" 5 0.0414,
"M" 5 0.0253, "N" 5 0.0709, "O" 5 0.0760, "P" 5 0.0200, "Q" 5 0.0011,
"R" 5 0.0612, "S" 5 0.0654, "T" 5 0.0925, "U" 5 0.0271,
"V" 5 0.0099, "W" 5 0.0192, "X" 5 0.0019, "Y" 5 0.0173, "Z" 5 0.0009}

2 CryptoTest.nb

In[9]:= TA = Association[T]

In[10]:= Sort[TA]

Out[10]= #Z $ 0.0009, Q $ 0.0011, J $ 0.0016, X $ 0.0019, K $ 0.0067, V $ 0.0099,
B $ 0.0154, Y $ 0.0173, W $ 0.0192, G $ 0.0196, P $ 0.02, F $ 0.023, M $ 0.0253,
U $ 0.0271, C $ 0.0306, D $ 0.0399, L $ 0.0414, H $ 0.0549, R $ 0.0612,
S $ 0.0654, N $ 0.0709, I $ 0.0726, O $ 0.076, A $ 0.0804, T $ 0.0925, E $ 0.1251%

The letters of the English alphabet, ordered from most frequent to least frequent :

In[11]:= SortedLetters = Keys[Sort[TA, Greater]]

Out[11]= {E, T, A, O, I, N, S, R, H, L, D, C, U, M, F, P, G, W, Y, B, V, K, X, J, Q, Z}

Cryptanalysis of Monoalphabetic Ciphers
We call a monoalphabetic substitution cipher any cipher that does a permutation of the letters of the
English alphabet. Unlike Caesar’s cipher or Affine ciphers, a general monoalphabetic substitution cipher
does not have the drawback of a small key space. Indeed, the key space is 26! ≃4.03 10^26. However,
a large key space does not guarantee that the system is secure! On the contrary, by simply counting the
letter frequencies in the ciphertext and comparing these with the letter frequencies of the English alpha-
bet, one very quickly finds the encodings of the most frequent letters in the plaintext. Indeed, the most
frequent letter in the ciphertext will very likely be the encoding of one of the letters E, T, A, etc. After
having found the encryptions of the most frequent letters in the plaintext, it is not difficult to fill in the
rest. Of course, the longer the cipher text, the easier the cryptanalysis becomes.

Frequency analysis
The probability that letter “A” appears in an English text is approx. 0.0804. The probability that letter “E”
appears in an English text is approx. 0.1251. The probability that letter “Z” appears in an English text is
approx. 0.0009. Enciphering a text with a monoalphabetic cipher only permutes these frequencies
around.

A function to count the number of occurences of letters in a text
We use the Mathematica function StringCount[s, sub] which counts the occurrences of the substring
sub in the string s

In[12]:= LetterFrequencies[x_] := Module[{y, L, F},
y = ToUpperCase[x];
L = Table[FromCharacterCode[i], {i, 65, 65 + 25}];
F = Table[L[[i]] -> StringCount[y, L[[i]]], {i, 1, 26}];
Association[F]

]

In[13]:= LetterFrequencies["AAAABA gZZZZhADZ"]

CryptoTest.nb 3

In[14]:= Ordered = Sort[LetterFrequencies["AAAABA gZZZZhADZ"], Greater]

In[15]:= Keys[Ordered]

Cryptanalysis of Affine Ciphers:

a) By exhaustive key search, or brute-force approach (try all possible keys):
The follwing text "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX" has been encoded using an
Affine Cipher. Decode the text.

Solution :
What is the size of the key space of the Affine Cipher? The key of an Affine Cipher consists of two
integers a and b, 0<= a,b < 25 and satisfying the additional restriction that a and 26 are relatively prime.
There are 12 numbers relatively prime to 26. So the size of the key space is 12x26 = 312.

ciphertext2 = "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX";
L = Select[Table[i, {i, 25}], (GCD[26, #] (1) &];
For[i = 1, i ≤ Length[L], i++,
For [j = 0, j ≤ 25, j++,
Print[
LanguageIdentify[AffineDecode[ciphertext2, L[[i]], j]],
AffineDecode[ciphertext2, L[[i]], j]

]
]]

ciphertext2 = "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX";
L = Select[Table[i, {i, 25}], (GCD[26, #] (1) &];
Fori = 1, i ≤ Length[L], i++,
For j = 0, j ≤ 25, j++,

IfLanguageIdentify[AffineDecode[ciphertext2, L[[i]], j]] (English (language) ,

Print[AffineDecode[ciphertext2, L[[i]], j]]


b) By the method of a known ciphertext:
Exercise: Suppose that an affine cipher E(x) = ax+b (mod 26) enciphers “H” as “X” and “Q” as “Y”. Find
the key. Use the key to decode the ciphertext “HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG”, which
has been encoded using the same cipher.

Hint: Solve a system of two linear equations modulus 26.

4 CryptoTest.nb

Solution :

Clear[a, b]
sol = Solve[

{NumAlphabet["H"] + a + b (NumAlphabet["X"],
NumAlphabet["Q"] + a + b (NumAlphabet["Y"]},

{a, b},
Modulus 5 26

]

ciphertext1 = "HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG"
AffineDecode[ciphertext1, a 7. Flatten[sol], b 7. Flatten[sol]]

c) By frequency analysis:
Exercise: Suppose that you have intercepted the following ciphertext. You know that it has been
encoded using an affine cipher, but you don’ t know the key. Use frequency analysis to break the
cipher.
“QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFA
FPXZUSFHNDGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVP
VRXWQWQVSVWWVICIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQ
VXZTJVPDGOVIWQVUVIZDWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW”
.

Solution :
First we need to find out the most frequent letters in the ciphertext. Since a monoalphabetic substitution
cipher was used, we expect that the most frequent letters in the ciphertext are encodings of the most
frequent letters in the English alphabet. So we can use this information to break the cipher!

ciphertext3 =
"QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFAFPXZUSFHN8

DGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVPVRXWQWQVSVWWVI8
CIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQVXZTJVPDGOVIWQVUVIZ8
DWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW";

S = Sort[LetterFrequencies[ciphertext3], Greater]
(+ Letters in the ciphertext, from most frequent to least frequent +)
CipherLetters = Keys[S]
(+ The letters of the English alphabet,
ordered from most frequent to least frequent +)
SortedLetters

Out[35]= #V $ 46, W $ 33, G $ 19, Q $ 17, X $ 16, I $ 16, P $ 15,
T $ 13, N $ 12, S $ 9, H $ 9, U $ 8, D $ 8, Z $ 7, F $ 7, C $ 6,
J $ 5, O $ 4, B $ 4, Y $ 2, R $ 2, L $ 2, K $ 2, A $ 2, M $ 0, E $ 0%

Out[36]= {V, W, G, Q, X, I, P, T, N, S, H, U, D, Z, F, C, J, O, B, Y, R, L, K, A, M, E}

Out[37]= {E, T, A, O, I, N, S, R, H, L, D, C, U, M, F, P, G, W, Y, B, V, K, X, J, Q, Z}

From exercise b) we know that it is enough to decipher two ciphertext letters to break the entire Affine
cipher. Using frequency analysis, we infer that most likely letter V is an encoding of letter E, and letter
W is an encoding of letter T. We try to break the affine cipher using the method outlined in exercise b). If
we get something that makes sense, it means that we have broken the cipher. Otherwise, we continue
guessing, and assume that for instance, the ciphertext letter V is an encoding for E, and ciphertext
letter W is an encoding for A.

CryptoTest.nb 5

From exercise b) we know that it is enough to decipher two ciphertext letters to break the entire Affine
cipher. Using frequency analysis, we infer that most likely letter V is an encoding of letter E, and letter
W is an encoding of letter T. We try to break the affine cipher using the method outlined in exercise b). If
we get something that makes sense, it means that we have broken the cipher. Otherwise, we continue
guessing, and assume that for instance, the ciphertext letter V is an encoding for E, and ciphertext
letter W is an encoding for A.

Solve[{4 a + b (21, 19 a + b (22}, {a, b}, Modulus 5 26]

{{a $ 7, b $ 19}}

In[70]:= Clear[a, b];
sol2 = Solve[

{NumAlphabet[SortedLetters[[1]]] + a + b (NumAlphabet[CipherLetters[[1]]],
NumAlphabet[SortedLetters[[2]]] + a + b (NumAlphabet[CipherLetters[[2]]]},

{a, b}, Modulus 5 26];
Print["We have broken the cipher ", Flatten[sol2],
" and the decoded message is:"]

AffineDecode[ciphertext3, a 7. Flatten[sol2], b 7. Flatten[sol2]]

We have broken the cipher {a $ 7, b $ 19} and the decoded message is:

Out[73]= HOWEVERALARGEKEYSPACEDOESNOTMEANTHATTHESYSTEMISSECUREONTHECONTRARYBYSIMPLYCOUNTIN&
GTHELETTERFREQUENCIESINTHECIPHERTEXTANDCOMPARINGTHESEWITHTHELETTERFREQUENCIESO&
FTHEENGLISHALPHABETONEVERYQUICKLYFINDSTHEIMAGESUNDERTHEPERMUTATIONPOFTHEMOSTFR&
EQUENTLETTERSINTHEPLAINTEXT

6 CryptoTest.nb

Polyalphabetic ciphers - Vigenere ciphers
The Vigenere cipher is a combination of several Caesar ciphers. Different letters in the plaintext are
encrypted with different substitution alphabets.
How it works: Correspondents agree on a keyword.
To encrypt a plaintext, one writes the keyword repeatedly alongside the plaintext, converts both
plaintext and keyword to their numerical equivalents (0-A, 1-B,...25-Z) and adds the corresponding
letters modulo 26.
To decrypt a ciphertext, one writes the keyword repeatedly alongside the ciphertext, converts both
ciphertext and keyword to their numerical equivalents (0-A, 1-B,...25-Z) and subtracts the corresponding
letters modulo 26.

Keyword k = k0 k1 k2 ... kn"1

Plaintext x = x0 x1 x2 ...
Ciphertext y = y0 y1 y2 ... , where yi = (xi + k(imod n))mod 26

Example: Ecrypt “GOAHEAD” using keyword “WIND”

plain G O A H E A D
x 6 14 0 7 4 0 3
key W I N D W I N
k 22 8 13 3 22 8 13

x + k (mod 26) 2 22 13 10 0 8 16
cipher C W N K A I Q

Example : Decrypt "PWSRPULNB" using keyword "DWIN"

cipher P W S R P U L N B
y 15 22 18 17 15 20 11 13 1
key D W I N D W I N D
k 3 22 8 13 3 22 8 13 3

y $ k (mod 26) 12 0 10 4 12 24 3 0 24
plain M A K E M Y D A Y

Index of coincidence of a ciphertext
Experiment: Pick a pair of letters from a text. What is the probability of two letters being identical?
Assume that the text has n letters, counting repetitions, distributed as follows: n0 occurences of “A”, n1
occurences of “B”, ... n25 occurences of “Z”, where n0 + n1 + ... n25 = n.

Counting Probabilities: Total number of ways in which the experiment can turn out: C (n, 2) = n(n"1)
2 .

Total number of ways in which identical pairs can be obtained: C(n0,2)+C(n1,2)+...C(n25,2)=∑i=0
25 ni(ni"1)

2

Definition: The number I= 2
n(n"1) ∑i=0

25 ni(ni"1)
2 = 1

n(n"1) ∑i=0
25 ni(ni " 1) is called the index of coincidence

of the ciphertext. It represents the probability that two letters selected at random from the ciphertext are
identical.

The index of coincidence of an alphabet in which each letter has the same frequency is 1/26 ≃ 0.0385
The index of coincide of the English alphabet is about 0.065
Monoalphabetic substitution (Caesar, Affine, Permutation): I ≃ 0.065
Polyalphabetic substitution (Vigenere cipher): I ≃ (closer to) 0.0385
Vigenere ciphers from longer keywords have a more uniform distribution of letters, so the index of
coincidence is closer to 0.0385. If the keyword is short, then the index of coincidence is closer to 0.065.

Monoalphabetic substitution (Caesar, Affine, Permutation): I ≃ 0.065
Polyalphabetic substitution (Vigenere cipher): I ≃ (closer to) 0.0385
Vigenere ciphers from longer keywords have a more uniform distribution of letters, so the index of
coincidence is closer to 0.0385. If the keyword is short, then the index of coincidence is closer to 0.065.

Connection between I and the keyword length
Formula (Friedman’s Test): Suppose that a ciphetext with n letters was obtained by a Vigenere encod-
ing using a keyword with length k. Then the length of the keyword is approximatively

k ≃ 0.0265 n
(0.065$I)+n(I$0.0385)

.

How it works :

Suppose that the ciphertext has n letters and the Vigenere keyword has k letters. Assume for simplicity
that n is a multiple of k. We can group the letters of the ciphertext in a table with k columns and n/k
rows, where the letters in each column are encoded with the same ciphertext.

Each column is a shift encipherment by an ammount corresponding to the key letter. If we choose a pair
of letters at random, then they either:

1. come from the same column
2. come from different columns
Let' s analyze these two situations, and compute te probability that the chosen letters are identical.

Case 1.
We have k ways to choose the column and C(n/k, 2) ways to choose a pair of letters from the same
column.
Since letters from the same column are encrypted using the same Caesar cipher, they have probabilty
0.065 to be identical. The expected number of identical pairs of letters from the same column is:
S = 0.065*k*C(n/k, 2)

Case 2.
We have C(k,2) ways to choose two distinct columns and n/k ways to choose a letter in the first chosen
column, and likewise, also n/k ways to choose a letter in the second column.
Since letters from different columns are encrypted using different Caesar ciphers, they have probabilty
1/26 = 0.0385 to be identical. The expected number of identical pairs of letters from different
columns is:

D = 0.0385*C(k, 2)*  n
k
 2

Conclusion (Case 1 + Case 2)
The index of coincidence of the ciphertext will be
I ≃ S + D

C (n,2) = 0.065'(n$k) + 0.0385'n (k$1)
k (n$1)

If we want to guess a probable keyword length k from the index of coincidence of a ciphertext, we take

the previous equation and solve for k. We obtain Friedman’s formula: k ≃ 0.0265 n
(0.065$I)+n(I$0.0385)

2 Vigenere.nb

If we want to guess a probable keyword length k from the index of coincidence of a ciphertext, we take

the previous equation and solve for k. We obtain Friedman’s formula: k ≃ 0.0265 n
(0.065$I)+n(I$0.0385)

Exercise:
The following ciphertext was produced using a Vigenere cipher with a keyword of unknown length k.
“KIVQXTCQQVRPQOSGWEKVMTRYNHJVUVVKBMDPKVHKWBUWFVZFNOPQOSGWEKVMTRYN
HJGDPKOV”.
◼ Write a function that computes the index of coincidence of a ciphertext.

◼ Find an approximation of the length of the keyword, using Friedman's test. Now you know that
approximatively k Caesar ciphers were used to encode the text.

◼ Try to break all of them. If frequency analysis does not work, then use the additional information that
the cipher block “PQOSG” is an encoding for the plaintext “SOLVE”.

◼ Decode the ciphertext.

Vigenere.nb 3

MAT 331: Project 3

Project description:

Cryptography has been used for secure communication for thousands of years. The modern world
simply depends on cryptography; every time you make a mobile phone call, make an electronic transac-
tion or an online payment with a credit card, or send a secure email, encryption is vital for protecting
sensitive information. In this project we are interested in the theoretical foundations of the asymmet-
ric/symmetric key cryptosystems, and on how they can be efficiently used together to make the informa-
tion exchange more secure.

Tasks:

Introduction
Browse the web and describe some areas of our everyday life for which cryptography is essential.
Describe the concept of End-to-End encryption and Digital Signatures.

Mathematical explanations
Describe the mathematics behind the RSA cryptosystem and prove Euler’s Theorem. Also describe the
mathematics behind Friedman’s test (Friedman’s test uses the index of coincidence of a ciphertext to
calculate a probable keyword length for the Vigenere cipher).

Project overview
In this project we will use a Vigenere cipher to communicate secret information. Our alphabet will be the
26-letter English alphabet, numerically represented as integers between 0 and 25. As always, we first
need to agree on a secret keyword for the Vigenere cipher (to be used for both encoding and decoding).
Each letter from the plaintext/ciphertext message will be encoded/decoded separately, using the corre-
sponding letter from the keyword. We will use RSA to securely exchange the keyword. My RSA scheme
will the following:
public modulus
m=2480646863865156240312764602400149650804447106891126179090516987413492462101441
and public key e=17.

Part 1 - RSA
◼ Your first task will be to set up your own RSA scheme. For the purpose of this project, we will assume

that it is secure enough if you choose two prime numbers with exactly 40 (decimal) digits. Submit
your public RSA information on Blackboard. Note: Send only the public information!
There are tables of prime numbers available online. You can also tell Mathematica to generate a
pseudo-random prime number with k digits by using the command RandomPrime[10^k]. Double
check that the number generated is indeed prime by using the Boolean function PrimeQ[...].

◼ After you complete the first step, you will receive message-signature pairs encoded with your RSA
public information. Eve is also trying to get access to our private communications, so she will also try
to send you fake Vigenere keywords encoded with your RSA public key. You will decode the
message-signature pairs, and keep only the information for which the signature is valid, and discard
the rest.

◼ The decoded message with valid digital signature will be an integer x between 1 and your RSA
modulus. You will take this integer x and convert it to base 26. This will be our keyword for the
Vigenere cipher.

For example, if the decoded message is x=190, then its base 26 representation is 7 8 , which

corresponds to the English word “HI”.

Part 2 - Vigenere
◼ Build an interactive model in Mathematica for encoding/decoding English text messages that have

been encrypted using a Vigenere cipher with keyword k. Your model should have a textbox s, in
which the text to be encoded/decoded can be written, and a textbox k, for the keyword. By default,
these boxes should be populated with the encrypted text below, and respectively with the key that
you have obtained after the RSA decoding process. For these default settings, the model should
output the decoded text.
s=“KLIQEJXUULFYTECJXFRPKLOVCNLOPYBITKCSISWMLXOIRYIWDWKLIQEJXUULFYT”

◼ Add some extra functionality to your model from part 2. We know that the Vigenere cipher is
vulnerable to statistical analysis, so you will now try to make your model work even if no key is
provided. If the keyword box is empty, then you will compute the index of coincidence of the
ciphertext and use Friedman’s test to guess the probable keyword length. Remember that you need
to have a reasonably long chunk of encrypted text for statistical analysis to work; also recall that
Friedman’s test is not very accurate so it is usually used in combination with other tests (if you get 7.2
by Friedman’s test, then the keyword could easily have length 6, 7 or 8). The keyword length tells you
how many Caesar ciphers were used, so you can now proceed and break each of them by using
letter frequency analysis (or in the worst case scenario, by brute-force approach).
Your model should output the index of coincidence of the ciphertext and the decoded message (or a
very short list with attempted decodings, including the correct one). Do not output thousands and
thousands of attempted decodings! If you want to print other relevant information (like the probable
keyword length), please feel free to do so.

s=”DLCZVMDIADMMXSDCILCMRSZCSRDYVKKXGYRYQEGXWRERYEXFYVGJIBKGAOWQYVDBESNYJORRM
LYXKCCLYCFCORMPTPSQCMSLMIPXXFBSSQLMEXRRIAORREVGOWKYHCBRAYQKERGMERSSLDIARRGA
YCCYQSREMSKZYROVQMSLXIADIBDLPYYERRCDAMBOQWEIOEJVHYDECFILWSPOZSVRCBEZVIDYVRRIQO
XFBIYDWYVWMXIUSWQEIQRETOGMWISZXFKXUOVCXSRBIJOZYXXZOJMBIFYARYEBNEBSKGDEJCMEXER
EVCDSYXIJOGRBSLSGBYGSWILDMLCYAREUKCRRERDLCCMEXIPMELXSRNILIPYDIPYRRRERDLCNSAEQC
XXUKWQSKLOHZILGWLCB”.
s=”AFUXMCKRJTIEXBCRJNTTCWFCLEMMDCTERARRMYCLPQMVKBJQXTSKVMGKFXTMGKPTIWUPQBDNE
PAHLLMZLZKFXCCMKCKWPXHSXEABVQBERAVABGFXIRXORTEBVFKIRPBEEMYCLVUBKFMYCEVRMVPYIC
JLCGTGXJMYKFXVLZCGLYYEGFTSCMFLXMCKPONZADCWYZLWJRAVGFREXJSGUCKKFXGCKDSMRRBFLI
FDMYCFFQMWPXHSXEREVRMVPLZLMYCICYBERXOR”.

Part 3 - RSA Common Modulus Problem
◼ Does it work to break the RSA modulus

m=248064686386515624031276460240014965080444710689112617909051698741349246210144
1 by a brute force approach? How long does it take?

◼ In this part, we will explore a vulnerability of the RSA system, known as the common modulus
problem. Suppose that Alice and Kate use the same RSA modulus m as above, but with different
encryption exponents eAlice = 17 and eKate = 169. Bob wants to send the message x to both Alice and
Kate. He first encrypts x using Kate’s public exponent, and sends Kate the ciphertex
249081508444719456881769789206569419957026519534551194619251016972858511647493.
Then he encrypts x using Alice’s public exponent and sends the ciphertext
548038685778480218593900000000000000000 to Alice. If Eve intercepts both of the ciphertexts,
explain how she can recover the plaintext without knowing either decryption exponent, then apply her
method to find x.

2 Project3.nb

◼

In this part, we will explore a vulnerability of the RSA system, known as the common modulus
problem. Suppose that Alice and Kate use the same RSA modulus m as above, but with different
encryption exponents eAlice = 17 and eKate = 169. Bob wants to send the message x to both Alice and
Kate. He first encrypts x using Kate’s public exponent, and sends Kate the ciphertex
249081508444719456881769789206569419957026519534551194619251016972858511647493.
Then he encrypts x using Alice’s public exponent and sends the ciphertext
548038685778480218593900000000000000000 to Alice. If Eve intercepts both of the ciphertexts,
explain how she can recover the plaintext without knowing either decryption exponent, then apply her
method to find x.

Conclusions and references

◼ Give some brief instructions on how your model should be tested (how to use the controls, what
functionalities you have implemented, etc.).

◼ Formulate your conclusions after testing your interactive model. Is the index of coincidence an
accurate estimate for the length of the key? How secure is our communication protocol? How secure
is RSA?

◼ Don’t forget to include all relevant references.

Project3.nb 3

RSA (Rivest, Shamir, Adleman)
◼ asymmetric key cryptosystem/ public key cryptosystem

◼ can be used for both encryption/decryption and authentification; in RSA we use the sender’s private
key to sign the message and the receipient’s public key to encrypt the message.

◼ the security of the RSA cryptosystem resides in the hardness/time consuming problem of factoring a
large number (the public modulus m) into its two prime factors (private primes p and q). Factoring
integers is much harder than multiplying them!

p = 999999599;
q = 9 999999967;
m = p " q;

Timing[p " q]
Timing[FactorInteger[m]]

p = 2 425967623052370772757633156976982469681;
q = 5 570373270183181665098052481109678989411;
m = p " q;

Timing[p " q]
Timing[FactorInteger[m]]

★ The largest known prime number as of October 2015 is 257885161 # 1, a number with 17,425,170
decimal digits. RSA protocols usually use a 2048-bit modulus m (which corresponds to 617 decimal
digits).

To generate a random prime in Mathematica we can use the command RandomPrime[..]

r1 = RandomPrime[{10^20, 10^21}]
PrimeQ[r1]
IntegerLength[r1]
BitLength[r1]

Mathematics behind RSA
◼ RSA is based on Euler’s Theorem. Let p and q be two distinct prime numbers. Let m=pq.

0.1. If a is relatively prime to m, then a(p#1) (q#1) ≡ 1 (modm).
0.2. If a is any integer (not necessarily relatively prime to m), and k is any positive integer, then

ak(p#1) (q#1)+1 ≡ a(modm).

RSA Setup
◼ Alice selects two distinct primes p and q and computes m=pq and n=(p-1)(q-1).

◼ She chooses a number e, relatively prime to n=(p-1)(q-1), and finds the multiplicative inverse of e
modulo n, that is, she finds an integer d such that ed≡1(mod n).

◼ Alice makes (m,e) public. m is called the public modulus, and e the public key or the encryption key.

◼ Alice keeps p,q,n,d a secret. d is called the private key or the decryption key.

Encryption function: E(x) = xe(modm), where 1≤x≤m-1.

Decryption function: D(y) = yd(modm), where 1≤y≤m-1.

Example

Alice sets up an RSA scheme

◼ select primes p=11 and q=3.

◼ compute m=pq=33 and n=(p-1)(q-1)=(11-1)(3-1)=20

◼ choose a number e, relatively prime to n=20. Suppose we choose e=3.

◼ find an integer d such that ed≡1(mod 20). The integer d is the multiplicative inverse of e, modulo 20.
In this case, d=e#1(mod 20) = 3#1 (mod 20) = 7 (mod 20).

◼ public key (m,e)=(33,3)
e=3 is the public encryption key.
m=33 is the public modulus.

◼ private key (p,q, n,d)=(11,3,20,7).
d=7 is the private decryption key.

Bob wants to send the message x=14 to Alice.

◼ encrypt the message x=14 using Alice’s public key.

◼ compute y=xe(modm) = 143 (mod 33) = 2744 (mod 33) = 5 (mod 33).
◼ the ciphertext is y=5.

◼ Bob sends the ciphertext y=5 to Alice.

Alice receives the ciphertext y=5 (from Bob?)

◼ use the private key d=7 to decrypt it.

◼ compute x=yd(modm) = 57 (mod 33).
x=57 (mod 33) = 532 ,5 (mod 33) = 1252 ,5 = (#7)2 ,5 = 7,2 = 14 (mod 33)

◼ the decrypted message is x=14. (This is exactly Bob’s unencrypted message!)

2 RSA-1.nb

RSA with Mathematica
EncryptionRSA[x_ ?IntegerQ, e_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, e, m]
SetAttributes[EncryptionRSA, Listable]

DecryptionRSA[x_ ?IntegerQ, d_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, d, m]
SetAttributes[DecryptionRSA, Listable]

To decrypt the cipher message y = 5 received from Bob, Alice computes :

DecryptionRSA[5, 7, 33]

14

To decrypt a list of cipher messages, say {5, 17, 10} received from Bob, Alice computes:

DecryptionRSA[{5, 17, 10}, 7, 33]

{14, 8, 10}

Short exercise : Produce a table with the encryptions of all integers between 0 and
32.

T = Table[i (> EncryptionRSA[i, 3, 33], {i, 0, 32}]

{0 # 0, 1 # 1, 2 # 8, 3 # 27, 4 # 31, 5 # 26, 6 # 18, 7 # 13,
8 # 17, 9 # 3, 10 # 10, 11 # 11, 12 # 12, 13 # 19, 14 # 5, 15 # 9, 16 # 4,
17 # 29, 18 # 24, 19 # 28, 20 # 14, 21 # 21, 22 # 22, 23 # 23, 24 # 30,
25 # 16, 26 # 20, 27 # 15, 28 # 7, 29 # 2, 30 # 6, 31 # 25, 32 # 32}

Unconcealed Messages:
◼ All 33 values of x (from 0 to 32) map to unique ciphertext values y in the same range, in a sort of

random manner.

◼ There are 9 values of x that map to themselves, 0,1,10,11,12, 21, 22, 23, 32! These are called
unconcealed messages. The numbers 0,1,m-1 are no surprise, because they always map to
themselves under the map xe (mod m). To see how many unconcealed messages there are for a
chosen pair (m,e), we must solve a modular equation xe ≡ x (mod m), or equivalently xd ≡ x (mod m).
In this case one solves x3 ≡ x (mod 33), which is equivalent to x(x # 1) (x + 1) ≡ 0 (mod 33).

Solve[x^3 " x, x, Modulus # 33]

{{x # 0}, {x # 1}, {x # 10}, {x # 11}, {x # 12}, {x # 21}, {x # 22}, {x # 23}, {x # 32}}

Theorem: Let m = pq be the product of two disctinct prime numbers, and suppose that e is relatively
prime to (p-1)(q-1). Then the number of elements x in %m that satisfy the relation xe = x (mod m) is
given by (GCD[e-1,p-1]+1)(GCD[e-1,q-1]+1).

RSA-1.nb 3

p = 3; q = 11; e = 3;
(GCD[e (1, p (1] + 1) (GCD[e (1, q (1] + 1)

Since p - 1, q - 1, e - 1 are all even, the number of unconcealed messages is at least 9. In practice, the
encryption exponent e is small, whereas p and q are quite large, so the number of unconcealed mes-
sages will be very small compared to the total number of possible messages.

Symmetric vs Asymmetric key Criptography

Symmetric Key Cryptography

◼ same key used for encryption/decryption

◼ fast encryption/decryption

◼ key exchange - a big problem!

◼ used mainly for ecryption/decryption, not so much for digital signatures

Asymmetric Key Cryptography

◼ one key (public) used for encryption, another key (private) used for decryption

◼ slower encryption/decryption

◼ key exchange - no problem at all!

◼ can be used for ecryption/decryption, as well as for digital signatures

SSL (Secure Sockets Layer), TLS (Transport Layer
Security)
Handshake Protocol

Several versions of the protocols are in widespread use in applications such as web browsing, email,
Internet faxing, Instant messaging, and voice - over - IP (VoIP). Major web sites (including Google,
YouTube, Facebook and many others) use TLS to secure all communications between their servers
and web browsers.

◼ provides security and privacy over the Internet by using encryption and server/client authentification
based on RSA.

◼ the SSL protocol negotiates encryption keys, as well as authenticates the server before data is
exchanged by the higher level applications.

◼ HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) can be layered on top of SSL
- HTTPS (Hypertext Transfer Protocol Secure).
HTTPS is especially important over unencrypted networks such as wifi where anyone on the same
local network can eavesdrop (packet sniffing) and discover sensitive information.
HTTPS provides a guarantee that one is communicating with precisely the web site/ web server that
one intended to comunicate with, as well as ensuring that the messages between the user and the
site cannot be forged by any third party.

4 RSA-1.nb

HTTPS provides a guarantee that one is communicating with precisely the web site/ web server that
one intended to comunicate with, as well as ensuring that the messages between the user and the
site cannot be forged by any third party.

SSL Handshake protocol has two parts

1. server authentification (based on RSA).
2. (optional) client authentification (RSA).

Part 1

◼ The handshake protocol begins when a client connects to a TLS or SSL-enabled server requesting a
secure connection and presents a list of supported symmetric key ciphers (DES, Triple DES, AES,
IDEA, MD5, RC2, RC4, etc.).

◼ the server, in response to a client’s request, sends its digital certificate (server name, trusted
certificate authority, public RSA key) and its symmetric key cipher method preference.

◼ the client generates a master key k, which he/she/it encrypts with the server’s public key using RSA,
and transmits the encrypted master key to the server.

◼ the server decrypts (recovers) the master key k, using his RSA private decryption key.

◼ the server authenticates itself to the client by returning a message signed with his private RSA key
and encrypted with the symmetric cipher with key k.

◼ subsequent data is encrypted with the symmetric key cipher and with keys derived from the master
key k.

Part 2 (optional)

◼ the server sends a challenge to the client

◼ the client authenticates itself to the server by returning the client’s digital signature on the challenge,
as well as its public-key certificate.

Electronic commerce

IKP (Internet Keyed Payment Protocol)

◼ secure payments involving three or more parties; a buyer and a seller interact with a third party
“acquirer” such as a credit card system or a bank, to authorize transactions.

SET (Secure Electronic Transaction Protocol)

◼ secure, cost effective bankcard transactions over open networks, implemented by VISA, MasterCard,
etc.

◼ SET includes protocols for purchasing goods and services electronically, requesting authorization of
payment and requesting “credentials” (digital certificates) binding public keys to identities.

◼ SET supports DES for bulk data encryption and RSA for signatures and public-key encryption of the
DES encryption keys and bankcard numbers.

RSA-1.nb 5

RSA Encoding/Decoding

Recall the setup:

◼ Alice selects two distinct primes pA and qA and computes mA = pA "qA and nA = (pA $ 1) (qA $ 1).
◼ She chooses a number eA, relatively prime to nA = (pA $ 1) (qA $ 1).
◼ She finds the multiplicative inverse of eA modulo nA, that is, she finds an integer dA such that
eA dA ≡ 1 (mod nA).

◼ Alice makes mA and eA public. mA is called the RSA modulus, and eA the public key or the encryption
key.

◼ Alice keeps the other information a secret (pA, qA, nA, dA). The integer dA is called the private key or
the decryption key.

Encryption function: E(x) = xeA (mod mA), where 1 ⩽ x ⩽mA$1.

Decryption function: D(y) = ydA (mod mA), where 1 ⩽ y ⩽mA$1.

EncryptionRSA[x_ ?IntegerQ, e_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, e, m]
SetAttributes[EncryptionRSA, Listable]

DecryptionRSA[x_ ?IntegerQ, d_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, d, m]
SetAttributes[DecryptionRSA, Listable]

Digital signatures with RSA
We want a digital signature that can help confirm the identity of the sender of a message. The sender
should not be able to deny that it/he/she is the author the message (non - repudiation).

Two party-communication via RSA

◼ Alice and Bob

◼ Alice has her RSA scheme: public modulus mA = pA "qA, public encryption key eA, private decryption
key dA.

◼ Bob sets up his own RSA scheme: public modulus mB = pB "qB, public encryption key eB, private
decryption key dB.

Evil Third Party

◼ Eve wants to impersonate Bob. She writes a message x=”Alice, I don’t like you, Sincerely Bob”,
Encrypts x using Alice’s public key y= xe(modm), and send y to Alice. Alice decrypts the message y
using her private key d, reads the message, but she has no way of verifying if the sender was really
Bob.

Alice and Bob

◼ Bob would like to send Alice the following message x=”Alice, I like you, Sincerely Bob”. He would like
to send Alice the message x, and also affix a digital signature to confirm his identity. This will be
called a message-signature pair.

Bob

◼ Bob signs the message x with his own private RSA key. The signature is *=xdB modmB.

◼ Bob encrypts the message-signature pair (x, *) to Alice using Alice’s public encryption key eA. The
result is the encrypted message-signature pair (y, +) = (xeA modmA, *eA modmA).

◼ Bob send the encrypted message signature pair (y,+) to Alice.

Alice

◼ Alice receives the encrypted message signature pair (y,+) to Bob. At this stage, she doesn’t know if
the sender of the message is really Bob.

◼ She decrypts the message using her private decryption exponent dA.
She computes (x, *)=(ydA modmA, + dA modmA).

◼ Alice looks up Bob’s public key eB and public modulus mB. She checks Bob’s digital signature by
computing z=*eB modmB. If z=x, then the message is authentic. If z≠x, then the sender of the
message is not Bob.

Example
Alice and Bob want to communicate via RSA and digitally sign their messages so that they cannot be
forged by an evil third party.

RSA Setup
◼ Bob: selects the primes pB = 5, qB = 13, and computes mB = pB "qB = 65, nB = (pB $ 1) (qB $ 1) = 48.

He chooses eB = 5, relatively prime to 48, and computes dB = 29 (the multiplicative inverse of 5
modulo 48). He makes mB = 65 (RSA modulus) and eB = 5 (RSA encryption key) public. He keeps
the other information private.

◼ Alice: pA = 3, qA = 11, mA = pA "qA= 33, nA = (pA $ 1) (qA $ 1) = 20, eA = 3, dA = 7.
She makes mA = 33 and eA = 3 public and keeps the rest a secret.

Message-Signature Pair
◼ Bob wants to send Alice the message x = 9.

First he digitally signs the message using his private RSA key.

$ = xdB modmB = 929 mod 65 = 358 mod 65 = 310 mod 65 = 29 mod 65.
The digital signature of the message is * = 29.

2 DigitalSignature-net.nb

9^29
3^10
PowerMod[9, 29, 65]

The message signature pair is (x,$) = (9, 29).

Encrypted Message-Signature Pair
◼ Bob encrypts the message signature pair (x,*) using Alice’s public modulus mA and encryption key
eA.

y = xeA modmA = 93 mod 33 = 3

% = $eA modmA = 293 mod 33 = 2

PowerMod[{9,29}, 3, 33]

The encrypted message signature pair is (y, %) = (3, 2).

Bob sends this encrypted and digitally signed message to Alice.

Decoding the message
◼ Alice receives the pair (y, %) = (3, 2) (from Bob?). She decrypts the message using her private

decryption key dA = 7.
x = ydA modmA = 37 mod 33 = 9

$ = % dA modmA = 27 mod 33 = 29

PowerMod[{3,2}, 7, 33]

The decrypted message-signature pair is (x,$) = (9,29).

Is the signature valid? Is the message authentic?
◼ Alice checks to see if the signature $ is valid. She looks up Bob’s public RSA modulus mB = 65 and

encryption key eB = 5.

She computes z = $eB modmB = 295 mod 65 = 9
She compares z with x, z = x = 9, so the digital signature is valid and the message is authentic.

Exercise:
1. Alice receives several encrypted message-signature pairs. What are the decoded messages?

Which messages are authentic (that is, sent from Bob)?

L = {{3, 8}, {3, 28}, {6, 27}, {6, 28}, {6, 10}, {6, 6}}

A more realistic example:
A user logs on to his bank' s homepage www.bank.com to do online banking. When the user opens
www.bank.com homepage, they receive a public key along with all the data that his web browser dis-
plays. The public key could be used to encrypt data from the client to the server but the method would
not be safe or fast. In fact, any evil third party could easily impersonate the bank, issue a fake public key
(for which it would have a matching private key) and the naive client could get tricked into encrypting
sensitve information with the fake public key and send it over to the evil third party.
The safe procedure is to use asymmetric key cryptography in a handshake protocol that authenticates
the bank to the client and also helps exchange a key for a symmetric cryptosystem that will be used in
further communications. Let’s revisit the handshake protocol:

DigitalSignature-net.nb 3

A user logs on to his bank' s homepage www.bank.com to do online banking. When the user opens
www.bank.com homepage, they receive a public key along with all the data that his web browser dis-
plays. The public key could be used to encrypt data from the client to the server but the method would
not be safe or fast. In fact, any evil third party could easily impersonate the bank, issue a fake public key
(for which it would have a matching private key) and the naive client could get tricked into encrypting
sensitve information with the fake public key and send it over to the evil third party.
The safe procedure is to use asymmetric key cryptography in a handshake protocol that authenticates
the bank to the client and also helps exchange a key for a symmetric cryptosystem that will be used in
further communications. Let’s revisit the handshake protocol:

SSL (Secure Sockets Layer), TLS (Transport Layer
Security) Handshake Protocol

Several versions of the protocols are in widespread use in applications such as web browsing, email,
Internet faxing, Instant messaging, and voice - over - IP (VoIP). Major web sites (including Google,
YouTube, Facebook and many others) use TLS to secure all communications between their servers
and web browsers. SSL is what keeps your passwords, communications and credit card details safe on
the way between your computer and the servers you want to send this data to.

◼ HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) can be layered on top of SSL
- HTTPS (Hypertext Transfer Protocol Secure).
HTTPS is especially important over unencrypted networks such as wifi where anyone on the same
local network can eavesdrop (packet sniffing) and discover sensitive information.
HTTPS provides a guarantee that one is communicating with precisely the web site/ web server that
one intended to comunicate with, as well as ensuring that the messages between the user and the
site cannot be forged by any third party.

The main purposes of the SSL are the following:

◼ provides security and privacy over the Internet by using encryption and server/client authentification
based on RSA.

◼ the SSL protocol negotiates encryption keys for a symmetric key algorithm, as well as authenticates
the server before data is exchanged by the higher level applications.

SSL Handshake protocol has two parts:

1. server authentification (based on RSA).
2. (optional) client authentification (RSA).

How it works:

◼ (Client Hello) The handshake protocol begins when a client connects to a TLS or SSL-enabled server
requesting a secure connection and presents a list of supported symmetric key ciphers (DES, Triple
DES, AES, IDEA, MD5, RC2, RC4, etc.).

◼ (Server Hello) The server, in response to a client’s request, sends its digital certificate (server name,
trusted certificate authority, public RSA key) and its symmetric key cipher method preference. By
sending its digital certificate, it proves its identity to the client.

◼ The client verifies the authenticity of the server’s digital certificate. The client checks if the certificate
is verified and trusted by one of several Certificate Authorities (CAs) that it implicitly trusts. Your
browser has a pre-installed list of trusted SSL certificates from Certificate Authorities (CAs) that you
can view, add and remove from. In Mozilla Firefox for example, you can check this list of trusted CAs
from Preferences->Advanced->Certificates->View Certificates->Authorities. These certificates are
controlled by a centralised small group of extremely secure, reliable and trustworthy organisations
like Symantec (VeriSign), Comodo, GoDaddy, GlobalSign, DigiCert, Entrust, Verizon, Deutsche
Telekom and so on. If a server presents a certificate from that list then you know you can trust them.
The role of the Certificate Authority is to issue digital certificates that contain a public key and the
identity of the owner of the public key and to certify that a certain public key does indeed belong to
whoever is identified in the certificate. The digital certificate is digitally signed with the private key of a
Certificate Authority. If the user trusts the CA and can verify the CA’s digital signature, then the user
will trust the digital certificates signed by the CA. If the server cannot be authenticated, the user is
warned of the problem and informed that the digital certificate is not trusted and an encrypted and
authenticated connection cannot be established.

4 DigitalSignature-net.nb

◼

The client verifies the authenticity of the server’s digital certificate. The client checks if the certificate
is verified and trusted by one of several Certificate Authorities (CAs) that it implicitly trusts. Your
browser has a pre-installed list of trusted SSL certificates from Certificate Authorities (CAs) that you
can view, add and remove from. In Mozilla Firefox for example, you can check this list of trusted CAs
from Preferences->Advanced->Certificates->View Certificates->Authorities. These certificates are
controlled by a centralised small group of extremely secure, reliable and trustworthy organisations
like Symantec (VeriSign), Comodo, GoDaddy, GlobalSign, DigiCert, Entrust, Verizon, Deutsche
Telekom and so on. If a server presents a certificate from that list then you know you can trust them.
The role of the Certificate Authority is to issue digital certificates that contain a public key and the
identity of the owner of the public key and to certify that a certain public key does indeed belong to
whoever is identified in the certificate. The digital certificate is digitally signed with the private key of a
Certificate Authority. If the user trusts the CA and can verify the CA’s digital signature, then the user
will trust the digital certificates signed by the CA. If the server cannot be authenticated, the user is
warned of the problem and informed that the digital certificate is not trusted and an encrypted and
authenticated connection cannot be established.

◼ the client generates a master key k, which he/she/it encrypts with the server’s public key using RSA,
and transmits the encrypted master key to the server. (If the server has requested client
authentication (an optional step in the handshake), the client also digitally signs another piece of data
that is unique to this handshake and known by both the client and server. In this case, the client
sends both the signed data and the client’s own certificate to the server along with the encrypted
master key.)

◼ the server decrypts (recovers) the master key k, using his RSA private decryption key. This step is
crucial to proving the authenticity of the server. (If the server has requested client authentication, the
server attempts to authenticate the client. If the client cannot be authenticated, the session ends.)

◼ the server authenticates itself to the client by returning a message like “Finished” signed with his
private RSA key and encrypted with the symmetric cipher with key k. The message that ends the
Hadshake usually also contains a hash of all data previously exchanged between the parties.

◼ subsequent data is encrypted with the symmetric key cipher and with keys derived from the master
key k.

Exercise

DigitalSignature-net.nb 5

Exercise
1. John decides to use RSA encryption. He chooses p=23, q=31 and e=19. He makes public

m=713 and e=19. He also publicizes the way in which English text is to be numerically
encoded. Two letter-blocks are interpreted as base 26 representations. For example, the
numeric equivalent of H is 7, of I is 8, so the numeric equivalent of the 2-letter block HI will be
78 in base 26, that is, HI=7*26+8=190. So if John decodes an RSA message and discovers
that the number is 190, he know that this means HI. Say HI to John, using RSA.

6 DigitalSignature-net.nb

