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Course Description

Exploration of the use of the computer as a tool to gain insight into complex mathematical
problems through a project-oriented
approach. Students learn both the relevant mathematical
concepts and ways that the computer can be used (and sometimes
misused) to understand them.
 Interesting applications of mathematics to computer science are also discussed. Some of the
specific topics that we will try to study this semester include linear algebra, graph theory
and Markov chains, number theory and
cryptography, dynamical systems, fractals, differential
equations and computer graphics.

Click here to download a copy of the course syllabus.
Please visit the course website on Blackboard.

Lectures & Office Hours

Lectures: Tuesdays & Thursdays 11:30-12:50pm in Mathematics S235; 
Office hours: Tuesdays 10:30 - 11:30am in MLC;

Wednesdays 12 - 1pm and Thursdays 1 - 2:30pm in Math Tower 4-120, or by appointment.

Software

We will use Mathematica, which is a computational software program developed by Wolfram Research and used in many
scientific, engineering,
 mathematical and computing fields, based on symbolic mathematics. Mathematica has a
comprehensive documentation
that we will make use of. Mathematica 10.2 is available for most operating systems (Windows,
Macintosh, Linux, etc.).

Stony Brook students can download the Windows/Mac/Linux version of
Mathematica from Softweb.
You need your Stony Brook
netID and netID password to log in to Softweb. To obtain an Activation Key for Mathematica you must visit the
Wolfram User
Portal.
 If it's your first time visiting the Wolfram User Portal, you must create a Wolfram ID and
 follow the steps in there to
request an Activation Key.

In addition, you can use any of the campus SINC sites, or you can access the
Virtual SINC site.

Grading Policy

There will be no exams. Grades will be computed using the following scheme:

Homework – 20%
Lab Activity – 15%
Projects – 65%

Students are expected to attend class regularly and to keep up with the material
 presented in the lecture and the assigned
reading. There will be roughly four or
 five homework assignments (containing short exercises involving mathematical proofs
and Mathematica code) as well as three or four projects. You may work together on
your homework assignments and projects,
and you are encouraged to do so. However,
all solutions must be written up independently.

A project is more like a term paper
and you will be expected to devote a significant amount of time to doing it, as well
as taking
care with the presentation. The project should contain a detailed description
of the problem or topic, what means were used to

https://blackboard.stonybrook.edu/
http://reference.wolfram.com/language/
http://softweb.cc.stonybrook.edu/
https://user.wolfram.com/portal/login.html
https://user.wolfram.com/portal/login.html
http://it.stonybrook.edu/services/virtual-sinc-site
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solve it, the mathematical solution
and the computer program (interactive model in Mathematica). The last project of the
class
may include also a short oral presentation at the end of the semester.
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About me

I am currently a Milnor Lecturer at the Institute for Mathematical Sciences
at Stony Brook University. I obtained my Ph.D. in
Mathematics from Cornell University in 2013, under the supervision of John H. Hubbard.
I also have a M.S. in Computer Science
from Cornell University and a M.S. in Mathematics
from Scoala Normala Superioara, Bucharest.


I got my B.Sc. degree in Mathematics from the University of Bucharest,
and my B.Eng. in Computer Science and Engineering
from the Polytechnic University of Bucharest.

Research Interests

Dynamical Systems and Ergodic Theory, Complex Analysis in one or several variables, 
Computer Science especially Databases and Large Scale Architecture Systems.

For a more detailed description of my research interests, please take a look at my research page.

Teaching

This spring I am teaching MAT 331, an introductory course about the interplay between mathematics and computer science.
Click
here for the old version of this course from Fall 2015.
Last fall I taught MAT 303, an introductory course in ordinary differential
equations and their applications.
To see a list of courses that I have taught in the past at Cornell University and Stony Brook
University
please click here or select "Teaching" from the top menu.

Other events

I organized a Special Session on "Holomorphic Dynamics" at the AMS Sectional Meeting at Stony Brook University, March 19–
20, 2016.

http://www.math.stonybrook.edu/~rtanase/research.html
http://www.math.stonybrook.edu/~rtanase/teaching.html
http://www.math.stonybrook.edu/~rtanase/calc303/index.html
http://www.math.stonybrook.edu/institute-mathematical-sciences
http://www.math.cornell.edu/
http://www.cs.cornell.edu/
http://www.imar.ro/~snsb/
http://www.unibuc.ro/e/
http://www.upb.ro/en/faculties.html
http://www.math.stonybrook.edu/~rtanase/research.html
http://www.math.stonybrook.edu/~rtanase/calc303/m303-Fa16.html
http://www.math.cornell.edu/
http://www.math.stonybrook.edu/
http://www.math.stonybrook.edu/
http://www.math.stonybrook.edu/~rtanase/teaching.html
http://www.math.stonybrook.edu/~rtanase/AMS-IMS.html
http://www.ams.org/meetings/sectional/2234_special.html
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Schedule

A set of lecture notes for each class is available in .pdf format and .nb (Mathematica notebook).
Please log in to Blackboard
with your netID and password to download the solutions to the homework assignments.

Date Topic Reading Assignments

Aug 25 Introduction & Syllabus Intro (
nb,
pdf
)

HW 1
Due Sept 10

Solutions
Aug 27 Getting started with Mathematica (Linear Algebra) Notes (
nb,
pdf
)

Sept 1 Getting started (Functions, Conditional Statements) Notes (
nb, pdf
)

Sept 3 Loop Constructions & Graph Theory in Mathematica Notes (
nb,
pdf
)

HW 2
Due Sept 24

Solutions

Sept 8 no class (Labor Day)

Sept 10 Graph Theory in Mathematica Notes (
nb,
pdf
)

Sept 15 Mathematics of Web Search Notes (
nb, pdf
)

Sept 17 Building interactive models Notes (
nb,
pdf
), Map

Sept 22 Local variables & Interactive models Notes (
nb,
pdf
)

Project 1
Due Oct 18

Sept 24 Eigenvalues and eigenvectors of a matrix Lectures 1 & 2

Sept 29 Perron-Frobenius Theorem & Page Rank Lectures 3
& 4

Oct 1 Project Discussion Notes (
nb,
pdf
)

Oct 6 Module & DynamicModule Notes (nb,
pdf)

Oct 8 Symbolic & Numerical Solvers Notes (
nb,
pdf
)

HW 3 
Due Oct 29 
Solutions

Oct 13 Differential equations Lecture (
pdf
)

Oct 15 Solving Differential Equations with Mathematica Notes (
nb,
pdf
)

http://www.math.stonybrook.edu/~rtanase/files/Intro.nb
https://blackboard.stonybrook.edu/bbcswebdav/pid-3474898-dt-content-rid-18930999_1/xid-18930999_1
http://www.math.stonybrook.edu/~rtanase/files/Notes-1.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes2.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes3.nb
https://blackboard.stonybrook.edu/bbcswebdav/pid-3474898-dt-content-rid-22103949_1/xid-22103949_1
http://www.math.stonybrook.edu/~rtanase/files/Notes4.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes5.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes6.nb
http://www.math.stonybrook.edu/~rtanase/files/Map.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes7.nb
http://www.math.cornell.edu/%7Emec/Winter2009/RalucaRemus/Lecture1/lecture1.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture2/lecture2.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/lecture4.html
http://www.math.stonybrook.edu/~rtanase/files/ProjectDiscussion.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes8.nb
http://www.math.stonybrook.edu/~rtanase/files/Notes9.nb
https://blackboard.stonybrook.edu/bbcswebdav/pid-3474898-dt-content-rid-22103949_1/xid-22103949_1
http://www.math.stonybrook.edu/~rtanase/files/ODE.nb
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Oct 20 Systems of Linear & Nonlinear Differential Equations Lecture (
pdf
)

Project 2
Due Nov 18

Oct 22 Solving Systems of Diff Equations in Mathematica Notes (
nb,
pdf
)

Oct 27 Stability of Equilibrium Points Notes (
nb,
pdf
)

Oct 29 Phase Portraits for Systems of Nonlinear ODEs Notes (
nb,
pdf
)

Nov 3 Limits Cycles and Chaotic Behavior Notes (
nb,
pdf
)

Nov 5 Exercise: Using Locator in Interactive Models Notes (
nb,
pdf
)

Nov 10 An Introduction to Cryptography Notes (
nb,
pdf
)

Lab Exercises
Nov 12 Modular Arithmethic & Affine Ciphers Notes (
nb,
pdf
)

Nov 17 Cryptanalysis of Monoalphabetic/Polyalphabetic Ciphers
      Notes (
nb,
pdf
)

Vigenere (
nb,
pdf
)

Nov 19 Euler's Theorem and the RSA Cryptosystem Lecture (
pdf
)

Project 3 
Due Dec 7 

Nov 24 RSA Notes (
nb,
pdf
)

Nov 26 no class (Thanksgiving)

Dec 1 Digital Signatures Notes (
nb,
pdf
)

Dec 3 Project Discussion & Further Directions

Dec 9 Project Presentation - Wednesday, December 9, 5:30-7:30pm

http://www.math.stonybrook.edu/~rtanase/files/ODE2.nb
http://www.math.stonybrook.edu/~rtanase/files/ODE3.nb
http://www.math.stonybrook.edu/~rtanase/files/ODE4-net.nb
http://www.math.stonybrook.edu/~rtanase/files/ODE5-net.nb
http://www.math.stonybrook.edu/~rtanase/files/LocatorExercise.nb
http://www.math.stonybrook.edu/~rtanase/files/Crypt1.nb
http://www.math.stonybrook.edu/~rtanase/files/Crypto2.nb
http://www.math.stonybrook.edu/~rtanase/files/CryptoTest.nb
http://www.math.stonybrook.edu/~rtanase/files/Vigenere.nb
http://www.math.stonybrook.edu/~rtanase/files/RSA-1.nb
http://www.math.stonybrook.edu/~rtanase/files/DigitalSignature-net.nb


MAT 331: COMPUTER-ASSISTED MATHEMATICAL PROBLEM SOLVING

FALL 2015

GENERAL INFORMATION

Instructor. Raluca Tanase
Email: raluca.tanase@stonybrook.edu
Office: Math Tower 4-120; Phone: (631) 632-4005
Office hours: Tuesdays 10:30–11:30am in MLC; Thursdays 1:00-2:30pm in Math Tower 4-120.

Lectures. Tuesdays & Thursdays 11:30–12:50pm in Mathematics S-235.

Blackboard. Grades and some course administration will take place on Blackboard. You will
also use Blackboard to submit the projects and homework. Please log in using your NetID at
http://blackboard.stonybrook.edu.

Courses Description. Exploration of the use of the computer as a tool to gain insight into
complex mathematical problems through a project-oriented approach. Students learn both
the relevant mathematical concepts and ways that the computer can be used (and sometimes
misused) to understand them. Interesting applications of mathematics to computer science
are also discussed. Some of the specific topics that we will try to study this semester include
linear algebra, graph theory and Markov chains, number theory and cryptography, dynamical
systems, fractals, differential equations and computer graphics.

Prerequisites. C or higher in MAT 203 or 205 or 307 or AMS 261.

TECH Objective. MAT 331 fulfills the ”Understand Technology (TECH)” objective:

1. Demonstrate an ability to apply technical tools and knowledge to practical systems and
problem solving.

2. Design, understand, build, or analyze selected aspects of the human-made world. The
human-made world is defined for this purpose as artifacts of our surroundings that are
conceived, designed, and/or constructed using technological tools and methods.

WRTD Objective. Students may use two of their MAT 331 projects to satisfy part of the
Upper Division Writing Requirement for the major, or the “Write Effectively within One’s
Discipline (WRTD)” objective for the Stony Brook Curriculum (SBC):

1. Collect the most pertinent evidence, draw appropriate disciplinary inferences, organize
effectively for one’s intended audience, and write in a confident voice using correct
grammar and punctuation.

Students who want to use two of the MAT 331 projects for this purpose should sign up for
MAT 459: Write Effectively in Mathematics as a zero-credit course, with me as instructor.

Software. Most lectures will be held in the Math computer lab (Math Tower S-235). No
previous experience with computers is needed.

We will use Mathematica, which is a computational software program developed by Wolfram
Research and used in many scientific, engineering, mathematical and computing fields, based on
symbolic mathematics. Mathematica has a comprehensive documentation, also available online
at http://reference.wolfram.com/language/.

Mathematica 10 is available for most operating systems (Windows, Macintosh, Linux, etc.).
Stony Brook students can download the Windows/Mac/Linux version of Mathematica from
Softweb: http://softweb.cc.stonybrook.edu/. You need your Stony Brook netID and netID
password to log in to Softweb. To obtain an Activation Key for Mathematica you must visit
the Wolfram User Portal https://user.wolfram.com/portal/login.html. If it’s your first

http://blackboard.stonybrook.edu/
http://reference.wolfram.com/language/
http://softweb.cc.stonybrook.edu/
https://user.wolfram.com/portal/login.html


time visiting the Wolfram User Portal, you must create a Wolfram ID and follow the steps in
there to request an Activation Key.

In addition, you can use any of the campus SINC sites, or you can access the Virtual SINC
site at http://it.stonybrook.edu/services/virtual-sinc-site.

Reading resources. We will try to follow several sources, depending on the topic which we are
covering. A set of notes written by Scott Sutherland and Santiago Simanca is available online at
http://www.math.stonybrook.edu/~scott/Book331/331book.pdf. For the first part of the
course we will use a set of lecture notes written by Raluca Tanase and Remus Radu about The
Mathematics of Web Search, available at http://www.math.cornell.edu/~mec/Winter2009/

RalucaRemus/. Other useful materials and lecture notes will be posted on the course website
on Blackboard as we advance in the semester.

Grading policy. There will be no exams. Grades will be computed using the following scheme:

• Lab 15%
• Homework 20%
• Projects 65%

Students are expected to attend class regularly and to keep up with the material presented in
the lecture and the assigned reading. There will be roughly four or five homework assignments
(containing short exercises involving mathematical proofs and Mathematica code) as well as
three or four projects. You may work together on your homework assignments and projects,
and you are encouraged to do so. However, all solutions must be written up independently. A
project is more like a term paper and you will be expected to devote a significant amount of
time to doing it, as well as taking care with the presentation. The project should contain a
detailed description of the problem or topic, what means were used to solve it, the mathematical
solution and the computer program (interactive model in Mathematica). The last project of
the class may include also a short oral presentation at the end of the semester.

Extra Help. You are welcome to attend the office hours and ask questions about the lectures
and about the homework. In addition, math tutors are available at the Math Learning Center
(MLC): http://www.math.stonybrook.edu/MLC.

Information for students with disabilities. If you have a physical, psychological, medical
or learning disability that may impact your course work, please contact Disability Support
Services, ECC (Educational Communications Center) Building, Room 128, (631) 632-6748, or
at the following website http://studentaffairs.stonybrook.edu/dss/index.shtml. They
will determine with you what accommodations, if any, are necessary and appropriate. All
information and documentation is confidential.

Academic integrity. Each student must pursue his or her academic goals honestly and be
personally accountable for all submitted work. Representing another person’s work as your own
is always wrong. Faculty is required to report any suspected instances of academic dishonesty
to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology
& Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required
to follow their school-specific procedures. For more comprehensive information on academic
integrity, including categories of academic dishonesty please refer to the academic judiciary
website at http://www.stonybrook.edu/uaa/academicjudiciary.

Critical Incident Management. Stony Brook University expects students to respect the
rights, privileges, and property of other people. Faculty are required to report to the Office
of University Community Standards any disruptive behavior that interrupts their ability to
teach, compromises the safety of the learning environment, or inhibits students’ ability to
learn. Faculty in the HSC Schools and the School of Medicine are required to follow their
school-specific procedures. Further information about most academic matters can be found

http://it.stonybrook.edu/services/virtual-sinc-site
http://www.math.stonybrook.edu/~scott/Book331/331book.pdf
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/
http://www.math.stonybrook.edu/MLC
http://studentaffairs.stonybrook.edu/dss/index.shtml
http://www.stonybrook.edu/uaa/academicjudiciary


in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee
Handbook.



MAT 331: Computer Assisted Mathematical Problem Solving 
Spring 2017 

Raluca Tanase 

Course Information


Home 
 Course Information 
 Lectures & Projects  

Course Description

Exploration of the use of the computer as a tool to gain insight into complex mathematical
problems through a project-oriented
approach. Students learn both the relevant mathematical
concepts and ways that the computer can be used (and sometimes
misused) to understand them.
 Interesting applications of mathematics to computer science are also discussed. Some of the
specific topics that we will try to study this semester include linear algebra, graph theory
and Markov chains, number theory and
cryptography, dynamical systems and fractals, differential
equations and computer graphics.

Click here to download a copy of the course syllabus.
Please visit the course website on Blackboard.

Lectures & Office Hours

Instructor: Raluca Tanase 
Lectures: Tuesdays & Thursdays 11:30-12:50pm in Mathematics S235; 
Office hours: Tuesdays 1-2pm in MLC (next to the computer lab)
                      
Thursdays 1-3pm in Math Tower 4-120, or by appointment.

Teaching Assistant: Nancy Hong 
Office hours: Wednesdays 12-1pm in Mathematics S235 (computer lab).

Software

We will use Mathematica, which is a computational software program developed by Wolfram Research and used in many
scientific, engineering,
 mathematical and computing fields, based on symbolic mathematics. Mathematica has a
comprehensive documentation
that we will make use of. Mathematica 10.3 is available for most operating systems (Windows,
Macintosh, Linux, etc.).

Stony Brook students can download the Windows/Mac/Linux version of
Mathematica from Softweb.
You need your Stony Brook
netID and netID password to log in to Softweb. To obtain an Activation Key for Mathematica you must visit the
Wolfram User
Portal.
 If it's your first time visiting the Wolfram User Portal, you must create a Wolfram ID and
 follow the steps in there to
request an Activation Key.

In addition, you can use any of the campus SINC sites, or you can access the
Virtual SINC site.

Grading Policy

There will be no exams. Grades will be computed using the following scheme:

Homework – 20%
Lab Activity – 15%
Projects – 65%

Students are expected to attend class regularly and to keep up with the material
 presented in the lecture and the assigned
reading. There will be roughly
 five homework assignments (containing short exercises involving mathematical proofs
 and
Mathematica code) as well as three or four projects. You may work together on
your homework assignments and projects, and

http://www.math.stonybrook.edu/~rtanase/m331-sp17/m331-Sp17-schedule.html
http://www.math.stonybrook.edu/~rtanase/m331-sp17/m331-Syllabus-Sp17.pdf
https://blackboard.stonybrook.edu/
http://reference.wolfram.com/language/
http://softweb.cc.stonybrook.edu/
https://user.wolfram.com/portal/login.html
https://user.wolfram.com/portal/login.html
http://it.stonybrook.edu/services/virtual-sinc-site
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you are encouraged to do so. However,
all solutions must be written up independently.

A project is more like a term paper
and you will be expected to devote a significant amount of time to doing it, as well
as taking
care with its presentation. The project should contain a detailed description
of the problem or topic, what means were used to
solve it, the mathematical solution and proofs,
and the computer program (interactive model in Mathematica). The last project
of the
class may include also a short oral presentation at the end of the semester.



Getting Started with Mathematica

Mathematica

“For  more  than  25  years,  Mathematica  has  defined  the  state  of  the  art  in
technical  computing  and  provided  the  principal  computation  environment  for
millions of innovators, educators, students, and others around the world.”

Mathematica is based on the Wolfram Language, that you may have already seen 
when you used the online tool Wolfram Alpha http://www.wolframalpha.com.

A comprehensive Documentation for Mathematica is available online at 
http://reference.wolfram.com/language/

Mathematica provides a simple framework for doing interactive models. 
Wolfram Demonstration Projects  http://demonstrations.wolfram.com/

In this course, we will learn how to use Mathematica to do a variety of numeric 
and symbolic computations. Then we will learn how to turn our static 
computations into dynamic interactive models.

Mathematica Notebooks (*.nb)
When Mathematica is first started, it displays an empty notebook with a blinking cursor. You can start 
typing in it right away. Let’s start by doing a simple computation:

1 + 3 + 2"5

14

Mathematica  by  default  will  interpret  your  text  as  input.  After  you  enter  Mathematica  input  into  the
notebook, type Shift+Return (it’s the same as Shift+Enter) to make Mathematica process your input.  If
your keyboard has a numeric keypad, you can use its Enter key instead of Shift+Return.

With a notebook interface, you just type in your computation, say 1+3+2*5. Mathematica will  label  your
input with In[n]:=1+3+2*5. It labels the corresponding output Out[n]=14. Labels are added automatically
and  they  reflect  the  order  in  which  the  input  is  evaluated  by  the  Mathematica  Kernel.  By  default,
input/output pairs are grouped using rectangular cell brackets displayed in the right margin.

Notebooks as Documents

Notebooks as Documents
Mathematica  notebooks  are  structured  interactive  documents  that  are  organized  into  a  sequence  of
cells. Each cell may contain text, graphics, sounds or Mathematica expressions in any combination. The
extent of each cell is indicated by a bracket on the right. 

Particularly in larger notebooks, it  is  common to have chapters,  sections and so on, each represented
by  groups  of  cells.  Having  a  structured  document  makes  it  easier  later  one  to  convert  your  notebook
into a slide presentation. The  various  kinds of cells available are listed in Format->Style. The grouping
of cells in a notebook is indicated by nested brackets on the right. Font, color, spacing and other proper-
ties of the appearance of cells can also be changed from Format. 

Example  of  a  Section

Section

Subsection 1 (click Alt-Return to create below another cell of the same type)

Subsection II

This subsection has a lot of text and some numbered lists. The text
is blue because this cell has not been properly formated to text,

so Mathematica sees it as some sort of long command. As we continue to type in,
Mathematica will suggest that we convert the cell to text or to free !
form linguistic input.

1. Numbered list
1.1. And a sublist

1.2. .....

2. The first list continues here

Subsection III

Notebook Style
To  change  the  style  of  a  cell,  click  the  cell  bracket.  The  bracket  is  higlighted.  Select  a  style  from
Format->Style. The cell will immediately reflect the change.

To change the overall look of a notebook, choose Format->Stylesheet. Select a stylesheet from the
menu. All cells in the notebook will change appearance, based on the definitions in the new stylesheet.

Free-Form Input
Free-Form Input allows users to enter plain English and get immediate results, as well as the Mathemat-
ica correct input for further exploration—without the need for syntax.

In  the  beginning,  you  can  learn  Mathematica  syntax  by  entering  a  query  in  plain  English  and  then
viewing the free-form queries translated in precise Mathematica commands.

2     Intro.nb



In  the  beginning,  you  can  learn  Mathematica  syntax  by  entering  a  query  in  plain  English  and  then
viewing the free-form queries translated in precise Mathematica commands.

Click on the Cell Insertion Assistant (+ Sign at the left) and choose Free-Form Input. Alternatively, click
Insert->Inline Free Form Input. An orrange square with an equal sign will appear in the cell. The cursor
will be blinking to the right of the orange square. 

Use Plain English after the equal sign to describe the command that you would like to do, say 
"integral of cos x""

After clicking Shift+Enter, we will see the command that Mathematica translated our free-form input into.
You need to have an active Internet Connection to use Free-Form Input. Use the + Sign to the right of
the Free-Form Input to show all results.

integral of cos x
Integrate[Cos[x], x]

"

Sin[x]

Using Palettes
Here is one way to enter a particular expression.

2^10 + 1#2 + Sqrt[2]

2049

2
+ 2

We can use the Palettes to typeset various basic commands and text. 
Select Palettes->Basic Math Assistant, or Palettes->Classroom Assistant. We can then write 

expressions like square roots "#  , integrals ∫#
## %#  and many others, by simply using the predefined 

templates from the Palletes. The same mathematical expression from above can be written more 
elegantly as follows:

210 +
1

2
+ 2

2049

2
+ 2

To get a numerical approximation of the expression we need to use N[..]. The percent sign % refers to
the output of the last evaluation that Mathematica performed. 

N[%]

1025.91

Matrices and Linear Algebra
The Mathematica front  end provides an Insert&Table/Matrix  submenu for  creating and editing arrays
with any specified number of rows and columns. Once you have such an array, you can edit it to fill  in
whatever elements you want.

Intro.nb     3

The Mathematica front  end provides an Insert&Table/Matrix  submenu for  creating and editing arrays
with any specified number of rows and columns. Once you have such an array, you can edit it to fill  in
whatever elements you want.

Some examples of vectors and matrices:

A = 
1 0 0
1 1 1



{{1, 0, 0}, {1, 1, 1}}

IdentityMatrix[3]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

From these examples, we can see that Mathematica treats a matrix like a list of 
lists.

Transpose[A]

{{1, 1}, {0, 1}, {0, 1}}

Transpose[A] finds the transpose of the matrix A and displays it as a list of lists.
To see the transpose in standard matrix form, use the command MatrixForm[..]
with argument Transpose[A]. 

MatrixForm[%]

1 1
0 1
0 1

Vectors

A vector in Mathematica is a list.

w = {1, 2, 3}

{1, 2, 3}

MatrixForm[w]

1
2
3

We can also use the Insert->Table/Matrix  submenu to  create a  column vector  with  a  given number  of

elements, as a matrix with n rows and one column
$
$
$

. If we use this template, the vector is interpreted

as a list of lists.

4     Intro.nb



We can also use the Insert->Table/Matrix  submenu to  create a  column vector  with  a  given number  of

elements, as a matrix with n rows and one column
$
$
$

. If we use this template, the vector is interpreted

as a list of lists.

v =
1
2
3

{{1}, {2}, {3}}

Matrix and Vector Operations
We can perform matrix addition A+B and scalar multiplication 3A in the usual way. We can use either a 
space or the symbol * to do the multiplication between the scalar 3 and the matrix A.

MatrixForm[3 A]

 3 0 0
3 3 3



MatrixForm[A + A]

 2 0 0
2 2 2



However,  to  do  matrix  multiplication  we cannot  use  the  symbol  *  ,  instead  we
have to use a dot!

A.Transpose[A]

{{1, 1}, {1, 3}}

A.w

{1, 6}

A.v

{{1}, {6}}

MatrixForm[A.v]

 16 
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Mathematica can also do symbolic computations:

M = {{a, b}, {c, d}}; x = {x1, x2};
MatrixForm[M.x]

 a x1 + b x2
c x1 + d x2



For square matrices, we can compute the power of a matrix An using the command 
MatrixPower[matrix, power]

B = {{1, 1}, {1, 1}}; MatrixPower[B, 2]

{{2, 2}, {2, 2}}

M3 = MatrixPower[M, 3];
MatrixForm[M3]

a a2 + b c + b (a c + c d) a (a b + b d) + b b c + d2

c a2 + b c + d (a c + c d) c (a b + b d) + d b c + d2
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MAT 331: Homework 1

Problem 1.1

Write a command in Mathematica to generate a square nxn matrix M, whose diagonal elements Miiare 
equal to n-1 and the other elements Mij i≠j are equal to 1. Test it for n=3 and n=10.

Problem 1.2

Demonstrate that two matrices do not commute in general, i.e. that AB ≠ BA, by defining two 5x5 ran-
dom matrices using the function Table,  computing both sides (AB and BA) using matrix  multiplication,
and comparing the outputs using the function TrueQ[...] in Mathematica. Of course, there exist matrices
which  do  commute  so  you  will  have  to  chose  your  examples  well.  This  means  that  you  may  have  to
generate several random 5x5 matrices, before you hit a pair for which AB ≠ BA.

Problem 1.3

1. Use free-form input to find some Mathematica functions which help you find the dimensions of 
a matrix (that is, the number of columns and rows).

2. Write  a  function  g[A_,B_]  that  takes  as  input  two  matrices  A  and  B  and  checks  whether  the
number of columns of A is the same as the number of rows of B. If the dimensions match, then
the  function  returns  the  product  AB,  otherwise  it  returns  the  message  “Error,  the  matrices
cannot be multiplied”. 

Problem 1.4

Mathematica has built-in routines for finding the eigenvalues and eigenvectors (real and complex) of a
numerical square matrix. Recall that If A is an n × n matrix, then the number λ𝜆 is an eigenvalue of A if
there exists a non-zero vector x such that Ax=λ𝜆x. The vector x is called an eigenvector of A with corre-
sponding eigenvalue λ𝜆. There are at most n distinct eigenvalues of the matrix A, and at most n linearly
independent eigenvectors with real or complex entries. 

0.1. The function Eigenvalues[A] returns a list with the eigenvalues of the square matrix A.

0.2. Sometimes it is necessary to know the eigenvectors of a square matrix A, as well as its eigenvalues.
This  can  be  done  using  the  function  Eigensystem[A],  which  finds  both  the  eigenvalues  and  a
complete  linearly  independent  set  of  eigenvectors  for  each  eigenvalue.  The  output  is  given  in  the
form { list of eigenvalues, list of eigenvectors }.

1. Use the function Eigensystem[...] to find the eigenvalues and a set of linearly independent 
eigenvectors for the matrix M that you defined in Problem I.I. You may choose n=3 and n=10 
in Problem I.I.

2. Define a matrix P whose columns are the eigenvectors returned by the function 
Eigensystem[...]. Display P in matrix form, then compute the product P-−1MP where P-−1is the 
inverse of the matrix P. What do you observe?



3. Let MTbe the transpose of the matrix M. Find the eigenvalues and eigenvectors of MTand M. 
What do you observe? What can you say about the eigenvalues and the eigenvectors of 
MTand M in case M is a random matrix?

Problem 1.5 

One of the main applications of matrix algebra is to solve systems of linear equations, usually in a large
number  of  variables.  A  system  of  m  such  equations  in  the  n  variables  x1,  x2,  ...,  xn,  can  be  written
explicitly:
a11x1 + a12x2 + ... + a1 n xn = b1

a21x1 + a22x2 + ... + a2 n xn = b2 
.................................................
am1x1 + am2x2 + ... + amn xn = bm

The same system can be written in the more convenient matrix notation as Ax=b, where A is the m × n
coefficient  matrix,  x  is  the  (column)  vector  of  length  n  containing  the  variables,  and  b  is  the  (column)
vector of length m of the coefficients on the right hand sides of the equalities.
By general theory, a system of linear equations has no solution, exactly one solution or infinitely many
solutions.  In  Mathematica,  we can use the  command Solve[expression,variables],  to  solve  the  system
Ax=b for the variable x. 

In the code below we define a 2x2 matrix A and a vector b of length 2, both with random entries 0 or 1.
Then we use the function Solve[A.x==b,x] to solve the system Ax=b, where x is a vector of 2 variables
x[1] and x[2]. The function Solve returns an empty list if there is no solution, a list with one solution if the
system  has  one  solution,  or  a  list  which  contains  the  dependecy  between  the  free  variables  and  the
dependent variables if the system has infinitely many solutions (like x[1]=-x[2]). 

A = Table[RandomInteger[], {i, 2}, {j, 2}]; Print["A=" MatrixForm[A]];
b = Table[RandomInteger[], {j, 2}]; Print["b=" MatrixForm[b]];
X = Table[x[j], {j, 2}];
Solve[A.X ⩵ b, X]

Run the code several time to generate a couple of random 2x2 matrices and see how the solution set is 
displayed. Then modify the code above to answer the following questions:

1. Let A be a random 3x3 matrix with integer coefficients. Find the solution set of the system 

Ax=
1
0
0

.

2. Find the inverse of a random 3x3 matrix A with integer coefficients (if it exists!), without using
the Mathematica function Inverse[...]. Recall that the matrix A is called invertible if there exists
a (unique) 3x3 matrix B such that AB=BA=I3,  where I3  is the identity matrix.  If  A is invertible,
then the matrix B is called the inverse of the matrix A, and it is denoted by A-−1. 
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Getting Started with Mathematica

Basic calculations and variables
Mathematica is a powerful tool for doing mathematics. It can handle both symbolic and numeric expres-
sions. In the simplest case you can use it just like a calculator: you type in questions, and Mathematica
prints back answers.

27 + 5^3

You can also use variables or  put  several  commands,  separated by semicolons,  on one line.  A semi-
colon also has the effect of suppressing the corresponding output. To write the power as a superscript,
go to Palettes->Basic Math Assistant.

In[21]:= x = 5; y = 27; y + x3

Out[21]= 152

We can also write each command on a separate line (enter/return) within the same cell. 

x = 5
y = 27;
y + x3

Writing several commands not separated by semicolons on the same line can lead to different results.
By default, a space between two expressions is interpreted as multiplication! Try writing something like
x=5 27+x^3! What do you get?

You  might  have  noticed  that  Mathematica  assigns   numbers  to  every  command  you  input  and  to  the
corresponding  output. In particular, all results are stored and you can use them in any following calcula-
tions as long as you do not quit Mathematica (more precisely the kernel).

Out[1] 3

In addition, the shortcut % can be used to refer to the previous result

% & 3

Moreover, Mathematica is case sensitive.

X + x

Symbolic versus Numeric Computations

a = 210 + 1
2
+ 2 + Pi

b = N[a]
c = N[a, 10]

d = 210 + 1
2
+ 2.0 + Pi

You can use the N[..] command to get a numeric answer. In addition, this allows to give the number of
digits you want as an optional argument.

Exercise  1  :  Use  the  sinus  function  Sin[..]  to  compute  sinus  of  angle  2,  with
precision of one hundred decimal points

Matrices and Linear Algebra
The  Mathematica  front  end  provides  an  Insert->Table/Matrix  submenu  for  creating  and  editing  arrays
with any specified number of rows and columns. Once you have such an array, you can edit it to fill  in
whatever elements you want.

Some examples of vectors and matrices:

Mathematica treats a matrix like a list of lists. To see it in standard matrix form, use the command 
MatrixForm[..]

A =  1 0 0
1 1 1 

IdentityMatrix[3]
MatrixForm[%]

A vector can be given as a list.

w = {1, 2, 3}
MatrixForm[w]

We can also use the Insert->Table/Matrix  submenu to  create a  column vector  with  a  given number  of

elements, as a matrix with n rows and one column
!
!
!

. If we use this template, the vector is interpreted

as a list of lists.

v =
1
2
3
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Matrix and Vector Operations

https : // reference.wolfram.com/language/guide/MatrixOperations.html
We can perform matrix addition A+B and scalar multiplication 3A in the usual way. However, to do 
matrix multiplication we cannot use the symbol * , instead we have to use a dot!

A + A; MatrixForm[%]
MatrixForm[3 A]
A.A
A.Transpose[A]

A.w
A.v
MatrixForm[A.w]
MatrixForm[A.v]

Transpose[matrix] -- Computes the transpose
MatrixPower[matrix, power] -- For square matrices, we can compute the power of a matrix An 
Eigenvalues[matrix] -- Finds the eigenvalues of a square matrix
Eigensystem[matrix] -- Finds finds both the eigenvalues and a complete linearly independent set of 
eigenvectors for each eigenvalue.
Eigenvectors[matrix] -- Finds the eigenvectors of a square matrix

B = {{1, 1}, {1, 1}}; MatrixPower[B, 3]

Exercise 2 : Find the eigenvalues and eigenvectors of matrix B.

Changing Elements

To access different matrix or vector elements use [[..]]

In[7]:= w = {10, 20, 30}; w[[1]]

Out[7]= 10

In[8]:= B = {{10, 20}, {30, 40}};
B[[1]]

Out[9]= {10, 20}
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In[10]:= B[[1]][[1]]
B[[1, 1]]

Out[10]= 10

Out[11]= 10

To change elements of a matrix or vector:

In[12]:= w[[1]] = 100; w

Out[12]= {100, 20, 30}

Length[..] -- returns the number of elements in a list.

Exercise 3 : What is the length of w? How about the length of B?

Exercise 4 : Write a Mathematica command that gives the sum of the elements of 
the vector w.

Other ways of generating a matrix:

Table[f,  {i,m},  {j,n}]  builds  an  mxn  matrix  by  evaluating  the  function  f  with
arguments i and j, where i ranges from 1 to m and j ranges from 1 to n. The lower
bound is implicitly 1, so we only specify the upper bound.
The following commands generate random 4x4 matrix with entries between 0 and 1:

In[13]:= Rn = Table[Random[], {i, 4}, {j, 4}]

Out[13]= {{0.727347, 0.0091694, 0.716267, 0.20713}, {0.597192, 0.089866, 0.550936, 0.0729925},
{0.24518, 0.516913, 0.86244, 0.519886}, {0.823348, 0.798585, 0.986709, 0.0177835}}

In[14]:= Ri = Table[RandomInteger[], {4}, {4}]

Out[14]= {{1, 0, 1, 0}, {1, 1, 0, 1}, {1, 1, 1, 1}, {0, 0, 1, 0}}

We may also want to define our own function f. 

In[15]:= f[i_, j_] := i + j

In this expression the underscore represents a pattern. A single underscore will match a single expres-
sion (argument) and x is the name of the pattern (it can be used to refer to the matched expression on
the  right  hand  side).  The  colon  tells  Mathematica  not  to  evaluate  the  right  hand  side.  It  will  only  be
evaluated when you invoke the function. This is why you get no output. Now you can use your function:
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In[16]:= f[2, 3]

Out[16]= 5

Try to assign some values to i and j, then compute f[2, 3]. What do you notice? Does f use the global or
the local values of i and j when computing f[2, 3]?

In[17]:= i = 0;
j = ,2;
f[2, 3]

Out[19]= 5

♢ Warning:  Do not omit the colon when defining functions! 

In[22]:= g[x_] = x2 + Sin[x]

Out[22]= 25 + Sin[5]

Can you explain this result? What is the function g? You can look at the definition of a function by using
a question mark:

? f

? g

To clear the definition of function g, use the command Clear[g].

We can then use function f to generate a 4x4 matrix whose i,j entry is i+j.

In[23]:= NewM = Table[f[i, j], {i, 4}, {j, 4}];
MatrixForm[NewM]

Out[24]//MatrixForm=
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

Exercise 5: Generate a 5x5 matrix C 
                with Cij=i if i>=j  and 
                       Cij=0 otherwise
The syntax of the “If” command in Mathematica is 
 If[condition, t, f] -- the “If” command returns t if condition evaluates to true and f if condition evaluates 
to false.

If[3 > 4, 10, 5]

If[3 < 4, 10, 5]
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Functions, Conditional Statements

Functions
Mathematica has a large amount of functions already built in. The arguments of a function are put in 
between square brackets and separated by commas. Some basic functions are given below. Note that 
all built in functions and variables start with capital letters. To avoid potential conflicts it is a good idea to 
start your own functions and variables with lower case letters.

                                       Sqrt[x]     square root (Sqrt[x])
                                       Exp[x]     exponential (e^x)
                                       Log[x]     natural logarithm (Subscript[log, e] x)
                                   Log[b, x]     logarithm to base b (Subscript[log, b] x)
                Sin[x], Cos[x], Tan[x]     trigonometric functions (with arguments in radians)
ArcSin[x], ArcCos[x], ArcTan[x]     inverse trigonometric functions                                    
                                       Abs[x]     absolute value
                                   Round[x]    closest integer to x

For example, we can compute:

Exp[3]
N[Exp[3]]
Round[Sqrt[5]]

User defined functions

We can define our own functions as follows:

f[x_] := x2 + Sin[x]

In this expression the underscore represents a pattern. A single underscore will match a single expres-
sion (argument) and x is the name of the pattern (it can be used to refer to the matched expression on
the  right  hand  side).  The  colon  tells  Mathematica  not  to  evaluate  the  right  hand  side.  It  will  only  be
evaluated when you invoke the function. This is why you get no output. Now you can use your function:

f[angle] + Pi

f[2 Pi]

Try to assign some value to x, then compute f[2Pi]. What do you notice? Does f use the global or the 
local values of x when computing f[2Pi]?

x = 5;
f[2 Pi]

♢ Warning:  Do not omit the colon when defining functions! 

g[x_] = x2 + Sin[x]

Can you explain this result? You can look at the definition of a function by using a question mark:

? f

? g

To clear the function or variable definitions, use Clear[..]

Clear[x, f, g]

f[i_, j_] := i + j

The function f gives the sum of two variables. It works for any type of arguments that can be added in 
Mathematica. Let us evaluate f with some integer arguments, and then with some vector arguments. 

f[2, 3]
f[{1, 2, 3}, {3, 4, 5}]

The condition operator /;

Many functions are only valid if certain conditions are met. Mathematica can handle
such situations. The Condition operator ((;) can be used to make sure a pattern is
used only if a condition is met.

fun[x_] := 0 (; x < 0
fun[0] := 1
fun[x_] := Log[x] (; x > 0

You can list all definitions associated with a function as before. In particular, this will also show the order 
in which the definitions are applied.

? fun

Exercise: Compute fun[0], fun[-5] and fun[9].

You can also place the condition operator in the argument of the function

f1[x_ #; x < 0] := 0
f1[0] := 10
f1[x_ #; x > 0] := Log[x]
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f1[5]

Some functions only make sense for some type of input, like integers.

IntegerQ[expr]    true if expr is an integer, false otherwise
EvenQ[expr]    even number
OddQ[expr]   odd number
PrimeQ[expr]    prime number
NumberQ[expr]   explicit number of any kind
NumericQ[expr]    numeric quantity
VectorQ[expr]    a list representing a vector
MatrixQ[expr]   a list of lists representing a matrix
FreeQ[expr, form]   form matches nothing in expr
MatchQ[expr, form]   expr matches the pattern form
TrueQ[expr]  tests whether expr is true

f3[x_ (; NumberQ[x]] := x^3

Evaluate the function f3

f3[3]

f3[{1, 2, 3}]

Plotting a function
Documentation available at

http : ## reference.wolfram.com # language # ref # Plot.html

Plot[f3[x], {x, +3, 3}]

!3 !2 !1 1 2 3

!30

!20

!10

10

20

30

There are a number of options that can be used with the Plot command, see the Mathematica documen-
tation for a comprehensive list of available options and examples. For instance, AxesLabel specifies 
labels for the x and y axes. PlotStyle sets the style of the curve. You can fill in the space between the 
curve and the x-axis using the option Filling. 
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There are a number of options that can be used with the Plot command, see the Mathematica documen-
tation for a comprehensive list of available options and examples. For instance, AxesLabel specifies 
labels for the x and y axes. PlotStyle sets the style of the curve. You can fill in the space between the 
curve and the x-axis using the option Filling. 

Plot[f3[x], {x, +3, 3}, AxesLabel , {"x+axis", "f3[x]"},
PlotStyle , {Red, Thick}, Filling +> Axis]

Plot[f1[x], {x, +3, 3} ]

Conditional Statements

If[condition, t, f] - the “If” command returns t if condition evaluates to true and 
                                                                 f if condition evaluates to false.

3 > 4

If[3 > 4, 10, 5]

If[3 < 4, 10, 5]

Elementary numerical relations :
      ==  (is equal to)         !=  (is not equal to) 
       <   (is less than)       <=  (is less than or equal to) 
       >  (is greater than)   >=  (is greater than or equal to)

Elementary logical relations :
      || (or)     && (and)    ! (not)

x = 2; If[x - 0, Print["x is 0"], Print["x is different from 0"]]

Exercise : Write some If[..] command that tests whether x is a prime number 
between 10 and 20. If true, it prints x, otherwise, it prints x + 1.
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Exercise : Write some If[..] command that tests whether x is a prime number 
between 10 and 20. If true, it prints x, otherwise, it prints x + 1.

More on Conditional Statements

Sometimes we only need to perform an action when the condition is true, so we 
can use the command If[..] with only two arguments.

x = 0; If[x - 0, Print["x is 0"]]

If we want to execute more commands when x is 0, we put a semicolon ; between the successive 
commands.

x = 0; If[x - 0, Print["x is 0."]; x = x + 2;
Print["We have assigned the value 2 to x."],
Print["x is not 0"]]

Switch

Switch[expr,form1,value1,form2,value2,…,_,default]  - compares expr with each of 
the form form1, form 2, ... , giving the value associated with the first form it 
matches. If expr does not match any form, then the default value is returned.

expr = 3;
Switch[expr,

1, Print["expr is 1"],
2, Print["expr is 2"],
3, Print["expr is 3"],
_, Print["expr has some other value"]]

Recall from last time

Table[f, {i,m}, {j,n}] builds an mxn matrix by evaluating the function f with 
arguments i and j, where i ranges from 1 to m and j ranges from 1 to n. The lower 
bound is implicitly 1, so we only specify the upper bound.
The following commands generate random 4x4 matrix with entries between 0 and 1:
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Rn = Table[Random[], {i, 4}, {j, 4}]

Ri = Table[RandomInteger[], {4}, {4}]

We can also define our own functions and use them to generate matrices with certain patterns.

Clear[f];
f[i_, j_] := i + j

We can then use function f to generate a 4x4 matrix whose i,j entry is i+j, using the command Table[..]

NewM = Table[f[i, j], {i, 4}, {j, 4}];
MatrixForm[NewM]
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Getting Started with Mathematica (II)
Loops (For, While, Do)
Control structures (Break, Return)
Graphs and adjacency matrices

Loops and control structures

Do[expr,{i,max}] - evaluates expr repetitively, with i varying from 1 to max in steps 
of 1
Do[expr,{i,min,max,di}] - evaluates expr with i varying from min to max in steps of 
di.
Do[expr,{i,list}] - evaluates expr with i taking on values from a list
Do[expr,{n}] - evaluates expr n times

Examples with Do:

Print the first 10 positive integers:

Do[Print[i], {i, 10}]

Print only the odd integers between 4 and 10

Do[Print[i], {i, 5, 10, 2}]

Do[If[Mod[i, 2] != 0, Print[i]], {i, 4, 10, 1}]

Loops and control structures (Break, Return)

We can use some control flow functions to terminate the loop:
Break[ ] - causes the loop to terminate
Return[expr] - causes the loop/function to terminate and returns the value expr

We can use some control flow functions to terminate the loop:
Break[ ] - causes the loop to terminate
Return[expr] - causes the loop/function to terminate and returns the value expr

Print the first odd integer between 4 and 10

Do[If[Mod[i, 2] != 0, Print[i]; Break[]], {i, 4, 10, 1}]

Print the first odd integer between 4 and 10

Do[If[Mod[i, 2] != 0, Return[i]], {i, 4, 10, 1}]

Loops (For)

For[start,test,incr,body] - evaluates start, then repetitively evaluates body and incr, 
                                      until test fails

For[i = 1, i < 4, i++, Print[i]]

First i is assigned the value 1. As long as the condition i < 5 remains true, i is 
incremented by 1 (i++ is just a shortening for i = i + 1) and the body of the 
function For is executed (that is, we print the integer i).

v = {1, 2, 5, 4, 10}

Recall that to access the first element of the list, we use v[[1]].

v[[1]]

We can use a For loop to find the product, as follows

prod = 1;
For[i = 1, i ≤ Length[v], i++, prod = prod*v[[i]]];
prod

Mathematica also has a built-in command for finding the product of the elements of 
a list/vector.

Product[v[[i]], {i, Length[v]}]

Loops (While)
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Loops (While)

While[condition, body] - evaluates body repetitively, so long as condition is True

n = 17; While[(n = Floor[n,2]) ≠ 0, Print[n]]

Even if the last value printed by the While function is 1, the current value of n is 
not 1, as one may assume, but 0. This value was not printed when we ran the 
While command, because when n is 0, the condition n != 0 is false, so the body of 
the function While (which would have been Print[0]) is not executed.

n

0

In the Wolfram Language, both While and For always evaluate the loop test before
evaluating  the body of  the loop.  As soon as  the loop test  fails  to be True,  While
and For terminate. The body of the loop is thus only evaluated in situations where
the loop test is True.

While[False, Print["False"]]

The command While[False, Print["False"]] does not print anything, because the 
test condition is always False, so the body of the function is never executed.

The functions  While  and For  in  the  Wolfram Language are  similar  to  the  control
structures  While  and  For  in  languages  such  as  C++.  Notice,  however,  that  there
are  a  number  of  important  differences.  For  example,  the  roles  of  comma  and
semicolon are  reversed in  Wolfram Language  For  loops  relative  to  C++ language
ones.

Exercise: Find the sum of the elements of a matrix.

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
MatrixForm[A]
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We can use Do:

sumElements = 0;
Do[sumElements = sumElements + A[[i]][[j]],

{i, 1, Length[A]}, {j, 1, Length[A]}];
Print[sumElements]

We can use two For loops to find the sum, as follows:

sumElements = 0;
For[i = 1, i ≤ Length[A], i++, For[j = 1, j ≤ Length[A],

j++, sumElements = sumElements + A[[i]][[j]] ]];
Print[sumElements]

We can use two While loops:

sumElements = 0;
i = 1;
While[i ≤ Length[A],

j = 1;
While[j ≤ Length[A],
sumElements = sumElements + A[[i]][[j]];
j++ ];

i++
];

Print[sumElements]

We  can  also  use  a  built-in  command  in  Mathematica  for  computing  the  sum,  whose
syntax resembles that of a Do command.

Sum[A[[i]][[j]], {i, 1, 3}, {j, 1, 3}]

Graphs

Definition: A graph G={V, E} consists of a set of vertices V (also called nodes) and
a set of edges E. If there is an edge between the nodes u and v if and only if there
is an edge between v and u,  then G is called an undirected graph. Otherwise it  is
called a directed graph. 

4     Notes3.nb



Definition: A graph G={V, E} consists of a set of vertices V (also called nodes) and
a set of edges E. If there is an edge between the nodes u and v if and only if there
is an edge between v and u,  then G is called an undirected graph. Otherwise it  is
called a directed graph. 

In  Mathematica,  a  graph  is  represented  either  by  a  list  of  rules  of  the  form  {vi-
>vj,...}, where vi and vj are vertices, and vi->vj is the edge between vi and vj, or by
the adjacency matrix of the graph.

G = Graph[{1 /> 2, 3 1 2, 3 1 4, 4 1 1}]

1

2

3

4

You can write click on the graph to set the display properties
of the graph (layout, size, arrow shape, vertex shape, etc.)
You can also plot the graph by explicitly listed the display options.

GraphPlot[G, VertexLabeling /> True,
DirectedEdges 1 {True, "ArrowheadsSize" /> 0.15},
PlotStyle /> Dashed]

Notes3.nb     5

Adjacency matrix

The adjacency matrix of a graph G is built by the following rule : the (i, j) entry in 
the matrix is 1 if there is an edge between i and j in the graph G, and 0 otherwise. 

AdjacencyMatrix[G]

SparseArray Specifiedelements: 4
Dimensions: {4, 4}



By default, if the graph does not have a lot of edges, its adjacency matrix in Mathe-
matica  is  given  as  a  sparse  array  (only  the  non-zero  elements  are  listed),  but  we
can  convert  it  to  the  regular  form by  using  MatrixForm.  In  practice,  for  directed
graph we will use more often the transpose of the adjacency matrix.

MatrixForm[AdjacencyMatrix[G]]

0 1 0 0
0 0 0 0
0 1 0 1
1 0 0 0

Random Graphs

We can construct a random graph using a random matrix with 0 and 1.

Ri = Table[RandomInteger[], {4}, {4}]

{{0, 1, 0, 1}, {0, 1, 0, 1}, {1, 0, 1, 1}, {0, 1, 0, 1}}

RG = GraphPlot[Ri, VertexLabeling & True, DirectedEdges & True]

1

23

4
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MAT 331: Homework 2

Problem 2.1

In  this  problem we will  explore  some of  the basic  definitions  and Mathematica  functions for  graphs.  A
walk in a graph consists of  an alternating sequence of  vertices and edges x0, e1, x1,.., en,  xn  such that
ei=xi-−1→xi  is  an  edge  between  vertex  xi-−1and  vertex  xi.  A  walk  is  closed  if  x0=xn  and  open  otherwise.
The number of edges is the length of a walk. The vertices and edges may be repeated in a walk. A path
is (usually defined as) an open walk with no repeated vertices. A cycle is a closed walk with no repeated
vertices,  other  than  the  first  and  last  vertex.  The  problem  of  finding  the  shortest  path  between  two
vertices  is  very  relevant  to  practical  problems,  such  as  finding  the  way  out  of  a  maze or  navigating  a
road  network.  Cycles  are  also  very  important  if  traversing  the  whole  graph  in  some  way  and  coming
back to the same place is desired instead. 
Another relevant feature of graphs representing real systems is community structure, or clustering, i. e.
the organization of vertices in clusters, with many edges joining vertices of the same cluster and compar-
atively few edges joining vertices of different clusters. Such clusters, or communities, can be considered
as  fairly  independent  compartments  of  a  graph,  playing  a  similar  role  like,  e.  g.,  the  tissues  or  the
organs  in  the  human  body.  Detecting  communities  is  of  great  importance  in  sociology,  biology  and
computer science, disciplines where systems are often represented as graphs.

Consider the directed graph G depicted below (you may need to click on Enable Dynamics first, to view 
the graph):

1

9

3

27

5

4

8

6
10

1. Use the function Graph[...] to generate the graph G. The option GraphStyle→”SmallNetwork” will give
the same display style as above, but you are free to explore additional attributes as well.

2. Find  the  strongly  connected  components  of  G.  Use  HighlightGraph[...]  to  color  the  vertices  of  the
graph according to the component they belong to.

3. Use  the  function  FindGraphCommunities[...]  to  find  a  list  of  communities  in  the  graph  G.  This
function  returns  a  list  of  communities,  where each community  is  a  list  of  vertices.  The communities
are ordered by their length, with the largest community first. Use the command HighlightGraph[...] to
color the vertices of the graph according to the community they belong to.



4. ShortestPath[G,  v1,  v2]  returns  a  list  of  vertices  representing the shortest  path  between nodes v1
and  v2.  Use  this  function  to  find  the  shortest  path  between  node  6  and  node  9  and  then  use
HighlightGraph[...]  to  highlight  the  shortest  path  between  these  nodes.  First  highlight  only  the
vertices,  then  highlight  the  edges  of  the  shortest  path.  Use  GraphicsRow[...]  to  print  the  two
highlighted graphs on the same row. 

5. GraphDiameter[G] gives the greatest distance between any pair of vertices in the graph G. What is
the diameter of G? Explain.

Problem 2.2

Consider the graph G from problem 2.1. The command FindCycle[G,{n}] returns a cycle of length n in
graph G. Use this function to find a cycle of length 3 in G. Suppose next that we want to find all cycles
of length 3 in G. There are several ways to do that, but we will choose to work with the adjacency matrix
of G for this task. Use your prefered loop structures in Mathematica (Do, While, For) to find how many
cycles of length exactly 3 are in the graph G and to print all of these cycles. A cycle should be displayed
as a list of edges of the form {a→b, b→c, c→a}. Do not print the same cycle three times! For example,
{a→b,  b→c,  c→a},  {b→c,  c→a,  a→b},  {c→a,  a→b,  b→c}  are  different  ways  of  writing  the  same  cycle,
which should be counted only once.

Problem 2.3

Write a function transition[...] that takes as input a directed graph H with any number of nodes, repre-
sented as a list of directed edges, and returns the transition matrix of H. Recall that the (i,j) entry of the
transition matrix reflects the probability  of  transition from node i  to node j.  A preliminary version of  the
algorithm for  computing  the  transition  matrix  of  a  graph  is  done  is  the  lecture  notes.  There  are  some
special  cases  which  were  not  covered in  the  lecture  (like  the  case of  nodes  with  no  outgoing  edges).
Test your function on the graph from problem 1, as well as on a randomly generated directed graph with
10 nodes and 20 edges.

Problem 2.4

Let  H  be  any  undirected  graph.  If  H  is  a  connected,  acyclic  graph  (acyclic  means  that  it  contains  no
cycles) then we say that H is a tree. Trees are very useful  for storing, sorting and quering information
that  has a  natural  hierarchical  structure.  For  instance,  the file  system (folders,  subfolders,  documents,
etc.) in a computer uses a tree architecture. 

To build some intuition about trees, use TreePlot[H, VertexLabeling→True, DirectedEdges→False] to
plot any graph which has the properties listed above. GraphPlot[...] can also be used for plotting trees,
however the  layout is slightly different.  

Show that a graph H is a tree if and only if any one of the following properties is satisfied:

1. Every pair of distinct vertices of H is connected by a unique path.

2. The graph H is connected, but deleting any edge disconnects H.

3. The graph H is acyclic, but adding any edge to H forms a cycle.

4. The graph H is connected and has n-1 edges, where n is the number of vertices of H.

Problem 2.5

In this problem, we want to use the command Manipulate[...] to create nice interactive models. We can
wrap  Manipulate[...]  around any  Wolfram command.  The  output  you  get  from evaluating  a  Manipulate
command is an interactive object containing one or more controls (sliders, etc.) that you can use to vary
the value of one or more parameters.
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In this problem, we want to use the command Manipulate[...] to create nice interactive models. We can
wrap  Manipulate[...]  around any  Wolfram command.  The  output  you  get  from evaluating  a  Manipulate
command is an interactive object containing one or more controls (sliders, etc.) that you can use to vary
the value of one or more parameters.

1. RandomGraph[{m,n},k]  generates k  random undirected graphs with  m vertices and n edges;  if  we
want  to  generate directed graphs,  we need to  set  the attribute DirectedEdges to  True,  as shown in
the lecture notes. Your first task is to create a nice interactive model that can generate k (directed or
undirected!) graphs with m vertices and m(m-−1)

2
 edges. The possible values for k should be 1 and 4.

The  parameter  m  can  be  any  positive  integer  between  4  and  10,  with  default  value  6.  You  should
have one extra parameter, called Directed, that can take the values True or False. 

2. Let  us  now focus on part  4  of  problem 2.1  and turn  it  into  an interactive  model  as  well.  We do not
want to change the graph G, but we would like to build an interactive model such that for any given
choice  of  nodes  v  and  u  in  G,  we  display  the  graph  G  with  the  shortest  path  between  u  and  v
highlighted. Use the command Manipulate[...] to create a nice interactive model with controls for the
parameters u and v.
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Graph Theory with Mathematica
Construction and representation
Visualization of graphs
Properties of graphs
Connectivity, strong connectivity
Adjacency & Transition Matrices
Making interactive models

Slide 1of10 Graphs

Definition: A graph G={V, E} consists of a set of vertices V (also called nodes) and
a set of edges E. 

Graphs  provide  a  structural  model  that  makes  it  possible  to  analyze  and
understand  how  many  separate  systems  act  together.  Systems  with  symmetric
relations  are  represented by  undirected graphs,  while  the others  can be modeled
usind directed graphs.
Applications: 

technological  networks  (the  internet,  power  grids,  telephone  networks,
transportation networks, …)

social networks (social graphs, affiliation networks, …)
information  networks  (World  Wide  Web,  citation  graphs,  patent

networks, …),
biological  networks  (biochemical  networks,  neural  networks,  food  webs,

…), and many more.

In  Mathematica,  graphs  are  integrated  in  the  Wolfram  language,  so  they  cand  be
used  as  input  and  output  without  importing  any  libraries.  A  graph  is  represented
either by a list of rules of the form {vi->vj,...}, where vi and vj are vertices, and vi-
>vj is the edge between vi and vj,  or by the adjacency matrix of the graph. In the
Mathematica  documentation  (Graphs  and  Networks)  you  can  find  the  graph
representations, graph functions, algorithms and lots of examples. 
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Slide 2of10 Recall the graph definitions from last time

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}]

1

2

3

4

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}, GraphStyle & "SmallNetwork"]

You canwrite click on the graph to set the display properties
of the graph (layout, size, arrow shape, vertex shape, etc.)
You can also plot the graph by explicitly listed the display options.

GraphPlot[G, VertexLabeling $> True,
DirectedEdges & {True, "ArrowheadsSize" $> 0.15},
PlotStyle $> Dashed]

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}];
Gplot = GraphPlot[G, VertexLabeling $> True,

DirectedEdges & {True, "ArrowheadsSize" $> 0.15},
PlotLabel & "G is a graph with 4 vertices"]

    3

Slide 3of10 Adjacency matrix

Definition: The adjacency matrix of a graph G is built by the following rule : the (i, 
j) entry in the matrix is 1 if there is an edge between i and j in the graph G, and 0 
otherwise. 

The adjacency matrix of the graph can be obtained using the function 
AdjacencyMatrix[...]

AdjacencyMatrix[G]

SparseArray Specifiedelements: 4
Dimensions: {4, 4}



By default, if the graph does not have a lot of edges, its adjacency matrix in Mathe-
matica  is  given  as  a  sparse  array  (only  the  non-zero  elements  are  listed),  but  we
can  convert  it  to  the  regular  form by  using  MatrixForm.  In  practice,  for  directed
graph we will use more often the transpose of the adjacency matrix.

MatrixForm[AdjacencyMatrix[G]]

0 1 0 0
0 0 0 0
0 1 0 1
1 0 0 0

Exercise : Define a graph H with the following set of edges and use Mathematica 
to compute its adjacency matrix.
    Edges : 2 -> 3, 4 -> 5, 1 -> 6, 6 -> 2, 6 -> 5, 6 -> 1, 6 -> 3, 6 -> 4, 5 -> 1
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Slide 4of10 Displaying graphics in the same row/column

We want to get a little fancy this time and display the graph and the adjacency 
matrix on the same row:

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1}];
Gplot = GraphPlot[G, VertexLabeling $> True,

DirectedEdges & {True, "ArrowheadsSize" $> 0.15},
PlotLabel & "G is a graph with 4 vertices"];

Adj = MatrixForm[AdjacencyMatrix[G]];
GraphicsRow[ {Gplot, Adj}]

GraphicsRow[{Text["The graph"],
Gplot, Text["has adjacency matrix"], Adj}]

    5

Slide 5of10 Random Graphs

We can construct a random graph using a random matrix with 0 and 1.

Ri = Table[RandomInteger[], {4}, {4}]

{{0, 1, 0, 1}, {0, 1, 0, 1}, {1, 0, 1, 1}, {0, 1, 0, 1}}

RG = GraphPlot[Ri,
VertexLabeling & True, DirectedEdges & True]

1

23

4
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Mathematica also has a command for building random undirected graphs: 
RandomGraph[{m,n}] -- where m is the number of vertices and n is the number of 
edges.
RandomGraph[{m,n},k] -- generates k random graphs with m vertices and n edges.
If we want to make the graph directed, we need to set the attribute DirectedEdges 
to True.

RandomGraph[{5, 7}]

RandomGraph[{5, 7}, DirectedEdges $> True]

Mathematica can also generate graphs with a special form, for instance graphs for 
which any two vertices are connected by an edge; these are called complete 
graphs).

CompleteGraph[5]

    7

Slide 6of10 Properties of Graphs - Strong Connectivity

Definition: A graph is connected if for any two vertices u and v, there is a path in 
the graph from u to v OR from v to u.  A graph is strongly connected if for any 
two vertices u and v, there is a path in the graph from u to v AND from v to u.

Proposition: Let G be a graph and A its adjacency matrix. If there is a positive 
integer k such that the matrix S = I+A + A2 + A3 + … +Ak is positive (has only 
positive entries), then the graph is strongly connected.

Idea of the proof: The entry on row i and column j of thematrix Ak represents the 
number of paths of length k from i to j. If the (i,j) entry is positive, it means that 
there exists at least one path of length k from i to j. 

Testing strong connectivity using the adjacency matrix and Mathematica: 

First we compute S= I+A + A2 + A3 + … +Ak. It’s enough to consider 
k=dimension(A)

S = IdentityMatrix[Length[Ri]] +
Sum[MatrixPower[Ri, k], {k, 1, Length[Ri]} ]

{{1, 15, 0, 15}, {0, 16, 0, 15}, {4, 22, 5, 26}, {0, 15, 0, 16}}

Now we must check the entries of the matrix S to see if there are any 0 elements. 
If for some i and j the (i,j) entry is equal to 0, it means that there is no path from 
node i to node j, so the graph is not strongly connected.

con = 1;
Do[If[S[[i]][[j]] == 0, con = 0;

Break[]], {i, 4}, {j, 4}];
If[con > 0, Print["Strongly connected"],
Print["Not strongly connected"]]

Not strongly connected
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con = 1;
Do[If[S[[i]][[j]] == 0, con = 0; Return[{i, j}]],

{i, 4}, {j, 4}];
If[con > 0, Print["Strongly connected"],
Row[{"Not strongly connected, for example, there is no

path from node ", %[[1]], " to node ", %[[2]]}]]

Not strongly connected, for example, there is no path from node
1 to node 3

Comments  about  the  previous  code:  First  we  assume  that  the  graph  is  strongly
connected,  so we introduce a  variable  con and make it  equal  to 1.  We use a  Do
loop to check whether there are any 0 entries in the matrix S.  Notice the use of
Return[{i,j}] in the Do loop. When the first 0 element of the matrix S is found, we
set  con  to  0,  exit  the  Do loop  and  return  the  pair  {i,j}.  We can  later  use  {i,j}  to
indicate that the graph fails to be strongly connected because there is no path from
node %[[1]] to node %[[2]]. If no element of the matrix is 0, then the value of the
variable con is never changed, so it remains equal to 1 after the Do command.

    9

Slide 7of10 Connected components of a graph

We can also use Mathematica to get the connected components of a graph:

Gr = RandomGraph[{10, 20}, DirectedEdges & True];
ConnectedComponents[Gr]
HighlightGraph[Gr, ConnectedComponents[Gr]]

{{2, 5, 6, 7, 8, 9, 10}, {1, 3, 4}}

1

2

3

4

5
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7
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10

Mathematica lets you copy the graph and use it anywhere else in your code. You 
can even assign it to some other variable, or use it in computations.

Grrr =
1

2

3
4

56
7

8 9

10

MatrixForm[AdjacencyMatrix[Grrr]]

0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
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Slide 8of10 Transition Matrices

Definition: In a directed graph, for every vertex i  there is a number of edges that
enter  that  vertex (i  is  a  head)  and a  number of  edges that  exit  that  vertex (i  is  a
tail).  Thus  we  define  the  indegree  of  vertex  i  as  the  number  of  edges  for  which
vertex  i  is  a  head.  Similarly,  the  outdegree  of  vetex  i  as  the  number  of  edges  for
which i is a tail.

Mathematica  has  built-in  functions  for  the  indegree  and  the  outdegree  of  the
vertices of a graph: 
VertexInDegree[graph]  --  returns  a  list  with  the  indegrees  of  the  vertices  of  the
graph specified in the argument
VertexOutDegree[graph] -- returns a list with the indegrees of the vertices of the
graph

Definition: The transition matrix A of a directed graph is defined as follows. If 

there is an edge from i to j and the outdegree of vertex i is di, then on column i 

and row j we put 
1
di

. Otherwise we mark the entry on column i and row j with 

zero. 

Random Walk on a Graph: We use the transition matrix to model the behavior of 
a random surfer on a graph. The surfer chooses a node at random, then walks on 
the outgoing edges to other nodes for as long as he/she wishes. At each step the 
probability that the surfer moves from node i to node j is zero if there is no link 

from i to j and 
1
di

otherwise. Recall that di is the outdegree of vertex i.

Question: What is the probability that a random surfer that starts at one of the 
nodes of the graph visits say, node j ?

    11

Slide 9of10 Finding the Transition Matrix using Mathematica

Let us try to produce the transition matrix of a directed graph, using the adjacency
matrix.  Notice that for the transition matrix,  we first look at the column, then at
the row. So we need to work with the transpose of the adjacency matrix instead.

G = Graph[{1 $> 2, 3 & 2, 3 & 4, 4 & 1, 4 & 2, 4 & 3}];
Gplot = GraphPlot[G, VertexLabeling $> True,

DirectedEdges & {True, "ArrowheadsSize" $> 0.07}]
Lin = VertexInDegree[G];
Print["Lin=", Lin]
Lout = VertexOutDegree[G]; Print["Lout=", Lout]

1

2

3

4

Lin={1, 3, 1, 1}

Lout={1, 0, 2, 3}

A = AdjacencyMatrix[G];
TA = Transpose[A];
Print["The transpose matrix is TA=" MatrixForm[TA]]

The transpose matrix is TA=

0 0 0 1
1 0 1 1
0 0 0 1
0 0 1 0

f[i_, j_] := TA[[i]][[j]],Lout[[j]]
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Trans = Table[f[i, j], {i, Length[TA]}, {j, Length[TA]}];
MatrixForm[Trans]

0 Indeterminate 0 1
3

1 Indeterminate 1
2

1
3

0 Indeterminate 0 1
3

0 Indeterminate 1
2 0

Exercise : Find the transition matrix of a graph. The code in yellow computes the 
transition matrix, but some cases are overlooked.

    13

Slide 10of10 Making interactive models

Using the command Manipulate[...] we can turn a static computation or graph into a 
dynamic and sophisticated model. We can wrap Manipulate[...] around any Wolfram 
command to create an interactive model. We need to introduce a parameter that we 
want to manipulate and some bounds for that parameter. 

Parameter ranges are given inside curly brackets: 
{x, 4, 7}   -- specifies an interval [4,7] that the parameter x belongs to.
{x, {4,7}} -- specifies a discrete set of values that x can take on.
{{x, 5, “Some text describing the meaning of the parameter x”}, 4,7} 
             -- x belongs to the interval [4,7] and the default value is 5

Manipulate[
GraphPlot[Table[RandomInteger[],

{n}, {n}], VertexLabeling & True,
DirectedEdges & True],

{n, 4, 7}]

n

1 2

3

4

If you click the plus sign at the end of the slider, you get a set of video controls. You
can introduce a particular value of the parameter and hit Enter to jump to that value.
When  you  do  a  presentation,  you  can  also  hide  the  Wolfram commands  and  show
only the interactive model.

Help->Demonstrations  gives  you  a  list  of  pre-built  Wolfram  Demonstration
Projects.  You  can  browse  by  topic  and  see  the  available  templates.  You  can  then
download the project as a .cdf, which means that you get an interactive version that
you can run locally on your computer, or you can download the author code, which
means that you get a notebook (.nb) with the necessary code to generate the model.
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Help->Demonstrations  gives  you  a  list  of  pre-built  Wolfram  Demonstration
Projects.  You  can  browse  by  topic  and  see  the  available  templates.  You  can  then
download the project as a .cdf, which means that you get an interactive version that
you can run locally on your computer, or you can download the author code, which
means that you get a notebook (.nb) with the necessary code to generate the model.
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The Mathematics of Web Search
Random walk on a graph
Search Engine
Page Rank Algorithm
Perron-Frobenius Theorem
Power Method

Slide 1of10 Transition Matrices

Definition: In a directed graph, for every vertex i  there is a number of edges that
enter  that  vertex (i  is  a  head)  and a  number of  edges that  exit  that  vertex (i  is  a
tail).  Thus  we  define  the  indegree  of  vertex  i  as  the  number  of  edges  for  which
vertex  i  is  a  head.  Similarly,  the  outdegree  of  vetex  i  as  the  number  of  edges  for
which i is a tail.

Mathematica  has  built-in  functions  for  the  indegree  and  the  outdegree  of  the
vertices of a graph: 
VertexInDegree[graph]  --  returns  a  list  with  the  indegrees  of  the  vertices  of  the
graph specified in the argument
VertexOutDegree[graph] -- returns a list with the indegrees of the vertices of the
graph

Definition: The transition matrix A of a directed graph is defined as follows. 
If there is an edge from i to j and the outdegree of vertex i is di, then on 

column i and row j we put 
1
di

. Otherwise we mark the entry on column i 

and row j with 0. 

Random Walk on a Graph: We use the transition matrix to model the behavior of 
a random surfer on a graph. The surfer chooses a node at random, then walks on 
the outgoing edges to other nodes for as long as he/she wishes. At each step the 
probability that the surfer moves from node i to node j is zero if there is no link 

from i to j and 
1
di

otherwise. Recall that di is the outdegree of vertex i.

Question: What is the probability that a random surfer that starts at one of the 
nodes of the graph visits say, node j ?
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Slide 2of10 Search Engine

- gather information from Web pages. 
Crawlers crawl the Web following hyperlinks and they index the documents they 
find: 
                 document ! {list of words, links, etc}

- process and store information in a database
Indexer - computes the forward index 
              document ! {number of occurances of each word}
 Sorter - computes the inverted index 
              keyword ! {doc1, doc2, ... , docn}

- query the database in order to answer user’s queries
Query engine 
     - uses the inverted index to compile a list of documents relevant to the 
keywords and phrases of the query.
     - lists the documents found in decreasing order, according to their relevance 
(“best” documents first)
       Relevance QueryQ(Page ") = I(", Q) × P("),
       where I($, Q) is a text-based ranking (on-page score of $ for query Q) and 
       P($) is the quality factor of the page, or the page rank, independent of the 
textual content of the page. 
       P($) is a number between 0 and 1, so multiplication by P($) acts as a 
damping on the document score of $.

Notes5.nb     3

Slide 3of10 Page Quality

- based on the reference(citation) ranking
- independent of the textual content of the page
- each page is assigned a quality value, based on the amount and quality of 
the citing pages. 

The underlying assumption is that more important websites are likely to 
receive more links from other websites and therefore, the importance of 
any website can be judged by looking at the number and quality of the 
pages that link to it.

A Web citation is simply a link (page i “cites” page j is there is a link from 
page i to page j). In the next picture, Page 1 cites Pages 2, 3 and 4, Page 2 
cites Pages 2 and 3, Page 3 cites Page 1, and finally Page 4 cites Pages 1 
and 3.
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- based on the reference(citation) ranking
- independent of the textual content of the page
- each page is assigned a quality value, based on the amount and quality of 
the citing pages. 

The underlying assumption is that more important websites are likely to 
receive more links from other websites and therefore, the importance of 
any website can be judged by looking at the number and quality of the 
pages that link to it.

A Web citation is simply a link (page i “cites” page j is there is a link from 
page i to page j). In the next picture, Page 1 cites Pages 2, 3 and 4, Page 2 
cites Pages 2 and 3, Page 3 cites Page 1, and finally Page 4 cites Pages 1 
and 3.
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Slide 4of10 Web Graph

Nodes = Web sites
Edges = Hyperlinks between web sites

We can “translate”  our  baby  Internet  model  with  4  pages  into  a  directed graph
with  4  nodes,  one  for  each  web  site.  When  web  site  i  references  j,  we  add  a
directed  edge  between  node  i  and  node  j  in  the  graph.  For  the  purpose  of
computing  their  page  rank,  we  ignore  any  navigational  links  such  as  back,  next
buttons, as we only care about the connections between different web sites.

G = Graph[
{1 $ 2, 1 $ 3, 1 $ 4, 3 $ 1, 2 $ 3, 2 $ 4, 4 $ 1, 4 $ 3},

GraphStyle $ "SmallNetwork", VertexSize $ 0.15]

Lout = VertexOutDegree[G];
A = AdjacencyMatrix[G];
TA = Transpose[A];
Lout = VertexOutDegree[G];
f[i_, j_] := If[Lout[[j]] ≠ 0, TA[[i]][[j]]&Lout[[j]], 0]
T = Table[f[i, j], {i, Length[TA]}, {j, Length[TA]}];
GraphicsRow[{G, MatrixForm[T]}]

1

2

3

4

0 0 1 1
2

1
3
0 0 0

1
3

1
2
0 1

2
1
3

1
2
0 0
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Slide 5of10 Page Rank Algorithm

Suppose that initially the importance is uniformly distributed among the 4 nodes, 

each getting ¼.  Denote by v the initial rank vector, having all entries equal to 

¼. Each incoming link increases the importance of a web page, so at step 1, we 
update the rank of each page by adding to the current value the importance of 
the incoming links. This is the same as multiplying the transition matrix T with v . 

At step 0, the importance is uniformly distributed, v=(¼, ¼, ¼, ¼)
At step 1, the new importance vector is v 1 = Tv.  
At step 2, the updated importance vector is v 2 = Tv 1=T(Tv)=T 2 v
.................
At step k, the updated importance vector is v k = T k v

The following code in Mathematica tests this convergence process:

v = {0.25, 0.25, 0.25, 0.25}

{0.25, 0.25, 0.25, 0.25}

For[k = 1, k ≤ 20, k++, Print[MatrixPower[T, k].v]]
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{0.375, 0.0833333, 0.333333, 0.208333}

{0.4375, 0.125, 0.270833, 0.166667}

{0.354167, 0.145833, 0.291667, 0.208333}

{0.395833, 0.118056, 0.295139, 0.190972}

{0.390625, 0.131944, 0.286458, 0.190972}

{0.381944, 0.130208, 0.291667, 0.196181}

{0.389757, 0.127315, 0.290509, 0.192419}

{0.386719, 0.129919, 0.289786, 0.193576}

{0.386574, 0.128906, 0.290654, 0.193866}

{0.387587, 0.128858, 0.290244, 0.193311}

{0.3869, 0.129196, 0.29028, 0.193625}

{0.387092, 0.128967, 0.290377, 0.193564}

{0.387159, 0.129031, 0.290296, 0.193514}

{0.387053, 0.129053, 0.290325, 0.193568}

{0.38711, 0.129018, 0.290328, 0.193544}

{0.387101, 0.129037, 0.290318, 0.193545}

{0.38709, 0.129034, 0.290324, 0.193552}

{0.3871, 0.12903, 0.290323, 0.193547}

{0.387096, 0.129033, 0.290322, 0.193548}

{0.387096, 0.129032, 0.290323, 0.193549}

The sequence converges to a vector w ≃ {0.3870, 0.1290, 0.2903, 0.1935}. Note 
that this is only an approximation!

w = {0.3870, 0.1290, 0.2903, 0.1935};
Print["The sum of the entries of w is approximately ",
w[[1]] + w[[2]] + w[[3]] + w[[4]]]

The sum of the entries of w is approximately 0.9998
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Slide 6of10 Page Rank Algorithm

◆ The limit vector w must satisfy the equation Tw=w '
       If v k!w as k!∞ then Tv k!Tw as k!∞ (because the map x!Tx is 
continuous with respect to x).
       However, Tv k=v k+1 and v k+1!w as k!∞ !
       Therefore Tw=w, so w belongs to the eigenspace of T corresponding to the 
eigenvalue 1. 

eigen = Eigensystem[T]

We do not have to compute all of the eigenvalues and eigenvectors of T, 
because only the eigenspace corresponding to the eigenvalue 1 is relevant for 
our convergence problem.

evector = eigen[[2]][[1]];
Print[
"The eigenvectors corresponding to the eigenvalue 1

are scalar multiples of the vector ", evector]

The eigenvectors corresponding to the

eigenvalue 1 are scalar multiples of the vector 2,
2

3
,
3

2
, 1

We normalize so that the sum of the elements is equal to 1.

w2 = 1)(evector[[1]] + evector[[2]] +
evector[[3]] + evector[[4]]), evector

N[
w2]


12

31
,

4

31
,

9

31
,

6

31


{0.387097, 0.129032, 0.290323, 0.193548}

This gives the exact value of the limit vector  12
31 ,

4
31 ,

9
31 ,

6
31 .
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Slide 7of10 Meaning of the Page Rank vector

The limit vector w is called the Page Rank vector of our graph. It provides a 
ranking system for the nodes of the graph. Each node is assigned an importance 
factor, based on the amount and relative importance of the nodes that link to it.

In our example, Node 1(Page 1) has page rank 0.38 so it is the most important 
page. Page 3 has a score of 0.29. Page 2 has importance factor 0.12, so it is the 
least important, and Page 4 has importance factor 0.19.

Random Surfer Model: The page rank of Page i represents the probability that a 
random surfer on the Internet that opens a browser to any page and starts 
following hyperlinks, visits Page i. 
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Slide 8of10 Perron-Frobenius Theorem

If M is a positive, column stochastic nxn matrix, then the following 
statements are true:

1. The number 1 is an eigenvalue of M, of multiplicity one (that is, if u and 
v are two eigenvectors corresponding to the eigenvalue 1, then u is a 
scalar multiple of v).

2. The eigenvalue 1 is the largest eigenvalue of M; all the other 
eigenvalues of M are strictly less than 1 in absolute value. 

3. Any eigenvector corresponding to 1 has either positive or negative 
entries. 

4. There exists a unique probabilistic eigenvector w corresponding to the 
eigenvalue 1. 

Recall the following definitions:
      A square matrix is called column stochastic if all its entries are greater than or 
equal to 0, and the sum of the entries in each column is 1.
      A matrix is called positive if all of its entries are strictly greater than 0.
      A vector is called probabilistic (or a probability distribution vector) if all its 
entries are greater than or equal to 0 and the sum of all entries is 1. 

Notes5.nb     11

Slide 9of10 Power Method Convergence Theorem

Let M be a positive, column stochastic nxn matrix. Denote by w its unique 
probabilistic eigenvector corresponding to the eigenvalue 1. 
Let v be the column vector with all entries equal to 1/n . Then the sequence v, 
Mv, ... , M kv converges to the vector w as k goes to ∞.
Let z be any probabilistic vector of size n. Then the sequence z, Mz, ... , M kz 
converges to the vector w as k goes to ∞.
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Slide 10of10 Sketch of the proof

Proposition 1: If v is a probabilistic vector and M is a positive and column 
stochastic matrix, then Mv is a probabilistic vector with only positive entries.

idea of proof: If v is a probabilistic vector of dimension n, and M is a column 
stochastic matrix, then Mv is also a probabilistic vector. 
                     If v is a non-negative vector and M is a positive matrix, then Mv 
has only positive entries.

Definition: Let u and v be two vectors of size n. We define the distance between 
u and v to be the non-negative real number d (u, v) = 12 ∑i=1

n ui$vi|. Here ui and 
vi denote the i-th entries in the vectors u, and respectively v. 
Definition: Consider now a sequence of vectors vk , k>0, of size n. We say that 
the sequence of vectors vk converges to w as k tends to ∞, if d(vk, w)!0 as k!∞.

Proposition 2 (Contraction): Let M be a positive and column stochastic nxn 
matrix. There exists a number r, 0<r<1, such that if v and u are two probabilistic 
vectors of size n, then d(Mv, Mu)⩽(1-r) d(v,u). Therefore the distance between u 
and v decreases after left multiplication by M.

Proposition  3:  Let  M be  a  positive  and  column stochastic  nxn  matrix  and  v  any
probabilistic  vector  of  size  n.  Denote  by  vk=MKv.  Then  the  sequence  vk
converges exponentially fast to a unique limit vector w.

idea of proof: Banach Fixed point Theorem! 
Let  j  and k  be any two positive  integer.  We can estimate the distance between
any two terms of the sequence vj and vj+k in the following way:
              d(vj+k, vj) = d(Mj+kv, Mjv) ⩽ (1-r) jd(Mkv, v) ⩽ (1-r) jd(vk,v) ⩽ (1-r) j& 0
as j!∞, because 1-r is strictly less than 1.
Therefore  the  sequence  {vk}k⩾0  is  a  Cauchy  sequence  in  * n,  so  there  exists  a
vector  w  in  * n  such  that  vk!w  as   k!∞.  The  limit  w  is  unique!  Suppose  by
contradiction,  that  there  would  be  (at  least)  two  limit  vectors,  w  and  z.  Then
both  w  and  z  must  satisfy  Mw=w  and  Mz=z.  Then  we  must  also  have  the
inequalities 0 ⩽ d(w, z) = d(Mw, Mz) ⩽ (1-r)d(w,z) < d(w,z), because 1-r is strictly
less than 1. We reached a constradiction, d(w, z)<d(w, z), which shows that our
initial assumption was false and w and z must be equal.
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Proposition  3:  Let  M be  a  positive  and  column stochastic  nxn  matrix  and  v  any
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14     Notes5.nb



Making interactive models

Manipulate[...]
Using the command Manipulate[...] we can turn a static computation or graph into 
a dynamic and sophisticated model. We can wrap Manipulate[...] around any Wol-
fram command to create an interactive model. We need to introduce a parameter 
that we want to manipulate and some bounds for that parameter. 

Parameter ranges are given inside curly brackets: 
{x, 4, 7}   -- specifies an interval [4,7] that the parameter x belongs to.
{x, {4,7}} -- specifies a discrete set of values that x can take on.
{{x, 5, “Some text describing the meaning of the parameter x”}, 4,7}  -- x belongs 
to the interval [4,7] and the default value is 5

Help->Demonstrations  gives  you  a  list  of  pre-built  Wolfram  Demonstration  Pro-
jects.  They all  use the command Manipulate[...].  You can browse by topic and see
the available templates. You can then download the project as a .cdf, which means
that you get an interactive version that you can run locally on your computer,  or
you  can  download  the  author  code,  which  means  that  you  get  a  notebook  (.nb)
with the necessary code to generate the model.

■ Example 1. Make an interactive model that computes n^2, for n in the interval 
[1,4].

☺ Solution 

In[1]:= Manipulate[n^2, {n, 1, 5}]

If  you click the plus sign at  the end of  the slider,  you get  a set  of  video controls.  You can introduce a
particular value of the parameter and hit Enter to jump to that value. When you do a presentation, you
can also hide the Wolfram commands and show only the interactive model.

We can also set a default value for n when we call Manipulate[..].

In[2]:= Manipulate[n^2, {{n, 3}, 1, 5}]

Out[2]=

n

9

☺ We can indicate the domain of n in different ways!
In the following example, n takes values between 1 and 4 in steps of 0.25 and respectively in steps of 1. 
The Manipulate command creates a slider. 

Manipulate[n^2, {n, 1, 5, 0.25}]

Manipulate[n^2, {n, 1, 5, 1}]

Instead of incrementing n in steps of 1, we can enumerate the list of possible values for n. The Manipu-
late command will create a button for each possible value.

In[3]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5}}]

Out[3]=

n 1 2 3 4 5

16

If the list of possible values for n is too large, then a drop - down list will be created.

In[4]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5, 6, 7, 8, 9}}]

Out[4]=
n 5

25

If no interval for n is given, Manipulate will create an empty text box where you can type in the value for 
n, then click Enter to obtain the result .
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In[5]:= Manipulate[n^2, {n}]

Out[5]=

n 100

10000

■ Example 2. Make an interactive model that draws a random directed graph with 
n vertices, for n between 4 and 7.

In[6]:= Manipulate[
RandomGraph[{n, 5}, GraphStyle $ "SmallNetwork", ImageSize $ Medium],
{n, {4, 5, 6, 7}}]

Out[6]=

n 4 5 6 7

1

2

34

5

If we do not want the graphics to rescale every time we generate a new graph, we can set the dimen-
sions of the graphical object ImageSize -> {1000, 300}. Or we can set the dimensions of the window 
diplayed by Manipulate[..] using ContentSize -> {1000, 300}.

In[7]:= Manipulate[
GraphPlot[Table[RandomInteger[], {n}, {n}],
VertexLabeling $ True, DirectedEdges $ True, ImageSize $ {1000, 300}],

{n,
4,
7}]
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Manipulate[
RandomGraph[{n, 5}, GraphStyle $ "SmallNetwork", ImageSize $ Medium],
{n, {4, 5, 6, 7}},
ContentSize $ {1000, 500}]

How to manipulate several functions of several parameters

■ Example 3. Make an interactive model that draws the graphs of the functions 
cos(mx) and sin(nx), where m is a continuous parameter in the interval [1,2], and 
n a discrete parameter in the set {4,5,6,7}.

In[9]:= Manipulate[
GraphicsRow[{

Plot[Cos[m & x], {x, 0, 2 & Pi}],
Plot[Sin[n & x], {x, 0, 2 & Pi}] }],

{n, {4, 5, 6, 7}},
{m, 1, 2}

]

Out[9]=

n 4 5 6 7

m

1 2 3 4 5 6

!1.0

!0.5

0.5

1.0

1 2 3 4 5 6

!1.0

!0.5

0.5

1.0

It is possible to have correlated sliders.

Manipulate[
Column[{"Graphs of Cos(mx) and Sin(nx)",

Plot[Cos[m & x], {x, 0, 2 & Pi}],
Plot[Sin[n & x], {x, 0, 2 & Pi}] }],

{n, m, 2 & m},
{m, 1, 2}

]

Recall :
Recall that we can define a graph by specifying the list of vertices and the list of edges and other option-
s.The generic command is Graph[VertexList, EdgeList, Options]. Sometimes it is desired to label the 
nodes of the graph using something other than numbers.
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Recall that we can define a graph by specifying the list of vertices and the list of edges and other option-
s.The generic command is Graph[VertexList, EdgeList, Options]. Sometimes it is desired to label the 
nodes of the graph using something other than numbers.

In[14]:= G = Graph[{1, 2, 3, 4}, {1 & 2, 2 & 3, 2 & 4, 4 & 3, 4 & 1, 4 & 2},
VertexLabels & {1 & "a", 2 & "b", 3 & "c", 4 & "d"},
EdgeLabels & {(1 & 2) )> "Edge ab"}]

Out[14]=

VertexList[..] and EdgeList[..] give the list of vertices and respectively the list of edges of a graph. 
PropertyValue[..] can be used to retrieve the list of labels.

In[15]:= VertexList[G]
EdgeList[G]

Out[15]= {1, 2, 3, 4}

Out[16]= {1 # 2, 2 # 3, 2 # 4, 4 # 3, 4 # 1, 4 # 2}

In[17]:= PropertyValue[G, VertexLabels]
PropertyValue[G, EdgeLabels]

Out[17]= {3 $ c, 4 $ d, 2 $ b, 1 $ a}

Out[18]= {1 # 2 $ Edge ab}

If the ordered list of labels is desired, one can use Sort[..].

In[19]:= L = PropertyValue[G, VertexLabels];
Sort[L, Greater]
Sort[L]

Out[20]= {3 $ c, 4 $ d, 2 $ b, 1 $ a}

Out[21]= {1 $ a, 2 $ b, 3 $ c, 4 $ d}
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In[22]:= HighlightGraph[G, {1, 4, 2 & 3}]

Out[22]=

In[23]:= HighlightGraph[G, {Style[{1, 4}, Green], 2 & 3}, VertexSize & Medium]

Out[23]=

Exercise
Open the Mathematica notebook Map.nb (MetroStationMap).The variable called Metro is a list of 5 
graphs with the metro networks in Seoul, New York, Paris, Mexico City and London. The vertices of the 
graphs are labeled with the names of the metro stations. 

■ (a). Write an interactive program using Manipulate[...] that has a control button with five values 
1,2,3,4,5. When the user selects a given value, you display the name of the city and the corresponding 
metro map.

■ (b). Expand the model from part (a) with a second control which gets populated with the vertices of the 
corresponding graph.  When the user selects a vertex from the list, you show the corresponding metro 
station highlighted in green (or with increased size) on the metro network. 

■ (c). Make an interactive model from part (b) with nodes v an u as parameters, that highlights the short-
est path from v to u, if there exists such a path in the graph, otherwise it only highlights the two vertices. 

■ (d). Make an interactive model that highlights a vertex v of G2 together with its parents and children (i.e. 
if there is an edge v->u, then v is called a parent node and u a child node). The function Neighborhood-
Graph[...] might be of help.
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■ (e). Optional (Combined Interactive Model): Parameters: nodes v and u, and an extra parameter 
“option” with values {b,c,d}. If “option” b is selected, then the model outputs the same thing as part (b), If 
“option” c is selected, then the model outputs the same thing as part (c) etc. If you skiped some part, 
say (d), then you should allow only two values for “option”, {b,c}.

Partial Answer:

NameCity = {"Seoul", "New York", "Paris", "Mexico City", "London"};
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Manipulate[
Column[{"Metro Map ", NameCity[[i]], HighlightGraph[Metro[[i]],

FindShortestPath[Metro[[i]], u, v], VertexSize $ 1.5]}],
{i, {1, 2, 3, 4, 5}}, {{u, 1}, VertexList[Metro[[i]] ]},
{{v, 1}, VertexList[Metro[[i]]]}]

i 1 2 3 4 5

u

v

Metro Map
Paris

La
Defense

Charles
de

Gaulle
Etoile

Franklin
Delano

Roosevelt

Villiers

Porte
Dauphine

Trocadero Champs
Elysee

Clemenceau

Miromesnil

Concorde

Invalides

Louvre

Madeleine

Sevres
Babylone

Chatelet
les

Halles

Pyramides

Hotel
de

Ville

Gare
de

Lyon

Reaumur
Sebastopole

Odeon Jussieu

Bastille
Arts
et

Metiers

Reuilly
Diderot

Oberkampf

Republique

Gare
d

Austerlitz

Bercy

Nation

Daumesnil

Château
de

Vincennes

Mairie
de

Montreuil

Pere
Lachaise

Gambetta
Place
des

Fetes

Belleville

Jaures

Strasbourg
St

Denis
Gare
de
l

Est

OperaRichelieu
Drouot

Louis
Blanc

Gare
du

Nord
La

Chapelle

Stalingrad
Bobigny
Pablo

Picasso

La
Courneuve

8
mai

1945

Barbes
Rochechouart

Marcadet
Poissonniers

Pigalle

Porte
de
la

Chapelle

Porte
de

Clignancourt

Gare
Saint- Lazarre

Plache
de

Clichy

Havre
CaumartinPont

de
Levallois
Becon

La
FourcheSaint

Denis
Universite

Asnieres
Genevilliers

Gabriel
Peri

Michel
Ange

Auteuil
Molitor

La
Motte

Picquet
Grenelle

Boulogne
Pont
de
St

Cloud
Pont
de

Sevres

Balard
Duroc

"Pasteur

Montparnasse
Bienvenue

Chatillon
Montrouge

Denfert
Rochereau

Raspail

Mairie
d

Issy

Porte
d

Orleans

Place
d

Italie

Maison
Blanche

Villejuif
Louis

Aragon

Mairie
d

Ivry

Olympiades

Creteil
"Prefecture
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Lab project - Making Interactive Models

■ Example 1. Make an interactive model that computes n^2, for n in the interval 
[1,4].

☺ Solution 1

Manipulate[n^2, {n, 1, 4}]

Once an interactive model is created, you can copy and run the model in a new notebook. You do not 
need to copy the code.

We can indicate the domain of n in different ways (each way will generate a different type of control 
button, slider, popup menu, checkbox, etc.)

Manipulate[n^2, {n, 1, 4, 0.25}]

Manipulate[n^2, {n, 1, 4, 1}]

Manipulate[n^2, {n, {1, 2, 3, 4}}]

Options for the controls can also be given within the specification for the variables. 
The option setting ControlType -> type attempts to use controls of the specified type. Possible control
types  include:  Animator,  Checkbox,  CheckboxBar,  ColorSetter,  ColorSlider,  InputField,  Manipulator,
PopupMenu, RadioButton or RadioButtonBar, Setter or SetterBar, Slider, Slider2D, TogglerBar, Trigger,
and VerticalSlider, None. More information can be found in the Mathematica Documentation. 
The  option  setting  ControlPlacement  ->  pos  specifies  that  controls  should  be  placed  at  position  pos
relative to expr. Possible settings for position are Bottom, Left, Right, and Top. 

In[24]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5, 6, 7, 8}, ControlType % SetterBar}]

Out[24]=

n 1 2 3 4 5 6 7 8

16

In[25]:= Manipulate[n^2,
{n, {1, 2, 3, 4, 5, 6, 7, 8}, ControlType &> PopupMenu, ControlPlacement % Left}

]

Out[25]=
n 4 16

In[26]:= Manipulate[n^2, {n, {1, 2, 3, 4, 5, 6, 7, 8}, ControlType % VerticalSlider}]

Out[26]=

n

16

☹ Solution 2

Manipulate[
temp = n;
temp = temp^2;
temp,
{n, 1, 4}

]

Notice  that  the  cell  reevaluates  itself  continuously  (the  right  cell  bracket  is  contantly  blinking),  even
when  we  do  not  change  the  position  of  the  slider.  You  can  confirm  this  by  going  to  Evaluation->Find
Currently  Evaluating  Cell.  This  happens  because  the  variable  temp  has  its  value  changed  during  the
evaluation (temp =temp^2), even if the value of n has not changed.

☺ Solution 3
The  problem  can  be  solved  by  making  the  global  variable  “temp”  be  local  variable  inside  a  Module.
Nothing you do to local Module  variables will  cause reevaluating, because it is part of the definition of
Module that values of local variables do not survive from one invocation to the next.
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Manipulate[Module[{temp},
temp = n;
temp = temp^3;
temp],

{n, 1, 4}
]

☹ Solution 4

Manipulate[
f[x_] := x^2;
f[n],
{n, 1, 4}]

☺ Solution 5

Manipulate[Module[{g},
g[x_] := x^2;
g[n]],

{n, 1, 4}]

The function g is now a local variable, so it does not cause any extra reevaluations. Notice that it is not 
defined outside of Module[...], so if you try to call g[3] say, somewhere below, the function g will not be 
recognized.

g[3]

☺ Solution 6

Manipulate[
f[x_] := x^2;
f[n],
{n, 1, 4}, TrackedSymbols * {n}]

We  can  keep  the  function  f  global,  without  causing  any  reevaluations  of  Manipulate,  if  we  explicitly
indicate  that  the  only  variable  whose  values  we  should  keep  track  of  is  the  parameter  n  (by  default,
Manipulate[...] tracks both f and n). The example above reevaluates only when n changes its value as a
result of moving the slider.

☹ Solution 7

h[x_] := x^2
Manipulate[
h[n],
{n, 1, 4}]

We  can  also  define  the  function  h(x)=x^2  globally,  before  Manipulate[..].  At  first  glance,  it  looks  like
everything works well and without causing any reevaluations of Manipulate. 
The downfall is that the definition of the function h (which is called later in the body of Manipulate) is not
saved together with the output of Manipulate. To see this, open a new Mathematica notebook, and set
“Evaluation->Notebook’s Default  Context”  to  “Unique to  this  notebook”.  Then copy ONLY the ouput  of
Manipulate (that is, ONLY the interactive model, absolutely NO code) in the new notebook. Try chang-
ing the slider. What do you notice?
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We  can  also  define  the  function  h(x)=x^2  globally,  before  Manipulate[..].  At  first  glance,  it  looks  like
everything works well and without causing any reevaluations of Manipulate. 
The downfall is that the definition of the function h (which is called later in the body of Manipulate) is not
saved together with the output of Manipulate. To see this, open a new Mathematica notebook, and set
“Evaluation->Notebook’s Default  Context”  to  “Unique to  this  notebook”.  Then copy ONLY the ouput  of
Manipulate (that is, ONLY the interactive model, absolutely NO code) in the new notebook. Try chang-
ing the slider. What do you notice?

☺ Solution 8

h[x_] := x^2
Manipulate[
h[n],
{n, 1, 4}, SaveDefinitions % True]

The  option  “SaveDefinitions'True”  forces  any  function  definitions  used  by  Manipulate  to  be  saved
with the output. The output can be copied and directly run in a new notebook. Try it!

■ Exercise 1. Make an interactive model that reads the value of two variables, total 
and sum, represented by two different controls, and outputs their sum, 
total+sum. Does the example below do that? 

Manipulate[
total = total + step;
{step, total},
{{total, 0}, &1000, 1000, 1}, {{step, 0}, &10, 10, 1},
FrameLabel % "Good or bad?"]

■ Exercise  2.  A  way  to  compute  the  sum  of  the  first  m  positive  integers  in
Mathematica  is  to  do  a  For  loop,  like  the  one  written  below.  Turn  the  code
below into  an  interactive  model  where  m will  be  allowed  to  take  any  values  in
the set {10, 20, 30, 40, 50}. 

m = 5;
s = 0;
For[i = 1, i ≤ m, i++, s = s + i];
s

■ Exercise 3. Interactive models with graphs. This is the exercise from last time, 
plus some additional tasks.

Open the Mathematica notebook MetroStationMap.The variable called Metro is a list of 5 graphs with 
the metro networks in Seoul, New York, Paris, Mexico City and London. The vertices of the graphs are 
labeled with the names of the stations. 

NameCity = {"Seoul", "New York", "Paris", "Mexico City", "London"}

4     Notes7.nb



■ (a). Write an interactive program using Manipulate[...] that has a control button with five values 
1,2,3,4,5. When the user selects a given value, you display the name of the city and the corresponding 
metro map. Because your program uses some global variables  defined outside Manipulate (like 
Metro), you should also set SaveDefinitions!True. 

■ (b). Expand the model from part (a) with a second control which gets populated with the vertices of the 
corresponding graph.  When the user selects a vertex from the list, you show the corresponding metro 
station highlighted in green (or with increased size) on the metro network. Make the control type a 
PopupMenu.

■ (c). Make an interactive model from part (b) with nodes v an u as parameters, that highlights the short-
est path from v to u, if there exists such a path in the graph, otherwise it only highlights the two vertices. 
Use the function FindShortestPath[...].

■ (d). Make an interactive model that highlights a vertex v together with its parents and children (i.e. if 
there is an edge v->u, then v is called a parent node and u a child node). The function Neighborhood-
Graph[...] might be of help.

■ (e). A Metro hub is a metro station which has direct connections to five or more other metro stations. 
Make an interactive model where the metro hubs are highlighted with VertexSize->1.2
Use for example VertexInDegree[..] to count the number of incoming edges for each node. You may 
also need to use the function Sort[..] (check also the Mathematica documentation on Sort).

■ (f). Optional: Combined Interactive Model: Parameters: nodes v and u, and an extra parameter 
“option” with values {b,c,d,e}. If “option” b is selected, then the model outputs the same thing as part (b), 
If “option” c is selected, then the model outputs the same thing as part (c) etc. If you skiped some part, 
say (d), then you should allow only two values for “option”, {b,c,e}. You may need to use some condi-
tional statements like If or Switch.
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MAT 331: Project 1

Project description:

The  PageRank  algorithm  provides  the  basis  for  Google’s  web  search  tools.  As  we  described  in  the
lecture, PageRank is a recursive algorithm, and it works by counting the number and quality of links to a
page to determine a rough estimate of how important the website is. The underlying assumption is that
more important websites are likely to receive more links from other websites and therefore, the impor-
tance  of  any  website  can  be  judged  by  looking  at  the  number  and  quality  of  the  pages  that  link  to  it.
Components of the PageRank vector serve as “importance” weights for web pages, independent of their
textual content, solely based on the hyperlink structure of the web. 
In this project we are interested in the theoretical foundations of the PageRank algorithm, in computing
the Page Rank of small-scale graphs and in the effects of particular aspects of web graph structure on
the Page Rank vector. 

Tasks:

1. Browse  the  web  and  read  a  little  bit  about  the  importance  of  the  PageRank  algorithm  for  web
searches.  Ranking  algorithms  such  as  PageRank  have  also  found  applications  in  other  areas
(population models,  article  citations,  hotel  ranking systems,  etc.).  Give examples of  the applications
of  Page  Rank  to  search  engines  and  to  other  real  life  problems.  Please  include  all  relevant
references.

2. Describe how the Page Rank algorithm works. Investigate possible ways to compute the Page Rank
vector of a graph (that is, computing eigenvalues, or rather applying the Power Method) and describe
their advantages and drawbacks as the size of the graph gets bigger and bigger. 

3. Explain  the  mathematics  behind  PageRank.   The  algorithm  can  be  explained  using  ideas  from
several fields of Mathematics, like probability, linear algebra, dynamical systems or analysis. You can
choose  the  mathematical  language  that  you  feel  more  confortable  with.  Feel  free  to  use  external
sources  and  articles  and  include  references  for  any  relevant  theorems  and  proofs  that  you  may
decide to use. If you decide to follow the steps explained in the lecture notes, then take a look at the
lemmas listed at the end and fill in the proofs.

4. You will next build an interactive model in Mathematica for calculating the Page Rank vector of small
scale web graphs, with nodes representing websites and edges representing hyperlinks. The number
of  nodes  is  assumed  reasonably  small,  so  that  your  algorithm  works  relatively  fast.  Your  model
should  work  with  random  graphs,  graphs  with  dangling  nodes,  as  well  as  some  fixed  test  graphs,
given  below.  The  basic  model  should  display  the  graph  with  the  first  five  most  important  nodes
highlighted  in  different  colors  and  the  (modified?)  transition  matrix  A  of  the  graph.  The  extended
model  should  include  a  step-by  step  computation  of  the  page-rank  vector  (at  each  step,  one
computes   Ak v  and  highlights  the  most  important  5  vertices  according  to  the  page-rank
approximation Ak v). There are several aspects that your interactive model should take into account:

◼  You  should  include  controls  that  enable  the  user  to  select  the  desired  type  of  graph  and  the
number of nodes. 

◼ The damping factor p should be given as a parameter, with values between 0.01 and 0.5.  

◼ The power k should also be given as a parameter, with values between 1 and 20, and with step
size 1.

5. Give some brief instructions on how your model should be tested (how to use the controls, etc.).



6. Conclusions. Formulate your findings after testing your interactive model on a couple of examples. Is
the  Page  Rank  vector  in  agreement  with  your  natural  understanting  of  the  relative  importance  of
nodes? What values of the damping factor seem to give more accurate rankings? You can also copy
paste in here any interesting examples that you may have discovered when testing your model.

7. References. Include all relevant references here.

General considerations:

You  wil  be  graded  on  the  quality  and  maturity  of  your  mathematical  explanations,  as  well  as  on  the
efficiency  of  the  Mathematica  code  that  you  develop.  Your  interactive  model  should  reevaluate  itself
only when the controls are changed (i.e. we change the position of a slider, etc.). When possible, try to
avoid  performing  unnecessary  computations  (for  example,  do  not  use  Eigensystem[A]  if  you  are  only
interested in the eigenspace corresponding to the eigenvalue 1; you may choose not to use MatrixPow-
er[A,k] if you have to compute Ak  for many succesive values of k; etc.) Try to have a nice coding style
and use functions when appropriate. Use different names for your variables! Do not include all intermedi-
ate  output  that  you  may  have  obtained  by  testing  small  parts  of  your  code.  All  your  code,  including
functions/variable  definitions  and   Manipulate[..]  should  be  contained  in  one  single  Mathematica  cell
bracket.  Before  you  start  working  on  your  project,  look  also  through  the  Wolfram  Demonstration  Pro-
jects, to get an idea of how a project should look like.

Mathematics:

When explaining the Mathematics behind the Page Rank Algorithm, if you decide to follow the plan 
outlined in the lectures, don’t forget to give justifications for the following statements:
0.1. If A is a column stochastic nxn matrix and v∈ℝn is a probabilistic vector, then Av is a probabilistic 

vector.

◼ Hint: By the definition of matrix multiplication, the i-th entry of the vector Av is (Av)i = ∑ j=1n aij vj.

0.2. If A is a positive nxn matrix and v∈ℝn a probabilistic vector with non-negative entries, then Av is a 
vector with all entries positive.

0.3. If A is a column stochastic nxn matrix, B is the nxn matrix with all entries equal to 1 and p∈(0,1], then 
the matrix (1-p)A + p 1

n
B is positive and column stochastic. The number p is called the damping 

factor.

0.4. Let u and v be two vectors in ℝn. Define the distance between u and v to be  

d (u, v) = 1
2 ∑i=1

n ui -−vi|. 

Show first that d verifies the three properties of a distance (metric):

■ d (u, v) = d (v, u)

■ d(u, v) ⩽ d(u, w) + d(w, v) where u,v,w are any three vectors in ℝn.

■ d(u, v) ⩾ 0 for any two vectors u,v and d(u, v) = 0 if and only if u = v.

0.5. Next assume that u and v are two probabilistic vectors in ℝn. Show that the distance function is 
bounded

■  d(u, v) ⩽ 1. 

Assume that u and v are two probabilistic vectors in ℝn. Let S = {1⩽i⩽n,  ui> vi} be the set of indices i 
for which the i-th entry of u is striclty greater than the j-th entry of v.  

2     Project1.nb



■ Show that S is a proper subset of {1,2,...,n}, that is, S is nonempty and S≠{1,2,...,n}.

■ Show that d(u, v)= ∑
i∈S

ui -−vi and that d(u, v)<1. 

0.6. Let A be a positive column stochastic nxn matrix. Show that there exists a real number r, with 0<r<1, 
such that  d(Au, Av) ⩽ (1-r) d(u, v), for any two probabilistic vectors u and v in ℝn.

◼ Hint: Consider the sets S={1⩽i⩽n,  ui> vi} and Q={1⩽i⩽n,  (Au)i> (Av)i}. Use Lemmas 0.1 and 0.4 to 
show that these are proper subsets of {1,2,...,n}. Next show that there exists a number r with 0<r<1 
such that for any fixed column j of the matrix A, we have the inequality ∑

i∈Q
aij < 1-r. The number r can 

be chosen so that 0<r<min 0⩽i,j⩽n{aij}. Then use the definition of matrix multiplication and Lemma 0.4.

0.7. Use Lemma 0.5 to show that if A is a positive column stochastic matrix, then there exists a unique 
probabilistic eigenvector corresponding to the eigenvalue 1.

0.8. Let A be a positive column stochastic nxn matrix. Let v be a probabilistic vector of size n. Use 
Lemma 0.5 and Lemma 0.6  and the ideas discussed in the lecture to show that the sequence v, 
Av, A2 v... , Ak v converges to the unique probabilistic eigenvector corresponding to the eigenvalue 1.

Some test graphs:

In[1]:= G1 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20},
{1 → 4, 1 → 6, 1 → 10, 1 → 11, 2 → 6, 2 → 13, 3 → 1, 3 → 7, 3 → 11, 4 → 1, 4 → 11,
5 → 2, 6 → 1, 6 → 15, 7 → 1, 7 → 14, 8 → 6, 8 → 16, 9 → 1, 9 → 10, 9 → 14, 10 → 1,
11 → 3, 12 → 8, 13 → 5, 13 → 6, 14 → 1, 14 → 3, 14 → 9, 15 → 13, 15 → 16,
16 → 12, 16 → 6, 15 → 17, 17 → 10, 17 → 18, 18 → 19, 18 → 20, 19 → 20, 20 → 19},

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[1]=

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17
18

19

20
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In[2]:= G2 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{2 → 1, 2 → 6, 3 → 1, 3 → 7, 4 → 1, 4 → 11, 5 → 2, 5 → 9, 6 → 1, 6 → 15,
7 → 1, 7 → 14, 8 → 1, 8 → 4, 8 → 6, 9 → 10, 9 → 14, 10 → 2, 10 → 1, 11 → 12,
11 → 3, 12 → 8, 13 → 5, 14 → 1, 14 → 3, 15 → 13, 15 → 16, 16 → 12},

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[2]=

1

2

3

4

5 6

7

8

9 10 11

12

13

14

15
16
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In[3]:= G3 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{1 → 4, 1 → 10, 1 → 6, 2 → 1, 2 → 6, 2 → 13, 3 → 1, 3 → 7, 4 → 1,
4 → 11, 5 → 2, 5 → 9, 6 → 15, 7 → 1, 7 → 14, 8 → 1, 8 → 4, 8 → 6,
8 → 16, 9 → 10, 9 → 14, 10 → 2, 10 → 1, 11 → 12, 11 → 3, 12 → 8,
13 → 5, 13 → 6, 14 → 1, 14 → 3, 15 → 13, 15 → 16, 16 → 12, 16 → 6 },

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[3]=
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2

3

4

5

6

7

8

9
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11

12

13

14

15
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In[4]:= G4 = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
{1 → 4, 1 → 10, 1 → 11, 2 → 6, 2 → 5, 2 → 13, 3 → 1, 3 → 7, 3 → 11, 4 → 1,
4 → 11, 5 → 2, 5 → 6, 6 → 5, 7 → 1, 7 → 14, 8 → 5, 9 → 1, 9 → 10, 9 → 14,
10 → 1, 11 → 3, 12 → 5, 13 → 5, 13 → 2, 13 → 6, 14 → 1, 14 → 3, 14 → 9},

GraphStyle → "SmallNetwork", GraphLayout → "SpringEmbedding"]

Out[4]=

1

2
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8

9
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11

12

13

14
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Project1 (discussion)

The project is based on the Perron-Frobenius Theorem

Theorem: If M is a positive, column stochastic nxn matrix then the following 
statements are true:

■ The number 1 is an eigenvalue of M, of multiplicity one 
■ The eigenvalue 1 is the largest eigenvalue of M; all the other eigenvalues of M are 

strictly less than 1 in absolute value. 
■ There exists a unique probabilistic eigenvector w corresponding to the eigenvalue 1. 
■ (Power Method Convergence) Let v be a probabilistic eigenvector. Then the sequence 

v, Mv, ... , M kv converges to w as k goes to ∞.

Page Rank Algorithm

We use the Perron - Frobenius Theorem to give a rigorous mathematical 
justification for the Page Rank Algorithm.   

The PageRank algorithm provides the basis for Google' s web search tools. As we 
described in the lecture, PageRank is a recursive algorithm, and it works by 
counting the number and quality of links to a page to determine a rough estimate 
of how important the website is. The underlying assumption is that more 
important websites are likely to receive more links from other websites and 
therefore, the importance of any website can be judged by looking at the number 
and quality of the pages that link to it. Components of the PageRank vector serve 
as "importance" weights for web pages, independent of their textual content, solely 
based on the hyperlink structure of the web. 

Back to the Web Graph

The Web Graph is not necessarily strongly connected, so its transition matrix 
need not be positive or column stochastic! The Web graph could have 
disconnected components or dangling nodes (nodes with no outgoing edges) 
which would correspond to 0 column vectors in the transition matrix. 

The Web Graph is not necessarily strongly connected, so its transition matrix 
need not be positive or column stochastic! The Web graph could have 
disconnected components or dangling nodes (nodes with no outgoing edges) 
which would correspond to 0 column vectors in the transition matrix. 

Some of the graphs in the project might also have these problems, especially the 
randomly generated ones. Then we cannot simply find the “unique” probabilistic 
eigenvector corresponding to the eigenvalue 1 and say that this is the Page Rank 
vector of our graph. We first need to adjust our algorithm slightly, to make it 
work also for graphs with dangling nodes and disconnected components

Dangling nodes

☹ Consider the graph depicted below. Its transition matrix is given on the right, 
and we can see that it is not column stochastic or positive either!

H = Graph[{1 $ 2, 3 $ 2},
GraphStyle $ "SmallNetwork", VertexSize $ 0.15];

TransitionH = Transpose[AdjacencyMatrix[H]];
GraphicsRow[{H, MatrixForm[TransitionH]}]

1

2

3

0 0 0
1 0 1
0 0 0

☹ Perron-Frobenius Theorem cannot be directly applied! Still, let us see if the Power 
Method converges to something useful. 

u = {1'3, 1'3, 1'3}; MatrixForm[u]
For[k = 1, k ≤ 3, k++,
Print[MatrixForm[MatrixPower[TransitionH, k].u]]]

1
3
1
3
1
3
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0
2
3
0
0
0
0
0
0
0

We notice  that  the  sequence  of  vectors  u,  Au,  ...,  Ak u  converges  to  the  0-vector.  There-
fore,  in  this  case,  the  rank  of  every  page  is  0.  This  is  counterintuitive,  as  page  2  has  2
incoming links, so it must have some importance! 

☺ A solution to the Dangling Nodes Problem
Change  the  transition  matrix  of  the  graph  so  that  it  becomes  column  stochastic.  More
specifically, change any 0-column in the transition matrix with a column where all elements
are equal to 1/n. 
This models the behavior of a random surfer that after viewing a web page with no outgo-
ing edges, will simply choose another page from the Web with equal probability 1/n and go
there.

For[i = 1, i ≤ 3, i++, TransitionH[[i, 2]] = 1'3];
MatrixForm[TransitionH]

0 1
3

0

1 1
3

1

0 1
3

0

u = {1'3, 1'3, 1'3}
For[k = 1, k ≤ 40, k++, Print[N[MatrixPower[TransitionH, k].u]]]


1

3
,
1

3
,
1

3


{0.111111, 0.777778, 0.111111}

{0.259259, 0.481481, 0.259259}

{0.160494, 0.679012, 0.160494}

{0.226337, 0.547325, 0.226337}

{0.182442, 0.635117, 0.182442}

{0.211706, 0.576589, 0.211706}
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{0.192196, 0.615607, 0.192196}

{0.205202, 0.589595, 0.205202}

{0.196532, 0.606937, 0.196532}

{0.202312, 0.595376, 0.202312}

{0.198459, 0.603083, 0.198459}

{0.201028, 0.597945, 0.201028}

{0.199315, 0.60137, 0.199315}

{0.200457, 0.599087, 0.200457}

{0.199696, 0.600609, 0.199696}

{0.200203, 0.599594, 0.200203}

{0.199865, 0.600271, 0.199865}

{0.20009, 0.59982, 0.20009}

{0.19994, 0.60012, 0.19994}

{0.20004, 0.59992, 0.20004}

{0.199973, 0.600053, 0.199973}

{0.200018, 0.599964, 0.200018}

{0.199988, 0.600024, 0.199988}

{0.200008, 0.599984, 0.200008}

{0.199995, 0.600011, 0.199995}

{0.200004, 0.599993, 0.200004}

{0.199998, 0.600005, 0.199998}

{0.200002, 0.599997, 0.200002}

{0.199999, 0.600002, 0.199999}

{0.200001, 0.599999, 0.200001}

{0.2, 0.600001, 0.2}

{0.2, 0.599999, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

{0.2, 0.6, 0.2}

Disconnected components
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Disconnected components

☺ Solution: Let T be the transition matrix of the Web graph. T is an nxn matrix, 
where n is huge. Fix a positive constant p between 0 and 1, called the damping 
factor (a typical value for p is 0.15). Define the Page Rank matrix (also known as 
the Google matrix) of the graph to be 

M=(1-p)T+p

1
n

1
n .. 1

n

.. .. .. ..
1
n

1
n .. 1

n

Theorem: If T is a column stochastic matrix, then M is a positive and column 
stochastic matrix.

The matrix M models the behaviour of the random surfer as follows: most of the 
time, a surfer will follow links from the current page he/she is viewing. From a 
page i, the surfer will follow the outgoing links and move on to one of the 
neighbors of page i. A smaller, but positive percentage of the time, the surfer will 
dump the current page and choose arbitrarily a different page from the web and 
“teleport” there. The damping factor p reflects the probability that the surfer 
quits the current page and goes to a new one. Since he/she can teleport to any 
web page, each page has equal probability 1n  to be chosen. So the Internet graph 

becomes strongly connected. 

An example of a graph with disconnected components 

G2 = Graph[{1, 2, 3, 4, 5, 6, 7},
{1 $ 2, 2 $ 1, 3 $ 4, 4 $ 3, 4 $ 5, 5 $ 4, 5 $ 3, 3 $ 5, 3 $ 6,
6 $ 4, 7 $ 5, 7 $ 4, 3 $ 7}, GraphStyle $ "SmallNetwork"]
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Find the transition matrix first and compute its eigenvalues:

Lout = VertexOutDegree[G2];
TA = Transpose[AdjacencyMatrix[G2]];
f[i_, j_] := If[Lout[[j]] != 0, TA[[i]][[j]]'Lout[[j]], 0];
T = Table[f[i, j], {i, Length[TA]}, {j, Length[TA]}];
MatrixForm[T]

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1

2
1
2 0 0

0 0 1
4 0 1

2 1 1
2

0 0 1
4

1
2 0 0 1

2

0 0 1
4 0 0 0 0

0 0 1
4 0 0 0 0

Eigenvalues[T]

-1, 1, 1, -
1

2
,
1

4
-1 + / 3 ,

1

4
-1 - / 3 , 0

Eigensystem[T]

-1, 1, 1, -
1

2
,
1

4
-1 + / 3 ,

1

4
-1 - / 3 , 0,

{-1, 1, 0, 0, 0, 0, 0}, 0, 0, 4,
13

3
,
11

3
, 1, 1, {1, 1, 0, 0, 0, 0, 0},

{0, 0, 0, -1, 1, 0, 0}, 0, 0, -1 + / 3 , -/ 3 , -1, 1, 1,

0, 0, -1 - / 3 , / 3 , -1, 1, 1, {0, 0, 0, -1, 1, -1, 1}

The eigenspace corresponding to the eigenvalue 1 is now two-dimensional! So 
there are many probabilistic eigenvectors corresponding to the eigenvalue 1. So 
for different choices of initial probabilistic vectors u2 and u3, the sequences u2, 
Tu2, ... T^ku2.... and u3, Tu3, ... T^ku3  can converge to different limits, as one can 
see below:
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The eigenspace corresponding to the eigenvalue 1 is now two-dimensional! So 
there are many probabilistic eigenvectors corresponding to the eigenvalue 1. So 
for different choices of initial probabilistic vectors u2 and u3, the sequences u2, 
Tu2, ... T^ku2.... and u3, Tu3, ... T^ku3  can converge to different limits, as one can 
see below:

n = Length[T];
u2 = Table[1'n, {n}];
For[k = 1, k ≤ 10, k++, Print[N[MatrixPower[T, k].u2]]]

{0.142857, 0.142857, 0.142857, 0.321429, 0.178571, 0.0357143, 0.0357143}

{0.142857, 0.142857, 0.25, 0.178571, 0.214286, 0.0357143, 0.0357143}

{0.142857, 0.142857, 0.196429, 0.223214, 0.169643, 0.0625, 0.0625}

{0.142857, 0.142857, 0.196429, 0.227679, 0.191964, 0.0491071, 0.0491071}

{0.142857, 0.142857, 0.209821, 0.21875, 0.1875, 0.0491071, 0.0491071}

{0.142857, 0.142857, 0.203125, 0.219866, 0.186384, 0.0524554, 0.0524554}

{0.142857, 0.142857, 0.203125, 0.222656, 0.186942, 0.0507813, 0.0507813}

{0.142857, 0.142857, 0.204799, 0.220424, 0.1875, 0.0507813, 0.0507813}

{0.142857, 0.142857, 0.203962, 0.221122, 0.186802, 0.0511998, 0.0511998}

{0.142857, 0.142857, 0.203962, 0.221191, 0.187151, 0.0509905, 0.0509905}

u3 = {1'2, 1'2, 0, 0, 0, 0, 0};
For[k = 1, k ≤ 10, k++, Print[N[MatrixPower[T, k].u3]]]

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}

{0.5, 0.5, 0., 0., 0., 0., 0.}
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Let us now choose a damping factor p different from 0 and redo the previous 
computations.

B = Table[1'n, {n}, {n}];
p = 0.2;
M = (1 - p)4T + p4B; MatrixForm[M]
For[k = 1, k ≤ 10, k++, Print[MatrixPower[M, k].u2]]

0.02857 0.82857 0.02857 0.02857 0.02857 0.02857 0.02857
0.82857 0.02857 0.02857 0.02857 0.02857 0.02857 0.02857
0.02857 0.02857 0.02857 0.42857 0.42857 0.02857 0.02857
0.02857 0.02857 0.22857 0.02857 0.42857 0.82857 0.42857
0.02857 0.02857 0.22857 0.42857 0.02857 0.02857 0.42857
0.02857 0.02857 0.22857 0.02857 0.02857 0.02857 0.02857
0.02857 0.02857 0.22857 0.02857 0.02857 0.02857 0.02857

{0.142857, 0.142857, 0.142857, 0.285714, 0.171429, 0.0571429, 0.0571429}

{0.142857, 0.142857, 0.211429, 0.194286, 0.194286, 0.0571429, 0.0571429}

{0.142857, 0.142857, 0.184, 0.217143, 0.171429, 0.0708571, 0.0708571}

{0.142857, 0.142857, 0.184, 0.218971, 0.180571, 0.0653714, 0.0653714}

{0.142857, 0.142857, 0.188389, 0.216046, 0.179109, 0.0653714, 0.0653714}

{0.142857, 0.142857, 0.186633, 0.216338, 0.178816, 0.0662491, 0.0662491}

{0.142857, 0.142857, 0.186633, 0.216923, 0.178933, 0.0658981, 0.0658981}

{0.142857, 0.142857, 0.186914, 0.216549, 0.179027, 0.0658981, 0.0658981}

{0.142857, 0.142857, 0.186802, 0.216643, 0.178933, 0.0659542, 0.0659542}

{0.142857, 0.142857, 0.186802, 0.21665, 0.17897, 0.0659318, 0.0659318}

For[k = 1, k ≤ 20, k++, Print[MatrixPower[M, k].u3]]
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{0.428571, 0.428571, 0.0285714, 0.0285714, 0.0285714, 0.0285714, 0.0285714}

{0.371429, 0.371429, 0.0514286, 0.08, 0.0571429, 0.0342857, 0.0342857}

{0.325714, 0.325714, 0.0834286, 0.102857, 0.0845714, 0.0388571, 0.0388571}

{0.289143, 0.289143, 0.103543, 0.125714, 0.101943, 0.0452571, 0.0452571}

{0.259886, 0.259886, 0.119634, 0.144366, 0.117669, 0.04928, 0.04928}

{0.23648, 0.23648, 0.133385, 0.158702, 0.129957, 0.0524983, 0.0524983}

{0.217755, 0.217755, 0.144035, 0.170229, 0.139728, 0.0552485, 0.0552485}

{0.202776, 0.202776, 0.152554, 0.179568, 0.147569, 0.0573784, 0.0573784}

{0.190792, 0.190792, 0.159426, 0.186964, 0.153861, 0.0590823, 0.0590823}

{0.181205, 0.181205, 0.164901, 0.1929, 0.158875, 0.0604567, 0.0604567}

{0.173535, 0.173535, 0.169281, 0.19765, 0.162894, 0.0615517, 0.0615517}

{0.1674, 0.1674, 0.172789, 0.201447, 0.166108, 0.0624277, 0.0624277}

{0.162491, 0.162491, 0.175594, 0.204486, 0.168679, 0.0631292, 0.0631292}

{0.158564, 0.158564, 0.177838, 0.206917, 0.170736, 0.0636902, 0.0636902}

{0.155423, 0.155423, 0.179633, 0.208862, 0.172382, 0.0641389, 0.0641389}

{0.15291, 0.15291, 0.181069, 0.210417, 0.173698, 0.064498, 0.064498}

{0.150899, 0.150899, 0.182218, 0.211662, 0.174751, 0.0647852, 0.0647852}

{0.149291, 0.149291, 0.183137, 0.212658, 0.175594, 0.065015, 0.065015}

{0.148004, 0.148004, 0.183872, 0.213454, 0.176268, 0.0651988, 0.0651988}

{0.146975, 0.146975, 0.18446, 0.214092, 0.176807, 0.0653458, 0.0653458}

Tips for the project:
◼ Create  a  graph  (random  or  taken  from  a  list).  Use  the  command  Graph[{List  of

vertices}, {List of Edges}] to create a graph starting from a set of vertices and edges.
You can also create a graph starting from the adjacency matrix if you use the command
AdjacencyGraph[Matrix].  Do  not  use  GraphPlot[...]  to  create  graphs,  use  it  only  for
display,  because it  creates a Graphics object,  and not  a  Graph object.  So you will  end
up with an object that can be nicely plotted, but most of the Mathematica algorithms for
graphs will not work with Graphics objects.

◼ Find  the  Transition  Matrix  of  the  graph,  using  the  function  that  you  wrote  for  HW2.
Change  the  Transition  Matrix  to  get  rid  of  the  Dangling  Nodes  (that  is,  change  the  0-
columns, if any). 

◼ If  n  is  the  number  of  vertices  of  your  graph,  then  generate  an  nxn  matrix  with  all
elements equal to 1/n.
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◼ Find  the  unique probabilistic  eigenvector  corresponding to  the  eigenvalue  1.  Since you
have  to  higlight  the  most  important  5  vertices,  you  may  need  to  sort  your  page-rank
vector.  Sort[List]  will  give  the  elements  in  increasing  order.   Sort[List,  Greater]  sorts
the list  in decreasing order, as you can see by executing the one-line code below. You
can then use the top 5 values to highlight the most important nodes in the graph.

Sort[{0.2, 0.55, 0.1, 0.8}, Greater]

◼ To show a step-by-step computation of  the page-rank vector,  one needs to start  with a
probabilistic  eigenvector  u  and  multiply  u  by  succesive  powers  of  the  (modified)
Transition  Matrix.  At  first  run,  you  can  assume  that  k<=10  and  color  the  vertices
according  to  the  ranks  given  by  u,  Tu,  T^2u,  ...  ,T^ku.  The  sequence  should  converge
exponentially  fast  to  the  page-rank  vector,  so  you  should  see  the  relative  rankings
stabilizing after a couple of steps. If you discover than a bigger value of k is needed, you
can adjust k afterwards. 

◼ Make sure first that your project works on the test graphs (and other fixed graphs). Then
make it work for random graphs. 

◼ Working with random graphs inside Manipulate[...] can be a little bit tricky if you have a
couple  of  sliders.  In  particular,  you  may  discover  that  a  new  graph  is  generated  each
time  you  move  a  slider,  even  if  the  slider  has  no  connection  with  the  graph.  The
examples below should help see why.
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Tips for the project:
◼ Create  a  graph  (random  or  taken  from  a  list).  Use  the  command  Graph[{List  of

vertices}, {List of Edges}] to create a graph starting from a set of vertices and edges.
You can also create a graph starting from the adjacency matrix if you use the command
AdjacencyGraph[Matrix].  Do  not  use  GraphPlot[...]  to  create  graphs,  use  it  only  for
display,  because it  creates a Graphics object,  and not  a  Graph object.  So you will  end
up with an object that can be nicely plotted, but most of the Mathematica algorithms for
graphs will not work with Graphics objects.

◼ Find  the  Transition  Matrix  of  the  graph,  using  the  function  that  you  wrote  for  HW2.
Change  the  Transition  Matrix  to  get  rid  of  the  Dangling  Nodes  (that  is,  change  the  0-
columns, if any, to columns with all entries 1/n). 

◼ If  n  is  the  number  of  vertices  of  your  graph,  then  generate  an  nxn  matrix  with  all
elements equal to 1/n. 

◼ Find  the  unique probabilistic  eigenvector  corresponding to  the  eigenvalue  1.  Since you
have  to  higlight  the  most  important  5  vertices,  you  may  need  to  sort  your  page-rank
vector.  Sort[List]  will  give  the  elements  in  increasing  order.   Sort[List,  Greater]  sorts
the list  in decreasing order, as you can see by executing the one-line code below. You
can then use the top 5 values to highlight the most important nodes in the graph.

Sort[{0.2, 0.55, 0.1, 0.8}, Greater]

◼ To show a step-by-step computation of  the page-rank vector,  one needs to start  with a
probabilistic  vector  u  and  multiply  u  by  succesive  powers  of  the  (modified)  Transition
Matrix.  At  first  run,  you can assume that  k<=10 and color  the vertices according to  the
ranks given by u, Tu, T^2u, ...  ,T^ku. The sequence should converge exponentially fast
to the page-rank vector, so you should see the relative rankings stabilizing after a couple
of steps. If you discover than a bigger value of k is needed, you can adjust k afterwards. 

◼ Make sure first that your project works on the test graphs (and other fixed graphs). Then
make it work for random graphs. 

◼ Working with random graphs inside Manipulate[...] can be a little bit tricky if you have a
couple  of  sliders.  In  particular,  you  may  discover  that  a  new  graph  is  generated  each
time  you  move  a  slider,  even  if  the  slider  has  no  connection  with  the  graph.  The
examples below should help see why.

Manipulate[...]

In the practice lab we saw that certain global variable assignment can cause 
Manipulate[...] to reevaluate itself more than needed. The first two examples 
below are relevant for this problem.

Manipulate[
z = 10;
z = z + n,
{n, 1, 10}]

z = 10;
Manipulate[
z = z + n,
{n, 1, 10}]

So we need to make z a local variable inside Module[{Variables}, Body-of-Module] to 
prevent reevaluations. If z is the only local variable, then we can write: Module[{z}, z=10; 
z=z+n]

Manipulate[Module[{z},
z = 10;
z = z + n],

{n, 1, 10}]

Functions with local variables 
Sometimes, we need to do more computations in the body of a function, that span several
lines of code. Perhaps we also need auxiliary variables to do those computations. We will
declare these variables as local variables inside Module[...]. 
Suppose we want to construct a function that takes as input a list, sorts the list in decreas-
ing  order,  and  checks  whether  the  sum  of  the  biggest  3  elements  minus  the  sum  of  the
smallest 3 elements is bigger than 10. 
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f6[L_] := Module[{aux, sum},
aux = Sort[L, Greater];
Print[aux];
aux2 = Sort[L];
Print[aux2];
sum = (aux[[1]] + aux[[2]] + aux[[3]] ) *

(aux2[[1]] + aux2[[2]] + aux2[[3]]);
Return[sum]

]

f6[{1, 2, 6, 3, 7, 8}]

{8, 7, 6, 3, 2, 1}

{1, 2, 3, 6, 7, 8}

15

If we test it on a list with less than 2 elements, we get an error.

f6[{1, 2}]

So, we redefine this function to cover this case.

f6[L_] :=
"Error! The given list has less than 3 elements" ,; Length[L] < 3

f6[{1, 2}]

Error;The given list has less than 3 elements

Working with random elements inside Manipulate - Easier 
or Harder?

How about generating random elements inside the body of Manipulate[ ...]? Should the 
code below reevaluate itself as fast as possible, each time generating a new random 
integer?

Manipulate[
x = RandomInteger[n],
{n, {10, 100}}

]

Every  time  you  evaluate  RandomReal[...]  or  RandomInteger[...]  or  RandomGraph[...],
you  get  a  different  answer,  and  you  might  think  that  an  assignment  like  x=Ran-
domReal[...]  inside  Manipulate[...]  should  therefore  constantly  update  itself  as  fast  as
possible.  But  this  would  normally  not  be  useful,  and  would  in  fact  have  negative  conse-
quences for a number of algorithms that use randomness internally. For this reason, these
functions  are  not  "ticklish",  in  the  sense  that  they  do  not  trigger  updates.  If  you  want  to
see actually new random numbers, you have to use Refresh to specify how frequently you
want the output updated. 

Notes8.nb     3 Every  time  you  evaluate  RandomReal[...]  or  RandomInteger[...]  or  RandomGraph[...],
you  get  a  different  answer,  and  you  might  think  that  an  assignment  like  x=Ran-
domReal[...]  inside  Manipulate[...]  should  therefore  constantly  update  itself  as  fast  as
possible.  But  this  would  normally  not  be  useful,  and  would  in  fact  have  negative  conse-
quences for a number of algorithms that use randomness internally. For this reason, these
functions  are  not  "ticklish",  in  the  sense  that  they  do  not  trigger  updates.  If  you  want  to
see actually new random numbers, you have to use Refresh to specify how frequently you
want the output updated. 

Harder because ...
In the next example, we want to build an interactive model with two controls, n and u, that 
generates a random graph called K with n vertices and 2n edges and highlights vertex u of 
graph K.

⌚ Problem: A new graph should be generated only when we change n, the number of 
nodes. However, when the vertex u is changed, the graph changes as well! So each time 
we change u, we highlight vertex u of a different graph.

Manipulate[
K = RandomGraph[{n, 2.n}];
HighlightGraph[K, {u}, GraphStyle / "SmallNetwork"],
{n, {5, 6, 7, 8}},
{u, 1, n, 1}

]

n 5 6 7 8

u

1

2

3

4

5

6
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Making K a local variable inside Module[...] does not solve the problem, because
the line K=RandomGraph[...] did not trigger by itself any reevaluations!

Manipulate[Module[{K},
K = RandomGraph[{n, 2.n}];
HighlightGraph[K, {u}, GraphStyle / "SmallNetwork"]],

{n, {5, 6, 7, 8}},
{u, 1, n, 1}

]

n 5 6 7 8

u

1

2 3

4

5
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Making K a local variable inside a DynamicModule[ ...] solves the problem.

Manipulate[DynamicModule[{K},
K = RandomGraph[{n, 2.n}];
Dynamic[HighlightGraph[K, {u}, GraphStyle / "SmallNetwork"]]],

{n, {5, 6, 7, 8}},
{u, 1, n, 1}

]

n 5 6 7 8

u

1

2

3

4

5 6

DynamicModule[{x,y,…},expr]
represents an object which maintains the same local instance of the symbols x, y, 
… in the course of all evaluations of Dynamic objects in expr. 

Variables specified in a DynamicModule will by default have their values 
maintained from one dynamic update to the next. 

Conclusion

For the project, you may consider using the following syntax:

Define functions & global variables

Manipulate[
      DynamicModule[{ graph g},
             Define graph g etc. according to the user choice;
               Dynamic[GraphicsRow[{
                       Module[{all other local variables},
                           Your page - rank computations here;
                           HighlightGraph[ ...]
                        ]
                  }]]
       ],
 controls for sliders etc.,
 SaveDefinitions->True
 ]
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Define functions & global variables

Manipulate[
      DynamicModule[{ graph g},
             Define graph g etc. according to the user choice;
               Dynamic[GraphicsRow[{
                       Module[{all other local variables},
                           Your page - rank computations here;
                           HighlightGraph[ ...]
                        ]
                  }]]
       ],
 controls for sliders etc.,
 SaveDefinitions->True
 ]

Using Dynamic[...]
Let us define the variable t and then perform a simple computation, like t^2+5.

t = 10;

This is a static output:

t^2 + 5

This is a dynamic output: 

Dynamic[t^2 + 5]

At  first  glance,  the  static  output  and  the  dynamic  output  look  the  same.  However,  notice
what happens to the output of Dynamic[t^2+5] when we change the value of t.

t = 6;

The output of Dynamic[t^2+5] has changed to reflect the current value of t. The output of 
t^2+5 remains the same, until we compile it again (Shift+Enter). Run also the following 
lines to understand the difference between static and dynamic output.

MousePosition[]

Dynamic[MousePosition[]]

Dynamic[...] can give infinite loops :

x = 0;
Dynamic[x = x + 1]

However, an assignment like t = RandomReal[ ...] inside Dynamic[ ...] does not constantly
update itself as fast as possible, because this function is not "ticklish", in the sense that it
does not trigger updates.
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However, an assignment like t = RandomReal[ ...] inside Dynamic[ ...] does not constantly
update itself as fast as possible, because this function is not "ticklish", in the sense that it
does not trigger updates.

t = 0;
Dynamic[t = RandomReal[10]]

Using DynamicModule[...] and Dynamic[...]
Suppose now that we want to evaluate a polynomial expression like ax^2+bx+c such that
the output always reflects the current value of x. The coefficients a, b and c are assumed
fixed, so any changes to these coefficients later on in the notebook should not trigger any
retroactive dynamic updates of the expression ax^2+bx+c.

a = 1;
b = 2;
c = 3;
x = 0;
Dynamic[a # x^2 + b # x + c]

Try now to change the value of x to 1, then to change the value of c to 1000. What do you 
notice?

x = 1;

c = 1000;

Let us now clear our variables and try again, this time using a DynamicModule[...].

Clear[a, b, c, x]

DynamicModule[{a, b, c},
a = 1;
b = 2;
c = 3;
x = 0;
Dynamic[a.x^2 + b.x + c]]

Try again to change the value of x to 1, then to change the value of c to 1000. What do you 
notice?

Exercise

Now suppose  we want  to  use  Manipulate[...]  to  display  the  value  of   ax^2+bx+c,
where  a,b,c  are  parameters  with  values  between  1  and  10,  and  x  is  a  randomly
generated number. We first try the following code:
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Now suppose  we want  to  use  Manipulate[...]  to  display  the  value  of   ax^2+bx+c,
where  a,b,c  are  parameters  with  values  between  1  and  10,  and  x  is  a  randomly
generated number. We first try the following code:

Manipulate[
x = RandomInteger[n];
Row[{"x=", x, " a.x^2+b.x+c=", a.x^2 + b.x + c}],
{a, 1, 10}, {b, 1, 10}, {c, 1, 10}, {n, {10, 20, 30, 40, 50}}]

a

b

c

n 10 20 30 40 50

x=5 a%x^2+b%x+c=66.86

Exercise: Rewrite the code above, so that the value of x gets updated ONLY when
the parameter n is changed. 
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Solvers
Problem 1.5 (Homework I) 

One  of  the  applications  of  matrix  algebra  is  to  solve  systems  of  linear  equations,  usually  in  a  large
number  of  variables.  A  system  of  m  such  equations  in  the  n  variables  x1,  x2,  ...,  xn,  can  be  written
explicitly:
a11x1 + a12x2 + ... + a1 n xn = b1

a21x1 + a22x2 + ... + a2 n xn = b2 
.................................................
am1x1 + am2x2 + ... + amn xn = bm

The same system can be written in the more convenient matrix notation as Ax=b, where A is the m × n
coefficient  matrix,  x  is  the  (column)  vector  of  length  n  containing  the  variables,  and  b  is  the  (column)
vector  of  length  m  of  the  coefficients  on  the  right  hand  sides  of  the  equalities.  By  general  theory,  a
system of linear equations has no solution, exactly one solution or infinitely many solutions. In Mathemat-
ica, we can use the command Solve[expression,variables], to solve the system Ax=b for the variable
x={x1,x2, ... , xn}. 

Problem 1.5 (Homework I)
◆ Find the inverse of a random 3x3 matrix A with integer coefficients (if it exists!), without using

the Mathematica function Inverse[...]. Recall that the matrix A is called invertible if there exists
a (unique) 3x3 matrix B such that AB=BA=I3,  where I3  is the identity matrix.  If  A is invertible,
then the matrix B is called the inverse of the matrix A, and it is denoted by A%1. 

Solution:
To find the inverse using the function Solve, we can solve three systems of equations

AX =
1
0
0

, AY =
0
1
0

and AZ =
0
0
1

. If all three systems have unique solutions,

then the inverse matrix is the 3 x3 matrix with columns X, Y and Z.

A = {{1, 2, 3}, {1, 5, 6}, {7, 8, 9}}; Print["A=" MatrixForm[A]];
b1 = {1, 0, 0}; b2 = {0, 1, 0}; b3 = {0, 0, 1};
X = Table[x[j], {j, 3}];
Y = Table[y[j], {j, 3}];
Z = Table[z[j], {j, 3}];
(' Solve three systems ')
S1 = Solve[A.X ) b1, X]
S2 = Solve[A.Y ) b2, Y]
S3 = Solve[A.Z ) b3, Z]
n1 = 0; n2 = 0; n3 = 0;
(' Test if all three systems have unique solutions ')
If[S1 ≠ {}, n1 = Dimensions[S1][[2]]];
If[S2 ≠ {}, n2 = Dimensions[S2][[2]]];
If[S3 ≠ {}, n3 = Dimensions[S3][[2]]];
If n1 ) n2 ) n3 ) 3,

(' invertible! ')
Print["Matrix A is invertible"];
soln = {Values[S1][[1]], Values[S2][[1]], Values[S3][[1]]};
inv = Transpose[soln];
Print "and the inverse matrix is A-1=", MatrixForm[inv], "."

" Inverse test: ",

MatrixForm[A], MatrixForm[inv], "=", MatrixForm[A.inv],
(' not invertible ')
Print["Matrix A is not invertible"]



Transformation rules
The solution returned by Solve[ ...] is a list of lists of transformation rules.

S1 = Solve[A.X ) b1, X]

x[1] $
1

6
, x[2] $ %

11

6
, x[3] $

3

2


The association x[1] # 1

6
 is called a transformation rule. 

How can we extract the useful value “1/6” from the transformation rule?

"Naive Idea"

S1[[1]]

S1[[1]][[1]]

S1[[1]][[1]][[2]]

"Better Idea"
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Values[S1]

Keys[S1]

We can get rid of one set of curly brackets by using the command Flatten[ ...]

Flatten[Values[S1]]

However, we lost the connection between the name of the variables and the numeric solutions obtained.

Transformation rules & Replacement Operator “/.”
expr /. rule lhs->rhs     Applies a transformation rule lhs->rhs to expression expr
The replacement operator  (pronounced “slash-dot”) applies rules to expressions.

In[1]:= Sin[x] $. x # 4

Out[1]= Sin[4]

If you give a list of rules, you get a list of results. Each rule will be tried once on 
each part of the expression.

In[2]:= Sin[x + y] $. {x # 4, y # 3}

Out[2]= Sin[7]

In[3]:= Sin[x + y] $. {x # Pi, y # Pi $ 2}

Out[3]= %1

In[4]:= x + x^2 + y ( x + x^3 $. {x^3 # x, y # x, x # 20}

Out[4]= 420 + 21 x

If you give a list of lists of rules, you get a list of results.

Sin[x] $. {{x # 0}, {x # 1}, {x )> 2}, {x # 3}, {x # 4}}

In[5]:= Sin[x + y] $. {{x # Pi, y # Pi $ 2}, {x # 4, y # 3}}

Out[5]= {%1, Sin[7]}

Short exercise : Use the transformation rule to change the 0 - rows of a matrix like {{1,2,3}, 
{0,0,0}, {0,1,0}, {0,0,0}, {0,2,3}} with 1 - rows.

Back to the homework exercise
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Back to the homework exercise

In[6]:= Clear[X, x];
A = {{1, 2, 3}, {1, 5, 6}, {7, 8, 9}};
X = Table[x[i][j], {i, 3}, {j, 3}];
solution = Solve[A.X ) IdentityMatrix[3], Flatten[X]]

Out[9]= x[1][1] $
1

6
, x[1][2] $ %

1

3
, x[1][3] $

1

6
, x[2][1] $ %

11

6
,

x[2][2] $
2

3
, x[2][3] $

1

6
, x[3][1] $

3

2
, x[3][2] $ %

1

3
, x[3][3] $ %

1

6


In[10]:= X /. Flatten[solution]

Out[10]= 
1

6
, %

1

3
,
1

6
, %

11

6
,
2

3
,
1

6
, 

3

2
, %

1

3
, %

1

6


In[11]:= MatrixForm[X /. Flatten[solution]]

Out[11]//MatrixForm=
1
6

% 1
3

1
6

% 11
6

2
3

1
6

3
2

% 1
3

% 1
6

Solving equations

Clear[x]

Mathematica can solve various kinds of equations. For example set

In[12]:= eqn = x2 + 2 a x + b , 0

Out[12]= b + 2 a x + x2 * 0

Note that the Set operator (=) has lower precedence than the Equal operator 
(==). To solve this equation for x you use the command

In[13]:= sol = Solve[eqn, x]

Out[13]= x $ %a % a2 % b , x $ %a + a2 % b 

Note that the result is given as a list with two lists of rules. Each sublist represents 
a distinct solution. To verify that this is indeed a solution of the quadratic equation, 
we can substitute the solution back into the equation and simplify the result.
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Note that the result is given as a list with two lists of rules. Each sublist represents 
a distinct solution. To verify that this is indeed a solution of the quadratic equation, 
we can substitute the solution back into the equation and simplify the result.

In[14]:= eqn $. sol

Out[14]= 2 a %a % a2 % b + %a % a2 % b
2

+ b * 0, 2 a %a + a2 % b + %a + a2 % b
2

+ b * 0

In[15]:= Simplify[eqn /. sol]

Out[15]= {True, True}

You can now also use the solutions for other computations. Suppose you want to 
evaluate some function f1 on the solution set:

f1[x] /. sol

Short exercise: We know that sol contains the roots of the quadratic polynomial (given as a 
list of transformation rules) and we want to check (using transformation rules!) that the sum 
of the two roots is -2a and the product of the two roots is b. 

Numerical Solvers

NSolve[expr, vars] -- attempts to find numerical approximations to the solutions 
of the system expr of equations or inequalities for the variables vars.
NSolve[expr,vars,Reals] -- finds solutions over the domain of real numbers.

Example: Find the solutions of a polynomial equation of degree 5

Solve[x^5 - 2 x + 3 ) 0, x]

x $ Root3 % 2 #1 + #15 &, 1,

x $ Root3 % 2 #1 + #15 &, 2, x $ Root3 % 2 #1 + #15 &, 3,

x $ Root3 % 2 #1 + #15 &, 4, x $ Root3 % 2 #1 + #15 &, 5

NSolve[x^5 - 2 x + 3 ) 0, x]

{{x $ %1.42361}, {x $ %0.246729 % 1.32082 .}, {x $ %0.246729 + 1.32082 .},
{x $ 0.958532 % 0.498428 .}, {x $ 0.958532 + 0.498428 .}}

NSolve[x^5 - 2 x + 3 ) 0, x, Reals]

{{x $ %1.42361}}

Functions with no name (pure functions #)  
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Functions with no name (pure functions #)  

#^5 &
When solving equations where solutions do not have any closed form, you may see these kind of 
functions returned by Mathematica. These are functions with no name, or pure functions.

#    represents the first variable (first argument) in a pure function 

#n   represents the n^th variable (argument) in a pure function
&   the ampersand marks the end of the pure function

The name of a function is irrelevant if you do not intend to refer to the function again, so the Wolfram 
language lets you define functions with no names. Pure functions in the Wolfram Language can take 
any number of arguments. The Wolfram Language allows you to avoid using explicit names for the 
arguments of pure functions, and instead to specify the arguments by giving “slot numbers” . In a Wol-

fram Language pure function, #n  stands for the nth argument you supply. # stands for the first 
argument.

#^5 &   is simply the function that takes any number and raises it to power 5. We can use this 
function to compute 2^5 for example.  
#1+#2 & is a function that computes the sum of two numbers.

#^5 &[2]
32

#1 + #2 &[1, 2]
3

Example : Sort the list L = {{1, 2}, {2, 5}, {1, 1}, {4, 8}, {3, 4}, {9,0}, {7,6}} in ascending order, according 
to the following criterion : {a, b} < {c, d} iff  b < d

L = {{1, 2}, {2, 5}, {1, 1}, {4, 8}, {3, 4}, {9, 0}, {7, 6}};
Sort[L] (( the first two sort commands don't help,
as they sort by the first term of the pair ()
Sort[L, Greater]
Sort[L, #1[[2]] < #2[[2]] &]

Short Exercise: Sort a list of the form  S = {{1, 1 -> 2}, {2, 2 -> 5}, {1, 1 -> 1}, {4, 4 -> 
8}, {3, 3 -> 4}, {9, 9 -> 0}, {7, 7 -> 6}} according to the following criterion: {a, a->b} < 
{c, c->d} iff b<d

Newton' s Method
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Newton' s Method

Numeric solvers that are used for finding real roots usually implement Newton' s 
Method.
Newton' s Method is a method for finding successively better approximations to the roots (or zeroes) of 
a real - valued differentiable function f : [a,b] -> R. Suppose that f has a single root in the interval [a,b]. 
The idea of the method is as follows: one starts with an initial guess which is reasonably close to the 
true root, then the function is approximated by its tangent line (which can be computed using the tools 
of calculus), and one computes the x-intercept of this tangent line (which is easily done with elementary 
algebra). This x-intercept will typically be a better approximation to the function’s root than the original 
guess, and the method can be iterated.

Suppose we have some current approximation xn. The equation of the tangent line to the curve y = ƒ(x) 
at the point  (xn, f (xn)) is 
y = f ’(xn)(x-xn) + f(xn). 
To find the intersection point of the tangent line with the x-axis we set y=0 and solve for x. We get 

 xn+1 = xn "
f (xn)
f ' (xn)

. We get a sequence of succesive approximations x1, ... xn, xn+1, ...  of the root of 

the function f, in the interval [a,b].
 The method will usually converge, provided this initial guess  x1 is close enough to the unknown zero, 
and that ƒ’(x1) ≠ 0  (i.e. the tangent line is not horizontal).
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MAT 331: Homework 3

Problem 3.1

The replacement operator /. (slash-dot) applies a transformation rule to an expression. If you give a list
of rules, each rule will be tried once on each part of the expression. If you give a list of lists of rules, you
get a list of results; each sublist is treated like an independent set of rules. 

x^2 + x^3 + y^2 + z /∕. {x_ -−> 2}

x^2 + x^3 + y^2 + z /∕. {x -−> 2, y → 3, z → 1}

x^2 + x^3 + y^2 + z /∕. {{x → 2}, {x → 2, y → 3, z → 1}, {x → 0, z → 0}}

) x^2 + x^3 + y^2 + z /∕. {x_^n_ → a}

1. Write  a  replacement  rule  that  when  applied  to  the  expression  f[x]  +  g[x]  outputs  Sin[x]  +
Cos[3]. 

2. Write  a  transformation  rule  that  replaces  any  expression  of  the  form  Function[variable]  with
Cos[3].

Problem 3.2

Mathematica  can  solve  various  kinds  of  equations,  symbolically  or  numerically.  The  result  will  be  dis-
played as a list of transformation rules. We can then use the replacement operator /. (slash-dot) to apply
these rules to any gven expression.

Consider now the cubic polynomial x3+ax2+bx+c. Use Mathematica to find the roots x1, x2 and x3. Then
use  transformation  rules  to  compute  the  three  symmetric  expressions  x1+x2+x3,  x1x2+x2x3+x3x1  and
x1x2x3. Use Simplify[...] to simplify the computations. What can you conclude about the relation between
the three expressions and the coefficients of the polynomial?

Problem 3.3

Consider the differential equation y' (x) = 1 + y (x).

1. Use VectorPlot[ ...] and StreamPlot[ ...] to plot the vector field of the differential equation. Try several
display options (i.e. change the size of the arrows, make the picture larger, change the colors, etc.) to
see which one gives the most accurate picture.

2. Next use DSolve[...] to solve the differential equation y’(x) = 1 + y(x), with initial condition y(0)=1. The
result  will  be a list  of transformation rules. Define a function YSol[x_] that returns the solution found
by DSolve[...]. Evaluate YSol numerically at x=0 and x=0.1. Then plot the function YSol.

3. Check that YSol is indeed a solution of the differential equation y’(x) = 1 + y(x) by using Mathematica
to compute the derivative of the function YSol.



4. Now go back to the picture that you have obtained in part 1, using StreamPlot[..]. Color the solution of
the  differential  equation  y’(x)  =  1+y(x)  corresponding  to  the  initial  condition  y(0)=1  on  top  of  the
stream plot picture.
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Solving Differential Equations

Example  1:   Solve  the  ODE   dy
dx

= x2

1"y2

This ODE was solved last week using separation of variables: 
1 " y2)dy  = x2dx 
and the general solution was found (by integration) to be  

y " y3

3
+ c = x3

3
, where c is a constant parameter.

The implicit curves

 y " y3

3
+ c = x3

3
 are called the integral curves of the differential equation.

Example  2  (Initial value problem):
Solve the ODE  dy

dx
= x2

1"y2 , with initial condition y(0)=-1.1

Otherwise said, we need to find the unique solution of the ODE that passes 
through the point (x0,y0)=(0,-1.1)

Given a point (x0,y0), to find the solution that passes through the point (x0,y0) 

means to solve the equation y0 " y0
3

3
+ c = x0

3

3
 and find the value of the 

parameter c.

Vector field plot

Pick any point P=(x0, y0) and compute the tangent line at P to the solution curve
passing  through  the  point  P.  The  slope  of  the  tangent  line  at  P  is

m = dy
dx


P
= x0

2

1"y0
2 , so the equation of the tangent line at P is y- y0  =  m(x-

x0).

VectorPlot[{vx,  vy},  {x,  xmin,  xmax},  {y,  ymin,  ymax}]
generates a vector plot of the vector field as a function of x and y.

VectorPlot[{vx,  vy},  {x,  xmin,  xmax},  {y,  ymin,  ymax}]
generates a vector plot of the vector field as a function of x and y.

VectorPlot[{1, x^2#(1 % y^2)}, {x, %3, 3},
{y, %3, 3}, VectorScale ( {Tiny, Small, None}]

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3
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The option VectorScale determines the length and arrowhead size of field vectors 
that are drawn.

Stream Plot

StreamPlot[{vx,  vy},  {x,  xmin,  xmax},  {y,  ymin,  ymax}]
generates a stream plot of the vector field as a function of x and y.

StreamPlot[{1, x^2#(1 % y^2)}, {x, %3, 3}, {y, %3, 3}]

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

Plot the integral curves of the ODE 
dy
dx

= x2

1"y2 , with the integral curve that 

passes through the point (0, -1.1) plotted in red.
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Plot the integral curves of the ODE 
dy
dx

= x2

1"y2 , with the integral curve that 

passes through the point (0, -1.1) plotted in red.

StreamPlot[
{1, x^2#(1 % y^2)}, {x, %3, 3}, {y, %3, 3},
StreamScale ( Tiny,
StreamPoints ( {{{{0, %1.1}, Red}, Automatic}}]

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

Exact Solutions

DSolve[eqn,y ,{x,xm in,xm ax}]
solves a differential equation for the function y, with the independent variable x 
between xmin and xmax.
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DSolve[eqn,y ,{x,xm in,xm ax}]
solves a differential equation for the function y, with the independent variable x 
between xmin and xmax.

DSolve returns results as lists of rules. This makes it possible to return multiple
solutions  to  an  equation.  For  a  system  of  equations,  possibly  multiple  solution
sets  are  grouped  together  inside  curly  brackets  {  }.  You  can  use  the  rules  to
substitute the solutions into other calculations.

It may not always be possible to compute exact solutions of an ODE. 

DSolve[{y'[x] * x^2#(1 % y[x]^2), y[0] * %1.1}, y, {x, 0, 5}]

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadtoan emptysolution."

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadtoan emptysolution."

y " Function{x},

& 18 & ' 18 3 + & 21!3 53.163 ' 27. x3 + '89.6954 ' 2870.8 x3 + 729 x6
2!3

+

21!3 3 53.163 ' 27. x3 + '89.6954 ' 2870.8 x3 + 729 x6
2!3



6 × 22!3 53.163 ' 27. x3 + '89.6954 ' 2870.8 x3 + 729 x6
1!3



Numerical Solutions

NDSolve[eqns,  y,  {x,  xmin,  xmax}]
finds  a  numerical  solution  to  the  ordinary  differential  equations  eqns  for  the
function  y  with  the  independent  variable  x  in  the  range  xmin  to  xmax.  The
output of NDSolve is a list of transformation rules.

sol1 = NDSolve[
{y'[x] * x^2#(1 % y[x]^2), y[0] * %1.1}, y, {x, 0, 5}]

y " InterpolatingFunction Domain: {{0., 5.}}
Output: scalar


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The solution to the initial value problem from Example 2 is unique. In this case, the 
output of NDSolve is a nested list with one transformation rule. The 
transformation rule describes y as a (numerically computed) function of x. 
Conceptually, think of the transformation rule as something like y % f[x_ ]

! Recall : To apply a transformation rule (or a set of transformation rules) to an 
expression, we use the Replacement operator “/.” (slash-dot).

y[2] #. sol1

{'2.35757}

We can also plot the function returned by NDSolve[..], just as we plot any other 
function in the Wolfram language, using the command Plot[..]. Compare the graph 
below to the stream line that we had plotted in red in the last StreamPlot[..].

Plot[y[x] #. sol1, {x, 0, 3}, PlotRange ( All]

0.5 1.0 1.5 2.0 2.5 3.0

!3.0

!2.5

!2.0

!1.5

!1.0

The command Flatten[..] removes one set of curly brackets.

Flatten[sol1]
y[2] #. Flatten[sol1]

y " InterpolatingFunction Domain: {{0., 5.}}
Output: scalar



'2.35757

If we plan to use the function returned by NDSolve several times, it makes sense 
to give it a name, so we do not have to apply the replacement operator "/." (slash - 
dot) every time.
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If we plan to use the function returned by NDSolve several times, it makes sense 
to give it a name, so we do not have to apply the replacement operator "/." (slash - 
dot) every time.

f[z_] := Module[{sol0, x, y},
sol0 =
NDSolve[{y'[x] * x^2#(1 % y[x]^2), y[0] * %1.1}, y, {x, 0, 5}];

y[z] #. Flatten[sol0]
]

f[2]

'2.35757

Plot[f[z], {z, 0, 3},
AxesLabel ( {"x%axis", "y%axis"}, PlotStyle ( {Red, Thick}]

0.5 1.0 1.5 2.0 2.5 3.0
x!axis

!3.0

!2.5

!2.0

!1.5

!1.0
y!axis

Exercise: Study the ODE  
dy
dx = 4 x!x3

4+y3
1. Plot the vector field using StreamPlot[...] in the region x ∈ [-3.5, 3.5], y ∈ [-3.3, 3.3]. On

the same plot, plot the tranjectory starting at the point (0, 1) in Red, and the tranjectory
starting at the point (1, -1.5) in Green. 

2.  Find  the  discontinuities  of  the  vector  field  using  NSolve[expr,vars].  This  command
attempts  to  find  numerical  approximations  to  the  solutions  of  the  system  expr  of
equations or inequalities for the variables vars.

3. Use NDSolve[...] to solve the ODE from example 2, 
dy
dx

= 4 x!x3

4+y3 , with initial condition

y(0)=1.  The  range  for  the  variable  x  is  assumed  to  be  [-3,3].  Plot  the  function  that
NDSolve returns, on the domain [-3,3].
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MAT 331: Project 2

Project description

In this project we will use Mathematica to solve several problems involving differential equations. Differ-
ential equations are currently used to model a wide range of phenomena from biology, physics, chem-
istry,  computer  science,  economic  analysis,  etc.  The  theory  of  differential  equations  has  become  an
essential tool in all areas of science, particularly since computers became commonly available.

Problem 1

The fish and game department in a certain state is planning to issue hunting permits to control the deer 
population (one deer per permit). It is known that if the deer population falls below a certain level m, the 
deer will become extinct. It is also known that if the deer population rises above the carrying capacity M, 
the population will decrease back to M through disease and malnutrition. Consider the following model 
for the growth rate of the deer population P as a function of time t: 

dP
dt

= r P(M-− P) (P-−m)

where P is the deer population and r=0.00003 is a constant of proportionality. The values of the other 
parameters are M=100 and m=55.

1. Plot  the  vector  field  of  the  differential  equation  using  VectorPlot[..].  Then  plot  the  vector  field  using
StreamPlot[..]; identify the constant solutions and color them in red using StreamPlot[..]. Try a window
size of 100x130 (in the txP plane). What happens to the solutions as time t increases, t→∞? Color a
couple of trajectories to illustrate the possible behaviors, then explain the plot.

2. Solve  the  system of  differential  equations  for  the  initial  condition  P(20)=110.  If  DSolve[...]  does  not
work, then a numeric approximation may be the next best thing to hope for,  so use Mathematica  to
find a numerical approximation of the true solution, then plot it.

3.  If  the  initial  deer  population  is  140,  about  how many  hunting  permits  should  be  issued  so  that  the
deer population does not become extinct?

4. Write  a  small  interactive  model  using  Manipulate[..]  and  Locator[..],  that  initially  plots  the
StreamPlot[..]  from part 1,  and then on click, colors the solution curve that passes through the point
where the user clicked.  

Problem 2

In this problem, we will visualize a famous phenomenon in dynamics of nonlinear differential equations, 
called the Poincaré-Andronov-Hopf bifurcation. It exhibits the birth of a limit cycle through a change in 
the stability of the equilibrium point. Consider the nonlinear system 𝒮 of differential equations given 
below, where α𝛼  is a real parameter:



x ' = y -− x(x^2 + y^2 -− α𝛼) (1)
y ' = -−x -− y(x^2 + y^2 -− α𝛼) (2) . Its linearization

at (0, 0) is denoted byℒ and given by
x ' = α𝛼x + y (1)
y ' = -−x + α𝛼y (2)

1. Find the equilibrium points of the nonlinear system. Find the eigenvalues of the coeffient matrix of the
linearized system at the equilibrium points in terms of the parameter α𝛼.

2. Look at the linear system ℒ and sssume that the value of the parameter α𝛼 is -1/4. 

2.0.1. Assume that the system satisfies the initial condition x(0) = -10 and y(0) = 20. Use DSolve[..]
to  find  the  solution  of  the  corresponding  initial  value  problem,  then  plot  the  correspoding
trajectory in the xy plane. 

2.0.2. For your trajectory in part  2.0.1,  draw the graphs of  x versus t  and y versus t  on the same
graph.

2.0.3. For your trajectory in part 2.0.1, draw the corresponding graph in the three-dimensional txy-
space.

* In  parts  2.0.1  -  2.0.3,  it  is  important  that  you  choose  appropriate  appropriate  ranges  for  x,y,t  and
approriate scales for your plot.

3. By using Manipulate[...] and StreamPlot[..], do an interactive model of the vector field of the system,
with the parameter α𝛼  taking values in the closed interval [-2, 2]. The interactive model will show the
Phase  Portrait  of  the  nonlinear  system  𝒮  ,  the  Phase  Portrait  of  the  linear  system  ℒ  and  the
eigenvalues at the equilibrium points.

4. Analyze the type and stability of the equilibrium points of the nonlinear system 𝒮 for all values of the
parameter α𝛼.   Use the interactive model to find the values of  the parameter α𝛼  where the qualitative
nature of the solutions for the system changes. 

5. Use the Interactive model to find the values of  the parameter α𝛼  for  which the system develops limit
cycles. Then prove mathematically the existence of the limit cycle by changing the system into polar
coordinates and solving it. 

General considerations:

No previous knowledge of differential equations is assumed is this project, except for the theory devel-
oped in the lecture notes posted on Blackboard. Please read the lab notes on Blackboard to find what
Mathematica  commands  are  used  for  solving  differential  equations  and  visualizing  Phase  Portraits.
More examples and tutorials about solving differential equations and plotting vector fields can be found
in the Mathematica documentation (Help → Wolfram Documentation). 
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Systems of Differential Equations

Solving systems of first order differential equations

Example: Solve the system   x ' = x+ y (1)
y ' = 4 x+ y (2)

The functions x and y are functions of time t and the derivatives are also taken 

with respect to the variable t.   x ' (t) = x(t) + y(t) (1)
y ' (t) = 4 x(t) + y(t) (2)  . 

Vector field plot

The vector field plot gives valuable information about the asymptotic behaviour 
of solutions:

StreamPlot[{x + y, 4 x + y}, {x, %5, 5},
{y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4

A = {{1, 1}, {4, 1}}; (* coefficient matrix of the system *)
Eigensystem[A]

{{3, "1}, {{1, 2}, {"1, 2}}}
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The eigenvalues of the coefficient matrix A are real and distinct (3 and -1), so the
general solution of the system of differential equations is

 x(t)
y(t)  = c1 e3 t

1
2
 + c2 e%t

%1
2
, where c1 and c2 are constant parameters. 

There are two special solutions when c1=0, and respectively when c2 = 0.  We will
color these special solutions in red, and respectively in orange.

L = Eigenvectors[A];
Rc1 = {L[[1]], Orange}
Lc1 = {%L[[1]], Orange}
Rc2 = {L[[2]], Red}
Lc2 = {%L[[2]], Red}

{1, 2}, 

{"1, "2}, 

{"1, 2}, 

{1, "2}, 
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StreamPlot[{x + y, 4 x + y}, {x, %5, 5},
{y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{Rc1, Rc2, Lc1, Lc2, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4

DSolve

DSolve[eqn,y ,x]
solves a differential equation for the function y, with independent variable x.
DSolve[eqn,y ,{x,xm in,xmax}]
solves a differential equation for the function y, with the independent variable x 
between xmin and xmax.
DSolve[{eqn1,eqn2,…},{y1,y2,…},…]
solves a list of differential equations for y1, y2, ... .

DSolve returns results as lists of rules. This makes it possible to return multiple
solutions  to  an  equation.  For  a  system  of  equations,  possibly  multiple  solution
sets  are  grouped  together  inside  curly  brackets  {  }.  You  can  use  the  rules  to
substitute the solutions into other calculations.
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DSolve returns results as lists of rules. This makes it possible to return multiple
solutions  to  an  equation.  For  a  system  of  equations,  possibly  multiple  solution
sets  are  grouped  together  inside  curly  brackets  {  }.  You  can  use  the  rules  to
substitute the solutions into other calculations.

How to use the output of DSolve[...]

● sol1 = DSolve[
{x'[t] & x[t] + y[t], y'[t] & 4 x[t] + y[t]}, {x, y}, t]

x & Function{t},
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2],

y & Function{t}, (!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]

When the second argument of DSolve is specified as y, the solution is returned as
a  transformation  rule  y->Function[...],  where  the  right  hand  side  of  the  rule  is  a
pure  function  (a  function  with  no  name).  A  general  solution  contains  arbitrary
parameters labeled C[i] that can be varied to produce particular solutions for the
equation.

f = Function{t},
1
2

-)t 1 + -4 t C[1] +
1
4

-)t %1 + -4 t C[2]

(*copy paste*)

Function{t},
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2]

How to use the solution returned by DSolve[...]

g = x *. Flatten[sol1]
h = y *. Flatten[sol1]

The command Flatten[...] will get rid of the additional curly brackets. Instead of 
using two command lines, we can use only one:

{g, h} = {x, y} *. Flatten[sol1]

Function{t},
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2],

Function{t}, (!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]
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To obtain a particular solution, we can give values to the constants C[1] and C[2].

? C

C[i] is thedefaultformforthe ith parameteror
constantgeneratedin representingtheresultsofvarioussymboliccomputations.  '

{g0, h0} = {x, y} 1. Flatten[sol1] 1. {C[1] & 0.1, C[2] & 0.1}

Function{t},
1

2
(!t 1 + (4 t 0.1 +

1

4
(!t "1 + (4 t 0.1,

Function{t}, (!t "1 + (4 t 0.1 +
1

2
(!t 1 + (4 t 0.1

We can plot the solution that we have obtained using ParametricPlot[...].

ParametricPlot[{g0[t], h0[t]}, {t, %1, 0.1}, AxesOrigin & {0, 0}]

0.02 0.04 0.06 0.08 0.10 0.12

!0.10

!0.05

0.05

0.10

0.15
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Several ways to call DSolve[...]

● sol2 =
DSolve[{x'[t] 3 x[t] + y[t], y'[t] 3 4 x[t] + y[t]}, {x[t], y[t]}, t]

x[t] &
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2],

y[t] & (!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]

We can also relabel the parameters generated by DSolve[...], see the example 
below and the Mathematica documentation on Generated Parameters.

● sol3 = DSolve[{x'[t] 3 x[t] + y[t], y'[t] 3 4 x[t] + y[t]},
{x[t], y[t]}, t, GeneratedParameters & (Subscript[d, #] &)]

x[t] &
1

2
(!t 1 + (4 t d1 +

1

4
(!t "1 + (4 t d2, y[t] & (!t "1 + (4 t d1 +

1

2
(!t 1 + (4 t d2

We can no longer use the same command as before to extract the solutions, {x,y}
/.  Flatten[sol2],  because  the  replacement  rule  is  now of  the  form x[t]->Rule,  and
not of the form x->Rule. Notice also that we defined the functions g2 and h2 using
“=” and not “:=”.

Clear[t];
g2[t_] = x[t] 1. Flatten[sol2]
h2[t_] = y[t] 1. Flatten[sol2]
1

2
(!t 1 + (4 t C[1] +

1

4
(!t "1 + (4 t C[2]

(!t "1 + (4 t C[1] +
1

2
(!t 1 + (4 t C[2]

When an adequate number of initial conditions are specified, DSolve[...] returns 
particular solutions to the given equations.

● sol4 = DSolve[{x'[t] 3 x[t] + y[t],
y'[t] 3 4 x[t] + y[t], x[0] 3 2, y[0] 3 0}, {x[t], y[t]}, t]

x[t] & (!t 1 + (4 t, y[t] & 2 (!t "1 + (4 t

{x1[t_], y1[t_]} = {x[t] , y[t]} 1. Flatten[sol4]

(!t 1 + (4 t, 2 (!t "1 + (4 t
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ParametricPlot[{x1[t], y1[t]}, {t, %2.5, 1.5}]

5 10 15 20 25

!20

20

40
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Other examples of systems of  first order differential 
equations

StreamPlot[{x + y, y}, {x, %5, 5},
{y, %5, 5}, StreamScale & Automatic, StreamPoints &
{{{{0, 1}, Red}, {{1, 1}, Green}, {{%3, 2}, Orange}, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4
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StreamPlot%3 x + 2 y, 2 x % 2 y,
{x, %5, 5}, {y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}

!4 !2 0 2 4

!4

!2

0

2

4
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StreamPlot[{y, %x}, {x, %5, 5}, {y, %5, 5}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}]

!4 !2 0 2 4

!4

!2

0

2

4

Exercise 1 (from last class): 

Study the ODE  
dy
dx = 4 x!x3

4+y3 .

1. Plot the vector field using StreamPlot[...] in the region x ∈ [-3.5, 3.5], y ∈ [-3.3, 3.3]. On
the same plot, plot the tranjectory starting at the point (0, 1) in Red, and the tranjectory
starting at the point (1, -1.5) in Green. 

ODE2.nb     11

2.  Find  the  discontinuities  of  the  vector  field  using  NSolve[expr,vars].  This  command
attempts  to  find  numerical  approximations  to  the  solutions  of  the  system  expr  of
equations or inequalities for the variables vars.

3. Use NDSolve[...] to solve the ODE from example 2, 
dy
dx

= 4 x!x3

4+y3 , with initial condition

y(0)=1.  The  range  for  the  variable  x  is  assumed  to  be  [-3,3].  Plot  the  function  that
NDSolve returns, on the domain [-3,3].

Exercise 2 (predator-prey system): 

Consider the system usually described as a predator - prey model (Voltera, 1931):

  
dx
dt = 0.2 x! 0.7 xy,  dy

dt = !0.4 y+ 0.5 xy.
where you can think of  the function x(t)  as representing a population of  rabbits that natu-
rally  grow  at  a  rate  proportional  to  their  population  (that  is,  exponential  growth  in  the
absence  of  predators)  and  the  function  y(t)  as  representing  a  population  of  foxes  that
naturally  decline  (that  is,  exponential  decay  in  the  absence of  prey).  The term xy  in  both
equations  is  proportional  to  the  number  of  likely  encounters  of  the  two  population  in  a
certain environment. Encounters are detrimental to the rabbits and beneficial to the foxes.
1. Plot  the vector  field  using StreamPlot[...]  in  the region that  makes sense for  the given

problem.  On  the  same  plot,  plot  the  tranjectory  starting  at  the  point  (0,  1)  in  Red,  the
tranjectory starting at the point (1, 0) in Green, the trajectory starting at (1,1) in Orange,
and the trajectory starting at (5, 2) in Purple. 

2. What do you notice? How do the solutions look like?
3. Assume that initially there are 5 rabbits and 2 foxes. Use NDSolve[...] or DSolve[...] to

find  the  solution  corresponding  to  this  initial  condition.  Try  plotting  the  solution  that
NDSolve returns.
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StreamPlot1,
4 x % x3

4 + y3
, {x, %3.5`, 3.5`}, {y, %3.3`, 3.3`}

!4 !2 0 2 4

!3

!2

!1

0

1

2

3

NSolve[4 + y^3 3 0, y]
{{y & "1.5874}, {y & 0.793701 " 1.37473 /}, {y & 0.793701 + 1.37473 /}}
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The line y = -1.5874 on the StreamPlot represents a line of discontinuity of the 
vector field. Notice how the direction of the arrows changes, and tha the slopes of 
the integral curves are ∞ or -∞.

StreamPlot1,
4 x % x3

4 + y3
, {x, %3.5`, 3.5`}, {y, %3.3`, 3.3`},

StreamPoints & {{{{0, 1}, Red}, {{1, %1.5}, Green}, Automatic}}

!4 !2 0 2 4

!3

!2

!1

0

1

2

3

NDSolve[{y'[x] & (4 x ) x^3) * (4 + y[x]^3), y[0] & 1}, y, {x, )3, 3}]

y & InterpolatingFunction Domain: {{!3., 3.}}
Output: scalar


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Plot[Evaluate[y[x] *. NDSolve[
{y'[x] & (4 x ) x^3) * (4 + y[x]^3), y[0] & 1}, y, {x, )3, 3}]], {x, )3, 3}]

!3 !2 !1 1 2 3

0.6

0.8

1.0

1.2

1.4

1.6

s1 = StreamPlot[{0.2 x % 0.7 x y, %0.4 y + 0.5 x y},
{x, 0, 1}, {y, 0, 1}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 0}, Green},

{{1, 1}, Orange}, {{5, 2}, Purple}, Automatic}}];
s2 = StreamPlot[{0.2 x % 0.7 x y, %0.4 y + 0.5 x y},

{x, 0, 9}, {y, 0, 9}, StreamScale & Automatic,
StreamPoints & {{{{0, 1}, Red}, {{1, 0}, Green},

{{1, 1}, Orange}, {{5, 2}, Purple}, Automatic}}];
GraphicsRow[{s2, s1}, ImageSize & {900, 400}]
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● Clear[x, y, x1, y1, t];
sol5 = NDSolve[{x'[t] 3 0.2* x[t] % 0.7*x[t]*y[t],

y'[t] 3 %0.4 *x[t] + 0.5 *x[t]* y[t],
x[0] 3 5, y[0] 3 2}, {x[t], y[t]}, {t, 1, 10}]

x[t] & InterpolatingFunction Domain: {{1., 10.}}
Output: scalar

[t],

y[t] & InterpolatingFunction Domain: {{1., 10.}}
Output: scalar

[t]

{x1[t_], y1[t_]} = {x[t] , y[t]} 1. Flatten[sol5];
ParametricPlot[{x1[t], y1[t]}, {t, 1, 10}]

0.001 0.002 0.003

4.932

4.933

4.934

4.935
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Stability of Equilibrium Solutions
Equilibrium  (Critical  point,  Steady  State  Solution)
Types  of  critical  points
Stability  for  systems  of  first  order  linear  differential  
equations

Exercise (predator-prey system): 

Consider the system usually described as a predator - prey model (Voltera, 1931):

  
dx
dt = 0.2 x" 0.7 xy,  dy

dt = "0.4 y+ 0.5 xy.

where you can think of  the function x(t)  as representing a population of  rabbits that natu-
rally  grow  at  a  rate  proportional  to  their  population  (that  is,  exponential  growth  in  the
absence  of  predators)  and  the  function  y(t)  as  representing  a  population  of  foxes  that
naturally  decline  (that  is,  exponential  decay  in  the  absence of  prey).  The term xy  in  both
equations  is  proportional  to  the  number  of  likely  encounters  of  the  two  population  in  a
certain environment. Encounters are detrimental to the rabbits and beneficial to the foxes.
1. Plot  the vector  field  using StreamPlot[...]  in  the region that  makes sense for  the given

problem.  On  the  same  plot,  plot  the  tranjectory  starting  at  the  point  (0,  1)  in  Red,  the
tranjectory starting at the point (1, 0) in Green, the trajectory starting at (1,1) in Orange,
and the trajectory starting at (5, 2) in Purple. 

2. What do you notice? How do the solutions look like?
3. Assume that initially there are 5 rabbits and 2 foxes. Use NDSolve[...] or DSolve[...] to

find  the  solution  corresponding  to  this  initial  condition.  Try  plotting  the  solution  that
NDSolve returns.

Systems of first order linear differential equations

Consider a system S of linear differential equations   x ' = ax+by (1)
y ' = cx+dy (2)

The functions x and y are functions of time t and the derivatives are also taken 

with respect to the variable t.   x ' (t) = ax(t) +by(t) (1)
y ' (t) = cx(t) +dy(t) (2)  . 

Definition:  The  phase  portrait  (obtained  in  Mathematica  using  the  command
StreamPlot) of a systems of linear differential equations is a representative set of
its solutions (trajectories, integral curves), plotted as parametric curves (with t as
the  parameter)  on  the  Cartesian  plane  xy,  tracing  the  path  of  each  particular
solution (x, y) = (x(t), y(t)), "∞ < t < ∞ . 

Definition:  The  phase  portrait  (obtained  in  Mathematica  using  the  command
StreamPlot) of a systems of linear differential equations is a representative set of
its solutions (trajectories, integral curves), plotted as parametric curves (with t as
the  parameter)  on  the  Cartesian  plane  xy,  tracing  the  path  of  each  particular
solution (x, y) = (x(t), y(t)), "∞ < t < ∞ . 

Similar to a vector field (obtained in Mathematica using the command VectorPlot),
a phase portrait is a graphical tool to visualize how the solutions of a given system
of differential equations would behave in the long run. We can classify the behavior
of solutions and the type and stability of  the equilibrium solution of  a given linear
system  by  looking  at  the  phase  portrait  and  analyzing  the  properties  of  the

coefficient matrix A =  a b
c d

. 

Equilibrium Solution

Definition:  An  equilibrium  solution  of  the  system  S  is  a  point  (x,y)  where  x’=0
and  y’=0.  An  equilibrium  solution  is  a  constant  solution  of  the  system,  and  is
sometimes also called a critical point. 

For  our  linear  system  of  differential  equations,  an  equilibrium  solution  occurs  at
each  solution  of  the  system  (of  homogeneous  algebraic  equations)  ax+by=0  and

cx+dy=0. Equivalently, we need to solve the matrix equation A x
y
= 0

0
. As we

have  seen,  such  a  system has  exactly  one  solution,  located  at  the  origin   0
0
,  if

and only if the matrix A is invertible. If A is not invertible, then there are infinitely
many solutions. Recall also that A is invertible if and only if the determinant of the
matrix det(A) is different from 0 if and only if 0 is an eigenvalue of A. If det (A) = 0,
then there are infinitely many solutions.  The condition det(A) is  equivalent to the
fact that 0 is an eigenvalue of A.

Recall also that the following statements are equivalent:  
A is invertible ⇔ the determinant of the matrix det (A) is different from 0 ⇔ 0 is 
an eigenvalue of A. 

Classification and Stability of Critical Points
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Classification and Stability of Critical Points

Assume that det(A) ≠ 0. Let + and , be the two eigenvalues of A. 

Case 1: The eigenvalues + and , are real and different.

As discussed in the lecture notes, the general solution of the system of linear 
differential euations is 

 x(t)
y(t)  = c1 e+tv + c2 e,tw, 

where c1 and c2 are constant parameters, and v and w are eigenvectors 
corresponding to the eigenvalues + and ,.

a) The eigenvalues + and , are both negative.
The origin is called a sink (attracting point, stable node, stable point, nodal sink). 
All trajectories converge to 0 when t/∞.

A = #3, 2 ,  2 , #2;
Print["The eigenvalues are: ", Eigenvalues[A]]
Print["The eigenvectors are: ", Eigenvectors[A]]

StreamPlot#3 x + 2 y, 2 x # 2 y,
{x, #5, 5}, {y, #5, 5}, StreamScale + Automatic,

StreamPoints + 
1
2
, 1, Red, 

#1
2
, #1, Red,

# 2 , 1, Green,  2 , #1, Green, , Automatic
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The eigenvalues are: {$4, $1}

The eigenvectors are: $ 2 , 1, 
1

2

, 1

"4 "2 0 2 4

"4

"2

0

2

4

b) The eigenvalues + and , are both positive.
The origin is called a source (repelling point, unstable node, unstable point, nodal 
source). All trajectories diverge away from 0 when t/∞.

c)  The eigenvalues  +  and ,  have different  signs,  say  +>0 and ,<0.  The origin  is
called a saddle.

The  trajectories  given  by  the  eigenvectors  of  the  negative  eigenvalue  ,<0 initially
start  at  infinite distance  away,  but  converge  to  the  origin  exponentially  fast
(x(t),y(t))  =  c2  e,tw.  The  trajectories  given  by  the  eigenvectors  of  the  positive
eigenvalue  +>0  diverge  from  the  origin  exponentially  fast  (x(t),y(t))  =  c1  e+tv.
Every other trajectory moves towards the origin following the attracting direction
w, but never converges to the origin, as it changes direction and diverges from the
origin following the repelling direction v.
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The  trajectories  given  by  the  eigenvectors  of  the  negative  eigenvalue  ,<0 initially
start  at  infinite distance  away,  but  converge  to  the  origin  exponentially  fast
(x(t),y(t))  =  c2  e,tw.  The  trajectories  given  by  the  eigenvectors  of  the  positive
eigenvalue  +>0  diverge  from  the  origin  exponentially  fast  (x(t),y(t))  =  c1  e+tv.
Every other trajectory moves towards the origin following the attracting direction
w, but never converges to the origin, as it changes direction and diverges from the
origin following the repelling direction v.

The example discussed during last class was a saddle, see the lecture notes for the code :

"4 "2 0 2 4

"4

"2

0

2

4

Case 2: The eigenvalues + and , are complex conjugate.

As discussed in the lecture notes, the general solution of the system of linear 
differential equations is 

 x(t)
y(t)  = c1 eat(u cos(bt) - vsin(bt)) + c2 eat(u sin(bt) + vcos(bt)), 

where c1 and c2 are constant parameters, 
+ = a+ib, , = a-ib,
and w + = u+iv and w , = u-iv are eigenvectors corresponding to the eigenvalues 
+ and ,.

a) The eigenvalues + and , have real part Re(+)=Re(,)<0.
The origin is called a spiralling sink. All trajectories spiral toward 0 when t/∞.
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a) The eigenvalues + and , have real part Re(+)=Re(,)<0.
The origin is called a spiralling sink. All trajectories spiral toward 0 when t/∞.

b) The eigenvalues + and , have real part Re(+)=Re(,)>0.
The origin is called a spiralling source. All trajectories spiral away from 0 when t/
∞.

A = {{0, 1}, {#1, 1}};
Print["The Eigenvalues are complex conjugate",
N[Eigenvalues[A], 1], " with positive real part"]

Print["Eigenvectors: ", e = Eigenvectors[A]]

StreamPlot[{y, #x + y}, {x, #5, 5},
{y, #5, 5}, StreamScale + Automatic,
StreamPoints + {{{{1, 0}, Red}, {{#1, 0}, Red}, {{0, 1}, Green},

{{1, 1}, Green}, {{#3, 2}, Orange}, Automatic}}]
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The Eigenvalues are complex conjugate
{0.5 + 0.9 ), 0.5 $ 0.9 )} with positive real part

Eigenvectors: $
1

2
) ) + 3 , 1, 

1

2
) $) + 3 , 1

"4 "2 0 2 4

"4

"2

0

2

4
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c) The eigenvalues + and , have real part Re(+)=Re(,)=0.
The origin is called a center. All trajectories are closed circles around the origin.

A = {{0, 1}, {#1, 0}};
Print["The eigenvalues are ", Eigenvalues[A]]
Eigenvectors[A]

StreamPlot[{y, #x}, {x, #5, 5}, {y, #5, 5}, StreamScale + Automatic,
StreamPoints + {{{{0, 1}, Red}, {{1, 1}, Green}, Automatic}}]

The eigenvalues are {), $)}

{{$), 1}, {), 1}}

"4 "2 0 2 4

"4

"2

0

2

4

Case 3: The eigenvalues + and , are real and + = , .
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Case 3: The eigenvalues + and , are real and + = , .

a) The eigenvalue + has algebraic and geometric multiplicity 2 (there exists two 
linearly independent eigenvectors v and w of +).

The general solution is  x(t)
y(t)  = c1 e+tv + c2 e+tw. 

All the theory from Case 1 holds true, and the origin is called a sink if +<0 and 
respectively a source if +>0. In the Phase Portrait, every nonzero solution looks 
like a straight line  in the direction given by the vector c1v + c2w.

b) The eigenvalue + has algebraic multiplicity 2 and geometric multiplicity 1.

The general solution is  x(t)
y(t)  = c1 e+tv + c2 e+tw + t e+tv), where v is an 

eigenvector, and w is a generalized eigenvector (see the lectures notes for the 
definition of a generalized eigenvector).
When +<0, the origin is called a degenerate sink. All trajectories converge to the 
origin. With only one linearly independent eigenvector, the Phase Portrait looks 
like a combination between Case 1(a) and Case 2(a).  The origin is called a 
degenerate source when +>0. 

A = {{1, 1}, {0, 1}};
Print["The command Eigenvalues returns ",
Eigenvalues[A], " so 1 is the only

eigenvalue and it has algebraic multiplicity 2"]
Print["The command Eigenvectors returns ", e = Eigenvectors[A],
" but the only eigenvector is ", e[[1]]]

StreamPlot[{x + y, y}, {x, #5, 5},
{y, #5, 5}, StreamScale + Automatic,
StreamPoints + {{{{1, 0}, Red}, {{#1, 0}, Red}, {{0, 1}, Green},

{{1, 1}, Green}, {{#3, 2}, Orange}, Automatic}}]

The command Eigenvalues returns {1, 1}
so 1 is the only eigenvalue and it has algebraic multiplicity 2

The command Eigenvectors returns {{1, 0}, {0, 0}} but the only eigenvector is {1, 0}

ODE3-net.nb     9
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Interactive examples with StreamPlot

Interactive plot of the vector field of various systems of linear differential 
equations.

In[3]:= Manipulate[
Column[{

Row[{
Text[" MATRIX "],
MatrixForm[m],
Text[" EIGENVALUES "],
N[Eigenvalues[m], 1],
Text[" EIGENVECTORS "],
Row[{

MatrixForm[N[Eigenvectors[m][[1]], 1]],
MatrixForm[N[Eigenvectors[m][[2]], 1]]

}]
}],

StreamPlot[m.{x, y}, {x, #1, 1}, {y, #1, 1}, StreamScale + Large,
StreamColorFunction + "Rainbow", ImageSize + Large]

}],
{{m, ({{1, 0}, {0, 2}})},
{({{1, 0}, {0, 2}}) + "Nodal source",
({{1, 1}, {0, 1}}) + "Degenerate source",
({{0, 1}, {#1, 1}}) + "Spiral source",
({{#1, 0}, {0, #1}}) + "Nodal sink",
({{#1, 0}, {0, #2}}) + "Nodal sink", ({{#1, 1}, {0, #1}}) +
"Degenerate sink", ({{0, 1}, {#1, #1}}) + "Spiral sink",

({{0, 1}, {#1, 0}}) + "Center", ({{1, 0}, {0, #2}}) + "Saddle"}}
]
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Out[3]=

m Nodalsink

MATRIX  $1 0
0 $2

 EIGENVALUES {$2., $1.} EIGENVECTORS  0
1.

 1.
0



"1.0 "0.5 0.0 0.5 1.0

"1.0

"0.5

0.0

0.5

1.0
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Phase Portraits of Nonlinear 
Differential Equations

Nonlinear Differential Equations:

Consider the system   x ' = f (x, y) (1)
y ' = g(x, y) (2)   where f and g are functions of two 

variables x and y. Assume that f and g are not both linear. 

The functions x and y are functions of time t and the derivatives are also taken 

with respect to the variable t.   x ' (t) = f (x(t), y(t)) (1)
y ' (t) = g(x(t), y(t)) (2)  . 

A  linear  system   x ' = ax+by (1)
y ' = cx+dy (2)   with  invertible  coefficient  matrix  has  only

one  equilibrium  point  (critical  point,  steady  state  solution)  at  (x,y)=(0,0).
Analyzing  the  stability  of  this  equilibrium  solutions  gives  complete  information
about the Phase Portrait of the ODE (the trajectories).

Unlike a linear system, a nonlinear system could have none, one, two, three,  or
any  number  of  critical  points.  Like  a  linear  system,  however,  the  critical  points
are  found  by  setting  x’  =  y’  =  0,  and  solve  the  resulting  system  f(x,y)=0  and
g(x,y)=0. 

Since there might be multiple critical  points present on the phase portrait,  each
trajectory  could  be  influenced by  more than  one critical  point.  This  results  in  a
much more chaotic appearance of the phase portrait. Consequently, the type and
stability  of  each  critical  point  need  to  be  determined  locally  (in  a  small
neighborhood on the phase plane around the critical point in question) on a case-
by-case basis. The trajectories will appear very differently than those of the linear
systems, except very near the critical points.

General Strategy :

We approximate the nonlinear system by a linear system near the equilibirum 
points. 
Suppose that (a, b) is an equilibrium point, that is f(a, b) = g(a, b) = 0.

We approximate the nonlinear system by a linear system near the equilibirum 
points. 
Suppose that (a, b) is an equilibrium point, that is f(a, b) = g(a, b) = 0.

x ' = f (x, y) ≃ f (a.b) + 'x f (a, b) (x(a) + 'y f (a, b) (y(b) =
'x f (a, b) (x(a) + 'y f (a, b) (y(b)

(1)

y ' = g(x, y) ≃ g(a, b) + 'xg(a, b) (x(a) + 'y g(a, b) (y(b) =
'xg(a, b) (x(a) + 'y g(a, b) (y(b)

(2)

The critical point can be translated to 0 via the coordinate change x := x - a and 
y := y - b and still retains all of its properties. The approximated system becomes 
a linear system:

x ' = 'x f (a, b) x + 'y f (a, b) y (1)
y ' = 'xg(a, b) x + 'y g(a, b) y (2)    with coefficient matrix 

J(a,b) = 
∂x f(a, b) ∂y f(a, b)
∂x g(a, b) ∂y g(a, b)

 .

The matrix J(x,y) = 
∂x f(x, y) ∂y f(x, y)
∂x g(x, y) ∂y g(x, y)

is called the Jacobian 

matrix of the system. It contains the first order partial derivatives of f and g 
evaluated at the point (x,y).

We can use the eigenvalues of the matrix Jacobian matrix to decide the type and 
stability of the critical point (a,b). Let " and # be the two eigenvalues. Assume 
that " and # are different from 0.

Eigenvalues Linear System Nonlinear System

λ, μ
Real

! !

λ > μ > 0 Nodal Source (Unstable) Nodal Source (Unstable
λ < μ < 0 Nodal Sink (Stable) Nodal Sink (Stable)
λ > 0 > μ Saddle point (Unstable) Saddle point (Unstable
λ = μ > 0 Degenerate Source or Nodal Source (Unstable)

depending of the geometricmultiplicity of #
Source (Degenerate, Nodal, Spiral Source
depending on the nonlinear terms and the #

λ = μ < 0 Degenerate Sink or Nodal Sink (Stable)
depending of the geometricmultiplicity of #

Sink (Degenerate, Nodal, Spiral Sink) (Stable
depending on the nonlinear terms and the #
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λ, μ
Complex

! !

Re (λ) > 0 Spiral Source (Unstable) Spiral Source (Unstable
Re (λ) < 0 Spiral Sink (Stable) Spiral Sink (Stable)
Re (λ) = 0 Center (Stable) Center, Spiral Sink , Spiral Source

(Stability cannot be determined based on )

Check also the Bifurcation Diagram on Wikipedia.

Hyperbolic critical point 

Definition: The equilibrium is said to be hyperbolic if all eigenvalues of the 
Jacobian matrix have non - zero real parts. 

Hyperbolic equilibria are robust : Small perturbations do not change qualitatively
the  phase  portrait  near  the  equilibria.  Moreover,  local  phase  portrait  of  a
hyperbolic  equilibrium  of  a  nonlinear  system  is  equivalent  to  that  of  its
linearization.  This  statement  has  a  mathematically  precise  form  known  as  the
Hartman - Grobman Theorem.

Examples of nonlinear differential equations:

Example 1. Solve the system   x ' = x(1( y) (1)
y ' = y(x(1) (2)

Usually an explicit solution cannot be found, but you can still ask Mathematica to 
find a numeric solution using the NDSolve command.

DSolve[{x'[t] . x[t] (1 / y[t]),
y'[t] . y[t] (x[t] / 1), x[0] . 1, y[0] . 1}, {x[t], y[t]}, t]

Solve::ifun:
Inverse functionsare beingused by Solve, so somesolutionsmay notbe found; use Reduce forcompletesolutioninformation. )

Solve::ifun:
Inverse functionsare beingused by Solve, so somesolutionsmay notbe found; use Reduce forcompletesolutioninformation. )

Solve::ifun:
Inverse functionsare beingused by Solve, so somesolutionsmay notbe found; use Reduce forcompletesolutioninformation. )

General::stop: Furtheroutputof Solve::ifun willbe suppressedduringthiscalculation. )

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadtoan emptysolution. )

{}

ODE4-net.nb     3

NDSolve[{x'[t] . x[t] (1 / y[t]), y'[t] . y[t] (x[t] / 1),
x[0] . 2, y[0] . 1}, {x[t], y[t]}, {t, 0, 10}]

x[t] & InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

[t],

y[t] & InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

[t]

The most reliable information here comes from the Vector Field Plot.

StreamPlot[{x (1 / y), y (x / 1)},
{x, /5, 5}, {y, /5, 5}, StreamScale 1 Automatic,
StreamPoints 1 {{{{4, 1}, Red}, Automatic}}]

#4 #2 0 2 4

#4

#2

0

2

4

What is the nature of the equilibrium solutions?
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What is the nature of the equilibrium solutions?

1. Set x' = 0 and y' = 0. In this case, it is easy to solve the equation by hand:  x(1-
y)=0 and y(x-1)=0  implies (x,y)=(0,0) or (x,y)=(1,1). For more complicated 
cases, we will use Solve[..] or NSolve[..]

EqPoints = Solve[{x (1 / y) . 0, y (x / 1) . 0}, {x, y}]

{{x & 0, y & 0}, {x & 1, y & 1}}

2. Next we find the Jacobian matrix of the system. In this case, it is easy to 
compute it by hand: 

   J(x,y) = 
∂x (x (1 / y)) ∂y (x (1 / y))
∂x (y (x / 1)) ∂y (y (x / 1))

= 1 / y /x
y x / 1



In more complicated cases, we will ask Mathematica to compute the Jacobian 
matrix for us, as follows :

The commands D[f[x],  {x}]  or f'[x]   give the dervative of f with respect to x. If 
f is a function of several variables, D[f[x,  y],  {x}]  or ∂y(f[x, y]) gives the 
partial derivative of f with respect to x. Try them out!

∂yx y + y^2

D[y^2, {y}]

The following code computes the Jacobian matrix:

Clear[f, J, x, y]
f[x_, y_] := {x (1 / y), y (x / 1)}
J[f_] :=
Module[{A = Table[0, 2, 2]},
A[[1, 1]] = D[f[x, y][[1]], {x}];
A[[1, 2]] = D[f[x, y][[1]], {y}];
A[[2, 1]] = D[f[x, y][[2]], {x}];
A[[2, 2]] = D[f[x, y][[2]], {y}];
Return[A]]

J[f]

{{1 * y, *x}, {y, *1 + x}}

3. We evaluate the Jacobian matrix at the two equilibrium points and find its 
eigenvalues:
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3. We evaluate the Jacobian matrix at the two equilibrium points and find its 
eigenvalues:

B = J[f] 5. Flatten[EqPoints[[1]]];
Print["The Jacobian Matrix at the equilibrium point (0,0) is ",
MatrixForm[B]]

Print["The eigenvalues of B are ", Eigenvalues[B]]

The Jacobian Matrix at the equilibrium point (0,0) is  1 0
0 *1



The eigenvalues of B are {*1, 1}

T = J[f] 5. Flatten[EqPoints[[2]]];
Print["The Jacobian Matrix at the equilibrium point (1,1) is ",
MatrixForm[ T]]

Print["The eigenvalues are ", Eigenvalues[T]]

The Jacobian Matrix at the equilibrium point (1,1) is  0 *1
1 0



The eigenvalues are {0, *0}
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By analyzing the Real and Imaginary Part of the Eigenvalues, we conclude that the 
point (0, 0) is a saddle (the Jacobian matrix has two real eigenvalues, one smaller 
than 0, one greater than 0) whereas the point (1, 1) is a center (the Jacobian 
matrix has two complex conjugate eigenvalues with Real part equal to 0, and the 
Phase Portrait depicts closed circular trajectories). This gives us information about 
the shape of trajectories in a vecinity of the equilibrium solutions.

Example 2: 

Consider the system   x ' = y( x(x^2+ y^2) (1)
y ' = (x( y(x^2+ y^2) (2) .  Study the nature of the 

critical point (x,y)=(0,0).

Clear[h]
h[x_, y_] := {y / x (x^2 + y^2), /x / y (x^2 + y^2)}
NSolve[{y / x (x^2 + y^2) . 0, /x / y (x^2 + y^2) . 0}, {x, y}]
MatrixForm[J[h]]
Eigenvalues[J[h] 5. {x 1 0, y 1 0}]

{{x & 0., y & 0.}}

*3 x2 * y2 1 * 2 x y
*1 * 2 x y *x2 * 3 y2

{0, *0}
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StreamPlot[{y / x (x^2 + y^2), /x / y (x^2 + y^2) }, {x, /2, 2},
{y, /2, 2}, StreamPoints 1 {{{{1, 0}, Red}, Automatic}}]

#2 #1 0 1 2

#2

#1

0

1

2
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sol = NDSolve[{x'[t] == y[t] / x[t] (x[t]^2 + y[t]^2),
y'[t] == /x[t] / y[t] (x[t]^2 + y[t]^2),
x[0] . 1, y[0] . 0}, {x[t], y[t]}, {t, 0, 1000}]

ParametricPlot[{x[t], y[t]} 5. Flatten[sol],
{t, 0, 100}, PlotPoints 1 100]

x[t] & InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t],

y[t] & InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t]

#0.4 #0.3 #0.2 #0.1 0.1 0.2 0.3

#0.3

#0.2

#0.1

0.1

0.2

0.3

∂x(y / x (x^2 + y^2)) + ∂y(/x / y (x^2 + y^2))

*4 x2 * 4 y2

Clear[h]
h[x_, y_] := {y + x (x^2 + y^2), /x + y (x^2 + y^2)}
MatrixForm[J[h]]
Eigenvalues[J[h] 5. {x 1 0, y 1 0}]

3 x2 + y2 1 + 2 x y
*1 + 2 x y x2 + 3 y2

{0, *0}
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StreamPlot[{y + x (x^2 + y^2), /x + y (x^2 + y^2) },
{x, /2, 2}, {y, /2, 2}]

#2 #1 0 1 2

#2

#1

0

1

2
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Conclusions : The linearized system has a center at the origin. The nonlinear 
system does not have a center. 

Example 3

Consider the system   x ' = x+ y( x(x^2+ y^2) (1)
y ' = (x+ y( y(x^2+ y^2) (2) .  Find all critical points 

and study their nature.

Clear[h]
h[x_, y_] := {x + y / x (x^2 + y^2), /x + y / y (x^2 + y^2)}
NSolve[{y / x (x^2 + y^2) . 0, /x / y (x^2 + y^2) . 0}, {x, y}]
MatrixForm[J[h]]
Eigenvalues[J[h] 5. {x 1 0, y 1 0}]
StreamPlot[h[x, y], {x, /2, 2}, {y, /2, 2}]

{{x & 0., y & 0.}}

1 * 3 x2 * y2 1 * 2 x y
*1 * 2 x y 1 * x2 * 3 y2

{1 + 0, 1 * 0}

#2 #1 0 1 2

#2

#1

0

1

2

Conclusions : The origin is an spiral source (unstable spiral point) for both the 
linear system and the nonlinear system. One may therefore think that all 
trajectories different from 0 should spiral out to infinity. This is clearly not the 
case, as far away from the origin, the arrows are pointing inward. Moreover, there 
is a closed trajectory (a circle) and all trajectories different from (0,0) spiral 
towards this circle (limit cycle). You can find the equation of this limit cycle by 
switching to polar coordinates x=rcos', y=rsin'.
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Conclusions : The origin is an spiral source (unstable spiral point) for both the 
linear system and the nonlinear system. One may therefore think that all 
trajectories different from 0 should spiral out to infinity. This is clearly not the 
case, as far away from the origin, the arrows are pointing inward. Moreover, there 
is a closed trajectory (a circle) and all trajectories different from (0,0) spiral 
towards this circle (limit cycle). You can find the equation of this limit cycle by 
switching to polar coordinates x=rcos', y=rsin'.

The literature on the existence and properties of limits cycles is very rich: 
Poincare - Bendixon Theorem 
Suppose f and g have continuous partial derivatives. 
a) Every closed trajectory must enclose at least one critical point. If it encloses 
exactly one critical point, then this cannot be a saddle point.
b) If (x f + (yg has the same sign in a disk D, then there can be no closed trajectory 
of the system lying entirely inside D.
c) Suppose that U is a connected open subset that contains no critical point of the 
system. Let U denote the set U together with its boundary. If the vector field in U 
points towards the interior of U, then U contains a closed trajectory.
d) Suppose that U is a connected open subset that contains no critical point of the 
system. Let U denote the set U together with its boundary. If there exists some 
trajectory that never leaves the set U (is trapped inside U),  then U must 
necessarily contain a closed trajectory.

Exercise : 

Consider the system   x ' = y (1)
y ' = (y(2 sin(x) (2) .  Find all critical points (x,y) of the 

system which belong to the region -2$ < x,y < 2$. Study the nature of these 
critical points (type, stability). Use only Mathematica commands, even when 
computing the solutions!
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Phase Portraits of Nonlinear 
Differential Equations

Nonlinear Differential Equations:

Consider the system   x ' = f (x, y) (1)
y ' = g(x, y) (2)   where f and g are functions of two 

variables x and y. 

The critical points (equlibrium points, steady state solutions) are found by setting 
x' = y' = 0, 
and solving the resulting system f(x, y) = 0 and g(x, y) = 0. 

We approximate the nonlinear system by a linear system near the equilibirum 
points. 
Suppose that (a, b) is an equilibrium point, that is f(a, b) = g(a, b) = 0. The 
linearized system is:

x ' = %x f (a, b) x + %y f (a, b) y (1)
y ' = %xg(a, b) x + %y g(a, b) y (2)    whose coefficient matrix is the Jacobian 

matrix J(a,b) = 
∂x f(a, b) ∂y f(a, b)
∂x g(a, b) ∂y g(a, b)

 .

We can use the eigenvalues of the matrix Jacobian matrix to decide the type and 
stability of the critical point (a,b) (sink, source, saddle, etc.). 

Jacobian Matrix

The following code from last class helps compute the Jacobian matrix of a 
function f of two variables x and y:

In[1]:= Clear[f, J, x, y]
() Jacobian ))
J[f_] :=
Module[{A = Table[0, 2, 2]},
A[[1, 1]] = D[f[x, y][[1]], {x}];
A[[1, 2]] = D[f[x, y][[1]], {y}];
A[[2, 1]] = D[f[x, y][[2]], {x}];
A[[2, 2]] = D[f[x, y][[2]], {y}];
Return[A]]

() Example ))
f[x_, y_] := {x (1 - y), y (x - 1)}
J[f]

Out[4]= {{1 " y, "x}, {y, "1 + x}}

Example 2: 

Consider the system   x ' = y' x(x^2+ y^2) (1)
y ' = 'x' y(x^2+ y^2) (2) .  Study the nature of the 

critical point (x,y)=(0,0).

In[5]:= Clear[h]
() Define the function h ))
h[x_, y_] := {y - x (x^2 + y^2), -x - y (x^2 + y^2)}

() Find the critical points of the system ))
sol = Solve[{y - x (x^2 + y^2) / 0, -x - y (x^2 + y^2) / 0}, {x, y}];
Print["Critical point: ", sol]

()Find the Jacobian matrix ))
Print["The Jacobian Matrix is ", MatrixForm[J[h]]]

() Evaluate the Jacobian matrix
at the only critical point (0,0) ))

A = J[h] 0. Flatten[sol];
Print["The Jacobian Matrix at (0,0) is ", MatrixForm[A]]
Print["Eigenvalues: ", Eigenvalues[A]]
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Critical point: {{x % 0, y % 0}}

The Jacobian Matrix is  "3 x2 " y2 1 " 2 x y
"1 " 2 x y "x2 " 3 y2



The Jacobian Matrix at (0,0) is  0 1
"1 0



Eigenvalues: {,, ",}

The only critical point for the nonlinear system is (0, 0). The eigenvalues of the 
Jacobian matrix at (0, 0) are i and - i (complex conjugate with Real part equal to 0), 
so the origin is a center for the linearized system. Let’s see if (0,0) is a center for 
the nonlinear system as well.

In[13]:= () Phase Portrait for the linear system ))
StreamPlot[{y, -x }, {x, -2, 2}, {y, -2, 2},
StreamPoints 1 {{{{1, 0}, Red}, Automatic}}]

Out[13]=

'2 '1 0 1 2

'2

'1

0

1

2
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In[14]:= () Phase Portrait for the nonlinear system ))
StreamPlot[{y - x (x^2 + y^2), -x - y (x^2 + y^2) }, {x, -2, 2},
{y, -2, 2}, StreamPoints 1 {{{{1, 0}, Red}, Automatic}}]

Out[14]=

'2 '1 0 1 2

'2

'1

0

1

2
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In[19]:= () Find the trajectory that passes through the point (1,0) ))
sol = NDSolve[{x'[t] == y[t] - x[t] (x[t]^2 + y[t]^2),

y'[t] == -x[t] - y[t] (x[t]^2 + y[t]^2),
x[0] / 1, y[0] / 0}, {x[t], y[t]}, {t, 0, 1000}]

ParametricPlot[{x[t], y[t]} 0. Flatten[sol],
{t, 0, 60}, PlotPoints 1 100]

Out[19]= x[t] % InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t],

y[t] % InterpolatingFunction Domain: 0., 1.00×103
Output: scalar

[t]

Out[20]=

'0.4 '0.2 0.2 0.4

'0.4

'0.2

0.2

In[21]:= () Poincare-Bendixon criterion ))
∂x(y - x (x^2 + y^2)) + ∂y(-x - y (x^2 + y^2))

Out[21]= "4 x2 " 4 y2

Conclusions : The linearized system has a center at the origin. The nonlinear 
system does not have a center! The origin is a spiral sink. 

Example 3

Consider the system   x ' = x+ y' x(x^2+ y^2) (1)
y ' = 'x+ y' y(x^2+ y^2) (2) .  Find all critical points 

and study their nature.
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Consider the system   x ' = x+ y' x(x^2+ y^2) (1)
y ' = 'x+ y' y(x^2+ y^2) (2) .  Find all critical points 

and study their nature.

In[22]:= Clear[h]
h[x_, y_] := {x + y - x (x^2 + y^2), -x + y - y (x^2 + y^2)}

() Find the critical points ))
NSolve[{y - x (x^2 + y^2) / 0, -x - y (x^2 + y^2) / 0}, {x, y}]

MatrixForm[J[h]];
Eigenvalues[J[h] 0. {x 1 0, y 1 0}]
StreamPlot[h[x, y], {x, -2, 2}, {y, -2, 2}]

Out[24]= {{x % 0., y % 0.}}

Out[26]= {1 + ,, 1 " ,}

Out[27]=

'2 '1 0 1 2

'2

'1

0

1

2

Conclusions  :  The  origin  is  an  spiral  source  (unstable  spiral  point)  for  both  the
linear  system  and  the  nonlinear  system.  One  may  therefore  think  that  all
trajectories  different  from  0  should  spiral  out  to  infinity.  This  is  clearly  not  the
case, as far away from the origin, the arrows are pointing inward. Moreover, there
is  a  closed  trajectory  (a  circle)  and  all  trajectories  different  from  (0,0)  spiral
towards  this  circle  (limit  cycle).  You  can  find  the  equation  of  this  limit  cycle  by
switching to polar coordinates x=rcos,, y=rsin,.
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Conclusions  :  The  origin  is  an  spiral  source  (unstable  spiral  point)  for  both  the
linear  system  and  the  nonlinear  system.  One  may  therefore  think  that  all
trajectories  different  from  0  should  spiral  out  to  infinity.  This  is  clearly  not  the
case, as far away from the origin, the arrows are pointing inward. Moreover, there
is  a  closed  trajectory  (a  circle)  and  all  trajectories  different  from  (0,0)  spiral
towards  this  circle  (limit  cycle).  You  can  find  the  equation  of  this  limit  cycle  by
switching to polar coordinates x=rcos,, y=rsin,.

Polar Coordinates

i. We do the coordinate change:

x = r Cos[θ] , y = r Sin [θ] , 0 ≤ r < ∞, 0 ≤ θ < 2 π

where r and ,  are functions of time t.

ii. We need to compute x' and y'  as functions of r, ,, r’, ,’
a) We can do it by hand, using the Chain Rule. We get x’ = r’Cos["] - r Sin["]"’  and  y’ = r’Sin["] + r 
Cos["]"’
b) We use transformations rules in Mathematica to do the change of variables:

x'[t] 0. x 1 (r[#] Cos[θ[#]] &)
y'[t] 0. y 1 (r[#] Sin[θ[#]] &)

Cos[θ[t]] r′[t] " r[t] Sin[θ[t]] θ′[t]

Sin[θ[t]] r′[t] + Cos[θ[t]] r[t] θ′[t]

Changing the system from Example 3 to polar coordinates

We know that x2 + y2 = r2 , so can use the symmetries of the system 
x ' = x + y ' x x2 + y2 (1)
y ' = 'x + y ' y x2 + y2 (2)

  

to create more terms of the form x2 + y2 that can be easily “translated” into  r2. Therefore, we can look at 
the following sys-
tem:-

xx'+ yy' =
xx + y ' xx2 + y2 + y'x + y ' yx2 + y2 = x2 + y2 ' x2 + y2 x2 + y2 = r21' r2

(1)

yx'' xy' = yx + y ' xx2 + y2 ' x 'x + y ' y x2 + y2 = x2 + y2 = r2 (2)
Let' s see how the left hand sides xx’ + yy’ and yx’ - xy’ look like in polar coordinates:
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In[28]:= rule = {x 1 (r[#] Cos[θ[#]] &), y -> (r[#] Sin[θ[#]] &) };
Simplify[x[t] x'[t] + y[t] y'[t] 0. rule]
Simplify[y[t] x'[t] - x[t] y'[t] 0. rule]

Out[29]= r[t] r′[t]

Out[30]= "r[t]2 θ′[t]

In polar coordinates, the system becomes:

r r ' = r21' r2 (1)
'r2 , ' = r2 (2)

    which can be simplified to  
r ' = r1' r2 (1)
, ' = '1 (2)

  

Analyze the system written in polar coordinates :

The equation " ' = $1 , solves to 
"(t) = $t + c, where c is any real constant.

The critical points of r ' = r1 $ r2 are: 
r=0 (the origin of the old phase portrait) and 
r=1 (the unit circle in the old phase portrait). 

Therefore, a periodic solution of the system is 
r(t) = 1, "(t) = $t + c.  
(As time t increases, a point moves clockwise on the unit circle)

From the equation r ' = r1 $ r2, we also see that:
r’ > 0 when r<1 (thus inside the unit circle the trajectories go outwards) 
r’ < 0 when r>1 (thus outside the unit circle the trajectories are directed inwards) 

What about the other trajectories? 
When r ≠ 1 and r ≠ 0, we can use separation of variables to solve the equation: 
dr
dt

= r1 $ r2. 

We write 
dr

r1$r2
= dt  and we can integrate each term separately.

In[31]:= Integrate[10(r (1 - r^2)), r]

Out[31]= Log[r] "
1

2
Log1 " r2

The equation becomes log(r) ' 1

2
log1' r2 = t + k, where k is any real constant, 

with solution given by r(t)= !k+t

1+!2 (k+t)
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The equation becomes log(r) ' 1

2
log1' r2 = t + k, where k is any real constant, 

with solution given by r(t)= !k+t

1+!2 (k+t)

In[32]:= solr = SimplifySolve Log[r] -
1

2
Log1 - r2 == t + k, r

Print[
"The function r is always positive, so the solution is: ", r 0. solr[[2]]]

Out[32]= r % "
4k+t

1 + 42 (k+t)
, r %

4k+t

1 + 42 (k+t)


The function r is always positive, so the solution is:
4k+t

1 + 42 (k+t)

Poincare - Bendixon Theorem

The literature on the existence and properties of limits cycles is very rich: 

Poincare - Bendixon Theorem 
Suppose f and g have continuous partial derivatives. 
a) Every closed trajectory must enclose at least one critical point. If it encloses 
exactly one critical point, then this cannot be a saddle point.
b) If %x f + %yg has the same sign in a disk D, then there can be no closed trajectory 
of the system lying entirely inside D.
c) Suppose that U is a connected open subset that contains no critical point of the 
system. Let U denote the set U together with its boundary. If the vector field in U 
points towards the interior of U, then U contains a closed trajectory.
d) Suppose that U is a connected open subset that contains no critical point of the 
system. Let U denote the set U together with its boundary. If there exists some 
trajectory that never leaves the set U (is trapped inside U),  then U must 
necessarily contain a closed trajectory.
e) Every trajectory is attracted by a fixed point, or it goes to infinity, or it 
accumulates on a limit cycle. 

This theorem has no analogue in higher dimensions. In systems with phase space of 
dimension strictly greater than 2, more things can happen: trajectories may be 
attracted to complex geometrical objects (strange attractors), which leads to 
chaotical behavior.

Nonlinear Equations with several variables : 
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Nonlinear Equations with several variables : 

In 1963, Lorenz studied a very simple model of the atmosphere. This model 
exhibits chaotic behavior:

Lorenz equation

In[34]:= tmax = 20;

sol = NDSolve

x'[t] / -10 (x[t] - y[t]), y'[t] / -x[t] z[t] + 28 x[t] - y[t],

z'[t] / x[t] y[t] -
8

3
z[t], x[0] / 30, y[0] / 10, z[0] / 40,

{x, y, z}, {t, 0, tmax}, MaxSteps 1 5000;
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The 3D vector field can be plotte using the command VectorPlot3D

In[36]:= VectorPlot3D-10 (x - y), -x )z + 28 x - y, x) y -
8

3
z,

{x, -10, 10}, {y, -10, 10}, {z, -10, 10},

VectorScale 1 {Small, Automatic, None}

Out[36]=

'10

'5

0

5

10

'10

'5

0

5

10

'10

'5

0

5

10
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The solution can the be plotted using ParametricPlot3D as follows:

In[37]:= Clear[x, y, z, t]
ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} 0. sol],
{t, 0, tmax}, PlotPoints 1 3000, Axes 1 False, PlotRange 1 All]

Out[38]=
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In[39]:= Clear[x, y, z, t]

Manipulate

ParametricPlot3D

Evaluate{x[t], y[t], z[t]} 0. NDSolve

x'[t] / -10 (x[t] - y[t]), y'[t] / -x[t] z[t] + 28 x[t] - y[t],

z'[t] / x[t] y[t] -
8

3
z[t], x[0] / 30, y[0] / 10, z[0] / 40,

{x, y, z}, {t, 0, T}, MaxSteps 1 5000,

{t, 0, T}, PlotStyle 1 Red,

{{T, 2}, 0.1, 20}, SynchronousUpdating 1 False,

SaveDefinitions 1 True

Out[40]=

T

'10

0

10

20

30

'10

0

10

20

10

20

30

40
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Interactive Models with Stream Plot 
and Locator

Exercise

Consider the system   x ' = y (1)
y ' = %y%2 sin(x) (2) .  

Make an interactive  plot  of  the Phase Portrait  when -3!  <  x  < 3!  ,  -2!  <  y  <
2!,    which  can  highlight  the  trajectory  corresponding  to  the  initial  condition
chosen by the user. 

Solution 1

Manipulate[
StreamPlot[{y, #2 Sin[x] # y},
{x, #3 π, 3 π}, {y, #2 π, 2 π}, ImageSize ' Large,
StreamPoints ' {{{{a, b}, Red}, Automatic}}],

{a, #3 π, 3 π},
{b, #2 π, 2 π}

]

a

b

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

The disadvantage of solution 1 is that every time we drag the slider to change the 
initial condition, the entire phase portrait gets re - plotted, not just the trajectory 
selected by the user.

Solution 2
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Solution 2

Show[g1, g2, …]
shows several graphics combined.

splot = StreamPlot[{y, #2 Sin[x] # y}, {x, #3 π, 3 π}, {y, #2 π, 2 π},
ImageSize ' Large, StreamColorFunction ' "Rainbow"];

line = Plot[1, {x, #3 π, 3 π}, PlotStyle ' Red];
Show[splot, line]

%10 %5 0 5 10

%6

%4

%2

0

2

4

6
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In[46]:= a = 1; b = 4;
splot = StreamPlot[{y, #2 Sin[x] # y},

{x, #3 π, 3 π}, {y, #2 π, 2 π}, ImageSize ' Large];
sol = NDSolve[{x'[t] ) y[t], y'[t] ) #2 Sin[x[t]] # y[t],

x[0] ) a, y[0] ) b}, {x, y}, {t, 0, 10}]
trajectory = ParametricPlot[Evaluate[{x[t], y[t]} *. sol],

{t, 0, 10}, PlotStyle ' Red];
Show[splot, trajectory]

Out[48]= x " InterpolatingFunction Domain: {{0., 10.}}
Output: scalar

,

y " InterpolatingFunction Domain: {{0., 10.}}
Output: scalar



Out[50]=

%10 %5 0 5 10

%6

%4

%2

0

2

4

6
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Manipulate[
sol = NDSolve[{x'[t] ) y[t], y'[t] ) #2 Sin[x[t]] # y[t],

x[0] ) a, y[0] ) b}, {x, y}, {t, 0, 10}];
trajectory = ParametricPlot[Evaluate[{x[t], y[t]} *. sol],

{t, 0, 10}, PlotStyle ' Red];
Show[splot, trajectory],
{a, #3 π, 3 π }, {b, #2 π, 2 π} ,
SaveDefinitions ' True]
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a

b

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

Solution 3
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Solution 3

Locator[{x,y}]   represents a locator object at position (x,y) in a graphical 
object.

Locator[Dynamic[pos]]  
takes the position to be the dynamically updated current value of pos, with this 
value being reset if the locator object is moved.

Graphics[ Text["some text", {0, 7}]]
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Let' s write an interactive model that shows the previous StreamPlot, with a 
dynamic variable called point, which is linked to Locator.

Manipulate[
Show[splot],
{point, Locator},
SaveDefinitions % True]

Out[51]=

%10 %5 0 5 10

%6

%4

%2

0

2

4

6
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Let' s first see what Locator can do.

In[54]:= Manipulate[
Show[splot, Graphics[ Text[point, {0, 7}]]],
{{point, {2, 3}}, Locator},
SaveDefinitions % True

]

Out[54]=

{4.66, 3.94}

%10 %5 0 5 10

%6

%4

%2

0

2

4

6

Let's use Locator inside the interactive model. When the user clicks on a point in
the Phase Portrait, we solve the differential equation corresponding to the initial
condition selected by the user, and highlight the corresponding trajectory in the
Phase  Portrait.  We  can  include  also  a  slider  for  the  time  t  (that  controls  how
much of the trajectory we should plot)
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Let's use Locator inside the interactive model. When the user clicks on a point in
the Phase Portrait, we solve the differential equation corresponding to the initial
condition selected by the user, and highlight the corresponding trajectory in the
Phase  Portrait.  We  can  include  also  a  slider  for  the  time  t  (that  controls  how
much of the trajectory we should plot)

splot = StreamPlot[{y, #2 Sin[x] # y},
{x, #3 π, 3 π}, {y, #2 π, 2 π}, ImageSize ' Large];

Manipulate[
trajectory = ParametricPlot[

Evaluate[{x[t], y[t]} *.
NDSolve[{x'[t] ) y[t], y'[t] ) #2 Sin[x[t]] # y[t],

x[0] ) point[[1]], y[0] ) point[[2]]},
{x, y}, {t, 0, T}]], {t, 0, T}, PlotStyle ' Red];

Show[splot, trajectory],
{{T, 10}, 0, 100},
{{point, {1, 0}}, Locator},
SaveDefinitions ' True]
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Cryptography
Cryptology (Greek “kryptos” = hidden, secret, “logos”= study, science)
Cryptography (“kryptos”=secret, “graphein”=writing)

Definition: 

Cryptography is  the  study  of  hiding  information.  Cryptography is  the  science of
concealing  the  content  of  communication  between  parties,  where  the  channel
between them is controlled in some way by an unfriendly third party.

Alice Bob
Eve

Cipher (cryptosystem)

Decryption

plaintext # ciphertext ciphertext # plaintext

Encryptio
n

Cipher (Cryptosystem)

-   a  pair  of  algorithms  that  create  the  encryption  from  plaintext  to  ciphertext,
and the reversing process (decryption from ciphertext to plaintext)
-  the algorithms have a secret parameter called key (ideally known only to Alice
and Bob, and which changes from one message exchange to the next).

Cryptanalysis

Cryptanalysis

-  study of methods for obtaining the meaning of encrypted information without
access to the key normally required to do so (study of how to crack encryption
algorithms).
-  Eve (Eavesdropper, Enemy, Evil third party) intercepts the ciphertext. She may
know the cipher (the algorithms for encryption,  decryption,  but does not know
the key).  Eve  can have a  “passive  role”  (attemps to recover  the plaintext,  or  to
deduce the key), or an “active role” (alter the message sent over the channel). 

History of Cryptography

Classical Crytopgraphy 
-  simple  methods  of  encryption  and  decryption  using  only  pen  and  paper  an
perhaps simple mechanical aids.
-  non-standard  hieroglyphs  carved  into  monuments  from  the  Old  Kingdom  of
Egypt (1900 BC), 
- clay tablets from Mesopotamia (1500 BC )
-  Hebrew  scholars  -  simple  monoalphabetic  substitution  ciphers  (500-600  BC)
(replace first alphabet letter with last, second letter with next to last, ...)
- Ancient Greeks
     -  transposition ciphers (500 BC) (Spartan Scytale  -  thin strip of  parchment
wrapped around a cylindrical  rod called scytale;  the diameter of  the scytale was
known only by the sender and the receiver) 
     - Polybius square (205-123 BC) (pairs of numbers substitute for letters
- Romans - Caesar Cipher (50 BC, Gallic Wars) - Shift ciphers +k

Medieval Cryptography 

- polyalphabetic substitution
- Alberti’s Cipher Disk
- Vigènere cipher (~16th century) correspondents agree on a keyword, which 
controls letter substitution depending on which letter of the key word is used.

WW1 (ADFGVX) 
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WW1 (ADFGVX) 

- correspondents knew an encoding table for letters & ciphers and a keyword; 
letters A, D, F, G, V, X were chosen deliberately because they sound very 
differently when transmitted via Morse code
- to encipher: the plaintext is coded using the letters A,D, F, G, V, X via the 
chart. The resulting pre-ciphertext is then enciphered using a keyword columnar 
transposition cipher.
- to decipher: reverse the transposition and decode using the chart.

● A D F G V X
A F L 1 A O 2
D J D W 3 G U
F C I Y B 4 P
G R 5 Q 8 V E
V 6 K 7 Z M X
X S N H 0 T 9

plaintext: WE WILL WIN
pre$ciphertext: 
DFGXDFFDADADDFFDXD 

A R M S
1 2 3 4
D F G X
D F F D
A D A D
D F F D
X D " "

keyword: ARMS
ciphertext: 
DDADX GFAF FFDFD XDDD

WW2 
- cable and radio transmissions were encrypted
- Enigma - cryptographic machine used by the Germans (Enigma accepted letters
as keyboard input and implemented a polyalphabetic substitution cipher using an
electro-mechanical  rotor  machine  with  rotating  disks;  it  produced  output  by
lighting electrical lamps beneath lettered windows )

Modern Cryptography

-  Ciphering  operations  are  too  complex  to  be  made  by  hand;  computers  are
needed. Complex ciphering can be obtained by composition of a certain number
of simpler ciphering functions.
-  Claude  Shanon  (1949)  established  solid  theoretical  basis  for  cryptology  and
cryptanalysis (confusion/diffusion). 
  Confusion - make the relation between the key and the ciphertext as complex
as possible.
  Diffusion - data diffusion: changing one letter in the plaintext will  change many
letters in the ciphertext
                - key diffusion: changing even a tiny part of the key should change
each bit (letter) in the ciphertext with a given probability. 
- Symmetric  Key  Cryptography
    -  the sender and the receiver share the same key;  the key is  communicated
separately over a different channel.
    - 1970 Data Encryption Standard (DES) symmetric block cipher
    - 2001 Advanced Encryption Standard (AES) 
    AES  and  Triple  DES  (with  128,  256-bit  keys)  are  used  in  banking,  ATM
transactions, e-commerce, industry, mobile communications
    
- Asymmetric  (public)  Key  Cryptography
   -   new  methods  of  distributing  cryptographic  keys  (no  secure  channel  is
needed)
  -  asymmetric  key  algorithms  use  a  pair  of  mathematically  related  keys  (one
public,  one  private),  each  of  which  decrypts  the  encryption  performed  by  the
other;  the  private  key  cannot  be  deduced  from  the  public  key  by  any
computational  method  other  than  trial  and  error.  Cracking  the  encrypted
message without the private key requires a major computational task. 
  -  based on number theory
  -  Digital Signatures, Public Certificates, Authentication Protocols (SSL, SSH)
 -  E-banking  (secure  bank  transfers),  E-commerce  (cards),  protection  against
collection  of  personal  data  by  various  companies,  PGP  email  encryption,
Operating Systems, Cryptographic Protection of classified documents, etc. 
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Modern Cryptography

-  Ciphering  operations  are  too  complex  to  be  made  by  hand;  computers  are
needed. Complex ciphering can be obtained by composition of a certain number
of simpler ciphering functions.
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needed)
  -  asymmetric  key  algorithms  use  a  pair  of  mathematically  related  keys  (one
public,  one  private),  each  of  which  decrypts  the  encryption  performed  by  the
other;  the  private  key  cannot  be  deduced  from  the  public  key  by  any
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 -  E-banking  (secure  bank  transfers),  E-commerce  (cards),  protection  against
collection  of  personal  data  by  various  companies,  PGP  email  encryption,
Operating Systems, Cryptographic Protection of classified documents, etc. 
 

Example: The Caesar cipher

One  of  the  oldest  cryptosystems  is  due  to  Julius  Caesar.  The  Caesar  cipher  is
defined  over  the  alphabet  {A,B,C,  ...,  Z},  encoded  numerically  as  integer  numbers
between 0 and 25,  {A$0, B$1, ..., Z$25}. The key k  can be any integer between
0  and  25.  The  cipher  shifts  each  letter  in  the  text  cyclicly  over  k  places.  The
encoding  function  is  Ek(x) = x + k (mod 26 )  and  the  decoding  function  is
Dk(x) = x $ k (mod 26 ).  The  notation  x  mod  26  means  the  remainder  of  the
division of x by 26. 
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One  of  the  oldest  cryptosystems  is  due  to  Julius  Caesar.  The  Caesar  cipher  is
defined  over  the  alphabet  {A,B,C,  ...,  Z},  encoded  numerically  as  integer  numbers
between 0 and 25,  {A$0, B$1, ..., Z$25}. The key k  can be any integer between
0  and  25.  The  cipher  shifts  each  letter  in  the  text  cyclicly  over  k  places.  The
encoding  function  is  Ek(x) = x + k (mod 26 )  and  the  decoding  function  is
Dk(x) = x $ k (mod 26 ).  The  notation  x  mod  26  means  the  remainder  of  the
division of x by 26. 

Define the Caeser cipher over integer numbers {0, 1, ..., 25}

Clear[CaesarEncode, CaesarDecode]

CaesarEncode[x_ ?IntegerQ, k_] := Mod[x + k, 26]
CaesarDecode[x_ ?IntegerQ, k_] := Mod[x & k, 26]

SetAttributes[CaesarEncode, Listable];
SetAttributes[CaesarDecode, Listable];

Alphabet1 = Table[i, {i, 0, 25}]
CaesarEncode[Alphabet1, 3]

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 1, 2}

ASCI code of alphabet letters

The Mathematica functionsToCharacterCode[..] and 
From CharacterCode[..] convert symbols to their ASCI code and back (letter 
A has value 65, letter B has value 66, .... , letter a has value 97, letter b has value 
98, etc.).

FromCharacterCode[65]

FromCharacterCode[{97}]

ToCharacterCode["A"]

ToCharacterCode["AaBbCc"]

ToUpperCase["AaBbCc"]
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ToCharacterCode[ToUpperCase["AaBbCc"]]

Select[{4, 46, 2}, (0 <= # ≤ 25) &]

Define the Caesar cipher over strings

Encode and decode a given string using the simple encoding A=0, ... , Z=25 
(stripping all other characters).

CaesarEncode[x_ ?StringQ, k_] := Module[{n, numerictext},
numerictext = ToCharacterCode[ToUpperCase[x]] & 65;
numerictext = Select[numerictext, (0 <= # ≤ 25) &];
n = Mod[numerictext + k, 26];
FromCharacterCode[n + 65]

]

CaesarDecode[x_ ?StringQ, k_] := Module[{n, numerictext},
numerictext = ToCharacterCode[x] & 65;
n = Mod[numerictext & k, 26];
FromCharacterCode[n + 65]

]

?CaesarEncode

plain = "TYPE YOUR TEXT HERE";
CaesarEncode[plain, 2]

VARGAQWTVGZVJGTG

CaesarDecode["VARGAQWTVGZVJGTG", 2]

TYPEYOURTEXTHERE

Cryptanalysis of the Caesar cipher

An easy way to break the ciphersystem is to try out all possible keys. This method 
is called exhaustive key search, or brute-force approach. 

Example :  The text “TFEXIRKLCRKZFEJPFLALJKSIFBVPFLIWZIJKTZGYVI” has 
been encoded using a Caesar cipher with some unknown key k. Decrypt it.
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Lab Exercises

Cryptanalysis of Caesar Ciphers:
An easy way to break the ciphersystem is to try out all possible keys. This method is called exhaustive 
key search, or brute-force approach. 

Exercise:  The text “TFEXIRKLCRKZFEJPFLALJKSIFBVPFLIWZIJKTZGYVI” has been encoded using 
a Caesar cipher with some unknown key k. Decrypt it.

Cryptanalysis of Affine Ciphers:

a) By exhaustive key search, or brute-force approach (try all possible keys):
The follwing text "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX" has been encoded using an 
Affine Cipher. Decode the text.

b) By the method of a known ciphertext:
Exercise: Suppose that an affine cipher E(x) = ax+b (mod 26) enciphers “H” as “X” and “Q” as “Y”. Find
the key. Use the key to decode the ciphertext “HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG”, which
has been encoded using the same cipher.  

Hint: Solve a system of two linear equations mod 26.

c) By frequency analysis:
Exercise: Suppose that you have intercepted the following ciphertext 
“QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFA
FPXZUSFHNDGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVP
VRXWQWQVSVWWVICIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQ
VXZTJVPDGOVIWQVUVIZDWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW”
. 
You know that it has been encoded using an affine cipher, but you don' t know the key. Use frequency 
analysis to break the cipher. 

Cryptanalysis of Vigenere Ciphers: 
Exercise: The following ciphertext was produced using a Vigenere cipher with a keyword of unknown 
length k. 
“KIVQXTCQQVRPQOSGWEKVMTRYNHJVUVVKBMDPKVHKWBUWFVZFNOPQOSGWEKVMTRYNH
JGDPKOV”.
◼ Write a function that computes the index of coincidence of a ciphertext.



◼ Find an approximation of the length of the keyword, using Friedman's test. Now you know that 
approximatively k Caesar ciphers were used to encode the text.

◼ Try to break all of them. If frequency analysis does not work, then use the additional information that 
the cipher block “PQOSG” is an encoding for the plaintext “SOLVE”. 

◼ Decode the ciphertext.
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Cryptography with Mathematica

Modular Arithmetic
Definition: Let m be any positive integer. We say that two integers a and b are congruent modulo m if b-
a is divisible by m. In other words, the division of a by m gives the same remainder as the division of b 
by m. We write a=b (mod m), or a ≡ b (mod m), or a-b ≡ 0 (mod m).

Equivalence Relation: 

◼ reflexive:         a ≡ a (mod m)

◼ symmetric:     if a ≡ b (mod m) then b ≡ a (mod m)

◼ transitive:       if a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m)

Division Principle: Let m be any positive integer. Let b be any integer. Then there exist unique num-
bers q and r such that b=qm+r, and 0 ≤ r < m. 
Smallest representative:  b ≡ r (mod m)  and we think of r as the simplest representative of the equiva-
lence class of b modulo m. 

The set of smallest representatives modulo m is denoted by !m={0,1,2,3....,m-1}.

On#m we have two operations + (addition) and ' (multiplication), with the following properties :

◼ If a, b and c are integers and  a ≡ b (mod m), then a + c ≡ b + c (mod m)

◼ If a, b, c, d are integers and  a ≡ b (mod m) and c ≡ d (mod m) then ac ≡ bd (mod m)

◼ Special case: If a and b are integers and n is a positive integer, then an ≡ bn (modm).

Definition:  A multiplicative inverse of an integer a modulo m is an integer b such that ab ≡ 1 (mod m). 
                   We write a(1≡ b (mod m).

Examples : 

◼ 2*3 ≡ 6 ≡ 1 (mod 5), so 2"1≡ 3 (mod 5) and 3"1≡ 2 (mod 5)

◼ 2 is not invertible modulo 6. Suppose, by contradiction, that there exists a number x such that 2x ≡ 1 
(mod 6), then 2x-1 is divisible by 6, so in particular 2x-1 is divisible by 2, which is false, because 2x-1 
is odd.

Theorem: If  p⩾2 is a prime number, then any number a in {1,2,...p-1} has a multiplicative inverse in #p
Theorem: Let m⩾2 be any positive number, and a be a number in {1,2,...m-1}. Then a has a multiplica-
tive inverse in #m if and only if a and m are relatively prime.

◼ Suppose that a and b are relatively prime, and let us consider the set of remainders:

a*0 (mod m), a*1 (mod m), a*2 (mod m), ... ,  a* (m-1) (mod m)

Notice that remainders are all distinct. Otherwise, suppose that a*i ≡ a*j (mod m) for some i and j 
with 0<i<j<m. Then a(j-i) ≡ 0 (mod m), a(j-i) is divisible by m. But a and m are relatively prime, so j-i 
must be divisible by m. However this is not possible, because 0<j-i<m.

In conclusion {a*0 (mod m), a*1 (mod m), a*2 (mod m), ... ,  a* (m-1) (mod m)} ={0,1,2,..., m-1}, so 
there exists a number k such that a*k ≡ 1 (mod m).

◼ Suppose now that a*b ≡ 1 (mod m) and let us show that a and m must be relatively prime.

Suppose by contradiction, that a and m are not relatively prime and let a= a1*c and m=m1*c, where 
1<m1<m.

a*b ≡ 1 (mod m)  $ a1*c*b ≡ 1 (mod m)  $ a1*c*b*m1 ≡ m1 (mod m) 

$ (a1*b)*(c*m1) ≡ m1 (mod m)  $  0 ≡ m1 (mod m), which is false because m1 is not divisible by 
m. 

Modular Arithmetic in Mathematica
PowerMod[a,b,m] - gives abmod m.
PowerMod[a,-1,m] - finds the inverse of a modulo m; returns an error message “a is not invertible 
modulo m” is the integer a is not invertible modulo m.
PowerMod[a,1/r,m] - finds a modular r root of a.

In[74]:= PowerMod[3, "1, 7]

Out[74]= 5

In[75]:= PowerMod[3, "1, 6]

PowerMod::ninv: 3 is notinvertiblemodulo 6. %

Out[75]= PowerMod[3, #1, 6]

Mathematica is able to solve modular equations using Solve[{List of Equations}, {List of Variables}, 
Modulus->m]

In[76]:= Solve[{3 x % 1}, {x}, Modulus ' 7 ]

Out[76]= {{x & 5}}

In[77]:= Solve[{2 x % 1}, {x}, Modulus ' 26]

Out[77]= {}

In[78]:= Solve[{2 x % 2}, {x}, Modulus ' 26]

Out[78]= {{x & 1 + 13 C[1]}}

Affine ciphers
An affine cipher is an enchipherment scheme of the form Ea,b(x) = ax + b (mod 26) and 
Da,b(x) = a!1(x & b) (mod 26), where a and b are integer numbers between 0 and 25, and a and 26 must 
be relatively prime.

These are the admissible values for the first key (key a):
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Select[Table[i, {i, 25}], (GCD[26, #] % 1) &]

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

An example of a good key : a = 3

Table[Mod[3 + i, 26], {i, 0, 25}]

{0, 3, 6, 9, 12, 15, 18, 21, 24, 1, 4, 7, 10, 13, 16, 19, 22, 25, 2, 5, 8, 11, 14, 17, 20, 23}

An example of a bad key: a = 2

Table[Mod[2 + i, 26], {i, 0, 25}]

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}

Remark: Note that when a = 1, the Affine Cipher is just the Caesar Cipher discussed in the last lecture

Encoding and Decoding 

Clear[AffineEncode, AffineDecode]

AffineEncode[x_ ?IntegerQ, a_, b_] := Mod[a + x + b, 26]
AffineEncode[x_ ?StringQ, a_, b_] :=
Module[{n, numerictext},
numerictext = ToCharacterCode[ToUpperCase[x]] " 65;
numerictext = Select[numerictext, (0 <= # ≤ 25) &];
n = Mod[a + numerictext + b, 26];
FromCharacterCode[n + 65]

]

AffineDecode[x_ ?IntegerQ, a_, b_] := Mod[PowerMod[a, "1, 26] + (x " b), 26]
AffineDecode[x_ ?StringQ, a_, b_] :=
Module{n, numerictext},
numerictext = ToCharacterCode[x] " 65;
n = ModPowerMod[a, "1, 26] + numerictext " b, 26;
FromCharacterCode[n + 65]



Listable is an attribute that can be assigned to a function to indicate that the function should automati-
cally  be  applied  to  lists  that  appear  as  its  arguments.  For  example,  Sin  is  listable,  so  Sin[{1,  2,  3,  4}]
evaluates to {Sin[1], Sin[2], Sin[3], Sin[4]}

SetAttributes[AffineEncode, Listable];
SetAttributes[AffineDecode, Listable];
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AffineEncode[3, 5, 1]
AffineDecode[16, 5, 1]
AffineEncode[{0, 1, 2, 3, 4, 5}, 5, 1]
AffineEncode["What to encode today?", 7, 11]
AffineDecode["JILOOFNYZFGNOFGLX", 7, 11]

16

3

{1, 6, 11, 16, 21, 0}

JILOOFNYZFGNOFGLX

WHATTOENCODETODAY

Simple substitution/Monoalphabetic substitutions
With the method of a simple substitution one chooses a fixed permutation p of the alphabet letters {a, b,
…, z} and applies that permutation to all letters in the plaintext.

E(x) = p(x)
D(x) = p(1(x)

Cipher =
{"A" ' "K", "B" ' "E", "E" ' "Z", "N" ' "A", "Z" ' "C", "C" ' "B", "K" ' "N"}

{A & K, B & E, E & Z, N & A, Z & C, C & B, K & N}

DecodeA = "A" 5. Cipher ' "A"

K & A

We can generate the English alphabet in several ways: from the ASCII codes, or by using the Mathemat-
ica function Alphabet[..].

alphabet = Table[FromCharacterCode[i], {i, 65, 65 + 25}]

{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

In[79]:= alphabet = ToUpperCase @ Alphabet["English"]

Out[79]= {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Now we can display the backwards correspondence between the permuted (encrypted) alphabet and 
the original one.

DecodeCipher = Tablealphabet[[i]] 5. Cipher ' alphabet[[i]], {i, 1, 26}

{K & A, E & B, B & C, D & D, Z & E, F & F, G & G, H & H, I & I, J & J, N & K, L & L, M & M,
A & N, O & O, P & P, Q & Q, R & R, S & S, T & T, U & U, V & V, W & W, X & X, Y & Y, C & Z}
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Encoding and Decoding

StringReplace[“string”,s(sp] or StringReplace[“string”,{s1(sp1,s2(sp2,…}]
replaces the string expressions s by sp  whenever they appear as substrings of 
string.

Clear[EncodeP, DecodeP]

EncodeP[x_] := StringReplace[ToUpperCase[x], Cipher]
DecodeP[x_] := StringReplace[ToUpperCase[x], DecodeCipher]

EncodeP["ANOTHER CIPHER"]

DecodeP["KAOTHZR BIPHZR"]

Cryptanalysis of Affine Ciphers:

a) By exhaustive key search, or brute-force approach (try all possible keys):
The follwing text "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX" has been encoded using an 
Affine Cipher. Decode the text.

b) By the method of a known ciphertext:
Exercise: Suppose that an affine cipher E(x) = ax+b (mod 26) enciphers “H” as “X” and “Q” as “Y”. Find
the key. Use the key to decode the ciphertext “HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG”, which
has been encoded using the same cipher.  

Hint: Solve a system of two linear equations mod 26.

c) By frequency analysis:
Exercise: Suppose that you have intercepted the following ciphertext 
“QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFA
FPXZUSFHNDGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVP
VRXWQWQVSVWWVICIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQ
VXZTJVPDGOVIWQVUVIZDWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW”
. 
You know that it has been encoded using an affine cipher, but you don' t know the key. Use frequency 
analysis to break the cipher. 
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Cryptanalysis of Affine ciphers

Affine ciphers
An affine cipher is an enchipherment scheme of the form Ea,b(x) = ax + b (mod 26) and 
Da,b(x) = a!1(x % b) (mod 26), where a and b are integer numbers between 0 and 25, and a and 26 must 
be relatively prime. 

These are the admissible values for the first key (key a):

In[38]:= GoodKeys = Select[Table[i, {i, 25}], (GCD[26, #] ( 1) &]

Out[38]= {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Note that there are exactly 12 such numbers (the Euler characteristic of 26 is (2 - 1) (13 - 1) = 12).

Encoding and Decoding 

Clear[AffineEncode, AffineDecode]

In[48]:= AffineEncode[x_ ?IntegerQ, a_, b_] := Mod[a + x + b, 26]
AffineEncode[x_ ?StringQ, a_, b_] := Module[{n, numerictext},

numerictext = ToCharacterCode[ToUpperCase[x]] - 65;
numerictext = Select[numerictext, (0 <= # ≤ 25) &];
n = Mod[a + numerictext + b, 26];
FromCharacterCode[n + 65]

]

In[50]:= AffineDecode[x_ ?IntegerQ, a_, b_] := Mod[PowerMod[a, -1, 26] + (x - b), 26]
AffineDecode[x_ ?StringQ, a_, b_] := Module{n, numerictext},

numerictext = ToCharacterCode[x] - 65;
n = ModPowerMod[a, -1, 26] + numerictext - b, 26;
FromCharacterCode[n + 65]



In[43]:= AffineEncode["Looks like Affine chiphers are pretty easy", 17, 5]

Out[43]= KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX

In[44]:= AffineDecode["KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX", 17, 5]

Out[44]= LOOKSLIKEAFFINECHIPHERSAREPRETTYEASY

Associations

Associations
Association  (<|....|>) - Along with lists, associations are fundamental constructs in the Wolfram Lan-
guage. They associate keys with values, allowing highly efficient lookup and updating, even with mil-
lions of elements. Associations provide generalizations of symbolically indexed lists, associative arrays, 
dictionaries, hashmaps, structs, and a variety of other powerful data structures. 
Association[key->val] associates keys with values
Association[{k->v, b->y}] key k is associated with value v, key b with value y, etc. 
Convert a list of rules to an association using Association[List]. Convert an association back to list 
using Normal[Association].

Numeric correspondents of alphabet letters:

In[16]:= NumAlphabet =
Association @ Table[FromCharacterCode[i] 5 i - 65, {i, 65, 65 + 25}]

Out[16]= #A $ 0, B $ 1, C $ 2, D $ 3, E $ 4, F $ 5, G $ 6, H $ 7,
I $ 8, J $ 9, K $ 10, L $ 11, M $ 12, N $ 13, O $ 14, P $ 15, Q $ 16,
R $ 17, S $ 18, T $ 19, U $ 20, V $ 21, W $ 22, X $ 23, Y $ 24, Z $ 25%

If we want to obtain the frequency of letter A, we can now call TA["A"] in place of TA[[1]].

In[17]:= NumAlphabet["H"]

Out[17]= 7

In[18]:= NumAlphabet[[8]]

Out[18]= 7

Keys[..] and Values[..] can be used to obtain the keys or the values of an Association.

In[23]:= Keys[NumAlphabet]
Values[NumAlphabet]

Out[23]= {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Out[24]= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Table of frequency of letters from the English alphabet

In[8]:= T = {"A" 5 0.0804, "B" 5 0.0154, "C" 5 0.0306, "D" 5 0.0399,
"E" 5 0.1251, "F" 5 0.0230, "G" 5 0.0196, "H" 5 0.0549,
"I" 5 0.0726, "J" 5 0.0016, "K" 5 0.0067, "L" 5 0.0414,
"M" 5 0.0253, "N" 5 0.0709, "O" 5 0.0760, "P" 5 0.0200, "Q" 5 0.0011,
"R" 5 0.0612, "S" 5 0.0654, "T" 5 0.0925, "U" 5 0.0271,
"V" 5 0.0099, "W" 5 0.0192, "X" 5 0.0019, "Y" 5 0.0173, "Z" 5 0.0009}
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In[9]:= TA = Association[T]

In[10]:= Sort[TA]

Out[10]= #Z $ 0.0009, Q $ 0.0011, J $ 0.0016, X $ 0.0019, K $ 0.0067, V $ 0.0099,
B $ 0.0154, Y $ 0.0173, W $ 0.0192, G $ 0.0196, P $ 0.02, F $ 0.023, M $ 0.0253,
U $ 0.0271, C $ 0.0306, D $ 0.0399, L $ 0.0414, H $ 0.0549, R $ 0.0612,
S $ 0.0654, N $ 0.0709, I $ 0.0726, O $ 0.076, A $ 0.0804, T $ 0.0925, E $ 0.1251%

The letters of the English alphabet, ordered from most frequent to least frequent :

In[11]:= SortedLetters = Keys[Sort[TA, Greater]]

Out[11]= {E, T, A, O, I, N, S, R, H, L, D, C, U, M, F, P, G, W, Y, B, V, K, X, J, Q, Z}

Cryptanalysis of Monoalphabetic Ciphers
We  call  a  monoalphabetic  substitution  cipher  any  cipher  that  does  a  permutation  of  the  letters  of  the
English alphabet. Unlike Caesar’s cipher or Affine ciphers, a general monoalphabetic substitution cipher
does not have the drawback of a small key space. Indeed, the key space is 26! ≃4.03 10^26. However,
a large key space does not guarantee that the system is secure! On the contrary, by simply counting the
letter frequencies in the ciphertext and comparing these with the letter frequencies of the English alpha-
bet, one very quickly finds the encodings of the most frequent letters in the plaintext. Indeed, the most
frequent  letter  in  the  ciphertext  will  very  likely  be the encoding of  one of  the  letters  E,  T,  A,  etc.  After
having  found  the  encryptions  of  the  most  frequent  letters  in  the  plaintext,  it  is  not  difficult  to  fill  in  the
rest. Of course, the longer the cipher text, the easier the cryptanalysis becomes.

Frequency analysis
The probability that letter “A” appears in an English text is approx. 0.0804. The probability that letter “E”
appears in an English text is approx. 0.1251. The probability that letter “Z” appears in an English text is
approx.  0.0009.  Enciphering  a  text  with  a  monoalphabetic  cipher  only  permutes  these  frequencies
around.

A function to count the number of occurences of letters in a text
We use the Mathematica function StringCount[s, sub] which counts the occurrences of the substring 
sub in the string s

In[12]:= LetterFrequencies[x_] := Module[{y, L, F},
y = ToUpperCase[x];
L = Table[FromCharacterCode[i], {i, 65, 65 + 25}];
F = Table[L[[i]] -> StringCount[y, L[[i]]], {i, 1, 26}];
Association[F]

]

In[13]:= LetterFrequencies["AAAABA gZZZZhADZ"]
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In[14]:= Ordered = Sort[LetterFrequencies["AAAABA gZZZZhADZ"], Greater]

In[15]:= Keys[Ordered]

Cryptanalysis of Affine Ciphers:

a) By exhaustive key search, or brute-force approach (try all possible keys):
The follwing text "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX" has been encoded using an 
Affine Cipher. Decode the text.

Solution : 
What is the size of the key space of the Affine Cipher? The key of an Affine Cipher consists of two 
integers a and b, 0<= a,b < 25 and  satisfying the additional restriction that a and 26 are relatively prime. 
There are 12 numbers relatively prime to 26. So the size of the key space is 12x26 = 312. 

ciphertext2 = "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX";
L = Select[Table[i, {i, 25}], (GCD[26, #] ( 1) &];
For[i = 1, i ≤ Length[L], i++,
For [j = 0, j ≤ 25, j++,
Print[
LanguageIdentify[AffineDecode[ciphertext2, L[[i]], j]],
AffineDecode[ciphertext2, L[[i]], j]

]
]]

ciphertext2 = "KJJTZKLTVFMMLSVNULAUVIZFIVAIVQQXVFZX";
L = Select[Table[i, {i, 25}], (GCD[26, #] ( 1) &];
Fori = 1, i ≤ Length[L], i++,
For j = 0, j ≤ 25, j++,

IfLanguageIdentify[AffineDecode[ciphertext2, L[[i]], j]] ( English (language) ,

Print[AffineDecode[ciphertext2, L[[i]], j]]


b) By the method of a known ciphertext:
Exercise: Suppose that an affine cipher E(x) = ax+b (mod 26) enciphers “H” as “X” and “Q” as “Y”. Find
the key. Use the key to decode the ciphertext “HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG”, which
has been encoded using the same cipher.  

Hint: Solve a system of two linear equations modulus 26.

4     CryptoTest.nb



Solution : 

Clear[a, b]
sol = Solve[

{NumAlphabet["H"] + a + b ( NumAlphabet["X"],
NumAlphabet["Q"] + a + b ( NumAlphabet["Y"]},

{a, b},
Modulus 5 26

]

ciphertext1 = "HXAEAEICJJOLCGPSQPVJCAPHOTHCHHCIG"
AffineDecode[ciphertext1, a 7. Flatten[sol], b 7. Flatten[sol]]

c) By frequency analysis:
Exercise: Suppose that you have intercepted the following ciphertext. You know that it has been 
encoded using an affine cipher, but you don’ t know the key. Use frequency analysis to break the 
cipher. 
“QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFA
FPXZUSFHNDGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVP
VRXWQWQVSVWWVICIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQ
VXZTJVPDGOVIWQVUVIZDWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW”
. 

Solution : 
First we need to find out the most frequent letters in the ciphertext. Since a monoalphabetic substitution 
cipher was used, we expect that the most frequent letters in the ciphertext are encodings of the most 
frequent letters in the English alphabet. So we can use this information to break the cipher!

ciphertext3 =
"QNRVKVITSTIJVLVFPUTHVONVPGNWZVTGWQTWWQVPFPWVZXPPVHDIVNGWQVHNGWITIFAFPXZUSFHN8

DGWXGJWQVSVWWVICIVBDVGHXVPXGWQVHXUQVIWVYWTGOHNZUTIXGJWQVPVRXWQWQVSVWWVI8
CIVBDVGHXVPNCWQVVGJSXPQTSUQTAVWNGVKVIFBDXHLSFCXGOPWQVXZTJVPDGOVIWQVUVIZ8
DWTWXNGUNCWQVZNPWCIVBDVGWSVWWVIPXGWQVUSTXGWVYW";

S = Sort[LetterFrequencies[ciphertext3], Greater]
(+ Letters in the ciphertext, from most frequent to least frequent +)
CipherLetters = Keys[S]
(+ The letters of the English alphabet,
ordered from most frequent to least frequent +)
SortedLetters

Out[35]= #V $ 46, W $ 33, G $ 19, Q $ 17, X $ 16, I $ 16, P $ 15,
T $ 13, N $ 12, S $ 9, H $ 9, U $ 8, D $ 8, Z $ 7, F $ 7, C $ 6,
J $ 5, O $ 4, B $ 4, Y $ 2, R $ 2, L $ 2, K $ 2, A $ 2, M $ 0, E $ 0%

Out[36]= {V, W, G, Q, X, I, P, T, N, S, H, U, D, Z, F, C, J, O, B, Y, R, L, K, A, M, E}

Out[37]= {E, T, A, O, I, N, S, R, H, L, D, C, U, M, F, P, G, W, Y, B, V, K, X, J, Q, Z}

From exercise b) we know that it is enough to decipher two ciphertext letters to break the entire Affine
cipher. Using frequency analysis, we infer that most likely letter V is an encoding of letter E, and letter
W is an encoding of letter T. We try to break the affine cipher using the method outlined in exercise b). If
we get something that makes sense, it means that we have broken the cipher. Otherwise, we continue
guessing,  and  assume that  for  instance,   the  ciphertext  letter  V  is  an   encoding  for  E,  and  ciphertext
letter W is an encoding for A. 
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From exercise b) we know that it is enough to decipher two ciphertext letters to break the entire Affine
cipher. Using frequency analysis, we infer that most likely letter V is an encoding of letter E, and letter
W is an encoding of letter T. We try to break the affine cipher using the method outlined in exercise b). If
we get something that makes sense, it means that we have broken the cipher. Otherwise, we continue
guessing,  and  assume that  for  instance,   the  ciphertext  letter  V  is  an   encoding  for  E,  and  ciphertext
letter W is an encoding for A. 

Solve[{4 a + b ( 21, 19 a + b ( 22}, {a, b}, Modulus 5 26]

{{a $ 7, b $ 19}}

In[70]:= Clear[a, b];
sol2 = Solve[

{NumAlphabet[SortedLetters[[1]]] + a + b ( NumAlphabet[CipherLetters[[1]]],
NumAlphabet[SortedLetters[[2]]] + a + b ( NumAlphabet[CipherLetters[[2]]]},

{a, b}, Modulus 5 26];
Print["We have broken the cipher ", Flatten[sol2],
" and the decoded message is:"]

AffineDecode[ciphertext3, a 7. Flatten[sol2], b 7. Flatten[sol2]]

We have broken the cipher {a $ 7, b $ 19} and the decoded message is:

Out[73]= HOWEVERALARGEKEYSPACEDOESNOTMEANTHATTHESYSTEMISSECUREONTHECONTRARYBYSIMPLYCOUNTIN&
GTHELETTERFREQUENCIESINTHECIPHERTEXTANDCOMPARINGTHESEWITHTHELETTERFREQUENCIESO&
FTHEENGLISHALPHABETONEVERYQUICKLYFINDSTHEIMAGESUNDERTHEPERMUTATIONPOFTHEMOSTFR&
EQUENTLETTERSINTHEPLAINTEXT
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Polyalphabetic ciphers - Vigenere ciphers
The Vigenere cipher is a combination of several Caesar ciphers. Different letters in the plaintext are 
encrypted with different substitution alphabets.
How it works: Correspondents agree on a keyword. 
To encrypt a plaintext, one writes the keyword repeatedly alongside the plaintext, converts both 
plaintext and keyword to their numerical equivalents (0-A, 1-B,...25-Z) and adds the corresponding 
letters modulo 26.
To decrypt a ciphertext, one writes the keyword repeatedly alongside the ciphertext, converts both 
ciphertext and keyword to their numerical equivalents (0-A, 1-B,...25-Z) and subtracts the corresponding 
letters modulo 26.

Keyword k = k0 k1 k2 ... kn"1

Plaintext x = x0 x1 x2 ...
Ciphertext y = y0 y1 y2 ... , where yi = (xi + k(imod n))mod 26

Example: Ecrypt “GOAHEAD” using keyword “WIND”

plain G O A H E A D
x 6 14 0 7 4 0 3
key W I N D W I N
k 22 8 13 3 22 8 13

x + k (mod 26) 2 22 13 10 0 8 16
cipher C W N K A I Q

Example : Decrypt "PWSRPULNB" using keyword "DWIN"

cipher P W S R P U L N B
y 15 22 18 17 15 20 11 13 1
key D W I N D W I N D
k 3 22 8 13 3 22 8 13 3

y $ k (mod 26) 12 0 10 4 12 24 3 0 24
plain M A K E M Y D A Y

Index of coincidence of a ciphertext
Experiment: Pick a pair of letters from a text. What is the probability of two letters being identical? 
Assume that the text has n letters, counting repetitions, distributed as follows: n0 occurences of “A”, n1 
occurences of “B”, ... n25 occurences of “Z”, where n0 + n1 + ... n25 = n. 

Counting Probabilities: Total number of ways in which the experiment can turn out: C (n, 2) = n(n"1)
2 .

Total number of ways in which identical pairs can be obtained: C(n0,2)+C(n1,2)+...C(n25,2)=∑i=0
25 ni(ni"1)

2

Definition: The number I= 2
n(n"1) ∑i=0

25 ni(ni"1)
2 = 1

n(n"1) ∑i=0
25 ni(ni " 1) is called the index of coincidence 

of the ciphertext. It represents the probability that two letters selected at random from the ciphertext are 
identical.

The index of coincidence of an alphabet in which each letter has the same frequency is  1/26 ≃ 0.0385 
The index of coincide of the English alphabet is about 0.065
Monoalphabetic substitution (Caesar, Affine, Permutation): I ≃ 0.065
Polyalphabetic substitution (Vigenere cipher):  I ≃ (closer to) 0.0385 
Vigenere ciphers from longer keywords have a more uniform distribution of letters, so the index of 
coincidence is closer to 0.0385. If the keyword is short, then the index of coincidence is closer to 0.065.

Monoalphabetic substitution (Caesar, Affine, Permutation): I ≃ 0.065
Polyalphabetic substitution (Vigenere cipher):  I ≃ (closer to) 0.0385 
Vigenere ciphers from longer keywords have a more uniform distribution of letters, so the index of 
coincidence is closer to 0.0385. If the keyword is short, then the index of coincidence is closer to 0.065.

Connection between I and the keyword length
Formula (Friedman’s Test): Suppose that a ciphetext with n letters was obtained by a Vigenere encod-
ing using a keyword with length k. Then the length of the keyword is approximatively 

k ≃ 0.0265 n
(0.065$I)+n(I$0.0385)

.

How it works :

Suppose that the ciphertext has n letters and the Vigenere keyword has k letters. Assume for simplicity 
that n is a multiple of k. We can group the letters of the ciphertext in a table with k columns and n/k 
rows, where the letters in each column are encoded with the same ciphertext.
  

Each column is a shift encipherment by an ammount corresponding to the key letter. If we choose a pair 
of letters at random, then they either:

1. come from the same column
2. come from different columns
Let' s analyze these two situations, and compute te probability that the chosen letters are identical.

Case 1.
We have  k  ways to  choose the column and C(n/k,  2)  ways to  choose a pair  of  letters  from the same
column.
Since letters from the same column are encrypted using the same Caesar cipher, they have probabilty
0.065 to be identical. The expected number of identical pairs of letters from the same column is:
S = 0.065*k*C(n/k, 2)

Case 2.
We have C(k,2) ways to choose two distinct columns and n/k ways to choose a letter in the first chosen
column, and likewise, also n/k ways to choose a letter in the second column.
Since letters from different columns are encrypted using different Caesar ciphers, they have probabilty
1/26  =  0.0385  to  be  identical.   The  expected  number  of  identical  pairs  of  letters  from  different
columns is:

D = 0.0385*C(k, 2)*  n
k
 2

Conclusion (Case 1 + Case 2)
The index of coincidence of the ciphertext will be  
I ≃ S + D

C (n,2) = 0.065'(n$k) + 0.0385'n (k$1)
k (n$1)

If we want to guess a probable keyword length k from the index of coincidence of a ciphertext, we take 

the previous equation and solve for k. We obtain Friedman’s formula: k ≃ 0.0265 n
(0.065$I)+n(I$0.0385)
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If we want to guess a probable keyword length k from the index of coincidence of a ciphertext, we take 

the previous equation and solve for k. We obtain Friedman’s formula: k ≃ 0.0265 n
(0.065$I)+n(I$0.0385)

Exercise: 
The following ciphertext was produced using a Vigenere cipher with a keyword of unknown length k. 
“KIVQXTCQQVRPQOSGWEKVMTRYNHJVUVVKBMDPKVHKWBUWFVZFNOPQOSGWEKVMTRYN
HJGDPKOV”.
◼ Write a function that computes the index of coincidence of a ciphertext.

◼ Find an approximation of the length of the keyword, using Friedman's test. Now you know that 
approximatively k Caesar ciphers were used to encode the text.

◼ Try to break all of them. If frequency analysis does not work, then use the additional information that 
the cipher block “PQOSG” is an encoding for the plaintext “SOLVE”. 

◼ Decode the ciphertext.
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MAT 331: Project 3

Project description:

Cryptography  has  been  used  for  secure  communication  for  thousands  of  years.  The  modern  world
simply depends on cryptography; every time you make a mobile phone call, make an electronic transac-
tion  or  an  online  payment  with  a  credit  card,  or  send  a  secure  email,  encryption  is  vital  for  protecting
sensitive  information.  In  this  project  we  are  interested  in  the  theoretical  foundations  of  the  asymmet-
ric/symmetric key cryptosystems, and on how they can be efficiently used together to make the informa-
tion exchange more secure. 

Tasks:

Introduction
Browse the web and describe some areas of our everyday life for which cryptography is essential. 
Describe the concept of End-to-End encryption and Digital Signatures. 

Mathematical explanations
Describe the mathematics behind the RSA cryptosystem and prove Euler’s Theorem. Also describe the 
mathematics behind Friedman’s test (Friedman’s test uses the index of coincidence of a ciphertext to 
calculate a probable keyword length for the Vigenere cipher).

Project overview
In this project we will use a Vigenere cipher to communicate secret information. Our alphabet will be the
26-letter English alphabet, numerically represented as integers between 0 and 25.  As always, we first
need to agree on a secret keyword for the Vigenere cipher (to be used for both encoding and decoding).
Each letter from the plaintext/ciphertext message will be encoded/decoded separately, using the corre-
sponding letter from the keyword. We will use RSA to securely exchange the keyword. My RSA scheme
will the following: 
public  modulus
m=2480646863865156240312764602400149650804447106891126179090516987413492462101441
and public key e=17.

Part 1 - RSA
◼ Your first task will be to set up your own RSA scheme. For the purpose of this project, we will assume

that  it  is  secure  enough  if  you  choose  two  prime  numbers  with  exactly  40  (decimal)  digits.  Submit
your public RSA information on Blackboard. Note: Send only the public information! 
There  are  tables  of  prime  numbers  available  online.  You  can  also  tell  Mathematica  to  generate  a
pseudo-random  prime  number  with  k  digits  by  using  the  command  RandomPrime[10^k].  Double
check that the number generated is indeed prime by using the Boolean function PrimeQ[...].

◼ After  you  complete  the  first  step,  you  will  receive  message-signature  pairs  encoded  with  your  RSA
public information. Eve is also trying to get access to our private communications, so she will also try
to  send  you  fake  Vigenere  keywords  encoded  with  your  RSA  public  key.  You  will  decode  the
message-signature pairs, and keep only the information for which the signature is valid, and discard
the rest. 



◼ The  decoded  message  with  valid  digital  signature  will  be  an  integer  x  between  1  and  your  RSA
modulus.  You  will  take  this  integer  x  and  convert  it  to  base  26.   This  will  be  our  keyword  for  the
Vigenere cipher.

For  example,  if  the  decoded  message  is  x=190,  then  its  base  26  representation  is  7 8 ,  which

corresponds to the English word “HI”.

Part 2 - Vigenere
◼ Build  an  interactive  model  in  Mathematica  for  encoding/decoding  English  text  messages  that  have

been  encrypted  using  a  Vigenere  cipher  with  keyword  k.  Your  model  should  have  a  textbox  s,  in
which the text  to be encoded/decoded can be written,  and a textbox k,  for  the keyword.  By default,
these  boxes  should  be  populated  with  the  encrypted  text  below,  and  respectively  with  the  key  that
you  have  obtained  after  the  RSA  decoding  process.  For  these  default  settings,  the  model  should
output the decoded text. 
s=“KLIQEJXUULFYTECJXFRPKLOVCNLOPYBITKCSISWMLXOIRYIWDWKLIQEJXUULFYT”

◼ Add  some  extra  functionality  to  your  model  from  part  2.  We  know  that  the  Vigenere  cipher  is
vulnerable  to  statistical  analysis,  so  you  will  now  try  to  make  your  model  work  even  if  no  key  is
provided.  If  the  keyword  box  is  empty,  then  you  will  compute  the  index  of  coincidence  of  the
ciphertext and use Friedman’s test to guess the probable keyword length. Remember that you need
to  have  a  reasonably  long  chunk  of  encrypted  text  for  statistical  analysis  to  work;  also  recall  that
Friedman’s test is not very accurate so it is usually used in combination with other tests (if you get 7.2
by Friedman’s test, then the keyword could easily have length 6, 7 or 8). The keyword length tells you
how  many  Caesar  ciphers  were  used,  so  you  can  now  proceed  and  break  each  of  them  by  using
letter frequency analysis (or in the worst case scenario, by brute-force approach).  
Your model should output the index of coincidence of the ciphertext and the decoded message (or a
very  short  list  with  attempted  decodings,  including  the  correct  one).  Do  not  output  thousands  and
thousands of  attempted decodings!  If  you want  to  print  other  relevant  information (like the probable
keyword length), please feel free to do so. 

s=”DLCZVMDIADMMXSDCILCMRSZCSRDYVKKXGYRYQEGXWRERYEXFYVGJIBKGAOWQYVDBESNYJORRM
LYXKCCLYCFCORMPTPSQCMSLMIPXXFBSSQLMEXRRIAORREVGOWKYHCBRAYQKERGMERSSLDIARRGA
YCCYQSREMSKZYROVQMSLXIADIBDLPYYERRCDAMBOQWEIOEJVHYDECFILWSPOZSVRCBEZVIDYVRRIQO
XFBIYDWYVWMXIUSWQEIQRETOGMWISZXFKXUOVCXSRBIJOZYXXZOJMBIFYARYEBNEBSKGDEJCMEXER
EVCDSYXIJOGRBSLSGBYGSWILDMLCYAREUKCRRERDLCCMEXIPMELXSRNILIPYDIPYRRRERDLCNSAEQC
XXUKWQSKLOHZILGWLCB”.
s=”AFUXMCKRJTIEXBCRJNTTCWFCLEMMDCTERARRMYCLPQMVKBJQXTSKVMGKFXTMGKPTIWUPQBDNE
PAHLLMZLZKFXCCMKCKWPXHSXEABVQBERAVABGFXIRXORTEBVFKIRPBEEMYCLVUBKFMYCEVRMVPYIC
JLCGTGXJMYKFXVLZCGLYYEGFTSCMFLXMCKPONZADCWYZLWJRAVGFREXJSGUCKKFXGCKDSMRRBFLI
FDMYCFFQMWPXHSXEREVRMVPLZLMYCICYBERXOR”.

Part 3 - RSA Common Modulus Problem
◼ Does it work to break the RSA modulus 

m=248064686386515624031276460240014965080444710689112617909051698741349246210144
1 by a brute force approach? How long does it take?

◼ In  this  part,  we  will  explore  a  vulnerability  of  the  RSA  system,  known  as  the  common  modulus
problem.  Suppose  that  Alice  and  Kate  use  the  same  RSA  modulus  m  as  above,  but  with  different
encryption exponents eAlice = 17 and eKate = 169. Bob wants to send the message x to both Alice and
Kate.  He  first  encrypts  x  using  Kate’s  public  exponent,  and  sends  Kate  the  ciphertex
249081508444719456881769789206569419957026519534551194619251016972858511647493.
Then  he  encrypts  x  using  Alice’s  public  exponent  and  sends  the  ciphertext
548038685778480218593900000000000000000  to  Alice.  If  Eve  intercepts  both  of  the  ciphertexts,
explain how she can recover the plaintext without knowing either decryption exponent, then apply her
method to find x.
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◼

In  this  part,  we  will  explore  a  vulnerability  of  the  RSA  system,  known  as  the  common  modulus
problem.  Suppose  that  Alice  and  Kate  use  the  same  RSA  modulus  m  as  above,  but  with  different
encryption exponents eAlice = 17 and eKate = 169. Bob wants to send the message x to both Alice and
Kate.  He  first  encrypts  x  using  Kate’s  public  exponent,  and  sends  Kate  the  ciphertex
249081508444719456881769789206569419957026519534551194619251016972858511647493.
Then  he  encrypts  x  using  Alice’s  public  exponent  and  sends  the  ciphertext
548038685778480218593900000000000000000  to  Alice.  If  Eve  intercepts  both  of  the  ciphertexts,
explain how she can recover the plaintext without knowing either decryption exponent, then apply her
method to find x.

Conclusions and references

◼ Give  some  brief  instructions  on  how  your  model  should  be  tested  (how  to  use  the  controls,  what
functionalities you have implemented, etc.).

◼ Formulate  your  conclusions  after  testing  your  interactive  model.  Is  the  index  of  coincidence  an
accurate estimate for the length of the key? How secure is our communication protocol? How secure
is RSA?

◼ Don’t forget to include all relevant references.
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RSA (Rivest, Shamir, Adleman)
◼ asymmetric key cryptosystem/ public key cryptosystem

◼ can be used for both encryption/decryption and authentification; in RSA we use the sender’s private
key to sign the message and the receipient’s public key to encrypt the message.

◼ the security of the RSA cryptosystem resides in the hardness/time consuming problem of factoring a
large  number  (the  public  modulus  m)  into  its  two  prime  factors  (private  primes  p  and  q).  Factoring
integers is much harder than multiplying them!

p = 999999599;
q = 9 999999967;
m = p " q;

Timing[p " q]
Timing[FactorInteger[m]]

p = 2 425967623052370772757633156976982469681;
q = 5 570373270183181665098052481109678989411;
m = p " q;

Timing[p " q]
Timing[FactorInteger[m]]

★ The largest known prime number as of October 2015 is 257885161 # 1, a number with 17,425,170 
decimal digits. RSA protocols usually use a 2048-bit modulus m (which corresponds to 617 decimal 
digits).

To generate a random prime in Mathematica we can use the command RandomPrime[..]

r1 = RandomPrime[{10^20, 10^21}]
PrimeQ[r1]
IntegerLength[r1]
BitLength[r1]

Mathematics behind RSA
◼ RSA is based on Euler’s Theorem. Let p and q be two distinct prime numbers. Let m=pq.

0.1.  If a is relatively prime to m, then a(p#1) (q#1) ≡ 1 (modm).
0.2. If a is any integer (not necessarily relatively prime to m), and k is any positive integer, then 

ak(p#1) (q#1)+1 ≡ a(modm).

RSA Setup
◼ Alice selects two distinct primes p and q and computes m=pq and n=(p-1)(q-1).

◼ She chooses a number e, relatively prime to n=(p-1)(q-1), and finds the multiplicative inverse of e 
modulo n, that is, she finds an integer d such that ed≡1(mod n).

◼ Alice makes (m,e) public. m is called the public modulus, and e the public key or the encryption key.

◼ Alice keeps p,q,n,d a secret. d is called the private key or the decryption key. 

Encryption function:  E(x) = xe(modm), where 1≤x≤m-1.

Decryption function: D(y) = yd(modm), where 1≤y≤m-1.

Example

Alice sets up an RSA scheme

◼ select primes p=11 and q=3.

◼ compute m=pq=33 and n=(p-1)(q-1)=(11-1)(3-1)=20

◼ choose a number e, relatively prime to n=20. Suppose we choose e=3.

◼ find an integer d such that ed≡1(mod 20). The integer d is the multiplicative inverse of e, modulo 20. 
In this case, d=e#1(mod 20) = 3#1 (mod 20) = 7 (mod 20). 

◼ public key (m,e)=(33,3)
e=3 is the public encryption key.
m=33 is the public modulus.

◼ private key (p,q, n,d)=(11,3,20,7). 
d=7 is the private decryption key.

Bob wants to send the message x=14 to Alice. 

◼ encrypt the message x=14 using Alice’s public key.

◼ compute y=xe(modm) = 143 (mod 33) = 2744 (mod 33) = 5 (mod 33).
◼ the ciphertext is y=5.

◼ Bob sends the ciphertext y=5 to Alice.

Alice receives the ciphertext y=5 (from Bob?)

◼ use the private key d=7 to decrypt it.

◼ compute x=yd(modm) = 57 (mod 33).
x=57 (mod 33) = 532 ,5 (mod 33) = 1252 ,5 = (#7)2 ,5 = 7,2 = 14 (mod 33)

◼ the decrypted message is x=14. (This is exactly Bob’s unencrypted message!)
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RSA with Mathematica
EncryptionRSA[x_ ?IntegerQ, e_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, e, m]
SetAttributes[EncryptionRSA, Listable]

DecryptionRSA[x_ ?IntegerQ, d_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, d, m]
SetAttributes[DecryptionRSA, Listable]

To decrypt the cipher message y = 5 received from Bob, Alice computes :

DecryptionRSA[5, 7, 33]

14

To decrypt a list of cipher messages, say {5, 17, 10} received from Bob, Alice computes:

DecryptionRSA[{5, 17, 10}, 7, 33]

{14, 8, 10}

Short exercise : Produce a table with the encryptions of all integers between 0 and 
32.

T = Table[i (> EncryptionRSA[i, 3, 33], {i, 0, 32}]

{0 # 0, 1 # 1, 2 # 8, 3 # 27, 4 # 31, 5 # 26, 6 # 18, 7 # 13,
8 # 17, 9 # 3, 10 # 10, 11 # 11, 12 # 12, 13 # 19, 14 # 5, 15 # 9, 16 # 4,
17 # 29, 18 # 24, 19 # 28, 20 # 14, 21 # 21, 22 # 22, 23 # 23, 24 # 30,
25 # 16, 26 # 20, 27 # 15, 28 # 7, 29 # 2, 30 # 6, 31 # 25, 32 # 32}

Unconcealed Messages:
◼ All 33 values of x (from 0 to 32) map to unique ciphertext values y in the same range, in a sort of 

random manner.

◼ There are 9 values of x that map to themselves, 0,1,10,11,12, 21, 22, 23, 32! These are called 
unconcealed messages. The numbers 0,1,m-1 are no surprise, because they always map to 
themselves under the map xe (mod m). To see how many unconcealed messages there are for a 
chosen pair (m,e), we must solve a modular equation xe ≡ x (mod m), or equivalently xd ≡ x (mod m). 
In this case one solves x3 ≡ x (mod 33), which is equivalent to x(x # 1) (x + 1) ≡ 0 (mod 33).

Solve[x^3 " x, x, Modulus # 33]

{{x # 0}, {x # 1}, {x # 10}, {x # 11}, {x # 12}, {x # 21}, {x # 22}, {x # 23}, {x # 32}}

Theorem: Let m = pq be the product of two disctinct prime numbers,  and suppose that e is relatively 
prime to (p-1)(q-1). Then the number of elements x in %m that satisfy the relation xe = x (mod m) is 
given by (GCD[e-1,p-1]+1)(GCD[e-1,q-1]+1).
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p = 3; q = 11; e = 3;
(GCD[e ( 1, p ( 1] + 1) (GCD[e ( 1, q ( 1] + 1)

Since p - 1, q - 1, e - 1 are all even, the number of unconcealed messages is at least 9. In practice, the
encryption exponent e is small,  whereas p and q are quite large, so the number of  unconcealed mes-
sages will be very small compared to the total number of possible messages.

Symmetric vs Asymmetric key Criptography

Symmetric Key Cryptography

◼ same key used for encryption/decryption

◼ fast encryption/decryption

◼ key exchange - a big problem!

◼ used mainly for ecryption/decryption, not so much for digital signatures

Asymmetric Key Cryptography

◼ one key (public) used for encryption, another key (private) used for decryption

◼ slower encryption/decryption

◼ key exchange - no problem at all!

◼ can be used for ecryption/decryption, as well as for digital signatures

SSL (Secure Sockets Layer),  TLS (Transport Layer 
Security)
Handshake Protocol

Several versions of the protocols are in widespread use in applications such as web browsing, email, 
Internet faxing, Instant messaging, and voice - over - IP (VoIP). Major web sites (including Google, 
YouTube, Facebook and many others) use TLS to secure all communications between their servers 
and web browsers.

◼ provides security and privacy over the Internet by using encryption and server/client authentification 
based on RSA.

◼ the SSL protocol negotiates encryption keys, as well as authenticates the server before data is 
exchanged by the higher level applications.

◼ HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) can be layered on top of SSL 
- HTTPS (Hypertext Transfer Protocol Secure).
HTTPS is especially important over unencrypted networks such as wifi where anyone on the same 
local network can eavesdrop (packet sniffing) and discover sensitive information.
HTTPS provides a guarantee that one is communicating with precisely the web site/ web server that 
one intended to comunicate with, as well as ensuring that the messages between the user and the 
site cannot be forged by any third party.
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HTTPS provides a guarantee that one is communicating with precisely the web site/ web server that 
one intended to comunicate with, as well as ensuring that the messages between the user and the 
site cannot be forged by any third party.

SSL Handshake protocol has two parts

1. server authentification (based on RSA).
2. (optional) client authentification (RSA).

Part 1

◼ The handshake protocol begins when a client connects to a TLS or SSL-enabled server requesting a 
secure connection and presents a list of supported symmetric key ciphers (DES, Triple DES, AES, 
IDEA, MD5, RC2, RC4, etc.).

◼ the server, in response to a client’s request, sends its digital certificate (server name, trusted 
certificate authority, public RSA key) and its symmetric key cipher method preference. 

◼ the client generates a master key k, which he/she/it encrypts with the server’s public key using RSA, 
and transmits the encrypted master key to the server.

◼ the server decrypts (recovers) the master key k, using his RSA private decryption key.

◼ the server authenticates itself to the client by returning a message signed with his private RSA key 
and encrypted with the symmetric cipher with key k.

◼ subsequent data is encrypted with the symmetric key cipher and with keys derived from the master 
key k.

Part 2 (optional)

◼ the server sends a challenge to the client

◼ the client authenticates itself to the server by returning the client’s digital signature on the challenge, 
as well as its public-key certificate.

Electronic commerce

IKP (Internet Keyed Payment Protocol) 

◼ secure payments involving three or more parties; a buyer and a seller interact with a third party 
“acquirer” such as a credit card system or a bank, to authorize transactions.

SET (Secure Electronic Transaction Protocol) 

◼ secure, cost effective bankcard transactions over open networks, implemented by VISA, MasterCard, 
etc.

◼ SET includes protocols for purchasing goods and services electronically, requesting authorization of 
payment and requesting “credentials” (digital certificates) binding public keys to identities.

◼ SET supports DES for bulk data encryption and RSA for signatures and public-key encryption of the 
DES encryption keys and bankcard numbers.
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RSA Encoding/Decoding 

Recall the setup:

◼ Alice selects two distinct primes pA and qA and computes mA = pA "qA and nA = (pA $ 1) (qA $ 1).
◼ She chooses a number eA, relatively prime to nA = (pA $ 1) (qA $ 1).
◼ She  finds  the  multiplicative  inverse  of  eA  modulo  nA,  that  is,  she  finds  an  integer  dA  such  that
eA dA ≡ 1 (mod nA).

◼ Alice makes mA and eA public. mA is called the RSA modulus, and eA the public key or the encryption 
key.

◼ Alice keeps the other information a secret (pA, qA, nA, dA). The integer dA  is called the private key or
the decryption key. 

Encryption function:  E(x) = xeA (mod mA), where 1 ⩽ x ⩽mA$1.

Decryption function: D(y) = ydA (mod mA), where 1 ⩽ y ⩽mA$1.

EncryptionRSA[x_ ?IntegerQ, e_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, e, m]
SetAttributes[EncryptionRSA, Listable]

DecryptionRSA[x_ ?IntegerQ, d_ ?IntegerQ, m_ ?IntegerQ] := PowerMod[x, d, m]
SetAttributes[DecryptionRSA, Listable]

Digital signatures with RSA
We want a digital signature that can help confirm the identity of the sender of a message. The sender 
should not be able to deny that it/he/she is the author the message (non - repudiation).

Two party-communication via RSA

◼ Alice and Bob 

◼ Alice has her RSA scheme: public modulus mA = pA "qA, public encryption key eA, private decryption 
key dA.

◼ Bob  sets  up  his  own  RSA  scheme:  public  modulus  mB = pB "qB,  public  encryption  key  eB,  private
decryption key dB.

Evil Third Party

◼ Eve  wants  to  impersonate  Bob.  She  writes  a  message  x=”Alice,  I  don’t  like  you,  Sincerely  Bob”,
Encrypts x using Alice’s public key y= xe(modm), and send y to Alice. Alice decrypts the message y
using her private key d, reads the message, but she has no way of verifying if the sender was really
Bob.

Alice and Bob

◼ Bob would like to send Alice the following message x=”Alice, I like you, Sincerely Bob”. He would like
to  send  Alice  the  message  x,  and  also  affix  a  digital  signature  to  confirm  his  identity.  This  will  be
called a message-signature pair.

Bob

◼ Bob signs the message x with his own private RSA key. The signature is *=xdB modmB.

◼ Bob encrypts the message-signature pair  (x,  *)  to  Alice using Alice’s public  encryption key eA.  The
result is the encrypted message-signature pair (y, +) = (xeA modmA, *eA modmA).

◼ Bob send the encrypted message signature pair (y,+) to Alice.

Alice

◼ Alice receives the encrypted message signature pair (y,+) to Bob. At this stage, she doesn’t  know if
the sender of the message is really Bob.

◼ She decrypts the message using her private decryption exponent dA. 
She computes (x, *)=(ydA modmA, + dA modmA).

◼ Alice  looks  up  Bob’s  public  key  eB  and  public  modulus  mB. She  checks  Bob’s  digital  signature  by
computing  z=*eB modmB.  If  z=x,  then  the  message  is  authentic.  If  z≠x,  then  the  sender  of  the
message is not Bob.

Example
Alice and Bob want to communicate via RSA and digitally sign their  messages so that they cannot be
forged by an evil third party.

RSA Setup
◼ Bob:  selects the primes pB = 5,  qB = 13, and computes  mB = pB "qB = 65,  nB = (pB $ 1) (qB $ 1) = 48.

He  chooses  eB = 5,  relatively  prime  to  48,  and  computes  dB = 29  (the  multiplicative  inverse  of  5
modulo  48).  He  makes  mB = 65  (RSA modulus)  and  eB = 5  (RSA encryption  key)  public.  He  keeps
the other information private.

◼ Alice: pA = 3,  qA = 11,  mA = pA "qA= 33,  nA = (pA $ 1) (qA $ 1) = 20,  eA = 3,  dA = 7.
She makes mA = 33 and eA = 3 public and keeps the rest a secret.

Message-Signature Pair
◼ Bob wants to send Alice the message x = 9.

First he digitally signs the message using his private RSA key. 

$ = xdB modmB = 929 mod 65 = 358 mod 65 = 310 mod 65 = 29 mod 65.
The digital signature of the message is * = 29.
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9^29
3^10
PowerMod[9, 29, 65]

The message signature pair is (x,$) = (9, 29).

Encrypted Message-Signature Pair
◼ Bob encrypts the message signature pair (x,*) using Alice’s public modulus mA and encryption key 
eA.

y = xeA modmA =  93 mod 33 = 3

% = $eA modmA =  293 mod 33 = 2

PowerMod[{9,29}, 3, 33]

The encrypted message signature pair is (y, %) = (3, 2). 

Bob sends this encrypted and digitally signed message to Alice.

Decoding the message
◼ Alice receives the pair (y, %) = (3, 2) (from Bob?). She decrypts the message using her private 

decryption key dA = 7.
x = ydA modmA = 37 mod 33 = 9

$ = % dA modmA = 27 mod 33 = 29

PowerMod[{3,2}, 7, 33]

The decrypted message-signature pair is (x,$) = (9,29).

Is the signature valid? Is the message authentic?
◼ Alice checks to see if the signature $ is valid. She looks up Bob’s public RSA modulus mB = 65 and 

encryption key eB = 5.

She computes z = $eB modmB = 295 mod 65 = 9
She compares z with x, z = x = 9, so the digital signature is valid and the message is authentic.

Exercise:
1. Alice receives several encrypted message-signature pairs. What are the decoded messages? 

Which messages are authentic (that is, sent from Bob)?

L = {{3, 8}, {3, 28}, {6, 27}, {6, 28}, {6, 10}, {6, 6}}

A more realistic example:
A user logs on to his bank' s homepage www.bank.com to do online banking. When the user opens 
www.bank.com homepage, they receive a public key along with all the data that his web browser dis-
plays. The public key could be used to encrypt data from the client to the server but the method would 
not be safe or fast. In fact, any evil third party could easily impersonate the bank, issue a fake public key 
(for which it would have a matching private key) and the naive client could get tricked into encrypting 
sensitve information with the fake public key and send it over to the evil third party. 
The safe procedure is to use asymmetric key cryptography in a handshake protocol that authenticates 
the bank to the client and also helps exchange a key for a symmetric cryptosystem that will be used in 
further communications. Let’s revisit the handshake protocol:
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A user logs on to his bank' s homepage www.bank.com to do online banking. When the user opens 
www.bank.com homepage, they receive a public key along with all the data that his web browser dis-
plays. The public key could be used to encrypt data from the client to the server but the method would 
not be safe or fast. In fact, any evil third party could easily impersonate the bank, issue a fake public key 
(for which it would have a matching private key) and the naive client could get tricked into encrypting 
sensitve information with the fake public key and send it over to the evil third party. 
The safe procedure is to use asymmetric key cryptography in a handshake protocol that authenticates 
the bank to the client and also helps exchange a key for a symmetric cryptosystem that will be used in 
further communications. Let’s revisit the handshake protocol:

SSL (Secure Sockets Layer),  TLS (Transport Layer 
Security) Handshake Protocol

Several versions of the protocols are in widespread use in applications such as web browsing, email, 
Internet faxing, Instant messaging, and voice - over - IP (VoIP). Major web sites (including Google, 
YouTube, Facebook and many others) use TLS to secure all communications between their servers 
and web browsers.  SSL is what keeps your passwords, communications and credit card details safe on 
the way between your computer and the servers you want to send this data to. 

◼ HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) can be layered on top of SSL 
- HTTPS (Hypertext Transfer Protocol Secure).
HTTPS is especially important over unencrypted networks such as wifi where anyone on the same 
local network can eavesdrop (packet sniffing) and discover sensitive information.
HTTPS provides a guarantee that one is communicating with precisely the web site/ web server that 
one intended to comunicate with, as well as ensuring that the messages between the user and the 
site cannot be forged by any third party.

The main purposes of the SSL are the following:

◼ provides security and privacy over the Internet by using encryption and server/client authentification 
based on RSA.

◼ the SSL protocol negotiates encryption keys for a symmetric key algorithm, as well as authenticates 
the server before data is exchanged by the higher level applications.

SSL Handshake protocol has two parts:

1. server authentification (based on RSA).
2. (optional) client authentification (RSA).

How it works:

◼ (Client Hello) The handshake protocol begins when a client connects to a TLS or SSL-enabled server 
requesting a secure connection and presents a list of supported symmetric key ciphers (DES, Triple 
DES, AES, IDEA, MD5, RC2, RC4, etc.).

◼ (Server Hello) The server, in response to a client’s request, sends its digital certificate (server name, 
trusted certificate authority, public RSA key) and its symmetric key cipher method preference. By 
sending its digital certificate, it proves its identity to the client.

◼ The client verifies the authenticity of the server’s digital certificate. The client checks if the certificate
is  verified  and  trusted  by  one  of  several  Certificate  Authorities  (CAs)  that  it  implicitly  trusts.  Your
browser has a pre-installed list of trusted SSL certificates from Certificate Authorities (CAs) that you
can view, add and remove from. In Mozilla Firefox for example, you can check this list of trusted CAs
from  Preferences->Advanced->Certificates->View  Certificates->Authorities.  These  certificates  are
controlled  by  a  centralised  small  group  of  extremely  secure,  reliable  and  trustworthy  organisations
like  Symantec  (VeriSign),  Comodo,  GoDaddy,  GlobalSign,  DigiCert,  Entrust,  Verizon,  Deutsche
Telekom and so on. If a server presents a certificate from that list then you know you can trust them.
The  role  of  the  Certificate  Authority  is  to  issue  digital  certificates  that  contain  a  public  key  and  the
identity of the owner of the public key and to certify that a certain public key does indeed belong to
whoever is identified in the certificate. The digital certificate is digitally signed with the private key of a
Certificate Authority. If the user trusts the CA and can verify the CA’s digital signature, then the user
will  trust  the  digital  certificates  signed by  the  CA.  If  the  server  cannot  be  authenticated,  the  user  is
warned  of  the  problem and  informed  that  the  digital  certificate  is  not  trusted  and  an  encrypted  and
authenticated connection cannot be established.

4     DigitalSignature-net.nb



◼

The client verifies the authenticity of the server’s digital certificate. The client checks if the certificate
is  verified  and  trusted  by  one  of  several  Certificate  Authorities  (CAs)  that  it  implicitly  trusts.  Your
browser has a pre-installed list of trusted SSL certificates from Certificate Authorities (CAs) that you
can view, add and remove from. In Mozilla Firefox for example, you can check this list of trusted CAs
from  Preferences->Advanced->Certificates->View  Certificates->Authorities.  These  certificates  are
controlled  by  a  centralised  small  group  of  extremely  secure,  reliable  and  trustworthy  organisations
like  Symantec  (VeriSign),  Comodo,  GoDaddy,  GlobalSign,  DigiCert,  Entrust,  Verizon,  Deutsche
Telekom and so on. If a server presents a certificate from that list then you know you can trust them.
The  role  of  the  Certificate  Authority  is  to  issue  digital  certificates  that  contain  a  public  key  and  the
identity of the owner of the public key and to certify that a certain public key does indeed belong to
whoever is identified in the certificate. The digital certificate is digitally signed with the private key of a
Certificate Authority. If the user trusts the CA and can verify the CA’s digital signature, then the user
will  trust  the  digital  certificates  signed by  the  CA.  If  the  server  cannot  be  authenticated,  the  user  is
warned  of  the  problem and  informed  that  the  digital  certificate  is  not  trusted  and  an  encrypted  and
authenticated connection cannot be established.

◼ the client generates a master key k, which he/she/it encrypts with the server’s public key using RSA,
and  transmits  the  encrypted  master  key  to  the  server.   (If  the  server  has  requested  client
authentication (an optional step in the handshake), the client also digitally signs another piece of data
that  is  unique  to  this  handshake  and  known  by  both  the  client  and  server.  In  this  case,  the  client
sends  both  the  signed  data  and  the  client’s  own  certificate  to  the  server  along  with  the  encrypted
master key.)

◼ the server  decrypts  (recovers)  the master  key k,  using his  RSA private  decryption key.  This  step is
crucial to proving the authenticity of the server.  (If the server has requested client authentication, the
server attempts to authenticate the client. If the client cannot be authenticated, the session ends.)

◼ the server authenticates itself to the client by returning a message like “Finished” signed with his 
private RSA key and encrypted with the symmetric cipher with key k. The message that ends the 
Hadshake usually also contains a hash of all data previously exchanged between the parties.

◼ subsequent data is encrypted with the symmetric key cipher and with keys derived from the master 
key k.

Exercise
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Exercise
1. John  decides  to  use  RSA  encryption.  He  chooses  p=23,  q=31  and  e=19.  He  makes  public

m=713  and  e=19.  He  also  publicizes  the  way  in  which  English  text  is  to  be  numerically
encoded.  Two  letter-blocks  are  interpreted  as  base  26  representations.  For  example,  the
numeric equivalent of H is 7, of I is 8, so the numeric equivalent of the 2-letter block HI will be
78 in  base 26,  that  is,  HI=7*26+8=190.  So if  John decodes an RSA message and discovers
that the number is 190, he know that this means HI. Say HI to John, using RSA.
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