
Fall 2013 MAT 319:
Foundations of Analysis

Fall 2013 MAT 320:
Introduction to Analysis

Schedule
TuTh 10:00-11:20 Earth&Space
131 (through 10/3: joint lectures
in Math P-131)

TuTh 10:00-11:20 Math P-131

Instructor Thomas Sharland Samuel Grushevsky

Office hours

M 4pm-5pm, Tu 4pm-5pm and
Th 2.30pm-3.30pm in Math
5D148

Tu 11:30-12:00 and W 2:00-3:30
in Math 3-109, Th 11:30-12:30 in
P-143

During the joint lectures please attend the office hours of the professor
lecturing

Recitation MW 11:00am-11:53am Harriman
116

MW 11:00am-11:53am SB Union
231

TA Jun Wen Yury Sobolev

Office hours W 1:30-2:30 in Math 3-101, Tu
10:00-11:00 and 1:00-2:00 in MLC

W 12:00-1:00 in Math 3-104, MW
10:00-11:00 in MLC

Description

A careful study of the theory
underlying topics in one-variable
calculus, with an emphasis on
those topics arising in high school
calculus. The real number system.
Limits of functions and
sequences. Differentiations,
integration, and the fundamental
theorem. Infinite series.

A careful study of the theory
underlying calculus. The real
number system. Basic properties
of functions of one real variable.
Differentiation, integration, and
the inverse theorem. Infinite
sequences of functions and
uniform convergence. Infinite
series.

The purpose of this course is to
build rigorous mathematical
theory for the fundamental
calculus concepts, sequences and

An introductory course in
analysis, required for math
majors. It provides a closer and
more rigorous look at material

http://www.math.sunysb.edu/~tjshar/
http://www.math.sunysb.edu/~sam/
mailto:jwen@math.sunysb.edu
mailto:yury@math.sunysb.edu


Overview

limits, continuous functions, and
derivatives. We will rely on our
intuition from calculus, but
(unlike calculus) the emphasis will
be not on calculations but on
detailed understanding of
concepts and on proofs of
mathematical statements.

which most students encountered
on an informal level during their
first two semesters of Calculus.
Students learn how to write
proofs. Students (especially those
thinking of going to graduate
school) should take this as early
as possible.

Prerequisites
C or higher in MAT 200 or permission of instructor; C or higher in one
of the following: MAT 203, 205, 211, 307, AMS 261, or A- or higher in
MAT 127, 132, 142, or AMS 161

Textbook Kenneth Ross Elementary Analysis: The Theory of Calculus, 2nd edition

Homework

Weekly problem sets will be assigned, and collected in Wednesday
recitation. The emphasis of the course is on writing proofs, so please try
to write legibly and explain your reasoning clearly and fully. You are
encouraged to discuss the homework problems with others, but your
write-up must be your own work. 
Your best 10 homeworks will count towards your grade.
Late homework will never be accepted, but under documented extenuating
circumstances the grade may be dropped.

Grading Homework: 20%, Midterm I: 25%, Midterm II: 25%, Final: 30%.

Syllabus/schedule (subject to change)

All joint lectures through 10/3 meet in Math P-131.
First recitation on Wed 8/28, second recitation 9/4. 
During joint lectures through 10/3, students with last names starting A-L attend recitation
in Harriman 116, students with last names M-Z attend recitation in SB Union 231

Tue
8/27 1.

Joint class: Introduction, motivation:
what are numbers? Natural numbers
and 
induction; integers; rationals. (Tom)

Read pages 1-19

Thu
8/29 2. Joint class: Rational zeros; properties

of numbers; concept of a field. (Tom)
HW due 9/4: 1.3, 1.4, 1.10, 1.12,
2.2, 2.5, 3.1, 3.4, 3.6

Tue

http://www.amazon.com/Elementary-Analysis-Calculus-Undergraduate-Mathematics/dp/1461462703
http://www.amazon.com/Elementary-Analysis-Calculus-Undergraduate-Mathematics/dp/1461462703
http://www.amazon.com/Elementary-Analysis-Calculus-Undergraduate-Mathematics/dp/1461462703
http://www.amazon.com/Elementary-Analysis-Calculus-Undergraduate-Mathematics/dp/1461462703


9/3 No class: Labor Day

Thu
9/5 3.

Joint class: Bounded sets;
Completeness axiom for real numbers;
Archimedean property. (Tom)

Read pages 20-27;
HW due 9/11: Parts eghimr of
4.1,4.2,4.3,4.4; & 4.8, 4.10, 4.11,
4.12, 4.14

Tue
9/10 4. Joint class: Infinity, unboundedness.

Intro to sequences. (Sam) Read pages 28-38

Thu
9/12 5. Joint class: Limit of a sequence.(Sam) HW due 9/18: 5.2, 5.6, 7.3, 7.4,

8.1ac

Tue
9/17 6. Joint class: Limit laws for sequences.

(Sam) Read pages 39-55

Thu
9/19 7. Joint class: Divergence to infinity,

more formal proofs. (Tom)
HW due 9/25: 8.3, 8.6, 8.8, 8.10,
9.1, 9.3, 9.5, 9.12, 9.14

Tue
9/24 8. Joint class: Monotone and Cauchy

sequences. (Tom) Read pages 56-65

Thu
9/26 9. Joint class: Subsequences. (Sam) No HW: prepare for the midterm

Tue
10/1 Joint Midterm I in Math P-131. Practice midterm (Last year's exam)

Thu
10/3 10. Joint class: Subsequences. (Sam)

HW due 10/9: 10.1, 10.2, 10.5,
10.8, 10.9, 11.2, 11.4, 11.5, 11.8,
11.9

The following syllabus below is only for MAT 319, in Earth & Space 131


This is a tentative schedule; it is subject to change.


Tue
10/8 11.

Bolzano-Weierstrass
Theorem, subsequential
limits.

Read pages 66-81

Thu
10/10 12. limsup and liminf,

introduction to series.
HW due 10/16: 12.1, 12.2, 12.4, 12.6, 12.11,
12.12



Tue
10/15 13. Convergence tests. Read pages 95-109

Thu
10/17 14. More convergence tests. HW due 10/23: 14.1 parts bf, 14.4 parts bc,

14.8, 14.13, 14.14, 15.1, 15.4, 15.6

Tue
10/22 15. Functions and continuity. Read pages 123-138

Thu
10/24 16. Combining continuous

functions.
HW due 10/30: 17.4, 17.5, 17.6, 17.8, 17.10
part c, 17.12, 17.16

Tue
10/29 17. Properties of Continuous

functions: EVT, IVT. Read pages 153-162

Thu
10/31 18. Continuous functions and

limits. No HW: Prepare for midterm!

Tue
11/5 Midterm II Practice Midterm II and some solutions and

Midterm II Solutions

Thu
11/7 19. Limits. HW due 11/13: 20.4, 20.8, 20.11, 20.13,

20.14, 20.16, 20.17, 20.20

Tue
11/12 20. Limits and Derivatives. Read pages 223-239

Thu
11/14 21 Differentiable functions. HW due 11/20: 28.4, 28.5, 28.7, 28.8, 28.11,

28.14, 28.15, 28.16

Tue
11/19 22. Mean Value Theorem. Read pages 232-239

Thu
11/21 23. Applications of MVT. HW due 12/4: 29.3, 29.5, 29.6, 29.7, 29.10

(not part c), 29.14, 29.17

Tue
11/26 24. The Riemann Integral Read pages 269-287

Thu
11/28

No Class: Happy
Thanksgiving!

HW due 12/4: 32.1, 32.2, 32.5, 32.6, 32.7,
32.8

Tue
12/3 25. Properties of the Integral Read pages 291-296

Thu Fundamental Theorem of Prepare for the Final! Here is a Practice



12/5 26. Calculus exam and some solutions.

Review Session: Wednesday 11th December, 2pm-4pm in Physics 123


Final Exam: Friday, December 13, 11:15AM-1:45PM in ESS 131 

Disability Support Services:
If you have a physical, psychological, medical, or learning disability that may
affect your course work, please contact Disability Support Services (DSS) office: ECC (Educational
Communications Center) Building, room 128, telephone (631) 632-6748/TDD. DSS will determine with
you what accommodations are necessary and appropriate. Arrangements should be made early in the
semester (before the first exam) so that your needs can be accommodated. All information and
documentation of disability is confidential. Students requiring emergency evacuation are encouraged to
discuss their needs with their professors and DSS. For procedures and information, go to the following
web site http://www.ehs.sunysb.edu and search Fire safety and Evacuation and Disabilities.

Academic Integrity:
Each student must pursue his or her academic goals honestly and be
personally
accountable for all submitted work. Representing another
person's work as your own is always wrong.
Faculty are required to
report any suspected instance of academic dishonesty to the Academic
Judiciary.
For more comprehensive information on academic integrity,
including categories of academic dishonesty,
please refer to the
academic judiciary website at
http://www.stonybrook.edu/uaa/academicjudiciary/.

Critical Incident Management:
Stony Brook University expects students to respect the rights,
privileges,
and property of other people. Faculty are required to
report to the Office of Judicial Affairs any disruptive
behavior that
interrupts their ability to teach, compromises the safety of the
learning environment, and/or
inhibits students' ability to learn.

http://www.stonybrook.edu/uaa/academicjudiciary/


LAST Name: FIRST NAME:

Stony Brook ID number:

Problem 1 2 3 4 5 Total

Score

MAT 319/MAT 320
Analysis
Midterm 1
October 2, 2012

No books or notes may be consulted during this test.

No calculators may be used.

Show all your work on these pages!
Total score = 100

1. (40 points) Here N represents the counting numbers {1, 2, 3, 4, . . .}, Z represents the
integers, Q the rational numbers and R the real numbers.

a. Explain carefully why the equation x+ 5 = 1 has no solution in N.

b. Explain carefully why the equation 3x = 2 has no solution in Z.

1



c. Explain carefully why the equation x2 = 7 has no solution in Q.

d. Explain carefully why the least upper bound property (the Completeness Axiom)
guarantees that the equation x2 = 7 has a solution in R.

2



2. (15 points) Prove by induction that the sum of the first n odd integers is equal to n2,
i.e. that

1 + 3 + 5 + 7 + · · ·+ (2n− 1) = n2.

3. (15 points) For a pair (x, y) of real numbers, define ||(x, y)|| = |x|+ |y|. Prove carefully
that

||(a+ c, b+ d)|| ≤ ||(a, b)||+ ||(c, d)||.

3



4. (15 points) Here sin(x) is the usual sine function. Show that the sequence a1, a2, a3, . . .

defined by an = sin(n)
n

converges, with limit 0.

4



5. (15 points) Suppose (sn) is a sequence of positive numbers converging to the limit s.
Prove that the sequence (

√
sn) converges to

√
s. Hint: give separate proofs for s = 0

and s > 0.

END OF EXAMINATION

5



MAT 319
Practice Midterm II. 28 October, 2013

This is a closed notes/ closed book/ electronics off exam.

You are allowed and encouraged to motivate your reasoning, but
at the end your proofs should be formal logical derivations, whether
proving that something holds for all, or proving that your example
works.

You can use any theorem or statement proven in the book; please
refer to it in an identifiable way, eg. “by the completeness axiom”, “by
the definition of the limit”, etc.

You should attempt Problem 1 and three of the remaining
four questions. If you attempt all four questions, your total
score will be made up of the score for Problem 1 and your
best three scores on the remaining questions.

Please write legibly and cross out anything that you do not want us
to read.

Each problem is worth 25 points.

Name:

Problem 1 2 3 4 5 Total

Grade

1



Problem 1.

a) Define what it means to say that the series
∞∑
n=1

an

diverges.
b) Show that the series

∞∑
n=1

1√
n+ 1 +

√
n

diverges. (Hint: show 1√
n+1+

√
n

=
√
n+ 1−

√
n).

c) Define what it means for a function f : dom(f) → R to be sequentially con-
tinuous at a point x0 ∈ dom(f).

d) Suppose that for all ε > 0 there exists δ > 0 such that

|x− x0| < δ and x ∈ dom(f) =⇒ |f(x)− f(x0)| < ε

(that is, suppose f is continuous at x0). Show that f is sequentially contin-
uous at x0.



Problem 2. In this question, you may use standard results about the convergence
of series of the form

∑
1
nk and of geometric series. You may also any other results

concerning the convergence of series, as long as you state when you are using them.
Prove the convergence or divergence of the following.

a)
∞∑
n=0

n2

n3 + 1
.

b)
∞∑
n=1

n2013

2n

c)
∞∑
n=2

1

log n

d)
∞∑
n=1

(−1)n+1

√
n



Problem 3. Let f : R→ R be defined by

f(x) =

{
2x if x ∈ Q
x+ 1 if x ∈ R \Q.

Show that f is continuous at x = 1 not continuous at any x in R \ {1}.



Problem 4.

a) Let g : R→ R be continuous and suppose that g(x) = 0 for all x ∈ Q. Show
that g(x) = 0 for all x ∈ R.

b) Let f : R → R and g : R → R be continuous functions. Show that if f(x) =
g(x) for all x ∈ Q then f(x) = g(x) for all x ∈ R.

c) Suppose that g is continuous at 0 with g(0) = 0 and that |f(x)| ≤ |g(x)| for
all x. Show that f is continuous at 0.



Problem 5.

a) State the Extreme Value Theorem.
b) Give an example of a function f : [0, 1]→ R which is not bounded.
c) Give an example of a continuous function f : (0, 1)→ R which is not bounded.
d) Let f : [0, 4]∩Q→ R be given by f(x) = |x2− 2|. Is f bounded? Does there

exist x0, y0 ∈ [0, 4] ∩Q such that f(x0) ≤ f(x) ≤ f(y0) for all x ∈ [0, 4] ∩Q?



MAT 319
Practice Midterm II. 28 October, 2013

This is a closed notes/ closed book/ electronics off exam.

You are allowed and encouraged to motivate your reasoning, but
at the end your proofs should be formal logical derivations, whether
proving that something holds for all, or proving that your example
works.

You can use any theorem or statement proven in the book; please
refer to it in an identifiable way, eg. “by the completeness axiom”, “by
the definition of the limit”, etc.

You should attempt Problem 1 and three of the remaining
four questions. If you attempt all four questions, your total
score will be made up of the score for Problem 1 and your
best three scores on the remaining questions.

Please write legibly and cross out anything that you do not want us
to read.

Each problem is worth 25 points.

Name:

Problem 1 2 3 4 5 Total

Grade

1



Problem 1.

a) Define what it means to say that the series

∞∑
n=1

an

diverges.
b) Show that the series

∞∑
n=1

1√
n+ 1 +

√
n

diverges. (Hint: show 1√
n+1+

√
n

=
√
n+ 1−

√
n).

c) Define what it means for a function f : dom(f) → R to be sequentially con-
tinuous at a point x0 ∈ dom(f).

d) Suppose that for all ε > 0 there exists δ > 0 such that

|x− x0| < δ and x ∈ dom(f) =⇒ |f(x)− f(x0)| < ε

(that is, suppose f is continuous at x0). Show that f is sequentially contin-
uous at x0.

Answer 1.

a) Define the nth partial sum of the series to be

sn =
n∑

k=1

ak.

Then we say the series diverges if the sequence (sn) does not converge.

b) Following the hint, we write

1√
n+ 1 +

√
n

=

√
n+ 1−

√
n

(
√
n+ 1 +

√
n)(
√
n+ 1−

√
n)

=

√
n+ 1−

√
n

(n+ 1)− n
=
√
n+ 1−

√
n.

So this means we can write our series as

∞∑
n=0

1√
n+ 1 +

√
n

=
∞∑
n=0

(√
n+ 1−

√
n
)
.



Now we compute the sequence of partial sums (sn). We find

sn =
n∑

k=0

1
√
k + 1 +

√
k

=
n∑

k=0

(√
k + 1−

√
k
)

= (1− 0) +
(√

2− 1
)

+ · · ·+
(√

n−
√
n− 1

)
+
(√

n+ 1−
√
n
)

=
√
n+ 1− 1.

Now we see that limn→∞ sn = +∞, and so this means that the series diverges.

c) A function f : dom(f)→ R is sequentially continuous at x0 if for all sequences
(xn) in dom(f) with xn → x0 we have f(xn)→ f(x0).

d) Let ε > 0 and xn be a sequence in dom(f) with xn → x0. By assumption,
there exists δ > 0 such that if x ∈ dom(f) and

|x− x0| < δ then |f(x)− f(x0)| < ε.

As xn → x0, then for this δ > 0 there exists N such that

n > N =⇒ |xn − x0| < δ

from which it follows that

n > N =⇒ |xn − x0| < δ =⇒ |f(xn)− f(x0)| < ε.

Hence f(xn)→ f(x0) as required.



Problem 2. In this question, you may use standard results about the convergence
of series of the form

∑
1
nk and of geometric series. You may also any other results

concerning the convergence of series, as long as you state when you are using them.
Prove the convergence or divergence of the following.

a)
∞∑
n=0

n2

n3 + 1
.

b)
∞∑
n=1

n2013

2n

c)
∞∑
n=2

1

log n

d)
∞∑
n=1

(−1)n+1

√
n

Answer 2.
a) We use the comparison test. We have

n2

n3 + 1
≥ n2

n3
=

1

n
.

Then since
∑∞

n=1
1
n

diverges, the original series must also diverge.

b) We use the ratio test. Setting an = n2013

2n
, we get∣∣∣∣an+1

an

∣∣∣∣ =
(n+1)2013

2n+1

n2013

2n

=
2n

2n+1

(n+ 1)2013

n2013
=

1

2

(
n+ 1

n

)2013

→ 1

2
< 1.

So by the ratio test, the series must converge.

c) Again we use the comparison test, this time noting that since

1

log n
≥ 1

n

for all n ≥ 2 we have that the series diverges.

d) We use the alternating series test. Since an = 1√
n

is decreasing and converges

to 0, the alternating series test guarantees the convergence of this series.



Problem 3. Let f : R→ R be defined by

f(x) =

{
2x if x ∈ Q
x+ 1 if x ∈ R \Q.

Show that f is continuous at x = 1 not continuous at any x in R \ {1}.

Answer 3.

• Continuity at x = 1. Note that f(1) = 2. Let ε > 0 and take δ = ε
2
. Then if

|x− 1| < δ then

|f(x)− f(1)| = |2x− 2| = 2|x− 1| < 2δ = ε if x ∈ Q, or

|f(x)− f(1)| = |(x+ 1)− 2| = |x− 1| < δ =
ε

2
< ε if x ∈ R \Q.

• Not continuous at x ∈ R \Q. Let x ∈ R \Q. By density of Q, there exists a
sequence (xn) such that xn ∈ Q for all n and xn → x. Then we get

lim
n→∞

f(xn) = lim
n→∞

2xn = 2x 6= x+ 1 = f(x)

so f is not (sequentially) continuous at x.

• Not continuous at x ∈ (Q\{1}). Let x ∈ Q\{1} and let xn = x+
√
2
n
∈ R\Q

for each n ∈ N. Then we have xn → x, but

lim
n→∞

f(xn) = lim
n→∞

xn + 1 = lim
n→∞

(x+

√
2

n
+ 1) = x+ 1 6= 2x = f(x)

and so f is not (sequentially) continuous at x.



Problem 4.

a) Let g : R→ R be continuous and suppose that g(x) = 0 for all x ∈ Q. Show
that g(x) = 0 for all x ∈ R.

b) Let f : R → R and g : R → R be continuous functions. Show that if f(x) =
g(x) for all x ∈ Q then f(x) = g(x) for all x ∈ R.

c) Suppose that g is continuous at 0 with g(0) = 0 and that |f(x)| ≤ |g(x)| for
all x. Show that f is continuous at 0.

Answer 4.

a) Clearly we only need to show that g(x) = 0 for all x ∈ R\Q. So let x ∈ R\Q
and let xn be a sequence of rationals such that xn → x (this is possible by
density of Q). Then we have, by continuity that

f(x) = lim
n→∞

f(xn) = lim
n→∞

0 = 0.

b) Define h(x) = f(x) − g(x). Then h(x) is the difference of two continuous
functions and so is continuous. Furthermore, h(x) = 0 for all x ∈ Q, and so
by part (a) we have h(x) = 0 for all x. Hence we have f(x) = g(x).

c) First of all, we note that since |f(0)| ≤ |g(0)| = 0, we must have f(0) = 0.
So now we show f is continuous at 0. Let ε > 0. Then, by continuity of g at
0 we see that there exists δ > 0 such that

|x| < δ =⇒ |g(x)| < ε.

However, |f(x)| ≤ |g(x)| and so

|x| < δ =⇒ |f(x)| ≤ |g(x)| < ε

and so f is continuous at 0.



Problem 5.

a) State the Extreme Value Theorem.
b) Give an example of a function f : [0, 1]→ R which is not bounded.
c) Give an example of a continuous function f : (0, 1)→ R which is not bounded.
d) Let f : [0, 4]∩Q→ R be given by f(x) = |x2− 2|. Is f bounded? Does there

exist x0, y0 ∈ [0, 4] ∩Q such that f(x0) ≤ f(x) ≤ f(y0) for all x ∈ [0, 4] ∩Q?

Answer 5.

a) Let f : [a, b]→ R be continuous. Then f is bounded. Moreover, there exists
x0 and y0 in [a, b] such that f(x0) ≤ f(x) ≤ f(y0) for all x ∈ [a, b].

b) Let f : [0, 1]→ R be defined by

f(x) =

{
1
x

0 < x ≤ 1

2013 x = 0.

Then f is not bounded since f
(
1
n

)
= n for all n ∈ N.

c) Let f : (0, 1) → R be defined by f(x) = 1
x
. Then for the same reasoning as

in part (b), f is not bounded.

d) The function f is bounded. To see this, note that{
|x2 − 2| : x ∈ [0, 4] ∩Q

}
⊂
{
|x2 − 2| : x ∈ [0, 4]

}
and the right side is bounded by the Extreme Value Theorem, since it is the
image of a continuous function on a closed interval. However, we see that if
we write A = {|x2 − 2| : x ∈ [0, 4] ∩Q} we have

supA = 14 and inf A = 0.

However, there does not exist x0 ∈ [0, 4] ∩ Q such that f(x0) = 0, because
the only solutions to x2 − 2 = 0 are irrational.



MAT 319
Midterm II. November 5, 2013

This is a closed notes/ closed book/ electronics off exam.

You are allowed and encouraged to motivate your reasoning, but
at the end your proofs should be formal logical derivations, whether
proving that something holds for all, or proving that your example
works.

You can use any theorem or statement proven in the book; please
refer to it in an identifiable way, eg. “by the completeness axiom”, “by
the definition of the limit”, etc.

You should attempt Problem 1 and three of the remaining
four questions. If you attempt all four questions, your total
score will be made up of the score for Problem 1 and your
best three scores on the remaining questions.

Please write legibly and cross out anything that you do not want us
to read.

Each problem is worth 25 points.

Name:

Problem 1 2 3 4 5 Total

Grade

1



Problem 1.

a) Define what it means to say that the series
∞∑
n=1

an

converges.
b) Show that the series

∞∑
n=1

1

n(n+ 1)

converges. (Hint: show 1
n(n+1)

= 1
n
− 1

n+1
).

c) Define what it means for a function f : dom(f) → R to be continuous at a
point x0 ∈ dom(f).

d) Suppose f : R→ R is continuous at x0 and f(x0) > 0. Show that there exists
δ > 0 such that f(x) > 0 on (x0 − δ, x0 + δ).

Answer 1.

a) Define the nth partial sum of the series to be

sn =
n∑

k=1

ak.

Then we say the series converges if sn converges to a real number.
b) It is easy to show that 1

n(n+1)
= 1

n
− 1

n+1
. So now we get

sn =
n∑

k=1

1

n(n+ 1)
=

n∑
k=1

(
1

n
− 1

n+ 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1−

(
1

2
− 1

2

)
+ · · ·+

(
1

n
− 1

n

)
− 1

n+ 1

= 1− 1

n+ 1
.

Hence sn → 1 so the series converges by the definition in part (a). (Remark:
Quite a few people used the p-test and comparison test to prove this, which to
be honest I had not considered when I wrote the question. I graded it correct
as long as all the relevant tests were stated and used correctly.)



c) The function f : dom(f) → R is continuous at x0 if given ε > 0 there exists
δ > 0 such that if x ∈ dom(f) and

|x− x0| < δ then |f(x)− f(x0)| < ε.

d) Let ε = f(x0)
2

> 0. Since f is continuous at x0, there exists δ > 0 such that

x ∈ (x0 − δ, x0 + δ) =⇒ |x− x0| < δ

=⇒ |f(x)− f(x0)| < ε =
f(x0)

2

=⇒ 0 <
f(x0)

2
< f(x) <

3f(x0)

2
=⇒ f(x) > 0.

Remark: No-one got this completely correct. The important thing to realise
is that if we know f is continuous, then we are at liberty to choose any ε > 0
we want, and continuity guarantees us the existence of some δ > 0 satisfying

the definition. So here we were able to choose ε = f(x0)
2

, for example. No-one
actually stated a particular choice for ε, which is what the question requires.



Problem 2.

a) State the Alternating Series Test.
b) Prove that the series

∞∑
n=1

1 + (−1)n+1n

n2

converges.
c) Prove or provide a counterexample to the following statements.

i) If limn→∞ an = 0 then
∑∞

n=1 an converges.
ii) If

∑∞
n=1 an converges then

∑∞
n=1 a

2
n converges.

Answer 2.

a) Let an be a decreasing sequence with limn→∞ an = 0. Then the series
∞∑
n=1

(−1)n+1an

converges.
b) We can rewrite the series as

∞∑
n=1

1 + (−1)n+1n

n2
=
∞∑
n=1

1

n2
+
∞∑
n=1

(−1)n+1n

n2
=
∞∑
n=1

1

n2
+
∞∑
n=1

(−1)n+1

n
.

Now, we know that
∑

1
n2 converges by the p-test, and for the second series,

we can apply the Alternating Series Test from part (a), since 1
n

is a decreasing
sequence which converges to 0. Hence our original series is the sum of two
convergent series, and hence is convergent.

c) i) This is false. Consider the sequence an = 1
n
. Then an → 0 but

∑
1
n

diverges.

ii) This is false. Consider the sequence an = (−1)n+1
√
n

. Then
∑
an converges

by the Alternating Series Test but
∑
a2n =

∑
1
n

diverges.

Remark: Everyone attempted this question. Generally the understanding was good,
though c) ii) caused a lot of difficulty, as I thought it might (hence I put the coun-
terexample on the practice midterm so it would be fresh in your minds!). However
c) i) was generally well done.



Problem 3. Let f : R→ R be defined by

f(x) =

{
x if x ∈ Q
0 if x ∈ R \Q.

Show that f is continuous at 0 and not continuous at any x in R \ {0}.

Answer 3.

• Continuity at 0. Let ε > 0 and set δ = ε. Then if |x| = |x− 0| < δ we have

|f(x)− f(0)| = |x− 0| = |x| < δ = ε if x ∈ Q
|f(x)− f(0)| = |0− 0| = 0 < ε if x ∈ R \Q.

So we see that |x− 0| < δ =⇒ |f(x)− f(0)| < ε.
• Not continuous on R \Q. Let x ∈ R \Q. By denseness of Q, we can take a

sequence (xn) such that xn ∈ Q for all n and xn → x. But then we see that
since xn ∈ Q, we must have f(xn) = xn for all n. So we have

lim
n→∞

xn = x but lim
n→∞

f(xn) = lim
n→∞

xn = x 6= 0 = f(x)

and so f is not (sequentially) continuous at x.
• Not continuous on Q \ {0}. Let x ∈ Q with x 6= 0. Consider the sequence

xn = x+
√
2
n

. Then xn ∈ R \Q for all n and xn → x. By the definition of f ,
we must have f(xn) = 0 for all n, and so

lim
n→∞

xn = x but lim
n→∞

f(xn) = lim
n→∞

0 = 0 6= x = f(x).

Hence f is not (sequentially) continuous at x.

Remark: A lot of people attempted this - probably because this was an example done
in class. Indeed, a couple got very high scores on this question. I think the main
difficulty here was not so much the understanding of the problem, but more on how
to write out the proof - this was particularly apparent when proving continuity at
0. Remember, when proving continuity, it is almost always good to start with the
statement “Let ε > 0.” and then proceed from there. When proving discontinuity, I
was looking for a justification of why a sequence xn existed, either by giving a formula
or by using density of Q (or R \Q).



Problem 4. Let f : R→ R be such that f(x+ y) = f(x) + f(y) for all x, y ∈ R.

a) Prove f(0) = 0.
b) Prove f(−x) = −f(x).
c) Suppose f is continuous at 0. Show that f is continuous at all x ∈ R.

Answer 4.

a) We write
f(0) = f(0 + 0) = f(0) + f(0) = 2f(0),

from which it follows that f(0) = 0.
b) Now we write

0 = f(0) = f(x+ (−x)) = f(x) + f(−x).

Rearranging this gives f(−x) = −f(x).
c) Let x0 ∈ R be arbitrary and let ε > 0. By continuity of f at 0, we know that

for (this) ε > 0 there exists δ > 0 such that

|x| < δ =⇒ |f(x)| < ε.

From this, it follows that

|x− x0| < δ =⇒ |f(x)− f(x0)| = |f(x) + f(−x0)| = |f(x− x0)| < ε

and so f is continuous at x0.

Remark: Of course, the crux of this problem is in part (c); the first two parts were
to set up the proof in (c). I don’t think anyone got a full answer to this question,
though I must admit this is a question I like, and the proof once you see it is very
short. For part (c), it is perhaps helpful to notice that f behaves like a linear function
f(x) = kx (indeed, you can prove these are the only such continuous functions that
have the additive property in the question, but that’s another story), and so given
ε > 0 the choice of δ at 0 will be the same as the one you require at an an arbitrary
x0 ∈ R.



Problem 5.

a) State the Intermediate Value Theorem
b) Let f : R→ Z be continuous. Show that f must be constant.
c) Let f : [0, 1] → [0, 1] be continuous. Show that there exists c ∈ [0, 1] such

that f(c) = c. Hint: consider the function h(x) = f(x)− x.

Answer 5. a) Let f : I → R be a continuous function on an interval I, and let
a, b ∈ I with a < b. Then for all y ∈ (f(a), f(b)) (or for all y ∈ (f(b), f(a)))
there exists c ∈ (a, b) such that f(c) = y.

b) Suppose f is not constant. Then there exists n < m ∈ Z and x, y ∈ R such
that f(x) = m and f(y) = n. Let y = n− 1

2
(other choices of y are available);

then y ∈ (m,n) = (f(x), f(y)). By the Intermediate Value Theorem, since f
is continuous by assumption, there must exist c ∈ (x, y) (or in (y, x) if y < x)
such that f(c) = y. But y /∈ Z, so this is a contradiction, hence f must be
constant.

c) Following the hint, let h(x) = f(x)− x. Then h is continuous since it is the
difference of two continuous functions. Furthermore, since f(0) ∈ [0, 1], we
must have

h(0) = f(0)− 0 = f(0) ≥ 0 (1)

and since f(1) ∈ [0, 1] we have

h(1) = f(1)− 1 ≤ 0. (2)

If we have equality in either (1) or (2) then we have found our point such that
f(c) = c, so suppose h(0) > 0 and h(1) < 0. Then by the Intermediate Value
Theorem there exists c ∈ (0, 1) such that h(c) = 0. Therefore f(c) − c = 0
and so f(c) = c as required.

Remark: Most people were able to state the Intermediate Value Theorem, but not
many tackled the applications in parts (b) and (c) - perhaps this was down to time
constraints. A number of people gave heuristic arguments as to how the proofs would
work, but a few details were general lacking - this was especially true in (b) where I
don’t think anyone invoked the Intermediate Value Theorem directly in their solution
(though many perhaps were trying to use it implicitly). Part (c) is a classical result
about continuity that again makes use of the Intermediate Value Theorem at a vital
moment. Remember that when trying to show two functions have a common point
on their graph (as here), it is often easier to consider their difference and use the
Intermediate Value Theorem to show that this difference must be equal to 0 some-
where. Note also that part (c) is fairly similar to the example I did in class where I
showed that an odd degree polynomial has an real root.
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Problem 1.

a) Let S be a subset of R.
(i) Define the greatest lower bound of S, inf S and least upper bound of S,

supS.
(ii) State the Completeness axiom for R.

(iii) Suppose inf S = supS. What can you say about S?



b) Let (an) be a sequence of real numbers.
(i) Give the definition that (an) is bounded.
(ii) Show that if (an) is not bounded, then for all M ∈ N there exists n with
|an| > N .

(iii) Show that (an) = ((−1)n(
√
n− 3)) is not bounded.



c) Let f : dom(f)→ R and let x0 ∈ dom(f).
(i) Define what it means for f to be continuous at x0.

(ii) Suppose f : R→ R is defined by

f(x) =

{
x sin

(
1
x

)
x 6= 0,

0 x = 0.

Using your definition in part (i), show f is continuous at 0.



d) Let
∑∞

n=0 an be a series of real numbers.
(i) Define the sequence of partial sums for the series

∑
an.

(ii) Define what it mean for the series
∑

an to diverge.
(iii) Using the definition, show that if |x| > 1 then the geometric series∑∞

n=0 x
n diverges.



e) Let f : (a, b)→ R with x0 ∈ (a, b) and let L ∈ R.
(i) Give the definition that limx→x0 f(x) = L.

(ii) Give the definition that f ′(x0) = L.
(ii) Suppose f : R→ R is defined by

f(x) =

{
x2 sin

(
1
x

)
x 6= 0,

0 x = 0.

Show f is differentiable at 0 with f ′(0) = 0.



f) Let f : [a, b]→ R be a bounded function.
(i) State the Fundamental Theorem of Calculus for continuous functions.

(ii) Using the chain rule for derivatives, prove the change of variables formula
for integrals of continuous functions f : If u is differentiable and u′ is
continuous, then∫ b

a

(f ◦ u(x))u′(x) dx =

∫ u(b)

u(a)

f(u) du.



Problem 2. Completeness.

a) State what it means to say Q is dense in R.
b) Show that if a < b then there exists an irrational number x such that a <

x < b.
c) Show that if a < b then there are infinitely many rational numbers between

a and b.



Problem 3. Sequences.

a) Define what it means to say (an)→ +∞.
b) Suppose that (an)→ +∞ and (bn) is bounded. Show that (an + bn)→ +∞.
c) Define what it means to say (cn)→ 0.

d) Show that if (an)→ +∞ then
(

1
an

)
→ 0.



Problem 4. Series.

a) Define what it means for a series
∑

an to converge.
b) State the Comparison test for convergent series.
c) Show that the following series converge using the comparison test.

(i)
∑

n
n3+3

(ii)
∑

n!
nn .



Problem 5. Continuity.

a) State the Intermediate Value Theorem.
b) Let f and g be continuous functions on [a, b] with f(a) ≥ g(a) and f(b) ≤ g(b).

Show that there exists x0 ∈ [a, b] such that f(x0) = g(x0).
c) Suppose f : [0, 2] → R and f(0) = f(2). Show that there exists x, y ∈ [0, 2]

such that y = x + 1 and f(x) = f(y) (Hint: consider g(x) = f(x + 1)− f(x)
on [0, 1]).

d) Show that if f is an odd degree polynomial, then it has at least one real root.



Problem 6. Differentiation. Recall that an odd function satisfies f(−x) = −f(x)
for all x ∈ R and an even function satisfies f(−x) = f(x).

a) Show that if for all x, y ∈ R we have

|f(y)− f(x)| ≤ (y − x)2

then f is constant.
b) Show that if f : R→ R is differentiable and even, then f ′ is an odd function.
c) Show that every differentiable function f : R→ R can be written as a sum

f = feven + fodd

where feven is a differentiable even function and fodd is a differentiable odd

function. (Hint: define feven(x) = f(x)+f(−x)
2

.)



Problem 7. Integration. Suppose that f : [a, b]→ R is bounded.

a) Define what it means for the function f to be integrable on [a, b].
b) Define f : [0, 1]→ R by

f(x) =

{
1 x = 1

n
for some n ∈ N,

0 otherwise.

Show that f is integrable on [0, 1]. (You may use the fact that f is integrable
if and only if for all ε > 0 there exists a partition P such that U(f, P ) −
L(f, P ) < ε.)
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Problem 1.

a) Let S be a subset of R.
(i) Define the greatest lower bound of S, inf S and least upper bound of S,

supS.
(ii) State the Completeness axiom for R.

(iii) Suppose inf S = supS. What can you say about S?
b) Let (an) be a sequence of real numbers.

(i) Give the definition that (an) is bounded.
(ii) Show that if (an) is not bounded, then for all M ∈ N there exists n with
|an| > N .

(iii) Show that (an) = ((−1)n(
√
n− 3)) is not bounded.

c) Let f : dom(f)→ R and let x0 ∈ dom(f).
(i) Define what it means for f to be continuous at x0.

(ii) Suppose f : R→ R is defined by

f(x) =

{
x sin

(
1
x

)
x 6= 0,

0 x = 0.

Using your definition in part (i), show f is continuous at 0.
d) Let

∑∞
n=0 an be a series of real numbers.

(i) Define the sequence of partial sums for the series
∑
an.

(ii) Define what it mean for the series
∑
an to diverge.

(iii) Using the definition, show that if |x| > 1 then the geometric series∑∞
n=0 x

n diverges.
e) Let f : (a, b)→ R with x0 ∈ (a, b) and let L ∈ R.

(i) Give the definition that limx→x0 f(x) = L.
(ii) Give the definition that f ′(x0) = L.
(ii) Suppose f : R→ R is defined by

f(x) =

{
x2 sin

(
1
x

)
x 6= 0,

0 x = 0.

Show f is differentiable at 0 with f ′(0) = 0.
f) Let f : [a, b]→ R be a bounded function.

(i) State the Fundamental Theorem of Calculus for continuous functions.
(ii) Using the chain rule for derivatives, prove the change of variables formula

for integrals of continuous functions f : If u is differentiable and u′ is
continuous, then∫ b

a

(f ◦ u(x))u′(x) dx =

∫ u(b)

u(a)

f(u) du.



Solution 1.

a)
(i) A lower bound for the set S is a number ` such that ` ≤ s for all s ∈ S.

The greatest lower bound for S is a number ` such that ` is a lower
bound for S and if `′ is any other lower bound for S, then ` ≥ `′. An
upper bound for the set S is a number L such that L ≥ s for all s ∈ S.
The least upper bound for S is a number L such that L is a lower bound
for S and if L′ is any other lower bound for S, then L ≤ L′.

(ii) Any non-empty subset of S which is bounded above has a least upper
bound.

(iii) The set must contain one element. For suppose s1, s2 ∈ S with s1 < s2.
Then inf S ≤ s1 < s2 supS, and so inf S 6= supS.

b)
(i) The sequence (an) is bounded if there exists M > 0 such that |an| ≤M

for all n ∈ N .
(ii) Suppose not. Then there exists M ∈ N such that M ≥ |an| for all n ∈ N.

But then (an) is bounded (since it satisfies the definition of bounded).

(iii) Let M ∈ N and set n = (M + 4)2. Then |an| = (
√

(M + 4)2 − 3) =
M + 1 > M . Hence (an) satisfies the condition in (ii) and so is not
bounded.

c)
(i) The function f is continuous at x0 if for all ε > 0 there exists δ > 0 such

that if x ∈ dom(f) and |x− x0| < δ then |f(x)− f(x0)| < ε.
(ii) Let ε > 0 and take δ = ε. Then if |x| = |x− 0| < δ we have

|f(x)− f(0)| = |f(x)| =
∣∣∣∣x sin

(
1

x

)∣∣∣∣ ≤ |x| < δ = ε.

d)
(i) The sequence of partial sums is the sequence (sn) defined by sn =∑n

k=0 ak.
(ii) The series

∑
an diverges if the sequence of partial sums (sn) fails to

converge.
(iii) Using standard algebra, we find that

sn =
n∑

k=0

xn = 1 + x+ · · ·+ xn =
1− xn+1

1− x
.

Then, since (xn) fails to converge for |x| > 1, the sequence of partial
sums fails to converge.



e)
(i) We say limx→x0 f(x) = L if for all ε > 0 there exists δ > 0 such that if

x ∈ (a, b) and 0 < |x− x0| < δ then |f(x)− L| < ε.
(ii) We say f ′(x0) = L if

lim
x→x0

f(x)− f(x0)

x− x0
= L.

(iii) We compute

|f ′(0)| = lim
x→0

∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ = lim
x→0

∣∣∣∣∣x2 sin
(
1
x

)
x

∣∣∣∣∣ = lim
x→0

∣∣∣∣x sin

(
1

x

)∣∣∣∣ ≤ lim
x→0
|x| = 0

and so f ′(0) = 0.
f) (i) Let f be continuous on [a, b] and define

F (x) =

∫ x

a

f(t) dt.

Then if x0 ∈ (a, b) then F is differentiable at x0 and F ′(x0) = f(x0).
(ii) (Admittedly, this is quite hard. . . ) Clearly f ◦ u is continuous. Fix c

and define

F (u) =

∫ u

c

f(t) dt,

so that F ′(u) = f(u) by (i). Now define g = F ◦ u. By the chain rule,
we have

g′(x) = F ′(u(x)) · u′(x) = f(u(x)) · u′(x)

and so by the Fundamental Theorem of Calculus∫ b

a

f ◦ u(x)u′(x) dx =

∫ b

a

g′(x) dx = g(b)− g(a) = F (u(b))− F (u(a))

=

∫ u(b)

c

f(t) dt−
∫ u(a)

c

f(t) dt =

∫ u(b)

u(a)

f(t) dt.



Problem 2. Completeness.

a) State what it means to say Q is dense in R.
b) Show that if a < b then there exists an irrational number x such that a <

x < b.
c) Show that if a < b then there are infinitely many rational numbers between
a and b.

Solution 2.

a) We say that Q is dense in R since between any two real numbers there exists
a rational number. That is, suppose a < b. Then there exists q ∈ Q with
q ∈ (a, b).

b) By density of Q, there exists a rational number q between a−
√

2 and b−
√

2.
Hence q +

√
2 is an irrational number between a and b.

c) By density of Q, there exists a rational number q1 between a and b. Similarly,
there exists a rational number r2 between r1 and b, and inductively, there
exists a rational rn+1 between rn and b. So there is a distinct rational number
rn for each n ∈ N between a and b, and so there are infinitely many rational
numbers between a and b.



Problem 3. Sequences.

a) Define what it means to say (an)→ +∞.
b) Suppose that (an)→ +∞ and (bn) is bounded. Show that (an + bn)→ +∞.
c) Define what it means to say (cn)→ 0.

d) Show that if (an)→ +∞ then
(

1
an

)
→ 0.

Solution 3.

a) For all M > 0 there exists N such that

n > N =⇒ an > M.

b) The sequence bn is bounded so there exists B > 0 such that |an| ≤ B for all
n ∈ N. So let M > 0. Since (an)→ +∞, there exists N such that

n > N =⇒ an > M +B.

Hence, if n > N we must have

an + bn ≥ an −B > (M +B)−B = M

and so (an + bn)→ +∞.
c) For all ε > 0 there exists N such that

n > N =⇒ |cn| < ε.

d) Let ε > 0. Since (an) → +∞, for M = 1
ε

there exists N such that if n > N

then an > M = 1
ε
. Hence if n > N we get∣∣∣∣ 1

an

∣∣∣∣ < 1

M
=

1
1
ε

= ε

and so
(

1
an

)
→ 0.



Problem 4. Series.

a) Define what it means for a series
∑
an to converge.

b) State the Comparison test for convergent series.
c) Show that the following series converge using the comparison test.

(i)
∑

n
n3+3

(ii)
∑

n!
nn .

Solution 4.

a) The series
∑
an converges if the sequence of partial sums sn =

∑n
k=0 ak

converges.
b) Suppose

∑
an is a series with an ≥ 0 for all n. Then if

∑
an converges and

|bn| ≤ an for all n, then
∑
bn converges.

c)
(i) Note that

n

n3 + 3
≤ n

n3 + 3n3
=

n

4n3
=

1

4n2
.

Since 1
4n2 converges, the comparison test shows that

∑
n

n3+3
converges.

(ii) Now note that

n!

nn
=

1× 2× · · · × n
n× n× · · · × n

=
1

n
× 2

n
× · · · × n

n
≤ 2

n2
.

Since
∑

2
n2 converges, so does

∑
n!nn.



Problem 5. Continuity.

a) State the Intermediate Value Theorem.
b) Let f and g be continuous functions on [a, b] with f(a) ≥ g(a) and f(b) ≤ g(b).

Show that there exists x0 ∈ [a, b] such that f(x0) = g(x0).
c) Suppose f : [0, 2] → R and f(0) = f(2). Show that there exists x, y ∈ [0, 2]

such that y = x+ 1 and f(x) = f(y) (Hint: consider g(x) = f(x+ 1)− f(x)
on [0, 1]).

d) Show that if f is an odd degree polynomial, then it has at least one real root.

Solution 5.

a) Let f : [a, b] → R be continuous. Then for all v ∈ (f(a), f(b)) (or for all
v ∈ (f(b), f(a))) there exists x0 ∈ (a, b) with f(c) = v.

b) Consider h(x) = f(x)−g(x) on [a, b]. Then h(a) ≥ 0 and h(b) ≤ 0. If equality
holds in either case then we are done, so assume h(a) > 0 > h(b). By the
Intermediate Value Theorem there exists x0 ∈ (a, b) such that h(x0) = 0,
which means f(x0) = g(x0).

c) Following the hint, take g(x) = f(x + 1) − f(x). Then g(0) = f(1) − f(0)
and g(1) = f(2) − f(1) = f(0) − f(1) = −g(0). If g(0) = 0 = g(1) we are
done. Suppose then that g(0) > 0 (the other case is similar) so that g(1) < 0.
Then by the Intermediate Value Theorem there exists x0 in (0, 1) such that
g(x0) = 0. But then we must have f(x0) = f(x0 + 1).

d) An odd degree polynomial is of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

where n is odd and an 6= 0. Suppose that an > 0 (otherwise consider −f(x)).
Then limx→+∞ f(x) = +∞ and limx→−∞ f(x) = −∞. Hence there exists a
and b in R with f(a) < 0 < f(b), and so the Intermeidate Value Theorem
shows that there must exist x0 ∈ (a, b) with f(x0) = 0.



Problem 6. Differentiation. Recall that an odd function satisfies f(−x) = −f(x)
for all x ∈ R and an even function satisfies f(−x) = f(x).

a) Show that if for all x, y ∈ R we have

|f(y)− f(x)| ≤ (y − x)2

then f is constant.
b) Show that if f : R→ R is differentiable and even, then f ′ is an odd function.
c) Show that every differentiable function f : R→ R can be written as a sum

f = feven + fodd

where feven is a differentiable even function and fodd is a differentiable odd

function. (Hint: define feven(x) = f(x)+f(−x)
2

.)

Solution 6.

a) Using the definition of deriviative, we get for any x0 ∈ R we have

|f ′(x0)| = lim
x→x0

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤ lim
x→x0

(x− x0)2

|x− x0|
= lim

x→x0

(x− x0) = 0.

Hence f ′(x0) = 0 for all x0 ∈ R, and so f is constant.
b) We compute, using y = −x and the fact that f(x) = f(−x) for all x.:

f ′(−x0) = lim
y→−x0

f(y)− f(−x0)
y − (−x0)

= lim
y→−x0

f(y)− f(−x0)
y − (−x0)

= lim
−x→−x0

f(−x)− f(−x0)
−x+ x0

= lim
x→x0

f(x)− f(x0)

−(x− x0)
= −f ′(x0)

and so f ′ is odd.
c) Clearly if we define

feven(x) =
f(x) + f(−x)

2
and fodd(x) =

f(x)− f(−x)

2
then feven is even and fodd is odd, with f(x) = feven(x) + fodd(x) for all
x. Furthermore, both are constructed by compositions, additions and mul-
tiplication of differentiable functions, and so must be differentiable. (Extra
question: can you show that the choices of feven and fodd are unique - you
will need to know that the only function which is both even and odd is the
zero function.)



Problem 7. Integration. Suppose that f : [a, b]→ R is bounded.

a) Define what it means for the function f to be integrable on [a, b].
b) Define f : [0, 1]→ R by

f(x) =

{
1 x = 1

n
for some n ∈ N,

0 otherwise.

Show that f is integrable on [0, 1]. (You may use the fact that f is integrable
if and only if for all ε > 0 there exists a partition P such that U(f, P ) −
L(f, P ) < ε.)

Solution 7.

a) Define, for a subset S ⊂ [a, b]:

M(f, S) = sup{f(x) : x ∈ S} and

m(f, S) = inf{f(x) : x ∈ S}

Let P be a partition of [a, b], a finite ordered subset P = {a = t0 < t1 <
· · · < tn = b}, and define

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk]) · (tk − tk−1),

L(f, P ) =
n∑

k=1

m(f, [tk−1, tk]) · (tk − tk−1)

and

U(f) = inf{U(f, P ) : P is a partion of [a, b]},
L(f) = sup{L(f, P ) : P is a partion of [a, b]}.

Then we say f is integrable on [a, b] if L(f) = U(f).
b) (this is more fiddly than I had imagined. . . ) Let ε > 0 and define r±k =

1
k
± 1

2k+1 . Consider the partition Pn given by

Pn = {0 = t0 < r−n < r+n < r−n−1 < r+n−1 < · · · < r−1 < 1}.



Notice on each interval Ik = [r+k , r
−
k−1] we have M(f, Ik) = m(f, Ik) = 0, and

on each interval Jk = [r−k , r
+
k ] we have M(f, Jk) = 1 and m(f, Jk) = 0. Hence

U(f, Pn)− L(f, Pn) = (M(f, [0, r−n ])−m(f, [0, r−n ])) · (r−n )

+
n∑

k=1

(M(f, [r−k , r
+
k ])−m(f, [r−k , r

+
k ])) · (r+k , r

−
k )

= (r−n ) +
n∑

k=1

(r+k , r
−
k )

=

(
1

n
− ε

2n+1

)
+

n∑
k=1

2ε

2n+1

=

(
1

n
− ε

2n+1

)
+

n∑
k=1

ε

2n

=

(
1

n
− ε

2n+1

)
+ ε

(
1− 1

2n+1

)
.

Now since we can make n as large as we please and ε as small as we please,
we can make U(f, P )− L(f, P ) arbitrarily small, and so we are done.


