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Course Description: A careful study of the theory underlying topics in one-
variable calculus, with an emphasis on those topics arising in high school
calculus. The real number system. Limits of functions and sequences.
Differentiation, integration, and the fundamental theorem. Infinite series.

Textbook: Robert G. Bartle and Donald R. Sherbert, Introduction to Real
Analysis, 4th edition

Instructor: Yu Li, Math Tower 4-101B. Office Hours: TuTh 12:00-1:00, Email:
yu.li.4A@stonybrook.edu.

TAs: James Seiner, Ruijie Yang

Class schedule: TuTh 10:00-11: 20 Javits 103
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Homework: Weekly problem sets will be assigned, and collected on Wednesday
or Thursday recitation. The emphasis of the course is on writing proofs, so
please try to write legibly and explain your reasoning clearly and fully. You are
encouraged to discuss the homework problems with others, but your write-up
must be your own work. Late homework will never be accepted, but under-
documented extenuating circumstances the grade may be dropped.

Week Lectures Homework

9/30 3.4, 3.5 3.3:4,7,10,11,13; 3.4:3,9,12,16
10/7 3.6,4.1,4.2 3.5:5,9,13; 3.6: 6,9; 4.1: 4,6,12
10/14 5.1,5.2 4.2:3,5,10; 5.1:4,11,15

10/21 5.2,5.3,5.4 5.2:2,5,8,11; 5.3:3,13,18

10/28 5.6, Second midterm 5.4:2,3,5,14

11/4 5.6,6.1 5.6:1,5,9,12; 6.1:4,7,9,12
11/11 6.2,6.3 6.1:13,14,15; 6.2:1,4,6,11
11/18 6.4 6.3:3,8,11; 6.4:1,10,14,15
11/25 7.1, Thanksgiving 7.1:1,2,6,8,15

12/2 7.2,7.3

Exams: The second midterm exam is in-class on Oct. 31. The final exam is
on Dec. 19, 8:00 am-10:45 am and the room is Javits 103.



If you register for this course you must make sure that you are available at these
times, as there will be no make-ups for missed exams.

The course grade is computed by the following scheme:
Homework: 20%

Midterm Test I: 20%

Midterm Test 11: 20%

Final Exam: 40%

Help: The Math Learning Center (MLC) is located in Math Tower S-235, and
offers free help to any student requesting it. It also provides a locale for students
wishing to form study groups. The MLC is open 9 am-7 pm Monday through
Friday. A list of graduate students available for hire as private tutors is
maintained by the Undergraduate Mathematics Office, Math Tower P-143.

Disability Support Services (DSS)
If you have a physical, psychological, medical or learning disability that may impact your
course work, please contact Disability Support Services, ECC (Educational Communications
Center) Building, room 128, (631) 632-6748. They will determine with you what
accommodations, if any, are necessary and appropriate. All information and documentation
is confidential. Students who require assistance during emergency evacuation are encouraged
to discuss their needs with their professors and Disability Support Services. For procedures
and information go to the following website: http://www.stonybrook.edu/ehs/fire/disabilities
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Academic Integrity
Representing another person's work as your own is always wrong. Faculty are required to
report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in
the Health Sciences Center (School of Health Technology & Management, Nursing, Social
Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific
procedures. For more comprehensive information on academic integrity, including categories
of academic dishonesty, please refer to the academic judiciary website

at http://www.stonybrook.edu/commcms/academic_integrity/index.html

Critical Incident

Management Statement

Stony Brook University expects students to respect the rights, privileges, and property of
other people. Faculty are required to report to the Office of Judicial Affairs any disruptive
behavior that interrupts their ability to teach, compromises the safety of the learning
environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School
of Medicine are required to follow their school-specific procedures.
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Midterm 2 Practice Problems

Problem 1. Let the sequence (z,) be defined as

L if n is even.
n

{14—% if n is odd;

Ty =

Is (z,) convergent?

Problem 2. Suppose lim,, o x, = a > 0. Prove that there exists a K € N such that
L cr <2
— <z, a
2

for any n > K.

Problem 3. 1. Let the function f be defined as

K if x € Q;
f<x){o itz ¢Q.

Prove that f is continuous at 0.

2. Let the function f be defined as

1 if x € Q;
0 if x ¢ Q.

Prove that f is discontinuous everywhere.

Problem 4. Give examples of functions f and ¢ such that f and g do not have limits at ¢,
but fg has the limit at c.

Problem 5. Suppose for any x € [—1,1}, |f(z)| < 2|z|. Prove that f is continuous at 0.

Problem 6. Let f be a continuous function on [0, 1] such that f(z) € [0, 1] for any = € [0, 1].
Prove that there exists a ¢ € [0, 1] such that f(c) = c.

Problem 7. 1. Let (z,) be a sequence such that |z,,1 —xz,| < 27" for any n € N. Prove
that (x,) is convergent.



2. Is the result still true if we only assume |z,41 — z,| <  for any n € N?

Problem 8. Let f and g be continuous functions on (a,b) such that f(r) = g(r) for each
rational number r € (a,b). Prove f(z) = g(z) for all x € (a,b).

Problem 9. 1. Let f be a continuous function on [0, 00). Prove that if f is uniformly
continuous on [k, c0) for some k > 0, then f is uniformly continuous on [0, c0).

2. Prove y/z is uniformly continuous on [0, c0).

Problem 10. Let f be a continuous function on [0, 1] such that f(x) € Q for any = € [0, 1].
Prove that f is constant.
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Final Exam Practice Problems

Problem 1. Let the sequence (z,) be defined as follows: z; = 1,29 = 2 and x,,2 =
%(zn + x,41) for any n € N. Prove that 1 < z,, <2 for any n € N.

Problem 2. Let S be a nonempty subset of R that is bounded above. Prove that sup S =
—inf{-s: se€ S}.

Problem 3. Find the infimum of the set A = {1 + =22~ Smn \ n € N}.

Problem 4. Prove

1 1 1
lim + doi e —] =1
va(VM%ﬁ_ Vn? +2 \Mﬁ+n)

Problem 5. Let (a,) be a positive sequence such that lim,,_, a:ﬁ = 0. Prove that (a,) is
unbounded.

Problem 6. Assume that lim,,_, x,, = +o0. Prove that

lim L2 + = +o00.

n— o0 n

Problem 7. Suppose f(z) is a strictly increasing function on [a,b] and (z,) C [a,b] is a
sequence such that lim, ., f(z,) = f(a). Prove that lim, . =, = a.

Problem 8. * Let f be a function defined on (0, 1) such that for any c € (0,1), lim, o f(£) =
0. Can we conclude that lim, o+ f(x) = 07

Problem 9. Assume that the function f is continuous at 0 and f(0) > 0. Prove that there
exists a > 0 such that f(z) > 0 for any |z| < 6.

Problem 10. For any function f, we define w,(0) = sup{|f(z)— f(y)| | |z —a| < dand |y —
a| < §}. Prove that f is continuous at a if and only if lims_,o+ w,(d) =0

Problem 11. Suppose there exists a constant L > 0 such that for any z,y € [a,00) we

have

[f(x) = f(y)| < Llz = yl.
If a > 0, prove that ( ) is uniformly continuous on [a, c0).
Problem 12.



Let the function f be defined as

x? if r € Q;
0 if v ¢ Q.

Prove that f is differentiable at 0.

Problem 13. Suppose |f(x)]| is differentiable at a and f(a) = 0, prove that f’(a) = 0.

Problem 14. Assume there exist constants M and a > 1 such that for any z,y € R,
[f(@) = f(y)| < M|z —y|*.

Prove that f is a constant.

Problem 15. Let f(x) and g(x) be convex functions and f is increasing. Prove that f(g(z))
Is convex.

Problem 16. If f defined on [0,1] is a continuous and [ f = fxl f for all z € [0,1]. Prove
that f(z) =0 for any z € [0, 1].



Problem 1

We prove \97 anduction wmn v

©® Bose case

n=1 , %=1 ond IS %X €2
h=2, X2=2 and I's X2 £2

@ TInductive step -

ossume it is true for ey 2k <h

“then 1S Xpoy <2 and IS Xn €2

~

Zn + Xa—|

Hence. IS Zan = . <

Therefore i also  holds for

n+y +

Problem 2.

Denote, A= SwpS  and B =inf ?

-s: s¢Sy  We need +to
show That A= -—-R

By defimition of swp s = A . ¥se S

-S = —A , ¥seS
= B:’tv»{-{—g:SeSH

>
> -A = Az-B8 @O

Bd defraition U+ /Cn:F-



Problem 3
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Problem b First proof
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