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Sylvain BONNOT
  


MAT 319 

Foundations of
 analysis 
  



We will meet on MWF : 10:40 am to 11:35 am in Physics P112.The class will be taught in parallel
with MAT 320, and
 then separately from Oct.8th

First day of class: Sep 5th, 2007.
Final exam : TBA.

Office hours: 

every Thursday from 2:00 pm to 5:00 pm in my office, 5D-148 in the Math Tower.

My office is in the I.M.S (Institute for Math. Sciences), located on floor 5 and a half.

 How to contact me? 

the best way is to email me there:
bonnot at math dot sunysb dot edu

Our textbook: 
Introduction to Real analysis (Hardcover), Wiley, Third edition ,
by R.Bartle, D. Sherbert


Link to Current Homework:
The Homework is an important part of this class. Click here to go to the homework page.

Course notes and announcements:

Hi everybody, this will be the last annoucement for this class...
I wish an excellent break to all of you! If you miss real
 analysis, then you can still read the solutions of the final:
part I, and part II !

Just a reminder: our Final Exam is on Friday Dec. 21st, usual room (P-112), from 11 AM to
1:30 PM...

Your TA Rob told me that he will give an additional practice session next week on Thursday at 2pm in room 5-127.
 It's certainly
a good idea to attend that session...

And here come the solutions for the practice final exam . Now the link is the
correct one!

Here is a practice final exam . You will get the solutions of it
very soon (tomorrow).
Prepare your questions for
 Wednesday and Friday.

Here are the solutions of Midterm II .

I am still waiting before putting online the solution of the midterm (because some of you wanted to
bring back a
 complete solution of the last problem for their writing requirement)...
I put online the new HW10, which is light, so that
 you can enjoy your break (this doesn't make sense
to me, because I can't find a better way to spend a break than doing
 some math HW, so I might add
some more problems...)
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Some hints for HW9 are now available.

They basically complement what I said this morning.

Brand New ! the solutions of the Practice MidtermII are available!

Please try it first, then read the solutions, then ask me questions on Wednesday (if you need...)
Also you might want to
 prepare some questions for our review session on Wednesday.

Practice MidtermII is available!

Midterm II will be on Friday Nov. 9th.(usual time, usual classroom) It is cumulative in the sense that you need to
 remember what
is the limit of a sequence, or what is a real number, or a least upper bound etc... Thus it covers from
 chapter 2.1 to 5.3 included.
However the problems will cover essentially the chapters studied after Midterm I (thus 3.3
 to 5.3). More precisely
it should be pretty close to the following practice exam.
(Note that the actual exam will be
 shorter than that).
Also remember that I typed for you the solutions of the HW problems, so you might want to have a
 look at them...
There will be a review session next Wednesday (Nov. 7th ). Also you can find me in my office on

Monday and Tuesday afternoon, and Thursday afternoon (usual office hours) next week.

Starting on Monday October 8th, 319 and 320 are taught separately. MAT 319 will meet in the
usual classroom P-112,
 MWF 10:40 to 11:35 (usual time).
Please make sure to bring back the form with your choice between 319 and 320, and
 go to the Solar system
to check that you are currently registered in 319.


HW5 has been already assigned by Prof. Phillips: p.80: 1, 3, 8a, 14, 15
and p.86: 1, 3c, 9, 13.

 Quick intro:
Simply put, our goal for this class is to revisit all the main theorems of a standard calculus and to provide
 detailed proofs for these.

Link to Current Homework:
Regularly you will have to consult this homework page to know what has been assigned.

Syllabus (tentative) :

Day of Sections Covered

Week 6:October
 8, 10, 12

Contractive sequences, 3.6, 3.7

Week 7:Oct.
 15,17,19

4.1, 4.2

Week 8:Oct.
 22,24,26

4.3, 5.1, 5.2

Week 9:Oct. 29,
 31, Nov. 2

5.3, 5.4

Week 10:Nov.
 5,7,9

5.6, 6.1

Week 11:Nov.
 12, 14, 16

End 0f 6.1, 6.2

Week 12:Nov.
 19, 21

6.2, 6.3

Week 13:Nov.
 26,28,30

End of 6.3, 6.4
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Week 14:Dec.
 3,5,7

7.1, 7.2

Week 15:Dec.
 10,12,14

 7.3, Review

Week 16:Dec.
 17, 19, 21

 Exam week, Final on 21st

Exams: 

Midterm 1   Oct. 1st Usual room

Midterm 2   Friday Nov. 9th, 10:40 to 11:35 Usual room  

Final   Fr Dec. 21st 2007, 11:00 am to 1:30 pm  Usual room

Homework and grading policy: Here is how your final grade will be computed.
of the following:

Exam I 25%

Exam II 25% 

Final Exam 35%

Homework 15%


Late homework will not be accepted.

DSS advisory:

 If you have a
physical,
psychological,
medical, or learning disability that may affect your course work,
please contact
 Disability Support
Services (DSS) office: ECC (Educational Communications Center)
Building, room 128, telephone
 (631) 632-6748/TDD.
DSS will determine with you what accommodations are necessary and
appropriate.
 Arrangements should be made early in the semester (before
the first exam) so that your needs can be accommodated.
 All information
and documentation of disability
is confidential.
Students requiring emergency evacuation are
 encouraged to discuss their
needs with
their professors and DSS. For procedures and information, go to the
following
 web site http://www.ehs.sunysb.edu
and search Fire safety and
Evacuation and Disabilities.

 

http://www.ehs.sunysb.edu/
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MAT 319 Homework Assignments
Fall 2007


Link to main page for MAT 319.

Mathematics department

# Problems Due Date

HW1
Solutions of HW1

HW2
Solutions of HW2

HW3
Solutions of HW3

HW4
Solutions of HW4

HW5  p.80: 1, 3, 8a, 14, 15
and p.86: 1, 3c, 9, 13 
Solutions of HW5 Wed. 10/10/2007

HW6 sect. 3.6: 1, 8d, 10
and sect. 3.7: 3a, 6b, 8, 11 
Solutions of HW6 Wed. 10/17/2007

HW7 sect. 4.1: 2, 9d, 10b, 11c, 13
and sect. 4.2: 1d, 4, 5
Solutions of HW7 Wed. 10/24/2007

HW8 sect. 4.3: : 5a, 5c, 8
and sect. 5.1: 7, 12 and sect. 5.2::1a,
 9

Solutions of HW8
FRIDAY 11/02/2007

no HW is due for the week of the exam 

HW9 sect. 5.3: : 3, 6, 11, 13 and sect. 5.4: 2, 4, 9 and sect.
 5.6::10

 Solutions of HW9
MONDAY 11/19/2007

HW10 sect. 6.1: 1a (only), 4, 9, 10, 11a (only) Solutions of
 HW10 WED. 11/28/2007

HW11 sect. 6.1: 16 and sect. 6.2: 1b (only), 2d (only), 4, 12, 16
Solutions of HW11 FR. 12/07/2007

HW12: the
 Last one!

sect. 6.3: 7c(only), 9c(only) sect. 6.4: 4 (I know I did it in
 class), 16

Solutions of HW12
FR. 12/14/2007

http://www.math.sunysb.edu/html/index.shtml
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MAT 319

Practice FINAL

Problem 1. What is the limit of (xn)=
n

3

n!
?

Problem 2. Use the definition of the limit to prove that lim
n

2− 1

3n
2 + 1

=
1

3
.

Problem 3. Prove that an increasing sequence that is bounded above is necessarily converging.

Problem 4. Show that if un is unbounded then there is a subsequence unk
of terms that are all non zero

and such that
1

unk

→ 0.

Problem 5. Is the infinite series
∑

n=1

∞ 1

n
2−n + 2

convergent?

Problem 6. Evaluate the following limit, or show that it doesn’t exist: limx→+∞
x

√
− x

2

x

√
+ x. x

√ .

Problem 7. Assume that f :R→R is such that: for any x∈R there is a δ > 0 such that f is bounded on
[x− δ, x+ δ]. Is the function f bounded on R? (If yes, prove it; if not give a counter-example).

Problem 8. Is the function g: R → R defined by g(x) = 3x + |x| differentiable everywhere? (Prove your
assertion!)

Problem 9. If f :R→R is differentiable at c∈R, then show that

lim (n(f(c +
1

n

)− f(c)) exists and is equal to f ′(c).

Problem 10. Show that if x > 0 then we have 1+ x3
√

6 1 +
1

3
x

1



MAT 319 11/09/2007

Solutions of Midterm II

Name:

Student I.D:

Problem 1. (25 points) Is the infinite series
∑

n=1

+∞ 1

− 1+ 3n. n

√ convergent?

(If yes, you don’t need to find the value of the limit).

Answer:

We have
1

− 1 +3n. n

√ =
1

n
3/2

.
1

3− 1

n
3/2

Now
1

3− 1

n
3/2

→ 1

3
when n → + ∞. Therefore the Comparison theorem for infinite series tells

us that
∑ 1

− 1+ 3n. n

√ converges if and only if
∑ 1

n
3/2

converges.

Since the exponent 3/2 > 1, we know that
∑ 1

n
3/2

converges and therefore our infinite series
is convergent.

Problem 2. (30 points) What is lim
x→+∞

7x
2 + 1

2x+ 5
√ ?

Answer:

As usual we factor by the dominant terms:
7x

2 +1

2x +5
√ =

x
2

x

√ .
7+

1

x2

2 +
5

x

q
Now limx→+∞

7+
1

x2

2 +
5

x

q =
7

2
√ > 0, by the sum rule, the quotient rule and the square root rule.

But now the Comparison theorem for functions tells us that f(x) =
7x

2 + 1

2x + 5
√ has a limit equal

to + ∞ at +∞ if and only if the limit of g(x) =
x
2

x

√ = x3/2 at + ∞ is equal to + ∞. Since this

is the case, we just proved that limx→+∞
7x

2 + 1

2x + 5
√ = +∞.

Problem 3. (30 points) Use the definition of a limit (I mean use “ε, δ”)

to prove that limx→3

2x
2 +4

x− 1
= 11.

Answer:

As usual we study the quantity
∣
∣
∣f(x)−L

∣
∣
∣ =

∣
∣
∣
2x

2 +4

x − 1
− 11

∣
∣
∣ =

∣
∣
∣
2x

2 +4− 11x + 11

x − 1

∣
∣
∣ =

∣
∣
∣
2x − 5

x − 1

∣
∣
∣.
∣
∣
∣x− 3

∣
∣
∣

1



Let us prove the existence of a small neighborhood of 3 where the quantity
∣
∣
∣
2x − 5

x − 1

∣
∣
∣ is

bounded above by a constant. Consider the neighborhood V = (2, 4) of the point 3:
then x ∈ V ⇒ 2 < x < 4 ⇒ 4 < 2x < 8 ⇒− 1 < 2x − 5 < 3 which implies that − 3 < 2x − 5 < 3,

but this exactly means that |2x − 5|< 3 (observe that we are only interested in an upper bound,
not a lower bound).

Similarly, x∈V ⇒ 2< x < 4⇒ 1< x− 1 < 3⇒ 1 <
∣
∣
∣x− 1

∣
∣
∣ < 3⇒ 1

3
<

1

|x − 1|
< 1.

If you put things together, you get that for any x∈V we have:∣
∣
∣
2x − 5

x − 1

∣
∣
∣ < 3.

Now given ε > 0, if we take 0 < δ satisfying both δ < 1 (because we want the δ-neighborhood
of 3 to be included in V, which is the 1-neighborhood of 3) and δ <

ε

3
, we will have the following:

for any x such that
∣
∣x− 3

∣
∣ < δ we have that

∣
∣f(x)− 11

∣
∣ < 3.δ < 3.

ε

3
= ε. Thus we proved that

limx→3
2x

2 +4

x − 1
= 11.

Problem 4. (15 points) Let f : R → R be a function such that for any x ∈ R,
we have

∣
∣
∣f(x)− f(1)

∣
∣
∣ < 6. |x− 1|

√
.

Show that such a function f is continuous at 1. (You will get some partial
credit if you recall the definition of the continuity of a function at a point).

Answer:

For any given ε > 0, if we take 0< δ <
(

ε

6
)2, we have the following:

∣
∣
∣x − 1

∣
∣
∣ < δ implies that

∣
∣
∣f(x) − f(1)

∣
∣
∣ < 6. |x− 1|

√
< 6. δ

√
< 6.

ε

6
= ε, but this means exactly

that the function f is continuous at 1.

2



Math 319 Some remarks and hints for HW9

Since we didn’t practice too much with that material (uniform continuity, continu-
ity on intervals), I would like to give you some remarks, hints, and treat some similar
examples...

Problem 1. Show that every polynomial of odd degree with real coefficients has at least one
real root.

Answer. We did that in class already, but here is a complete solution. Consider the
dominant term in your polynomial P(x) : anxn. If you factor by it, you will get
P(x) = anxn(1 + an−1

x + . . . + a0
xn ). Clearly limx→+∞ 1 + an−1

x + . . . + a0
xn = 1, therefore

by the comparison theorem, lim P(x) = lim anxn which is ±∞ depending on the sign
of an. Assume now that an > 0: then the limit of P(x) at +∞ is +∞, and the limit
at +∞ is −∞, therefore there exists an α such that for any x > α we have f (x) > 1
(for example), and there is a β such that for any x < β we have f (x) < −1. Thus we
found two real numbers such that f (α) ≥ 1 > 0 and f (β) ≤ −1 < 0. Apply now the
intermediate value theorem on [β, α], and get a zero of the function. The case where
the coefficient an < 0 can be treated similarly.

Remark. The same idea can be used for problem 13 in section 5.3: far away your
function is bounded (for example by 1), and in the middle you have a continuous
function on a closed interval.

On problem 3, section 5.3. Try to build a sequence of points xn that is converging
and such that the sequence f (xn) converges to zero. At some point you might have
to use Bolzano-Weierstrass...

On problem 11. This is actually how I proved the theorems in class. The key fact
is to know that if a continuous function is strictly positive at a point c then there is a
small δ-neighborhood of c on which the function is still strictly positive.

Problem 2. Show that f (x) = 1
x is uniformly continuous on [1, +∞)

Answer. The key is to understand that a continuous function on a closed interval is
uniformly continuous, and then to notice that since the function goes to zero when x
becomes large, it will be uniformly continuous ”at the infinity”.

More precisely: given ε > 0: there exists an α > 1 such that for any x > α we
have | f (x)| < ε

2 . Now consider the closed interval [1, α + 2]: since f is continuous,
it is uniformly continuous on that closed interval, therefore there exists a δ > 0 such
that for any x, y ∈ [1, α + 2], we have | f (x) − f (y)| < ε. By possibly taking δ′ =
min(δ, 1) we can even assume that δ < 1. Now pick any two real numbers u, v in
[1, ∞) satisfying |u− v| < δ, and assume that for example u < v:

1. if v ≤ α + 2: then both u, v are in [1, α + 2], and therefore they satisfy | f (u)−
f (v)| < ε;
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2. if v ≥ α + 2, then necessarily α < α + 1 < u < v, and therefore by the triangle
inequality we have | f (u)− f (v)| ≤ | f (u)|+ | f (v)| < ε/2 + ε/2 = ε.

Thus we proved the uniform continuity of the function. Notice that basically we
only used the fact that the function is converging to zero at infinity. Another possible
approach would be to use the particular form of the function: | f (x)− f (y)| = | x−y

xy ≤
|x− y| if x, y are larger than 1 (and then for a given ε just pick δ = ε: the same δ will
now work for any pair x, y.
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Solutions of Practice Midterm II

Problem 1. Define a sequence (xn) by : x0 = 1 and xn+1 =
1

3
xn + 1. Does (xn) have a limit? If yes, what

is this limit?

Proof. First, notice that if the sequence has a limit l, then it must satisfy the equation : l =
1

3
.l + 1, thus

the only possible limit is l =
3

2
.

Let’s show that this sequence is monotone and bounded, and therefore it will be convergent.

1. Claim: the sequence is bounded above by
3

2
.

Indeed, by induction we get that: x0 6 3/2, and if xn 6 3/2 then we deduce that

xn+1 6
1

3
.
3

2
+1 = 3/2, so we are done.

2. Claim: the sequence is increasing: this comes from the fact that (x6 3/2)⇒ 1

3
x + 1> x.

Therefore the sequence is converging to 3/2.

�

Problem 2. Is the infinite series
∑

n=1

+∞ 1

n + n

√ convergent? (If yes, you do not need to find the value of

the limit).

Proof. We have an =
1

n + n

√ =
1

n

.
1

1+
n

√

n

. Thus
an

1/n

→ 1, which implies that
∑

an converges if and only if
∑ 1

n

converges, by the comparison theorem. Since
∑ 1

n

diverges, we deduce that
∑

an diverges. �

Problem 3. Recall the definition of the continuity of a function f at a point c.

Proof. Hehe, see the textbook! (don’t write that kind of answer for the actual midterm...) �

Problem 4. What is limx→+∞
x + 3

x +7
√

+ 1
?

Proof. As usual we factor both numerator and denominator by the “dominant term”:
x +3

x +7
√

+ 1
=

x

x

√ .
1 +

3

x

1+
7

x

q
+

1

x
√

. Now limx→+∞ 1 +
3

x

= 1 and limx→+∞ 1 +
7

x

√
+

1

x

√ = 1 because
1

x

√ → 1

and 1+
7

x

√
→ 1 by the square root rule.Therefore by the comparison theorem, we know that

x + 3

x +7
√

+1

has a limit equal to +∞ if and only if limx→+∞ x
√

=+∞ , which is the case.

Thus, limx→+∞
x + 3

x +7
√

+1
= +∞. �

Problem 5. Use the definition of a limit (I mean use “ε, δ”) to prove that

limx→−1
5x

2 + 2x +1

x +3
=2. How could you prove the same thing using an easier way?

Proof. The easy way: a rational function is continuous at any point where the denominator is not zero.

Since x +3 is not zero at x =− 1, we know that the limit is actually equal to
5.1 +2.(− 1)+ 1

− 1 +3
= 2.

The complicated way (using the definition):∣
∣
∣
5x

2 + 2x +1

x +3
− 2

∣
∣
∣ =

∣
∣
∣
5x

2 + 2x +1− 2x − 6

x + 3

∣
∣
∣ = 5.

∣
∣
∣x+ 1

∣
∣
∣.
∣
∣
∣

x − 1

x +3

∣
∣
∣. Now let’s prove that on a

neighborhood of − 1, the function 5.
∣
∣
∣

x − 1

x +3

∣
∣
∣ is bounded above.

One can take for example the neighborhood V = (− 2,− 1

2
). Then on V, one has:

− 3 <x− 1 <
− 3

2
⇒

∣
∣
∣x− 1

∣
∣
∣ < 3, and similarly on V one has : 1 <x + 3< 5/2⇒ 1

|x +3|
< 1.

1



Therefore, on V we have that 5.
∣
∣
∣
x − 1

x +3

∣
∣
∣ < 15.

Now for a given ε > 0, if we take x ∈ V , we have that
∣
∣
∣
5x

2 +2x + 1

x + 3
− 2

∣
∣
∣ < 15.

∣
∣
∣x + 1

∣
∣
∣, so it is enough to

take δ > 0 less than ε/15 and such that (− 1− δ,− 1 + δ)⊂V . Clearly δ =min (ε/15, 1/2) will work. �

Problem 6. Let f : [0, 3]→R be a continuous function. Assume that f(1) > 0, then prove the existence of
a small δ-neighborhood of 1 on which the function f has no root (meaning there is no x in this neighbor-
hood such that f(x)= 0).

Proof. Take ε=
f(1)

2
> 0. By continuity, there exists a δ > 0 such that for any x∈ [0, 3]∩ (1− δ, 1 + δ),

one has f(x) ∈
(

f(1)

2
,

3

2
f(1)

)
, and thus on that neighborhood of 1, we have that f(x) > 0, so it has no

zero. �

2



MAT 319/320

Practice Midterm II

Problem 1. Define a sequence (xn) by : x0 = 1 and xn+1 =
1

3
xn + 1. Does (xn) have a limit? If yes, what

is this limit?

Problem 2. Is the infinite series
∑

n=1

+∞ 1

n + n

√ convergent? (If yes, you do not need to find the value of

the limit).

Problem 3. Recall the definition of the continuity of a function f at a point c.

Problem 4. What is limx→+∞
x + 3

x +7
√

+ 1
?

Problem 5. Use the definition of a limit (I mean use “ε, δ”) to prove that

limx→−1
5x

2 + 2x +1

x +3
=2. How could you prove the same thing using an easier way?

Problem 6. Let f : [0, 3]→R be a continuous function. Assume that f(1) > 0, then prove the existence of
a small δ-neighborhood of 1 on which the function f has no root (meaning there is no x in this neighbor-
hood such that f(x)= 0).

1



MAT 319/320

Correction of HW1

Exercise 1. Page 15, #2.

Proof. By induction:

1. The property is true for n = 1, because 13 =
[

1

2
.1.2

]2

2. Assume that the property is true for n, and prove that it’s true for n +1:

13 +� +n3 =

[
1

2
.n.(n + 1)

]2

⇒ 13 +� + n3 + (n + 1)3 =

[
1

2
.n.(n + 1)

]2

+(n +1)3

⇒ 13 +� + (n + 1)3 =
1

4
.(n +1)2

[
n2 + 4(n + 1)

]

⇒ 13 +� + (n + 1)3 =
1

4
.(n + 1)2[n + 2]

2

⇒ 13 +� + (n + 1)3 =

[
1

2
.(n +1).(n +2)

]2

But this is exactly the property for (n+1).
�

Exercise 2. Page 29, #3.

Proof. a) 2x + 5 = 8 ⇒ 2x = 3(existence of negative elements) ⇒ x = 3/2(existence of
inverse for nonzero elements).

b) add − 2x to both sides to get x2 − 2x = 0. Then factor (using distributivity) to get
x(x− 2)= 0. Conclude with theorem 2.1.3.

c) add − 3 to both sides to get x2 − 4 = 0, use distributivity to factor and conclude like in
b).

d) Same: apply theorem 2.1.3 (a.b = 0 implies a = 0 or b =0).

�

Exercise 3. Page 30, #8.

Proof. a) Clearly
a

b

+
c

d

=
a.d + b.c

b.d

∈Q and
a

b

.
c

d

=
a.c

b.d

∈Q.

b) If x is rational and y irrational, then x + y can’t be rational because y = (x + y) + (− x)
would also be rational.

Now if in addition x� 0, then x.y can’t be rational because y = (x.y).(1/x) would also
be rational from a).

�

Exercise 4. Page 30, #18.

1



Proof. By contradiction: assume that a > b. Then take ε=
a − b

2
. One should have

a− b6 (
a − b

2
) which is absurd.

�

Exercise 5. Page 30, #23.

Proof. Let us prove that if a, b > 0 then a < b if and only if an <bn for any n∈N.
Clearly the right hand side implies the left one.
Let’s prove the rest by induction:

1. The property is true for n = 1 because a < b⇒ a1 < b1.

2. Assume that one has an <bn. Then a.an < a.bn <b.bn so we are done.

�

Exercise 6. Page 34, #1.

Proof. a) Clearly
∣
∣a|2 = a2, and since

∣
∣a

∣
∣≥ 0, it is the square root of a2.

b) Just notice that
∣
∣a

∣
∣ =

∣
∣ a

b

.b
∣
∣ =

∣
∣a

b

∣
∣.
∣
∣b

∣
∣ which gives the result.

�

Exercise 7. Page 34, #6.

Proof. a) |4.x− 5|6 13 is equivalent to

− 136 4.x− 56 13

− 13+ 56 4.x6 13+ 5

− 2 6 x6 9/2

so this is equivalent to x∈ [− 2, 9/2].

b)
∣
∣x2− 1

∣
∣ 6 3 is equivalent to

− 3 6 x2− 1 6 3

− 2 6 x2 6 4

but the last line is equivalent to 06 x2 6 4, which is itself equivalent to x∈ [− 2, 2].

�

Exercise 8. Page 34, #15.

Proof. Assume a < b , then any positive real number strictly less than (b− a)/2 will work.

Take ε = (b − a)/2, then U = (a − b − a

2
,

a + b

2
) and V = (

a + b

2
, b +

b − a

2
), and these two open

intervals are disjoint.
It’s probably cleaner to use ε =

b − a

3
instead...

�

2



MAT 319/320

Correction of HW2

Exercise 1. Page 38, #2.

Proof. The set S2 is not empty and is bounded below (for example by 0), so it has an infimum.
Let’s prove that 0= inf (S2):

1. For any x in S2, one has 0 6 x;

2. For any ε > 0, one can find x in S2 such that 0 6x < 0 + ε (take ε/2 for example).

Therefore 0= inf (S2).
Now S2 is not bounded above, so it doesn’t have upper bounds (and therefore doesn’t have a

sup).
�

Exercise 2. Page 38, #3.

Proof. Supremum: Since n ∈N⇒ 1

n

6 1, one knows that S3 is bounded above, since it is also

a non empty subset of R, we know that it has a supremum. Let’s prove that 1 = sup (S3):

1. For any x in S3, one has x 6 1;

2. For any ε > 0, one can find an x in S3 such that 1− ε <x 6 1 (just take x= 1!)

Infimum:

Let’s prove that 0= inf (S3):

1. For any x =1/n in S3, one has x > 0;

2. For any ε > 0, one can find an x in S3 such that 0 6 x < ε (indeed by the archimedean
property one knows the existence of an integer nε > 1/ε, then just take x = 1/nε).

�

Exercise 3. Page 38, #7.

Proof. a) Assume that u is an upper bound of S non empty:
this means that for any x in S one has x 6 u. Now if t is any real number such that

t > u, we will get that t > x for any x∈S, so t � S.

b) Conversely: Assume now that (t > u) ⇒ t � S. Suppose that u is not an upper bound.
Since S is not empty, this would imply the existence of y ∈ S such that y > u (contradic-
tion).

�

Exercise 4. Page 38, #9.

Proof. a) If α is an upper bound for A, and β is an upper bound for B, then the maximum
of the two numbers α, β is an upper bound for A ∪ B. For the lower bounds, take the
minimum instead.So the union of two bounded sets is a bounded set.

b) At this point we know the existence of sup (A ∪ B).Let’s prove that sup (A ∪ B) = sup
{supA, supB}:

1. We already know that Z = sup {supA, supB} is an upper bound of A∪B;

2. For any ε > 0, is there an element x∈A∪B such that Z − ε < x?

1



There are two cases: if Z = supA, then we now the existence of an element y in
A such that sup A − ε < y so we are done (because y ∈ A ⊂ A ∪ B). If Z = sup B,
the same argument works (replace A by B).

�

Exercise 5. Page 43, #1.

Proof. Let’s show that supS =1, where S =
{

1− 1

n

, n∈N

}
:

1. For any x =1− 1

n

, one has x6 1;

2. For any ε > 0, one can find an x in S such that 1 − ε < x 6 1: indeed by the archimedean
property one knows the existence of an integer nε > 1/ε. Therefore 1/nε < ε and 1 − ε <

1− 1/nε.

�

Exercise 6. Page 43, #14.

Proof. As in the textbook, let S4 {
s∈R; 0 6 s and s2 < 3

}
.

S is not empty (it contains 1 for example) and is bounded above (for example by 2, because

s > 2 implies that s2 > 4 and thus such an s is not in S). Therefore, by completeness of R we

know the existence of x = sup (S). Let’s prove now that x2 =3.

1. x
2
> 3 is impossible:

It is enough to find an integer n > 1 such that (x − 1

n

)2 > 3. Because then any s ∈ S

would be such that s2 < (x − 1

n

)2, implying s < (x − 1

n

) (because s > 0 and (x − 1

n

) > 0);

but that last inequality would mean that (x− 1

n

) is an upper bound of S (absurd).
Let’s find such an integer n:

we notice that (x − 1

n

)2 = x2 − 2.x

n

+
1

n
2

> x2 − 2.x

n

. So we would be done if we could

find n such that x2 − 2.x

n

> 3, but this is equivalent to finding an n such that
x
2− 3

2.x

>
1

n

where x is given to you. But we know that this is possible, by the archimedean property
of R.

Remark: other possible proof:
Remark that x2 > 3 implies x > 3/x, therefore one has that y =

1

2
(x +

3

x

) < x. But now

y2 > 3. Indeed y2− 3 =
1

4
(x2 + 6 +

9

x
2
− 12)=

[
1

2
(x− 3

x

)
]2

> 0.

2. x
2
< 3 is impossible:

If one can finds an integer n such that (x +
1

n

)2 6 3, we are done (because we found an

element of S strictly larger than supS,which is absurd).

Notice that (x +
1

n

)2 = x2 +
2.x

n

+
1

n
2
6 x2 +

2.x

n

+
1

n

. So we will be done if we can find

an integer n such that x2 +
2.x

n

+
1

n

6 3, which is equivalent to
1

n

(2.x + 1) 6 3 − x2, or if

one prefers n >
2x +1

3−x
2
(notice that 3 − x2 � 0, so I can divide by it!). But such an integer

can always be found, given x, thanks to the archimedean property of R.

�

Exercise 7. Page 43, #18.

Proof. Since u > 0, we know that x < y implies x/u < y/u. Then we know the existence of a
rational number r∈Q such that x/u < r < y/u. But this implies that x < r.u < y.

�

2



MAT 319/320

Correction of HW3

Exercise 1. Page 50, #2.

Proof.

1. If S is bounded then there exists a lower bound m and an upper bound M . By defini-
tion, they are such that any x in S satisfies m 6 x 6 M . But this means x ∈ [m,

M ].Therefore S ⊂ [m, M ].

2. Conversely, S ⊂ [m, M ] exactly means that any x in S is bounded above by M , and
below by m.

�

Exercise 2. Page 50, #9.

Proof. By contradiction: assume that the intersection is non empty, and therefore contains
some real number x. Pick any integer K strictly larger than x (for example 1 + E(x), where
E(x) is the integral part of x): then clearly x � (K, ∞) and thus x � ⋂

n=1

∞ (n, ∞), a contradic-
tion.

�

Exercise 3. Page 50, #13.

Proof. Since 1/3 is strictly less than 1, the binary representation starts with 0.
We want to find a, b, c, d ∈ {0, 1} such that the binary representation of 1/3 starts with

(0.abcd� )2.
We notice that

1

2
>

1

3
, so the first digit a must be 0 (not one). Then

1

4
<

1

3
, so the next digit

is 1. Then
1

4
+

1

8
is too large so the following digit must be 0. Similarly the fourth digit is 1

because
0

2
+

1

22
+

0

23
+

1

24
< 1/3.

It seems that there is a pattern: so let’s prove that the binary expansion of 1/3 is
0.010101�

Call x 4 (0.0101010101� )2 Then notice that 22.x = (1.01010101� )2, so by subtraction one

has that (22− 1).x = 1 which means exactly that x= 1/3.
�

Exercise 4. Page 50, #17.

Proof. Write x= 1.25137137� then 100x = 125+ 0.137137�
But if you write y = 0.137137� , you see that 999y = 137, therefore x =

125 +
1 3 7

9 9 9

100
=

125012

99900
.

Similarly, if y = 35.14653653� you see that 100y = 3514+
653

999
therefore y =

3511139

99900
.

�

1



Exercise 5. Page 59, #3c.

Proof. We have already z1 =1, z2 = 2, z3 =
2+1

2− 1
= 3, z4 =

3 +2

3− 2
= 5, z5 =

5+3

5− 2
=

8

3
. �

Exercise 6. Page 59, #4.

Proof. Let ε > 0, by the archimedean property we know the existence of an integer K satisfying

K >
|b|
ε

. Therefore, for any n > K one has n >
|b|
ε

and thus
∣
∣
∣

b

n

∣
∣
∣ 6 ε. Therefore, the sequence is

converging to zero. �

Exercise 7. Page 59, #5c.

Proof. One has 0 6

∣
∣
∣
3n +1

2n +5
− 3

2

∣
∣
∣ =

∣
∣
∣
6n +2− 6n − 15

4n + 10

∣
∣
∣ 6

13

4n + 10
6

13

4
.
1

n

Since we know that 1/n converges to zero, we deduce that xn converges to 3/2. �

Exercise 8. Page 59, #6c.

Proof. One has 0 6

∣
∣
∣

n

√

n + 1

∣
∣
∣ 6

1

n

√ for n > 1, so it is enough to prove that 1/( n
√

) converges to

zero.
Given any ε > 0, by the archimedean property one can find an integer K > ε2, therefore for

any n >K, one has n > ε2 and so 06 1/( n
√

)6 ε, so (1/ n
√

) converges to zero. �

Exercise 9. Page 59, #8.

Proof. The convergence of (xn) to zero translates as follows:
for any ε > 0 there exists an integer K such that: for all n> K one has |xn|< ε.

The convergence of (|xn|) to zero translates as follows:
for any ε > 0 there exists an integer K such that: for all n >K one has ||xn||<ε.

Since |xn|> 0, one has that |xn|= ||xn|| so the two propositions are equivalent.

Now if xn =(− 1)n, one can see that |xn|= 1 so it converges, but (xn) doesn’t converge.
�

Exercise 10. Page 67, #5b.

Proof. A convergent sequence must be bounded. Since (( − 1)n.n2) is unbounded, it cannot
converge.

(Remark: to be convinced that it is unbounded, use the Archimedean property. Given any

M > 0, there exists an integer K > M
√

and therefore any n > K satisfies
∣
∣
∣(− 1)n.n2

∣
∣
∣ > M)

�

Exercise 11. Page 67, #6d.

Proof. One has xn =
n +1

n n

√ =
1

n

√ +
1

n n

√ . Now we have already proved above that (1/ n
√

) con-

verges to zero (Archimedean property!), and since 0 6

∣
∣
∣

1

n n

√

∣
∣
∣ 6

1

n

→ 0, we see that xn is the sum

of two sequences converging to zero, therefore it converges to zero.
�

2



Exercise 12. Page 67, #7.

Proof. Let M > 0 be an upper bound for the sequence (bn).
Given any ε > 0, since (an) converges to zero, we know the existence of an integer K such

that for all n >K one has
∣
∣an

∣
∣ 6

ε

M

.

Now for any n > K, one has |an.bn|6 |an|.M 6 ε. But this exactly says that (anbn) converges
to zero.

The theorem 3.2.3 cannot be applied because (bn) is only bounded, and not necessarily con-
vergent.

�

Exercise 13. Page 67, #17.

Proof. Let r be a real number satisfying 1 < r < L. Since
(

xn+1/xn

)
converges to L, we know

the existence of an integer K such that for any n > K one has
∣
∣
∣
xn+1

xn

− L
∣
∣
∣ < L − r. But this

implies that for any n > K one has
xn+1

xn

> r .

Let’s prove by induction that for any n> K one has xn > rn−K.xK

This is true for n =K because xK = r0.xK.
Assume it is true for n, then we have that xn+1 > r.xn > r.rn−K.xK = rn+1−K.xK, so we are

done.
Now it remains to prove that the sequence (rn) for r > 1 is unbounded.
Here is one possible way: write r = 1 + d, and prove by induction that for any n one has

(1+ d)n > 1 +n.d.
Another way is to take the log(rn) and apply the archimedean property.

�

3



MAT 319/320

Correction of HW4

Exercise 1. Page 67, #6a.

Proof.

By the sum rule, the limit of (2 + 1/n) is equal to 2. By the product rule, the limit of (2 + 1/
n)2 is 2.2=4.

�

Exercise 2. Page 67, #9.

Proof. One has yn = n +1
√

− n
√

=
1

n +1
√

+ n

√ (multiply the numerator and denominator by

the conjugate quantity).
But now one has 0 6 yn 6

1

n

√ . Therefore if one proves that (1/ n
√

) converges to zero, the

squeeze theorem implies that (yn) converges itself to zero.
Fix any ε > 0, then by the archimedean property there exists a natural number K such that

K > ε2, but this implies that for any n > K one has n > ε2, implying
1

n

√ < ε, thus we proved

that (1/ n
√

) converges to zero, and hence (yn) converges to zero.

Now n
√

yn =
n

√

n + 1
√

+ n

√ =
n

√

n

√ .
1

(1+ 1/n)
p

+1
=

1

1+ 1 +
1

n

q . By the square root theorem 1 +
1

n

√

converges to 1. By the quotient theorem (which applies because the limit of the denominator is
nonzero), one knows that n

√
.yn converges to 1/2.

�

Exercise 3. Page 67, #21.

Proof. Pick any ε > 0.
Since (xn) is convergent to a limit x, we know the existence of a natural number K such that

for any n > K one has |xn − x|< ε/2. We also know the existence of another natural number M ′

such that for any n> M ′ one has |xn − yn|< ε/2.
Now for any n > L=max {K, M ′} one has by the triangle inequality:

|yn− x|6 |yn− xn|+ |xn− x|< ε/2 + ε/2 = ε

Thus we proved that (yn) converges, to the same limit x.
�

Exercise 4. Page 74, #1.

Proof. Let’s prove that for any n > 1 one has 4 6 xn 6 8.(Make a drawing to guess these
bounds!)

This is true for n =1 (because x1 = 8). Assume it is true for k: then one has
xk+1 =

1

2
xk + 2 6

1

2
8 +2 = 66 8, and also

1

2
xk +2 >

4

2
+ 2 =4 so this is true for xk+1.

Now let us prove that the function f(x)=
1

2
x+ 2 is such that f(x)< x on the

1



interval (4, 8]: indeed f(x) < x is equivalent to
1

2
x + 2 < x, which is equivalent to 2 <

1

2
x or

simply x > 4.
Therefore since any xn belongs to that interval, one has that xn+1 = f(xn) < xn, and thus

our sequence is strictly decreasing. Since it is also bounded below, we know that it must con-
verge to a limit x.

Now the limit x must satisfy x=
1

2
x+ 2, which is equivalent to x = 4, so the limit is 4. �

Exercise 5. Page 74, #4.

Proof. Let’s prove that for any n > 1 one has 0 6 xn 6 2. (Again make a drawing to guess this).
This is true for n =1 because x1 =1. Assume it is true for k:

then one has 2 6 2 + xk 6 4 and thus 0 6 2
√

6 2 +xk

√
6 4
√

=2, so it is true for k +1.

Now let us prove that on the interval [0, 2] the function f(x) = 2+ x
√

satisfies f(x) > x.But

since f(x) > 0 on this interval, so is 2+ x
√

+ x, thus one has f(x) − x =
2

2+ x

√
+ x

> 0 (multiply

numerator and denominator by the conjugate quantity, which is nonzero).
Since any xn belongs to that interval one has xn+1 = f(xn) > xn, so the sequence is

increasing. It is also bounded by 2, so it is convergent to a real number x by our theorem on

convergence of monotone bounded sequences. Now the limit x must satisfy x = 2 +x
√

, which is
equivalent to

(
x > 0 and x2 = 2 + x

)
, which is equivalent to (x = 2) (notice that x2− x − 2 = (x −

2).(x+ 1) and we want the positive root).
Thus the sequence converges to 2.

�
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Correction of HW5

Exercise 1. Page 80, #1.

Proof.

Take for example the following sequence: x2k = k, x2k+1 = 1.
�

Exercise 2. Page 80, #3.

Proof. Recall that fn satisfies the relation fn+2 = fn+1 + fn and that all the fn are > 0.

therefore we deduce that
fn+2

fn+1

= 1 +
fn

fn+1

.We know that xn =
fn+1

fn

has a limit L. Notice that

L cannot be zero (because then
fn

fn+1

would then be unbounded, which is not the case because it

is equal to
fn+2

fn+1

− 1, which converges to L − 1). Thus we can apply the quotient theorem and

obtain the equality L = 1 +
1

L

. This implies that L2 = L + 1.By solving this equation and keeping

the positive root we get L=
1 + 5

√

2
.

�

Exercise 3. Page 80, #8a.

Proof. Let’s compare xn+1 = (3(n +1))1/2(n+1) and xn = (3n)1/2n. We have

x
n+1

2n.2(n+1) = 3(n + 1)2n = (3n)2n.(1 +
1

n

)2n, whereas x
n

2n.2(n+1) = (3n)2(n+1) = (3n)2n.(3n)2 ,

therefore after some integer K, the sequence is decreasing (because (1 +
1

n

)2n is eventually
strictly smaller than (3n)2). Since it is bounded below by 0, it has a limit L.

Now the subsequence x2n must converge to the same limit L, but we have

x2n = (3.2n)1/4n =21/4n.x
n

1/2 so this converges to 1. L
√

= L
√

so L = L
√

and thus L= 1.

�

Exercise 4. Page 80, #14.

Proof. Pick ε1 = 1, then we know the existence of xn1
such that s− ε1 < xn1

6 s (def. of a sup),
and we even know that xn1

< s.
Pick ε2 =

1

k2

, such that k2 is at least 2 (thus ε2 <
1

2
), and such that xn1

< s − ε2, then one

knows the exisence of xn2
such that s− ε2 < xn2

< s.
Pick ε3 =

1

k3

, such that k3 is at least 3 (thus ε3 <
1

3
), and such that xn2

< s − ε3, then one

knows the existence of xn3
such that s− ε3 < xn3

<s.
By continuing like this one constructs an increasing subsequence xnk

that has the property

that s− 1

k

< xnk
< s, therefore it converges to s (Squeeze theorem!). �

Exercise 5. Page 80, #15.

1



Proof. Since the In are nested one knows that xn∈ I0 so this sequence is bounded and therefore
by Bolzano-Weierstrass. it has a converging subsequence (xnk

), with limit L.
Let’s prove by contradiction that L∈∩

n=1
∞ In. Indeed, if it’s not the case, then say L � IN for

some N . Pick ε > 0 small enough such that (L − ε, L + ε) ∩ IN = ∅. By convergence of (xnk
),

there is some element of this subsequence, say xnK
that lands in (L− ε, L + ε) and such that nK

is larger than N , thus InK
intersects (L − ε, L + ε), but this is a contradiction because InK

⊂ IN

(and IN doesn’t intersect that interval).
�

Exercise 6. Page 86, #1.

Proof. (− 1)n is bounded and not convergent so it’s not a Cauchy sequence.
�

Exercise 7. Page 86, #3c.

Proof. (ln n) is not bounded so it’s certainly not a Cauchy sequence. This can be proved using
the definition:pick ε = 1, can we find K such that for any n, m >K one has

∣
∣lnn− lnm

∣
∣ =

∣
∣ln

n

m

∣
∣

less than 1? The answer is no: take n =5m >m >K, then ln
6m

m

= ln 6> 1. �

Exercise 8. Page 86, #9.

Proof. Notice that
∣
∣xn+p − xn

∣
∣ 6

∣
∣xn+p − xn+p−1

∣
∣ +� +

∣
∣xn+1− xn

∣
∣ < rn+p−1 +� + rn.

But this last sum is also rn.(rp−1 +� + 1)= rn.
1− r

p

1− r

<
1

1− r

.rn.

Given any ε > 0, then one can find a natural number K such that for any n > K one has
1

1− r

.rn 6
1

1− r

.rK < ε, and thus the sequence is a Cauchy sequence.
�

Exercise 9. Page 86, #13.

Proof. First we notice that xn is never zero so the sequence is well-defined.

Then one has
∣
∣
∣xn+2− xn+1

∣
∣
∣ =

∣
∣
∣2 +

1

xn+1

− 2− 1

xn

∣
∣
∣ =

∣
∣
∣

xn − xn+1

xn.xn+1

∣
∣
∣ 6

1

4
.
∣
∣
∣xn+1− xn

∣
∣
∣ because every

xn is > 2.So the sequence is contractive, and therefore converges to a limit x.This limit must
satisfy x = 2+

1

x

and be positive, thus one must have x2 = 2x + 1, and then one gets that

x =1 +
5

√

2
.

�

2
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Correction of HW6

Exercise 1. Section 3.6, #1.

Proof. Pick α1 = 1. Since the sequence is unbounded, one can find xn1
> α1.

Pick α2 =max (2, xn1
+ 1). For the same reason, one can find xn2

>α2.
Continue like this: by construction, the subsequence is increasing and satisfies xnk

> k, there-
fore it is properly divergent.

�

Exercise 2. Section 3.6, #8d.

Proof. Read Example 3.4.6(c).In it, they construct two sequences (nk)k>1 and (mk)k>1 of nat-
ural numbers, such that sin(nk) ∈ [1/2, 1] and sin(mk) ∈ [ − 1, − 1/2]. By taking subsequences
and using Bolzano-Weierstrass, one can even assume that sin(nk) converges to c1 ∈ [1/2, 1] and

that sin(mk) → c2 ∈ [ − 1, − 1/2]. Now if you consider the subsequences (n
k

′ ) = (n
k

2) and (m
k

′ ) =

(m
k

2), they are such that sin( n
k

′
√

) and sin( m
k

′
√

) converge towards two distinct numbers, there-
fore the sequence sin( n

√
) cannot converge.

�

Exercise 3. Section 3.6, #10.

Proof. Since (an/n)→ L� 0 one knows that lim (an) = +∞ if and only if lim (n) = +∞, which
is the case, therefore lim (an)= +∞.

�

Exercise 4. Section 3.7, #3a.

Proof. For any natural number n > 0 one has:
1

(n +1).(n +2)
=

1

n +1
− 1

n + 2
. Therefore by adding these equalities for n = 0 to n = N , one gets:

∑
n=0

n=N 1

(n +1).(n + 2)
=

∑
n=0

n=N

(
1

n +1
− 1

n + 2

)
=

1

1
− 1

N +2
→ 1 when N →+∞, so

∑
n=0

+∞ 1

(n +1).(n +2)
= 1. �

Exercise 5. Section 3.7, #6b.

Proof. In class, using the Cauchy convergence criterion, I proved that if
∑

|xn| converges then
so does

∑
xn.

Here, since 0 6
|cos n|

n
2

6
1

n
2
, and we know that

∑ 1

n
2
converges, we deduce by the comparison

theorem that
∑ |cos n|

n
2

converges, and therefore
∑ cos n

n
2

converges, by the above argument.
�

1



Exercise 6. Section 3.7, #8.

Proof. Since
∑

an is convergent, we know that necessarily (an) → 0, therefore for n > K for
some large natural number K, we have that 0 < an < 1. Thus for n > K one has 0 < a

n

2 < an, and
then by the comparison theorem one deduces that

∑
a

n

2 converges.
�

Exercise 7. Section 3.7, #11.

Proof. Notice that
bn

1/n

= (a1 + � + an) converges to
∑

an > 0. Therefore by our comparison

theorem,
∑

bn converges if and only if
∑ 1

n

converges. Since it isn’t the case, we deduce that∑
bn diverges. �

2
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Solutions for HW7

Exercise 1. Section 4.1, #2.

Proof. Notice that
∣
∣
∣ x
√ − 2

∣
∣
∣ =

|x − 4|

x

√
+ 2

6
1

2

∣
∣
∣x − 4

∣
∣
∣, therefore if you take

∣
∣
∣x − 4

∣
∣
∣ < 1 you will get

that
∣
∣
∣ x
√ − 2

∣
∣
∣ < 1/2 and for the second inequality it is sufficient to take

∣
∣
∣x− 4

∣
∣
∣ < 2.10−2.

�

Exercise 2. Section 4.1, #9d.

Proof. One has
∣
∣
∣

x
2−x + 1

x +1
− 1

2

∣
∣
∣ =

∣
∣
∣
2x

2−x + 1−x − 1

2x +2

∣
∣
∣ =

∣
∣
∣
2x.(x − 1)

2x +2

∣
∣
∣ =

∣
∣
∣

2x

2x +2

∣
∣
∣.
∣
∣
∣x− 1

∣
∣
∣.

Now, on the neighborhood [0, + ∞) of the point 1, we have that
∣
∣
∣

2x

2x + 2

∣
∣
∣ 6 1. Therefore for a

given ε > 0, for any x∈ [0, +∞) satisfying
∣
∣
∣x− 1

∣
∣
∣ <ε one has that

∣
∣
∣

x
2− x +1

x + 1
− 1

2

∣
∣
∣ <ε.

�

Exercise 3. Section 4.1, #10b.

Proof. One has
∣
∣
∣

x + 5

2x +3
− 4

∣
∣
∣ =

∣
∣
∣

x +5− 8x − 12

2x + 3

∣
∣
∣ =

7

|2x + 3|
.
∣
∣
∣x +1

∣
∣
∣

Now it will be sufficient to prove that
7

|2x + 3|
is bounded in a neighborhood of − 1. (Notice

that it is NOT bounded everywhere! More precisely that function is large when you are too
close to − 3/2). Let’s consider the following neighborhood of − 1 given by V =(− 5/4, 0).

Since (x >− 5/4)⇒ 2x+ 3 >
− 5

2
+ 3 =

1

2
we get the following inequality:

on V, 0 <
7

|2x +3|
< 2.7 = 14. Therefore, for a given ε > 0, take δ =

ε

14
. Then for any x ∈ V

satisfying
∣
∣
∣x +1

∣
∣
∣ <

ε

14
, one has

∣
∣
∣

x + 5

2x +3
− 4

∣
∣
∣ < ε. Thus limx→−1 f(x) =4. �

Exercise 4. Section 4.1, #11c.

Proof. The functions x� x + sgn(x) has a left-hand limit at zero equal to − 1 and a right-hand
limit equal to +1, therefore it has no limit at zero. �

Exercise 5. Section 4.1, #13.

Proof. When x→ c, to say that
∣
∣f(x)|2 → 0 implies that

∣
∣f(x)

∣
∣ → 0 (square root rule) which is

equivalent to the following phrase: limx→c f(x)= 0.
Now take c = 0, and the function f(x) = signe(x), and declare by convention that f(0) = 1.

The square of this function is a constant function equal to 1, but the function itself has no limit
at 0.

�

1



Exercise 6. Section 4.2, #1d.

Proof. The sum rule implies that the numerator has a limit equal to 1, and by the sum and
product rules the denominator has a limit equal to 2. Then the Quotient rule implies that the
limit is 1/2.(Notice that the denominator is never zero!)

�

Exercise 7. Section 4.2, #4.

Proof. We proved in class the non-existence of limx→0 cos(1/x) (take the two sequences con-

verging to zero given by xn =
1

2nπ

, yn =
1

(2n +1)π
the function takes constant values equal to 1 on

the first one, and constant values equal to -1 on the other).
Now the function x.cos(1/x) has a limit equal to zero at zero because of the squeeze theorem

applied to the following inequality:
0 6 |x.cos(1/x)|6 |x|→ 0, when x→ 0. �

Exercise 8. Section 4.2, #5.

Proof. On a neighborhood V of c one has an inequality of the form 0 6 |f(x).g(x)| 6 M.|g(x)|,
where M is an upper bound for f on V . Now apply the squeze theorem to that inequality to get
the result. �

2
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Solutions for HW8

Exercise 1. Section 4.3, #5a.

Proof. We have that limx→1+
1

x − 1
=+∞. Indeed, for any given α > 0 if we take x∈ (1, 1+

1

α

),

then we have that
1

x − 1
> α. Now since limx→1+ x = 1, we know that by the comparison the-

orem, limx→1+
x

x − 1
=+∞ if and only if limx→1+

1

x − 1
= +∞, which is the case. In conclusion,

limx→1+
x

x − 1
= +∞.

�

Exercise 2. Section 4.3, #5c.

Proof. limx→0+ x+ 2 =2 and limx→0+
1

x

√ =+∞: indeed for any given α > 0 if we take

x∈ (0,
1

α
2
), then we have that

1

x

√ >α.Thus again by the comparison theorem we know that

limx→0+
x + 2

x

√ = +∞.
�

Exercise 3. Section 4.3, #8.

Proof. limx→+∞ f(x)= L means the following:
for any given ε > 0 there exists an α > 0 such that x > α⇒ f(x)∈ (L− ε, L+ ε).
If one writes δ = 1/α the condition x > α is equivalent to y = 1/x < δ, so the condition is now

equivalent to:
for any given ε > 0 there exists a δ > 0 such that 0<y < δ⇒ f(1/y) ∈ (L − ε, L + ε). But this

exactly means that limx→0+ f(1/y)= L. �

Exercise 4. Section 5.1, #7.

Proof. See the solutions for the Practice midterm II, where this is proved... �

Exercise 5. Section 5.1, #12.

Proof. Since the rational numbers are dense in R, we know that any real number x is the limit
of a sequence of rational numbers (rn). By continuity of f we know that lim f(rn) = f(x), but
this is zero since f is zero on any rational number.

�

Exercise 6. Section 5.2, #1a.

Proof. The rational function
x
2 +2x + 1

x
2 +1

is continuous at every point where the denominator is

not zero. Since that denominator is everywhere > 1 we deduce that the function is continuous
on R.

1



�

Exercise 7. Section 5.2, #9.

Proof. Any real number can be written in base 2 (see binary representations in chapter 2.5).
The sequence of truncated binary representations converge to the number you started with,
therefore you get x as a limit of rational numbers of the form

m

2n
. By continuity, as in exercise 5,

you deduce that h(x)= 0. �

2
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Solutions for HW9

Exercise 1. Section 5.3, #3.

Proof. Start with any point, x0 = 1/2 for example. Then we know that there exists x1 such

that

∣
∣
∣
∣f(x1)

∣
∣
∣
∣ 6

1

2

∣
∣
∣
∣f(x0)

∣
∣
∣
∣. If

∣
∣
∣
∣f(x1)

∣
∣
∣
∣ = 0, then we are done; if not then necessarily x1 � x0, and

there is then another point x2, such that

∣
∣
∣
∣f(x2)

∣
∣
∣
∣ 6

1

2

∣
∣
∣
∣f(x1)

∣
∣
∣
∣. Continue this process and build a

sequence (xn) satisfying

∣
∣
∣
∣f(xn+1)

∣
∣
∣
∣ 6

1

2

∣
∣
∣
∣f(xn)

∣
∣
∣
∣. Since all these points are in a bounded interval,

the sequence is bounded and by Bolzano-Weierstrass we can extract a sequence (xkn
) converging

to some c∈ [a, b]. If we write kn+1 = kn + α(n), we get

∣
∣
∣
∣f(xkn+1

)

∣
∣
∣
∣ 6

(
1

2

)
α(n)

∣
∣
∣
∣f(xkn

)

∣
∣
∣
∣ 6

1

2

∣
∣
∣
∣f(xkn

)

∣
∣
∣
∣.

(This just means that the extracted sequence satisfies the same inequality).

Since (xkn
) → c, and f is continuous, then we deduce that f(xkn

) → f(c), but then the pre-

vious inequality says that:
∣
∣
∣f(c)

∣
∣
∣ 6

1

2

∣
∣
∣f(c)

∣
∣
∣ so f(c)= 0 and we are done.

�

Exercise 2. Section 5.3, #6.

Proof. The hint says it all: g(0) = f(0) − f(1/2) and g(1/2) = f(1/2) − f(1) = − g(0). Now if
g(0) = 0 we are done. If not, then apply the intermediate value theorem to g: you will get a zero
for g between 0 and 1/2. But g(x)= 0⇒ f(x)= f(x+

1

2
).

�

Exercise 3. Section 5.3, #11.

Proof. This has been proved in class.Let me quickly give the argument:

if f(w) < 0, then necessarily w < b (because f(b) > 0). By continuity of f there will be a
small neighborhood of w on which the function is strictly negative: this contradicts the defini-
tion of w.

If f(w) > 0, then by continuity of f there is a small δ − neighborhood where the function is
strictly positive: this is a contradiction, because between w − δ and w there should be a point in
W . �

Exercise 4. Section 5.3, #13.

Proof. Take ε = 1: then there exists an α > 0 such that for any x > α we have |f(x)| < 1, and
there is a β < 0 such that for any x < β we have |f(x)|< 1. But now f is continuous on [β, α] so
it is bounded, say by M > 0. Putting everything together, we get that f is bounded on the
entire line by max (1, M).

1



Since it is bounded, we can consider L = supx∈R (f(x)) and l = infx∈R (f(x)). If L = l then

the function is constant. If L � l, then one of them is nonzero. Assume it is L: pick ε =
1

2

∣
∣
∣L

∣
∣
∣.

Then there is an α > 0 such that for any x > α we have
∣
∣
∣f(x)

∣
∣
∣ < ε, and there is a β < 0 such that

for any x < β we have
∣
∣
∣f(x)

∣
∣
∣ < ε. Now since again f is continuous on [β, α], it reaches a max-

imum at a point X in that closed interval. I claim that f(X) = L. Indeed if we have f(X) < L

then this would contradict the definition of L (because we know we can find points y ∈R, such
that f(y) is arbitrarily close to L, and such points are necessarily in [β, α] because outside of

this closed interval everybody has an image less than
1

2
.L).

If inf f < 0, then similarly we obtain a global minimum for the function.
Now it can happen that one of the two values inf f , sup f is zero, in which case it is possible

that the extremum is not reached: take for example f(x) =
1

x
2 +1

(max is reached at zero, but
infimum is zero, not reached).

�

Exercise 5. Section 5.4, #2.

Proof. Just notice that
∣
∣
∣

1

x
2
− 1

y
2

∣
∣
∣ =

∣
∣
∣x− y

∣
∣
∣.
∣
∣
∣

x + y

x
2
.y

2

∣
∣
∣.

But observe now that for x > 1, y > 1 we have
∣
∣
∣

x + y

x
2
.y

2

∣
∣
∣ 6

|x|+ |y |
x
2
.y

2
6

x
2 + y

2

x
2
y
2

6
1

y
2
+

1

x
2
6 2.

So now given ε > 0, just pick δ =
ε

2
: then for any x, y such that

∣
∣x− y

∣
∣ < δ we get:∣

∣
∣

1

x
2
− 1

y
2

∣
∣
∣ < 2

∣
∣
∣x− y

∣
∣
∣ < 2

ε

2
= ε.

The key thing is that the first inequality is true for anybody in [1, + ∞) (it is “uniformly
true”!).

It is not uniformly continuous on (0, ∞): pick the sequence (xn) =
1

2n
, then notice that

(xn+1− xn)→ 0 but that
∣
∣
∣f(xn)− f(xn+1)

∣
∣
∣ = 22(n+1)− 22n = 22n.(3) > 3.

�

Exercise 6. Section 5.4, #4.

Proof. Same stuff:
∣
∣
∣

1

1 + x
2
− 1

1+ y
2

∣
∣
∣ =

∣
∣
∣x− y

∣
∣
∣.
∣
∣
∣

x + y

(1+ x
2).(1+ y

2)

∣
∣
∣ 6

∣
∣
∣x− y

∣
∣
∣.

|x|
1 + x

2
.

|y|
1 + y

2
6

∣
∣
∣x− y

∣
∣
∣.

The last inequality comes from the fact that for any x ∈ R we have
∣
∣x

∣
∣ 6 1 +

∣
∣x|2. Indeed

either
∣
∣x

∣
∣ ≤ 1 and then

∣
∣x

∣
∣ 6 1 +

∣
∣x|2, or

∣
∣x

∣
∣ > 1 but then

∣
∣x

∣
∣ < x2 6 1+ x2.

Now for a given ε > 0, just pick δ = ε: then for any pair x, y satisfying |x− y |< δ we get that∣
∣
∣

1

1 + x
2
− 1

1+ y
2

∣
∣
∣ 6

∣
∣
∣x− y

∣
∣
∣ <δ = ε.

�

Exercise 7. Section 5.4, #9.

Proof. Just notice
∣
∣
∣

1

f(x)
− 1

f(y)

∣
∣
∣ =

∣
∣
∣f(x)− f(y)

∣
∣
∣.
∣
∣
∣

1

f(x).f(y)

∣
∣
∣ 6

1

k
2

∣
∣
∣f(x)− f(y)

∣
∣
∣.

Now : f is uniformly continuous so for any ε > 0 there is a δ > 0 such that for any x, y satis-
fying

∣
∣x− y

∣
∣ <δ we have

∣
∣f(x)− f(y)

∣
∣ < k2.ε.

This will imply that for that given ε > 0, if we have |x− y |<δ we deduce∣
∣
∣

1

f(x)
− 1

f(y)

∣
∣
∣ <

1

k
2
k2.ε = ε. �

Exercise 8. Section 5.6, #10.

Proof. Let c be the interior point where f attains a max. We have a < c < b. If either f(a) =
f(c) or f(b)= f(c) then we are done (f will not be injective). If not, then pick any k between

2



max (f(a), f(b)) and f(c). Then by the intermediate value theorem, you know that f will
reach that value k once in [a, c], and once in [c, b] (observe that k is not reached at c, so we
really get two different points having the same value), and this proves that f is not injective. �
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Solutions for HW10

Exercise 1. Section 6.1, #1a.

Proof. As usual we have to go back to the definition, so we write the quotient
(x + h)3−x

3

h

=
x
3 +3x

2
h +3xh

2 + h
3−x

3

h

=3x2 + h.(3x+ h2)→ 3x2 when h→ 0
�

Exercise 2. Section 6.1, #4.

Proof. The quotient
f(h)− f(0)

h

=
f(h)

h

is either equal to 0 or to
h
2

h

= h, thus in any case we have

0 6

∣
∣
∣

f(h)− f(0)

h

∣
∣
∣ 6

∣
∣
∣h

∣
∣
∣ → 0 when h→ 0, so by the squeeze theorem we deduce that f ′(0) exists

and is equal to zero.
�

Exercise 3. Section 6.1, #9.

Proof. Assume that f is differentiable everywhere and that we have for any x∈R

f( − x) = f(x). By taking the derivative of both sides we get (using the Chain rule for the
left hand side):

f ′( − x).( − 1) = f ′(x) thus f ′( − x) = − f(x) but this means exactly that f ′ is an odd func-
tion.

The same proof works if we differentiate an odd function. �

Exercise 4. Section 6.1, #10.

Proof. We have g(x) =x2sin(1/x2) for x� 0, and g(0) =0.

For x � 0, say x > 0, we have that 1/x2 is differentiable, and since sin is differentiable every-

where, the Chain rule tells us that sin(1/x2) is differentiable on (0, + ∞), and so is g (by the
product rule). For the same reason, the function g is differentiable on (−∞, 0).

Now let’s study the differentiability at 0:

As usual we write for h � 0 the quotient
f(0+ h)− f(0)

h

=
h
2sin(1/h

2)

h

= h.sin(1/h2) → 0 when

h → 0 because h goes to zero and sin(1/h2) is bounded. So we proved that g is differentiable
everywhere and that g ′(0)= 0.

Let’s prove that g ′ is not bounded on [ − 1, 1]. Indeed one has for any x � 0, by the Chain
rule

g ′(x) = 2x.sin(1/x2) + x2.cos(1/x2).(
− 2

x
3
) = 2x.sin(1/x2) + cos(1/x2).(

− 2

x

). In order to show

that this function is unbounded it is enough to find a sequence of points (xn) in [ − 1, 1] such

that the sequence (g ′(xn)) is unbounded: just take xn =
1

2nπ

√ , then one has

g ′(xn) = (2xn).0+ cos(2nπ).(− 2 2nπ
√

) =− 2 2nπ
√

which is unbounded.
�

1



Exercise 5. Section 6.1, #11a.

Proof. Just apply the Chain rule: f ′(x) =L′(2x + 3).2=
2

2x +3
.

�

2
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Solutions for HW11

Exercise 1. Section 6.1, #16.

Proof. Since the function tan is continuous and strictly increasing from (− π

2
,

π

2
) to R, we know

that the inverse function arctan exists, and is continuous and strictly increasing from R to

(− π

2
,

π

2
). Moreover (tan)′(x)=

(cos x).(cos x)− (sin x)(− sin x)

(cos x)2
=

1

(cos x)2
which is � 0 on (− π

2
,

π

2
).

Therefore we know that arctan is differentiable on R and that

(arctanx)′=
1

(tan)′(arctan x)
=

1

1 + (tan(arctan x))2
=

1

1+ x
2
, because

1

(cos x)2
=

sin2
x + cos2x

cos2x
= tan2x +1

�

Exercise 2. Section 6.2, #1b.

Proof. We have g(x) = 3x − 4x2 and g ′(x) = 3 − 8x which is < 0 on ( −∞, 3/8), equal to 0 at
x = 3/8 and > 0 on (3/8, + ∞), therefore g is strictly decreasing before 3/8 and then strictly
increasing after. Thus it has a single global minimum at 3/8 and this is also the only local
extremum.

�

Exercise 3. Section 6.2, #2d.

Proof. We have f(x) =2x +
1

x
2
for x� 0. So f is differentiable everywhere except at 0, and

f ′(x) = 2 − 2

x
3
, which is strictly positive when x < 0, and then < 0 on (0, 1), equal to zero at

1 and strictly positive after, so we deduce that f is strictly increasing on (−∞, 0) and

(1, +∞) and strictly decreasing on (0, 1).

So this function has a single local extremum which is equal to 3 and obtained at x =1. �

Exercise 4. Section 6.2, #4.

Proof. f is a polynomial function so it is differentiable everywhere and its derivative is given by

f ′(x) = 2
∑

(x − ai) = 2nx − (2
∑

ai). So this function has a single local (and actually

global) minimum obtained at x=
P

ai

n

(that’s the mean of the ai).

�

Exercise 5. Section 6.2, #12.

Proof. If there is such a function then it must necessarily be continuous, constant on R
− and

then linear with a slope = 1. But such a function is not differentiable at 0 (there is a limit slope
equal to zero on the left, and a limit slope equal to 1 on the right).

�

1



Exercise 6. Section 6.2, #16.

Proof. a) By the mean value thm, we know that f(x + h) − f(x) = h.f ′(c) for some c

between x and x + h. Therefore (f(x + h)− f(x))/h = f ′(c) and when x→+∞, so does c

(which depends on x and h), so the quantity has a limit equal to b.

b) If we fix h and pass to the limit when x → + ∞ the quantity (f(x + h) − f(x))/h has
limit equal to (0− 0)/h = 0. So b must be zero.

c) Given ε > 0, first find α > 0 such that for any c > α one has f ′(c) ∈ (b − ε/2, b + ε/2).
Then just write

f(x)

x

− b =
f(x)− f(α)

x − α

.
x − α

x

+
f(α)

x

− b =
1

x

.(f ′(c).(x−α)− b.(x−α)− b.α + f(α)).

Therefore
∣
∣
∣

f(x)

x

− b
∣
∣
∣ 6

∣
∣
∣f ′(c) − b

∣
∣
∣.
∣
∣
∣
x −α

x

∣
∣
∣ +

|f(α)− bα|
|x|

6
ε

2
+

|f(α)− bα|
|x|

.Now for α fixed,

observe that there is a β > 0 (that can be taken > α) such that x > β implies
|f(α)− bα|

|x|
6

ε

2
.

Thus for x > β one has that
∣
∣
∣

f(x)

x

− b
∣
∣
∣ 6 ε.

�
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Solutions for HW12

Exercise 1. Section 6.3, #7c.

Proof. Just write x3ln x =
ln x

1/x
3

=
f(x)

g(x)
and apply L’Hospital’s rule on (0, + ∞) (notice that

g ′(x) =− 3x−4 is well-defined and non-zero on that interval and that both functions are differen-
tiable).

Thus one gets
f

′(x)

g
′(x)

=
1/x

− 3x
−4

= (− 1/3).x3→ 0 when x→ 0+ , so the limit is zero.
�

Exercise 2. Section 6.3, #9c.

Proof. As usual write (1 + 3/x)x = e
x.ln(1+

3

x

)
= exp(

ln(1 + 3/x)

1/x

). On the interval (0, + ∞) both

functions f(x) = ln(1 + 3/x), g(x) = 1/x are differentiable and
d

dx

(1/x) is nonzero on that
interval therefore we can apply L’Hospital’s rule:

f
′(x)

g
′(x)

= (
− 3

x
2
.

1

1+ 3/x

).(
1

− 1/x
2
)=

3

1 +3/x

→ 3 when x→+∞. So the limit of our function is e3.
�

Exercise 3. Section 6.4, #4.

Proof. Write Taylor’s formula at the order one and two for f(x)= 1+ x
√

between 0 and x:

• f(x) = 1 + x.f ′(0) +
x
2

2
.f ′′(c) = 1 +

1

2
x +

x
2

2
.(

1

2
).(

− 1

2
).(1 + c)−3/2, and since the remainder

is 6 0, one gets 1 +x
√

6 1+
1

2
x.

• f(x) = 1 + x.f ′(0) +
x
2

2
.f ′′(x) +

x
3

6
.f ′′′(c) = 1 +

1

2
x +

x
2

2
.(

1

2
).(

− 1

2
).(1 + x)−3/2 +

x
3

6
(
− 1

4
).(

− 3

2
)(1 + c)−5/2, and since the remainder is now larger than zero, one gets the

left inequality.

�

Exercise 4. Section 6.4, #16.

Proof. I found this problem much harder than I wanted!
I’ll give two proofs, the first one assuming some extra hypothesis:
In the first one I assume that f

′′
exist everywhere (to simplify):

By Taylor’s thm applied to f at the order two between a and a + h, one has:

f(a + h)= f(a) +h.f ′(a)+
h
2

2
f ′′(c) for some c between a and a + h,

Now Taylor’s thm applied to f at the order two between a and a− h, one has:

f(a−h) = f(a)− h.f ′(a)+
h
2

2
f ′′(d) for some d between a and a−h.

But this implies
f(a + h)− 2f(a)+ f(a −h)

h
2

=
1

2
.(f ′′(c) + f ′′(d)) and when h→ 0 this quantity converges to f ′′(a).

1



Second proof (without assuming any extra hypothesis):

Write g(h) = f(a + h) − f(a − h). Then apply the Second Fancy Version of the mean value
theorem to the quotient

g(h)− g(0)

h
2

=
g
′(c)

2c

=
f

′(a + c)− f
′(a − c)

2c

=
f

′(a + c)− f
′(a)

2c

+
f

′(a − c)− f
′(a)

− 2c

and this goes to f ′′(a)

when c→ 0.

Now an example of a function for which the limit makes sense but that doesn’t have a
second derivative at zero:

Take f(x) = − x
2

2
if x 6 0 and f(x) =

x
2

2
if x > 0, so that the derivative is f ′(x) =

∣
∣
∣x

∣
∣
∣ which

doesn’t have a derivative at zero. But now one has:
f(0+ h)− 2f(0) + f(0− h)

h
2

=
h
2/2 + (−h

2/2)

h
2

= 0. �

2


	stonybrook.edu
	MAT 319 Bonnot
	MAT 319 Homework Assignments
	XSane scanned image
	XSane scanned image
	/Users/sylvainbonnot/.TeXmacs/system/tmp/tmp_2135130193.ps
	http://www.math.stonybrook.edu/~bonnot/PracticeFinal319.pdf
	http://www.math.stonybrook.edu/~bonnot/MidtermIISolutions.pdf
	http://www.math.stonybrook.edu/~bonnot/Notes_UnifCont.pdf
	http://www.math.stonybrook.edu/~bonnot/PracticeMidtermIISolutions.pdf
	http://www.math.stonybrook.edu/~bonnot/PracticeMidtermII.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW1Correction.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW2Correction.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW3Correction.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW4Correction.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW5Correction.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW6Correction.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW7Correction.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW8Solutions.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW9Solutions.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW10Solutions.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW11Solutions.pdf
	http://www.math.stonybrook.edu/~bonnot/319HW12Solutions.pdf


