
Math 315—Advanced Linear Algebra (Spring 2019)

Instructor: Ben McMillan 
Email: bmcmillan@math.stonybrook.edu 
Location: T/Th 2:30pm--3:50pm in Library N3063

Announcements

Course Information:

The course syllabus is here. Some critical points:

The midterms will be in class on February 14 and April 2
My office hours this term are Tuesdays 1–2pm and Fridays 11am–12pm in the Simons Center 508. I will also be available in the MLC (S-235) on Thursdays 10:30am–
11:30pm.

Schedule and Homework:

The following is a tentative schedule for the course. As homework is assigned it will be posted here. You are encouraged to work with others, but please make sure to write up
solutions in your own words (this will help you on the exams and quizzes!).

Unless stated otherwise, the homework is from the corresponding section of the book.

All of the problems assigned in week n are due to your TA (at the start of recitation) in week n+1.

It will be expected that you have done the suggested reading.

Problems in square brackets are ones that I think you will benefit from, but won't be graded. You should still do them!

Week Date Topic(s) Covered Reading Homework

1
1/29 Abstract Vector Spaces 1A, 1B 1A: 1, 15

1B: 1, 6

1/31 Subspaces, Direct Sums 1C 3, 7, 8, 10, 24

2
2/5 Spans, Polynomials 2A 1, 2, 6, 8, 11

2/7 Linear Independence, Definition of Dimension 2B 2, 3, 5, 7, 8

3
2/12 Bases 2C 1, 3, 8, 10, 11, 16, [17]

2/14 Midterm 1 . Review

4
2/19 Linear Maps 3A 1, 3, 4, 8, 9 [do R--->R too!], 11

2/21 Injectivity/Surjectivity & Kernel/Image 3B 2, 3, 7, 9, [11], 20, [21], [26], 28

5
2/26 Linear Isomorphisms 3D 3B: 17, [18] 

3D: 2, 4, 5, 8, 9

2/28 Coordinates 3C 2, 3, 8, 14

6

3/5 Equivalence Relations, quotient spaces 3E 12, 13, 16, 20

3/7 Direct Products 3E
1, 6, [recall that a map of sets f:A--->B defines an equivalence
relation ~ on A. Show that f is injective if and only if the quotient
map A--->A/~ is an isomorphism.]

7
3/12 Dual Spaces 3.F 7, 9, 13

3/14 Tensor Products . here

8
3/19 Spring Break . .

3/21 Spring Break . .

9
3/26 Practice with Tensor Products . .

3/28 Change of Bases . .

10
4/2 Midterm II . Review

4/4 Trace . here

11
4/9 Eigenvalues/Eigenvectors 5A 11, 12, 15, 21, 25

4/11 Eigen-decomposition 5B 1, 2, 5, 10, 11

12
4/16 Generalized Eigenvectors 5C 

8A
6, 12 
1, 4, 5, [12], 15, [16, 17]

4/18 Jordan Canonical Form 8B 
8D

1, 9 
4, 5

13
4/23 Inner Products 6A 8, 10, 14, 18, 23

4/25 Orthonormal Bases 6B 1, 4, 5, 11, 12

4/30 Riesz Representation Theorem 6B 7, 8, [9], [15] 

http://math.stonybrook.edu/~bmcmillan?


14 6C [4], 5, 10

5/2 Complexification 9A [Read at least 276-278] 2, 3, 4, [17]

15
5/7 Self Adjoint operators 7A [1, 3, 6, 8 [can you find a natural complement?], 20]

5/9 Representations, symmetrizers and the determinant . .

16
5/7 Study . Review

5/9 Final Exam 5:30-8:00pm .



Math 315: Advanced Linear Algebra

Spring 2019 Stony Brook

Instructor: Ben McMillan Time: TTh 2:30pm–3:50pm
Email: bmcmillan@math.stonybrook.edu Place: Library N3063

Course Page: The primary webpage for this course is

math.stonybrook.edu/˜bmcmillan/math315

where you will find up to date information, homework, and announcements. Please bookmark it and check
back regularly.

You will also find announcements and grades on the course blackboard page.

Office Hours: Office hours are an invaluable resource, one that you really should use!
My office hours this term are Tuesdays 1–2pm and Fridays 11–12pm in Simons Center 508. I will also

be available in the MLC (S-235) on Thursdays 10:30–11:30pm.
You can find your TA’s office hours at math.stonybrook.edu/office-hours

Textbook: The lecture will roughly follow Axler’s Linear Algebra Done Right, and I will generally assign
homework problems from the book. Later in the term we may use other resources.

Exams: The first midterm will be held in class on February 14. The second will be in class on April 2.
Please let me know soon if you will need DSS accomodations.

The final is scheduled for Thursday, May 16, 5:30pm–8:00pm. Please ensure NOW that you won’t have
any scheduling conflicts with the final!

Homework: Each week I will post homework questions relevant to the week’s lectures on the course
webpage. You will submit it to your TA in recitation the following week.

Grading Policy: Homework: 35%, Midterm 1 : 10%, Midterm 2: 20%, Final: 35%.

Americans with Disabilities Act: If you have a physical, psychological, medical or learning disabil-
ity that may impact your course work, please contact Disability Support Services, ECC (Educational
Communications Center) Building, Room 128, (631)632–6748. They will determine with you what ac-
commodations, if any, are necessary and appropriate. All information and documentation is confidential.
http://studentaffairs.stonybrook.edu/dss/index.html.

Academic Integrity: Each student must pursue his or her academic goals honestly and be personally
accountable for all submitted work. Representing another person’s work as your own is always wrong.
Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary.
Faculty in the Health Sciences Center (School of Health Technology Management, Nursing, Social Welfare,
Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more
comprehensive information on academic integrity, including categories of academic dishonesty please refer
to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/

Critical Incident Management: Stony Brook University expects students to respect the rights, privileges,
and property of other people. Faculty are required to report to the Office of University Community Stan-
dards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning
environment, or inhibits students’ ability to learn. Faculty in the HSC Schools and the School of Medicine
are required to follow their school-specific procedures. Further information about most academic matters
can be found in the Undergraduate Bulletin, the Undergraduate Class Schedule, and the Faculty-Employee
Handbook.
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• This review is necessarily not exhaustive. I recommend looking back over the
homework. I also offered exercises in lecture, which should give you an idea of
what I think is interesting to ask, and what I think is reasonable to ask.
• You should be comfortable with the abstract axioms for a vector space. As always

with this sort of thing, don’t memorize them. Instead, seek to understand their
meaning, which will then make them easy to remember and use. Good practice
would be to make sure you understand how to prove from the axioms such facts
such as “0~v = ~0 for any vector ~v in a vector space.”
• If you haven’t done it, there is an exercise you should do exactly once in your life:

fix a set S and let RS be the set of all functions from S to R. Define addition
pointwise—that is, for functions f, g : S → R, define a new function f +g : S → R
by the rule (f + g)(s) = f(s) + g(s) for each s ∈ S. Likewise, define the R-
multiplication on RS pointwise: (af)(s) = af(s)). Show that RS satisfies all the
axioms of a vector space.
• Know the subspace criterion, and how to use it.
• For example, let U1, . . . , Um be a collection of subspaces of a vector space V . Show

that their intersection is a subspace as well.
• Understand the definition of direct sum of subspaces, as well as how to prove

direct sums. Problems 1C: 20, 23 are both good practice that didn’t make it onto
the assigned homework.
• The definition of span. Why is the span of a set of vectors a subspace?
• The definition of linear dependence. A list of dependent vectors has at least one

redundant vector.
• The definition of linear independence. A linear relation on an independent list of

vectors must be trivial.
• We spent a while on the example of polynomials. You should know it. The space
Pm(R) of polynomials of degree ≤ m is a convenient example for us of a finite
vector space that isn’t Rn, so we’ll start to use it as such.



I made a slight misstatement in lecture. Recall the definition:

Definition 1. For a set S, a free vector space on S is a vector space V and a map (of sets)

i : S −−−→ V

such that the image i(S) ⊂ V is a basis of V .

I gave the example: Let V = RS be the vector space of functions from S to your ground field
R. There is a natural map i : S → V that sends an element s ∈ S to the function is : S → R
given by the rule is(s) = 1 and is(t) = 0 for t 6= s.

In the case that S is an infinite set, this is not quite a free vector space. The issue is that
i(S) is not a basis when S is infinite. For example: let S = N, the natural numbers. The set
i(N) = {i1, i2, i3, . . .} does not span RN. To see this, note that the constant 1-valued function
in RN cannot be written as a finite linear combination of elements of i(N).

How do we fix this? Let

F (S) = {f : S → R |f(s) is non-zero for only finitely many s ∈ S}.
This is easily seen to be a subspace of RS . And i(S) does provide a basis, by definition. This
is the correct example of a free vector space on S when S is infinite.

For another example, if we let S = {x0, x1, x2, . . .} then it is fair to think of F (S) as the
formal polynomials in the variable x, while RS is more or less formal power series in variable
x. It’s only in the latter space that you hace to worry about convergence issues (which subtleties
you spent significant time on in your Calculus course.)

1. HOMEWORK QUESTIONS

It may help to read Question 1 and then do Question 2 before finishing Question 1.
1) Finish/make sure you understand/write the details of the proof that

dim(V ⊗W ) = dim(V ) dim(W )

when V and W are finite dimensional. The steps outlined in lecture:
a) If vi a basis for V , and wa a basis for W , check that vi ⊗ wa spans V ⊗W .
b) There is a (natural, linear) map

V ∨ ⊗W −→ L(V,W )

α⊗ w 7−→ (v 7→ α(v)w)

Show this map is a surjection.
c) By dimension counting, the map of part b) is an isomorphism.

2) Suppose V = W is finite dimensional. In the map described in part b) above, what element
of V ∨ ⊗ V maps to the identity map in L(V, V )?

3) Fix an element α ∈ V ∨ and β ∈ W∨. Show that the ‘product’ αβ defines a linear map

αβ : V ⊗W −→ R
v ⊗ w 7−→ α(v)β(w)

1



• This review is necessarily not exhaustive. I recommend looking back over the
homework. I also offered exercises in lecture, which should give you an idea of
what I think is interesting to ask, and what I think is reasonable to ask.
• Linear Maps—the definition should be second nature by now. The set of linear

maps L(V,W ) has a vector space structure, as well as a ‘product’ structure, in
the sense that we can compose functions. In particular L(V, V ) is a vector space
with a multiplication (this is often called an algebra over the base field, which is
essentially a fancy way of saying a vector space with multiplication.)
• The kernel and the image of a linear map are both important concepts you should

be comfortable with by now. Including their relation to isomorphisms.
• The rank nullity theorem is an essential tool for dimension counting, which is

ultimately one of the great joys of linear algebra.
• If we fix a basis of V and a basis of W , then we have a linear isomorphism

between L(V,W ) and Mn×m, where the latter is the space of n by m matrices.
If, say, V = W , then the isomorphism preserves products as well: it sends the
composition of linear maps to the matrix product of corresponding matrices.
• In this course, we’ve only discussed matrices as indicial objects, the matrix Aj

i ,
etc. We’ve done a little bit of indicial calculations, including how to use Einstein
summation notation.
• Invertible linear maps. The inverse map is linear. You should be comfortable

using the kernel, the image and dimension counting to show that a linear map is
invertible.
• The direct sum of vector spaces. The book calls them “direct products” V ×W ,

but we use the symbol ⊕ instead and call it direct sum to remind ourselves that
we use this when we want to add vector spaces. (In particular, dimensions add.)
• Quotients of vector spaces. The map from a vector space to its quotient by a

subspace. The quotient space is a vector space and the quotient map is linear.
(in particular—the notion of when an operation is well defined on an equivalence
class...)
• Equivalence relations. In particular, we’ve seen a few instances where it is impor-

tant to be able to say that a function from S/ ∼ is well defined.
• Dual vector spaces. Dual basis. Dual maps.
• We spent some time on Einstein summation notation and indices (although this

is certainly an area where more needs to be said!). Bases lead to indices, and you
should be comfortable expressing matrix coefficients in terms of such. A good
check of your understanding is to prove that if Aj

i is the matrix associated to a
linear map S and Bk

j the matrix associated to linear T , then the matrix for ST

is Aj
iB

j
k. [Here it is implicit that each domain, codomain has a fixed basis, and

they agree where needed.]
• Tensor products. We spent a lecture defining them. The important thing for

working with them is the algebraic relations that we used to define the tensor
product.
• The (natural) isomorphism L(V,W ) ∼= W ⊗ V ∨ is useful. So is the trace map
V ⊗ V ∨ → R.



1. HOMEWORK 8

1) If V and W are finite dimensional vector spaces, write a (natural) isomorphism between
V ∨ ⊗W∨ and (V ⊗W )∨. Prove that you map is an isomorphism.

2) Consider 3 vector spaces U, V and W of finite dimension. There is a natural map

ψ : L(U,L(V,W )) −→ L(U ⊗ V,W )

(u 7→ Tu) 7−→ (u⊗ v 7→ Tu(v))

[That is, any linear map sending each u ∈ U to a linear map Tu : V → W is mapped by ψ to a
linear map from U ⊗ V to W .] Find its inverse, and prove it is an inverse.

Check that any element A ∈ L(U,L(V,W )) defines a bilinear map U × V → W .
The isomorphism ψ is called the ‘tensor hom adjunction’, you may be interested to read

more about it. For our purposes, the isomorphism is an assertion that bilinear maps on U × V
are the same as linear maps on U ⊗ V .

3) Let V be a finite dimensional vector space, and β = {ei}, γ = {fi} two bases of V , with
dual bases β∨ = {ei}, γ∨ = {f i}. There is an invertible matrixAj

i so that fi = Aj
iej . Show that

f i = (A−1)ije
j . [In terms of indices, if Aj

i is a square matrix, its inverse (A−1)ij is characterized
by either the equation (A−1)kiA

j
k = δji or by Ak

i (A
−1)jk = δji . Don’t be thrown off by the

notation: if we renamed the matrix A−1 = B, then (A−1)ij = Bi
j and we have, for example,

Bk
i A

j
k = δji .]

4) Continuing with notation from problem 3, for V ⊗V ∨, we have the basis β×β∨ = {ei⊗ej}
and the basis γ × γ∨ = {fi ⊗ f j}. Fix an element T ∈ V ⊗ V ∨. In the first basis, there are
coefficients T j

i ∈ R so that T = T j
i ej ⊗ ei and in the second basis, coefficients T̃ j

i ∈ R so that
T = T̃ j

i fj ⊗ f i. Show that T̃ j
i = Ak

i T
l
k(A

−1)jl .

5) For an invertible matrix C and any matrix A, show that tr(CAC−1) = tr(A). You may use
either the matrix definition of trace, or the V ⊗ V ∨ → R definition. Whichever you write up
for the HW, you should do the other for yourself.

6) Fix a ground field F. Show that (F (N))∨ (where F (N) is the free vector space on N, which
may be identified uniquely with {functions from N to F that are non-zero only finitely often})
is isomorphic to FN (the vector space of all functions N→ F). (Hint: F (N) has a natural basis,
you should probably use it.)
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• This review is necessarily not exhaustive. Think of it as something like the minimum
of what I hope you walk away from the course knowing of. I recommend looking back
over the homework. I also offered exercises in lecture, which should give you an idea
of what I think is interesting to ask, and what I think is reasonable to ask. The questions
are posted on blackboard.
• Linear Maps are of course fundamental to the course. Their definition. Given choices of

bases, you get an isomorphism from the space of linear maps to the space of matrices.
This isomorphism even preserves multiplication (it is a map of algebras). If you change
basis, the isomorphism changes, but in a controlled way: by conjugation by the change
of basis matrix.
• Another way to consider linear maps ‘in a basis’ is by the isomorphism L(V,W ) ∼=
W ⊗ V ∨. A choice of bases of V and W gives you a basis of W ⊗ V ∨ (use the dual
basis of V ). The coefficients of an element in this basis are exactly the matrix entries in
that basis.
• Knowing when a linear map is invertible is a big deal. You can either explicitly con-

struct an inverse, or you can show injectivity + surjectivity. If you know in advance that
dimensions are equal, then either of injectivity or surjectivity proves the other.
• Eigenvalues, eigenvectors and generalized eigenvectors. Eigenspaces are useful, as

they provide invariant subspaces of an operator. In good cases (such as no repeated
eigenvalues over C, or a self-adjoint operator) you can completely describe an operator
by using an eigenbasis. In an eigenbasis (if it exists), the matrix of an operator is
diagonal. (We say an operator is diagonalizable if it has an eigenbasis.)
• Over C, even operators that don’t have an eigenbasis have something close: a basis of

generalized eigenvectors. You should understand the definition, but (for example) if
you understand the generalized eigenvectors of the matrix



0 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 3 1 0 0
0 0 0 0 3 1 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3



then you understand everything that can happen. In shorter notation, this matrix is
J(0, 1) ⊕ J(2, 1) ⊕ J(2, 1) ⊕ J(3, 3) ⊕ J(3, 1), where J(λ, r) stands for the r × r
Jordan block with eigenvalue λ.
• The generalized eigenspaces of an operator T are T invariant. Even better, they have

a canonical T -invariant complement. This means that we can (still working over C)
inductively split the domain of T into a direct sum of generalized eigenspaces. By
understanding T on each component, you arrive at the Jordan Normal form theorem.
• The Jordan Normal form theorem is a very powerful statement, giving in some sense

a complete understanding of operators on finite dimensional vector spaces. Once you
know the statement, many facts have proofs that begin “Without loss of generality,
choose a basis so that T is in Jordan normal form...”. This is a valid strategy on the test.
• On the other hand, the full version of Rank-Nullity gives a fairly complete picture of

linear maps between distinct vector spaces. By full version, I mean the statement that
a linear map T ∈ L(V,W ) can be written as a canonical composition of a surjection



followed by an inclusion:

V W

V/ ker(T )

T

What the book calls rank-nullity follows from the diagram: dim(V ) = dim(kerT ) +
dim(V/ ker(T )) but also V/ ker(T ) ∼= img(T ).
• As mentioned above, invariant subspaces of an operator T ∈ L(V, V ) are very use-

ful. Especially useful are invariant splittings V = U ⊕W , where both U and W are
invariant.
• We spent a while discussing tensor products. I recommend revisiting the homeworks

involving them. It is likely that you will find the problems much easier by this point.
The definition of tensor product is maybe different from definitions you’ve seen before.
More important than the definition is the properties that tensor products have. The
algebra of how they work (v ⊗ (w + w′) = v ⊗ w + v ⊗ w′ etc.) is the key point, the
reason they are useful. Bases of V and W multiply to give a basis of V ⊗W . Make
sure you are comfortable with the homework problems that were given about tensor
products.
• The trace map.
• Inner products. Know how to use positive definitivity. Orthonormal bases are a key

tool. As is the Riesz-Representation Theorem.
• Self adjoint operators and the spectral theorem. They have an eigenbasis, even over R!
• To prove the spectral theorem, we had to learn about complexification. The complexifi-

cation of a real vector space is its tensor product with C (which is a real 2-dimensional
vector space.)
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