
 MAT 312/ AMS 351 Applied Algebra, Fall 2014 
Instructor: Nikita Selinger, office 4-115 Math Tower.
Email: nikita(at)math(dot)sunysb(dot)edu.
Office hours: TuWe 4.00-5.30pm, or by appointment.
Class meetings: TuTh, 11:30am-12:50pm, Math P131.


TA: Ming-Tao Chuan, office 3-116 Math Tower.
Email: ming-tao.chuan AT stonybrook.edu.
Office hours: Tu 2.00-4.00pm (MLC), Tu 5.00-6.00 (office).
Recitations: R01 - Tu 1:00pm - 1:53pm, R02 - We 11:00am - 11:53am.

 Final Exam is on Wednesday 12/10 5.30-8.00pm. The final will cover Chapters 1, 4.1-4.3, 5,
 6.1-6.4 of the textbook. See the webpage of the previous semesters course for more info and practice
 problems. See also the following files with sample solutions: 1 , 2 , 3 , 4 , 5.

Week 15: (Dec 2,4) Section 6.4

Week 14: (Nov 25) Section 6.3

Week 13: (Nov 18, 20) Section 6.2

Homework 10 due Dec 2 or 3. Solve the following exercises: Section 6.2 NN 1,2,3.

Week 12: (Nov 13) Section 6.1

 Midterm II is on Tuesday 11/11. The midterm will cover Chapters 4.1-4.3, 5 of the textbook. See
 the webpage of the previous semesters course for more info and practice problems. See also the following
 files with sample solutions: 1 , 2 , 3 , 4 , 5.

Week 11: (Nov 4, 6) Sections 5.3, 5.4

Homework 9, due Nov 4 or 5. Solve the following exercises: Section 5.2 NN 2,3,5.
 Section 5.3 NN 1, 3, 9.

Week 10: (Oct 28,30) Sections 5.2, 5.3

Homework 8, due Oct 28 or 29. Solve the following exercises: Section 5.1 NN 2, 3, 5,
 7, 8.

Week 9: (Oct 21,23) Sections 5.1, 5.2

Homework 7, due Oct 21 or 22. Solve the following exercises: Section 4.3 NN 1, 2, 3,
 4, 5.

Week 8: (Oct 14,16) Sections 4.3, 5.1

http://www.math.sunysb.edu/~nikita/index.html
http://www.math.sunysb.edu/~kirillov/mat312-spr14/index.php?page=exams
http://www.math.sunysb.edu/~kirillov/mat312-spr14/index.php?page=exams


Homework 6, due Oct 14 or 15. Solve the following exercises: Section 4.2 NN 1, 3, 4,
 8, 10, 11.

Week 7: (Oct 7,9) Section 4.2

Homework 5, due Oct 7 or 8. Solve the following exercises: Section 4.1 NN 3, 4, 5.

Week 6: (Sep 30, Oct 2) Section 4.1

Homework 4, due Sep 30 or Nov 1. Solve the following exercises: Section 1.6 NN
 5,6,7. Write a complete proof of Euler's Theorem.

Week 5: (Sep 23) Section 1.6

 Midterm I is on Thursday 9/25. The midterm will cover Chapter 1 of the textbook. See the
 webpage of the previous semesters course for more info and practice problems and the midterm with
 solutions of the course offered this summer (you can ignore Question 5, we are not covering that topic).

Homework 3, due Sep 23 or 24. Solve the following exercises: Section 1.4 NN
 2,5,6,7. Section 1.5 NN 3,5.

Week 4: (Sep 16,18) Sections 1.4, 1.5

Homework 2, due Sep 16 or 17. Solve the following exercises: Section 1.3 NN
 2,5,6,7,8,9. Write a rigorous proof of Corollary 1.3.5.

Week 3: (Sep 9,11) Sections 1.3, 1.4

Homework 1, due Sep 9 or 10. Solve the following exercises: Section 1.1 NN 4, 6, 7
 and Section 1.2 NN 3, 6, 10, 12.

Week 2: (Sep 4) Section 1.2

Week 1: (Aug 26,28) Section 1.1


Syllabus: We will cover chapters 1,4,5,6 from the textbook.

 Homework is a compulsory part of the course. Homework assignments are due each
week at the beginning
 of the recitation. Under no circumstances will late homework
be accepted.

Grading system: The final grade is the weighted average according the following
weights: homework 10%,
 Midterm1 25%, Midterm2 25%, Final 40%.

Textbook: NUMBERS,GROUPS&CODES, Author: HUMPHREYS, Publisher: CAMB, Edition: 2ND 04

 Disability support services (DSS) statement: If you have a physical, psychological, medical, or learning disability that may impact
 your course work, please contact
Disability Support Services (631) 6326748 or http://studentaffairs.stonybrook.edu/dss/.
They will
 determine with you what accommodations are necessary and appropriate. All
information and documentation is confidential. Students
 who require assistance during
emergency evacuation are encouraged to discuss their needs with their professors and
Disability

http://www.math.sunysb.edu/~kirillov/mat312-spr14/index.php?page=exams
http://studentaffairs.stonybrook.edu/dss/


 Support Services. For procedures and information go to the following website:
http://www.stonybrook.edu/ehs/fire/disabilities/asp.

 Academic integrity statement: Each student must pursue his or her academic goals honestly and be personally accountable for all
 submitted work. Representing another person’s work as your own is always wrong. Faculty are required to report any suspected

instance of academic dishonesty to the Academic Judiciary. For more comprehensive
information on academic integrity, including
 categories of academic dishonesty, please refer
to the academic judiciary website at
 http://www.stonybrook.edu/uaa/academicjudiciary/.

Critical incident management: Stony Brook University expects students to respect the rights, privileges, and property of other
 people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach,
 compromises the safety of the learning environment, and/or inhibits students’ ability to learn.
 

http://www.stonybrook.edu/ehs/fire/disabilities/asp
http://www.stonybrook.edu/uaa/academicjudiciary/


MAT 312 - AMS 351

PRACTICE QUESTIONS for FINAL EXAM

SUMMER II, 2014

Q. 1. Prove that the square of any odd integer always leaves a remainder of 1 when divided
by 8.

Proof. Let n = 2k + 1 for some k ∈ Z. Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1.

Either k or k + 1 is an even integer. So, 8 divides 4k(k + 1). Hence, n2 ≡ 1 mod 8. �

Q. 2. Let n be an integer greater than 1. Determine the value of

gcd(n! + 1, (n+ 1)! + 1).

Proof. Assume that gcd(n! + 1, (n + 1)! + 1) = d. Then n! + 1 = da for some a ∈ Z.
Equivalently, n! = da− 1. We have

(n+ 1)! + 1 = (n+ 1)n! + 1 = (n+ 1)(da− 1) + 1 = da(n+ 1)− n.

So, (n + 1)! + 1 ≡ 1 mod d. This is a contradiction unless d = 1. Therefore, n! + 1 and
(n+ 1)! + 1 must be relatively prime.

Alternatively, you may use Euclidean Algorithm to conclude that d = 1. �

Q. 3. Show that 328 divides 2580 − 3800.

Proof. We will use Euler’s Theorem to reduce the integers modulo 328. We have φ(328) =
φ(8)φ(41) = 4 · 40 = 160. Also,

2580 − 3800 = (52)80 − (3160)5 = 5160 − (3160)5.

Since, (5, 328) = 1 and (3, 328) = 1, we find 5 ≡ 1 mod 328 and 3 ≡ 1 mod 328. Therefore,
5160 − (3160)5 ≡ 1− 1 ≡ 0 mod 328. In other words, 328 divides 2580 − 3800. �

Q. 4. Let p be a prime and let 1 ≤ k ≤ p− 1 be an integer. Prove that(
p− 1

k

)
≡ (−1)k mod p.

Proof. By definition(
p− 1

k

)
=

p!

k!(p− 1− k)!
=

(p− 1)(p− 2) · · · (p− k)

k!
.

1



2

Notice that p− i ≡ −i mod p for all i ∈ {0, 1, . . . , p}. Therefore,(
p− 1

k

)
=

(p− 1)(p− 2) · · · (p− k)

k!
≡ (−1)(−2) · · · (−k)

1 · 2 · · · k
mod p ≡ (−1)k mod p.

�

Q. 5. Let G = {a, b, c, d, f, g} be a group with an operation ∗ given by the table

∗ a b c d f g

a d
b g d c
c
d d
f f g d
g c a f

a) Fill in the remainder of the group table (the identity element does not necessarily
head the first column or the first row).

b) Write down the product table for the group S(3).
c) Show that G and S(3) are isomorphic (describe a group isomorphism between the

two groups).
d) What is the smallest group of G that contains g?

Proof. a) First, we determine the identity element of (G, ∗). We look for an element e ∈ G
satisfying e ∗ e = e. According to the table, d ∗ d = d. So d must be the identity element.
Secondly, d ∗ x = x = x ∗ d for all x ∈ G. Using this, we fill in the rows and columns
represented by d to get

∗ a b c d f g

a d a
b g d b c
c c
d a b c d f g
f f g d
g c a g f

Every element of G has to appear exactly once in each row and column of the table.
Following this rule we can place b and d in the last row: in the first column, a ∗ a = d so
g ∗ a cannot be equal to d. We must have g ∗ f = d, and hence g ∗ a = b:
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∗ a b c d f g

a d a
b g d b c
c c
d a b c d f g
f f g d
g b c a g d f

Now, let us consider the first column. We need to place c and f . Since, c ∗ d = c, we
cannot have c ∗ a = c. So, c ∗ a must be f and f ∗ a = c.

∗ a b c d f g

a d a
b g d b c
c f c
d a b c d f g
f c f g d
g b c a g d f

In the fifth row, we have f ∗ b = a since we cannot have f ∗ c = a (as g ∗ c = a); and
f ∗ c = b. Now the table has the form

∗ a b c d f g

a d a
b g d b c
c f c
d a b c d f g
f c a b f g d
g b c a g d f

By a similar consideration for the remaining entries, we get

∗ a b c d f g

a d f g a b c
b g d f b c a
c f g d c a b
d a b c d f g
f c a b f g d
g b c a g d f
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b) For the multiplication table for S(3) see Example 2 on page 157 of the textbook.

c) Let us define a map ϕ : G→ S(3). If ϕ is a group homomorphism then ϕ must map
the identity d of G to the identity permutation id of S(3). So, we set ϕ(d) = id.

In S(3), the elements of order 2 are (1 2), (1 3), (2 3). On the other hand, in G, we
have a ∗ a = d, b ∗ b = d and c ∗ c = d. Therefore, ϕ should identify {a, b, c} with
{(1 2), (1 3), (2 3)} and {f, g} with {(1 2 3), (1 3 2)}. – mapping an element of order 2 to
an element of order 3 (or vice versa) in S(3) by ϕ would cause problems (see the solution
for Q.8.). So, let ϕ(f) = (1 2 3) and ϕ(g) = (1 3 2) (this is optional, we could also choose
ϕ(f) = (1 3 2) and ϕ(g) = (1 2 3)).

We will assign the values of ϕ at a, b, c using the properties of group homomorphism.
The key point is that ϕ ‘respects‘ group operations on both G and S(3). For example,
ϕ(a ∗ b) = ϕ(a)ϕ(b), etc. We need to choose ϕ(a), ϕ(b), ϕ(c) among (1 2), (1 3), (2 3) so
that the following hold

(2 3)(1 2) = (1 2)(1 3) = (1 3)(2 3) = (1 3 2) = ϕ(g),

(2 3)(1 3) = (1 3)(1 2) = (1 2)(2 3) = (1 2 3) = ϕ(f).

So, let ϕ(a) = (1 2). Since a ∗ b = f , we have

ϕ(a ∗ b) = ϕ(a)ϕ(b) = (1 2)ϕ(b) = ϕ(f) = (1 2 3).

Then we must have ϕ(b) = (2 3). This leaves ϕ(c) = (1 3). You can check that now
ϕ(x ∗ y) = ϕ(x)ϕ(y) for all x, y ∈ G and ϕ is bijective. This ends the proof.

Alternatively, a bijection can be observed (after assigning ϕ(d) = id) by comparing the
two tables. If there is a bijection between two groups then their operation tables should
‘coincide‘, possibly after a reordering of the rows and columns.

d) Let H denote the smallest subgroup of G containing g. Since H is a subgroup it
must also contain the identity element, which is d. So, d ∈ H. We have g ∗ g = f , so
f ∈ H (H is closed under ∗). As f ∗ f = g and f ∗ g = g ∗ f = d ∈ H, we conclude that
H = {d, f, g}. �

Q. 6. Let f : G→ H be a group isomorphism. Prove that G is commutative if and only if
H is commutative.

Proof. Assume that G is commutative. Then g1g2 = g2g1 for all g1, g2 ∈ G. Let h1, h2 ∈
H. Since f is an isomorphism, it is one-to-one and surjective. So, there exist unique
elements g1, g2 ∈ G such that f(g1) = h1 and f(g2) = h2. By the definition of a group
homomorphism and g1g2 = g2g1, we get

h1h2 = f(g1)f(g2) = f(g1g2) = f(g2g1) = f(g2)f(g1) = h2h1.

So, H is also commutative.

Now assume that H is commutative. Let g1, g2 ∈ G. Then f(g1g2) = f(g1)f(g2). Since
f(g1), f(g2) ∈ H, f(g1)f(g2) = f(g2)f(g1). So,

f(g1g2) = f(g1)f(g2) = f(g2)f(g1) = f(g2g1)

which implies that g1g2 = g2g1 and G is commutative. �
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Q. 7. Let H and K be subgroups of a group G. Prove that H ∪K is a subgroup of G if
and only if either H ⊆ K or K ⊆ H.

Proof. Let us assume that H ∪ K is a subgroup of G and show that either H ⊆ K or
K ⊆ H. The statement “H ⊆ K or K ⊆ H” is equivalent to “H \K = ∅ or K \H = ∅”.
So, assume that H \ K 6= ∅ and K \ H 6= ∅. Let x ∈ H \ K and y ∈ K \ H. Then,
x, y ∈ H ∪K. Since H, K and H ∪K are all subgroups, we have x−1 ∈ H, y−1 ∈ K and
xy ∈ H ∪K. Now, xy ∈ H ∪K implies that xy ∈ H or xy ∈ K.

If xy ∈ H then x−1xy = y ∈ H. This is a contradiction.

If xy ∈ K then xyy−1 = x ∈ K. This is also a contradiction. So, H \ K = ∅ or
K \H = ∅.

On the other hand, if H ⊆ K or K ⊆ H then H ∪K = H or H ∪K = K. In either
case H ∪K is a subgroup. �

Q. 8. Prove that there exists no isomorphism between the groups G7 and S(3).

Proof. Notice that, since G7 = 〈[3]7〉, G7 is a cyclic group of order 6 ([3]7 has multiplicative
order 6). On the other hand, S(3) is not cyclic (there is no permutation of order 6 in S(3)).
Let us assume that there exists an isomorphism f : G7 → S(3) and find a contradiction.

Since f is a group homomorphism, f maps the identity of G7 to the identity of S(3):
f([1]7) = id. Assume that f([3]) = π for some π ∈ S(3). The order of π is then either 1, 2
or 3. The order of π cannot be 1 because the only permutation of order 1 is the identity
permutation and f is assumed to be one-to-one. If the order of π is 2 then

id = π2 = f([3]7)f([3]7) = f([3]7[3]7) = f([3]27).

As f([1]7) = id, we must have [3]27 = [1]7 (f is one-to-one). This is a contradiction.

Similarly, assuming the order of π is 3 also yields a contradiction. Therefore there can
be no isomorphism between G7 and S(3). �

Q. 9. Let G be a group and x ∈ G such that x2 6= e but x6 = e. Prove that x4 6= e and
x5 6= e. What can you say about the order of x in G?

Proof. The assumption x6 = e implies that x4x2 = e and then x4 = x−2. Since x2 6= e,
x−2 6= e. So, x4 6= e.

Multiplying both sides of x6 = e by x−1 gives x5 = x−1. Now, x−1 6= e since otherwise,
x−1 = e would imply x−2 = e. So, x5 6= e.

It follows that the order of x in G is either 3 or 6. �
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Q. 10. Let X be a finite set. Is P (X), the set consisting of all subsets of X, a group with
the set operation ∪? Why (not)?

Proof. The operation ∪ on P (X) is associative and closed. The identity element is ∅ ∈
P (X). However, there is no set B ∈ P (X) for any A ∈ P (X) satisfying A ∪ B = ∅.
Therefore, (P (X),∪) is not a group. �
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NAME : ID :

ANSWER ALL QUESTIONS.
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1 20pts
2 20pts
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5 20pts
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Question 1.

a. Find the largest prime divisor of 42! + 43! + 44!. (7 pts)

b. Show that 495 divides 21240 − 36120. (8 pts)

c. Find the greatest common divisor of 1365 and 4264 using Euclidean Algo-
rithm.

(5 pts)
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Question 2. Consider the permutations

π =

(
1 2 3 4 5
3 4 1 5 2

)
σ =

(
1 2 3 4 5
5 3 4 2 1

)
a) Calculate the order, sign of the permutations π, σ and πσ (show the formula

that you use in each case). (10 pts)

b) Find an element τ in S(5) satisfying

τπτ−1 = σ.

[Hint: You may assume that τ is given by

(
1 2 3 4 5
a b c d e

)
and solve

a, b, c, d, e.] (10 pts)
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Question 3. Let p and q be two distinct primes. Consider the group (Zp,+) and
the map

ϕ : Zp → Zp

x 7→ qx mod p.

Show that ϕ is an injective group homomorphism. (15 pts)
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Question 4.

a. What is the order of the group (Zn × Zm,+)? [The group operation is given
by (a, b) + (c, d) = (a+ c, b+ d) for all (a, b), (c, d) ∈ Zn × Zm.] (6 pts)

b. Define the subset L of Zn × Zm by

L = {(x, y) ∈ Zn × Zm | x− y = 0}.
Show that L is a subgroup of Zn × Zm. (10 pts)

c. Assume that n ≤ m. Determine the number of distinct cosets of L in Zn×Zm.
(9 pts)
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Question 5.

a. Let f be a linear code function generated by the matrix1 0 0 1 0 1 0 1
0 1 0 0 0 1 1 1
0 0 1 1 1 0 1 0

 .

Using the corresponding parity check matrix, determine whether the following
are codewords or not.

11101000, 01110111, 10001001.

(10 pts)
b. Find an example of a linear code f : B4 → B8 with minimum distance 4 or

prove that such code does not exist. (10 pts)
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SCRATCH PAPER



MAT 312 - AMS 351 FINAL EXAM

SUMMER II, 14 August 2014

Question 1.

a. Find all four solutions to the equation x2 − 1 ≡ 0 mod 35. (5 pts)

b. Solve the equation [243]n · [x]n ≡ [1]n for n = 1130. (7 pts)

c. Find the last three digits of the integer

200320022001

.

(8 pts)

Proof. a. Clearly, 12 = (−1)2 ≡ mod 35. Since, 1 ≡ 36 mod 35, we see that 6
and −6 are also solutions to x2 ≡ 1 mod 35. Therefore, the solutions are [1]35, [6]35,
[−6]35, [−1]35, or equivalently, [1]35, [6]35, [29]35, [34]35.

b. We need to calculate the multiplicative inverse of 243 modulo 1130. By the
Euclidean algorithm,

1130 = 4 · 243 + 158

243 = 1 · 158 + 85

158 = 1 · 85 + 73

85 = 1 · 73 + 12

73 = 6 · 12 + 1

12 = 1 · 12.

(This also confirms that (1130, 243) = 1 and the multiplicative inverse of 243 modulo
1130 does exist. Now we find a form a · 243 + b · 1130 = 1 for some a, b ∈ Z. By the

1
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algorithm above,

1 = 73− 6 · 12

= 73 + 6(73− 85)

= 7 · 73− 6 · 85

= 7(158− 85)− 6 · 85

= 7 · 158− 13 · 85

= 7 · 158− 13(243− 158)

= 20 · 158− 13 · 243

= 20(1130− 4 · 243)− 13 · 243

= 20 · 1130− 93 · 243.

So, the inverse is [−93]1130, or equivalently, [1037]1130. Multiplying the both sides of
[243]n · [x]n ≡ [1]n by [1037]1130 gives [x]1130 = [1037]1130.

c. We are asked to calculate

200320022001

mod 1000.

We have φ(1000) = φ(2353) = 4 · 100 = 400. So, by Euler’s Theorem, for any a ∈ Z
with (a, 1000) = 1, we have a400 ≡ 1 mod 1000. Using that we calculate

200320022001 ≡ 320022001

≡
(
(3400)532

)2001

≡
(
1532

)2001

≡ 92001

≡ (9400)59 ≡ 9 mod 1000.

�
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Question 2. Consider the permutations

π =

(
1 2 3 4 5 6 7 8 9 10 11 12
9 5 10 11 7 1 12 4 3 2 8 6

)
σ =

(
1 2 3 4 5 6 7 8 9 10 11 12
1 4 10 8 2 7 9 12 11 3 5 6

)
a) Write π and σ as a product of disjoint cycles. (6 pts)
b) Calculate the order, sign of the permutations π, σ and πσ (show the formula

that you use in each case). (14 pts)

Proof. a) π = (1 9 3 10 2 5 7 12 6)(4 11 8), σ = (2 4 8 12 6 7 9 11 5)(3 10).

b) πσ = (1 9 8 6 12)(2 11 7 3).

ord(π) = lcm(9, 3) = 9,

ord(σ) = lcm(9, 2) = 18,

ord(πσ) = lcm(5, 4) = 20,

sgn(π) = (−1)9−1(−1)3−1 = 1,

sgn(σ) = (−1)9−1(−1) = −1,

sgn(πσ) = (−1)5−1(−1)4−1 = −1.

�
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Question 3.

a. Find the smallest subgroup of S(5) which contains both of the permutations
π = (1 4 5) and σ = (1 4). (10 pts)

b. What is the order of the subgroup? (4 pts)
c. Determine the number of distinct cosets of the (same) subgroup in S(5)

without listing them. (6 pts)

Proof. a. Let us denote the smallest subgroup containing π and σ by H. Since H
is a subgroup, it must contain the identity permutation id and the inverse of each
member, and it must be closed under the composition. So π−1, σ−1, id ∈ H. Also,
all positive powers of π and σ must belong to H. Since, the length of π is 3, we have
π3 = id. Similarly, σ2 = id. We have

π2 = π−1 = (1 5 4),

σ−1 = σ = (1 4),

πσ = (1 5),

σπ = (4 5).

Moreover,

(πσ)π = σ, πσπ2 = σπ, π2σπ = πσ, π2σ = σπ, σπ2 = πσ, σπσ = π−1, πσπ = σ.

So, H = {id, (1 4 5), (1 4), (1 5 4), (1 5), (4 5)} and it is closed under composition.

b. The order of a group is equal to the number of its elements. Therefore, the
order of H is 6.

c. The order of S(5) is equal to 5! = 120. By Lagrange’s Theorem,

the number of cosets of H =
ord(S(5))

ord(H)
=

120

6
= 20.

�
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Question 4. Let f : G→ H be a group homomorphism. Define the set

K = {g ∈ G | f(g) = eH}
where eH is the identity element in H.

a) Prove that K is subgroup of G. (10 pts)
b) Prove that f is injective if and only if K = {eG}. (10 pts)

Proof. a) Let g1, g2 ∈ K. Then, by the definition of K, g1 and g2 are mapped to the
identity of H by f . We have

f(g1g2) = f(g1)f(g2) = eHeH = eH

So, g1g2 ∈ K. Also, f(g1) = eH implies that (f(g1))
−1 = eH (here, (f(g1))

−1 is the
inverse of f(g1) with respect to the group operation over H). By the properties of
group homomorphisms, (f(g1))

−1 = f(g−1
1 ). Therefore, g−1

1 ∈ K. Hence, K is a
subgroup of G.

Note. We can also show that g−1 ∈ K for any g ∈ K as follows. Since g ∈ K, we
have

eH = f(eG) = f(g · g−1) = f(g)f(g−1) = eHf(g−1) = f(g−1).

Therefore, g−1 ∈ K.

b) Assume that K = {eG}. Let g1, g2 ∈ G such that f(g1) = f(g2). Then,
f(g1)(f(g2))

−1 = eH . Since f is group homomorphism

f(g1)(f(g2))
−1 = f(g1)f(g−1

2 ) = f(g1g
−1
2 ) = eH

which implies that g1g
−1
2 ∈ K. Since K = {eG}, we must have g1g

−1
2 = eG, equiva-

lently, g1 = g2. Hence, f : G→ H is injective.

Now, assume that f is injective. Let k ∈ K. Then f(k) = eH . We also have
f(eG) = eH since f is a group homomorphism. However, by the assumption, f is
injective, and f(k) = f(eG) implies that k = eG. Therefore K = {eG}. �
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Question 5. Calculate the two column decoding table (which is formed by syn-
dromes and coset leaders) for the code generated by the matrix

1 0 0 1 0 1 1
0 1 0 0 1 1 1
0 0 1 1 0 0 1

 .

A message is encoded using the letter equivalents

000 = M, 010 = B, 001 = T, 100 = A,

110 = S, 101 = H, 011 = E, 111 = C

and received as

0010000, 1101011, 0011001, 1010110.

Correct and decode the received message. (20 pts)

Proof. The parity check matrix is given by

M =



1 0 1 1
0 1 1 1
1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

The rows from the 2nd to the 8th are formed by the rows of M in the two column
decoding table. We fill the rows by adding the missing syndromes (which spans the
whole B4. We get
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0000 0000000
1011 1000000
0111 0100000
1001 0010000
1000 0001000
0100 0000100
0010 0000010
0001 0000001
1010
1100
0101
0110
0011
1101
1110
1111

Next, we calculate the coset leaders. Notice that each syndrome can be written as
the sum of two or more syndromes. For example, 1010 = 1000+0010. (Note that this
is not a unique presentation.) Then we can choose the coset leader corresponding to
1010 to be the sum of coset leaders corresponding to 1000 and 0010. Repeating that
for the rest of the syndromes we can fill the table as follows.

0000 0000000
1011 1000000
0111 0100000
1001 0010000
1000 0001000
0100 0000100
0010 0000010
0001 0000001
1010 0001010
1100 0001100
0101 0000101
0110 0000110
0011 0000011
1101 0010100
1110 0001110
1111 0001111.
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In order the correct the received message, we calculate the syndromes

0010000 ·M = 1001,

1101011 ·M = 0111,

0011001 ·M = 0000,

1010110 ·M = 0100.

We add the corresponding coset leaders to the words to get

0010000 + 0010000 = 0000000,

1101011 + 0100000 = 1001011,

0011001 + 0000000 = 0011001,

1010110 + 0000100 = 1010010.

Therefore the original message is 000, 100, 001, 101, which reads “MATH”.

�
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Question 6.

a. Let f : B4 → B5 be a function defined by f(w) = wM where M is the matrix

M =


1 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 1 1 1 0


Show whether f is a code function or not. (5 pts)

b. LetW = {000000, 101110, 001010, 110111, 100100, 011001, 111101, 010011} be
the set of codewords for some linear code function. Find a generator matrix
for the code. Determine the minimum distance, and the number of errors
that can be detected and corrected by the code. (8 pts)

c. Let d(x, y) be the distance between two words x, y ∈ Bn. Prove that for any
x, y, z ∈ Bn,
• d(x, y) ≥ 0, with equality if and only if x = y,
• d(x, y) = d(y, x),
• d(x, y) ≤ d(x, z) + d(z, y). (7 pts)

Proof. a. It is not a code word since it is not injective. For example, both 0001 and
1100 are mapped to 01110.

b. We can take

M =

1 0 0 1 0 0
0 1 0 0 1 1
0 0 1 0 1 0

 .

The minimal distance is 2. So, the code function can detect 1 error but correct none.

c. Note that d(x, y) = wt(x + y) and it counts the number of digits that differ
between x and y.

• d(x, y) ≥ 0, with equality if and only if x = y. This is clear since, by
definition, the weight cannot be negative, and all the 1s in x can be cancelled
only by adding x to x.
• d(x, y) = d(y, x). This follows from wt(x+ y) = wt(y + x).
• d(x, y) ≤ d(x, z) + d(z, y). First notice that wt(x + y) ≤ wt(x) + wt(y) (by

adding x to y we cannot produce a word with more 1s). Secondly, wt(x) +
wt(y) = wt(x + z) + wt(y + z) for any word z (if x and y agree on the ith
digit then adding another word z to x and y does not change the sum of the
new values on the ith digit). This completes the proof.

�



Homework Week 2

29 July 2014

Deadline: 7 August 2014, 13:00.

Let π and σ be permutations in S(9) given by

π =
(

1 2 3 4 5 6 7 8 9
2 3 7 1 6 5 4 9 8

)
,

σ =
(

1 2 3 4 5 6 7 8 9
9 5 6 8 7 1 2 4 3

)
.

1. Write π and σ as a product of disjoint cycles. (2 pts)

π =
(

1 2 3 4 5 6 7 8 9
2 3 7 1 6 5 4 9 8

)
= (1 2 3 7 4)(5 6)(8 9),

σ =
(

1 2 3 4 5 6 7 8 9
9 5 6 8 7 1 2 4 3

)
= (1 9 3 6)(2 5 7)(4 8).

2. Check whether πσ is equal to σπ or not. Find ord(πσ) and sgn(πσ). (2 pts)

We have

πσ = (1 8)(2 6)(3 5 4 9 7),
σπ = (1 5)(2 6 7 8 3)(4 9).

So σπ 6= πσ. Now it follows from those factorisations that

ord(πσ) = lcm(2, 2, 5) = 10,
sgn(πσ) = sgn(1 8) · sgn(2 6) · sgn(3 5 4 9 7) = (−1)(−1)(−1)4 = 1.

3. Find ord(π), ord(σ), sgn(π) and sgn(σ). (2 pts)

Use the factorisations in Question 1 to get

ord(π) = lcm(2, 2, 5) = 10,
sgn(π) = sgn(1 2 3 7 4) · sgn(5 6) · sgn(8 9) = (−1)4(−1)(−1) = 1.
ord(σ) = lcm(2, 3, 4) = 12,
sgn(σ) = sgn(1 9 3 6) · sgn(2 5 7) · sgn(4 8) = (−1)3(−1)2(−1) = 1.

1



4. Exercise 4.2.4. Show that if π and σ are any permutations such that (πσ)2 = π2σ2 then
πσ = σπ. (2 pts)

By the assumption,
(πσ)2 = πσπσ = π2σ2.

Multiply both sides on the left by π−1 to get

σπσ = πσ2.

Now on the right by σ−1 to get
πσ = σπ.

5. Compute the order and sign of the non-disjoint cycles (1 3 5)(4 6)(1 2 4)(3 5 7) and
(1 4 7 3)(3 2 5)(1 6 4)(2 3 6 7). [Hint: Write each of them as a product of disjoint cycles.] (2
pts)

We have

π1 = (1 3 5)(4 6)(1 2 4)(3 5 7) = (1 2 6 4 3)(5 7)
π2 = (1 4 7 3)(3 2 5)(1 6 4)(2 3 6 7) = (1 6 3 7 5).

So,

ord(π1) = lcm(2, 5) = 10,
sgn(π1) = sgn(1 2 6 4 3) · sgn(5 7) = (−1)4(−1) = −1,
ord(π2) = 5,
sgn(π2) = sgn(1 6 3 7 5) = (−1)4 = 1.

6. Exercise 4.3.4. Let G be a group and let c be a fixed element of G. Define a new operation
“ ∗ ” on G by

a ∗ b = ac−1b.

Prove that G is a group under ∗. (2 pts)

We need to show that (G, ∗ ) satisfies the group axioms. Notice that the new operation ∗
is given in terms of the initial operation on G which makes it into a group. So, a−1 exists for
any a ∈ G.

(1) Clearly, ac−1b ∈ G since G is closed under the the initial operation (multiplication).
So, a ∗ b ∈ G.

(2) Let a, b, d ∈ G. Then

(a ∗ b) ∗ d = (ac−1b) ∗ d = (ac−1b)c−1d

a ∗ (b ∗ d) = a ∗ (bc−1d) = ac−1(bc−1d).

Since a(bc) = (ab)c for any a, b, c ∈ G, the calculation above shows that (a∗ b)∗d = a∗ (b∗d).
So, ∗ is associative.

(3) An element b ∈ G is called the identity element (with respect to ∗) if, for any a ∈ G,
a ∗ b = a. We need to solve b from

a ∗ b = ac−1b = a.

2



First, multiply both sides of ac−1b = a on the left by a−1 to get

c−1b = a−1a = e

where e is the identity element with respect to the initial operation (i.e. multiplication). Now,
multiplying both sides on the left by c gives b = ce = c. Hence, c is the identity element with
respect to ∗.

(4) An element b ∈ G is called the inverse of an element a ∈ G (with respect to ∗) if
a ∗ b = c (c is the identity element). We have

a ∗ b = c ⇔ ac−1b = c

⇔ c−1b = a−1c

⇔ b = ca−1c.

Hence the inverse of a ∈ G with respect to ∗ is ca−1c.

Since (G, ∗ ) satisfies all four axioms, it is a group.

7. Determine whether the following are groups are not. (2 pts)

• R with ∗ defined by a ∗ b = a+ b+ ab for all a, b ∈ R.

This is not a group. Clearly, a ∗ b = a+ b+ ab ∈ R. So, R is closed under ∗. The operation
is associative since, for any a, b, c ∈ R, we have

a ∗ (b ∗ c) = a ∗ (b+ c+ bc) = a+ (b+ c+ bc) + a(b+ c+ bc) = a+ b+ c+ ab+ ac+ bc+ abc,

(a ∗ b) ∗ c = (a+ b+ ab) ∗ c = (a+ b+ ab) + c+ c(a+ b+ ab) = a+ b+ c+ ab+ ac+ bc+ abc,

and a ∗ (b ∗ c) = (a ∗ b) ∗ c. Furthermore, the identity element is 0 ∈ R. However, −1 ∈ R
does not have an inverse. It may be observed as follows. By definition, b is the inverse of an
element a ∈ R with respect to ∗ if a ∗ b = 0. We can solve b from a ∗ b = a+ b+ ab = 0 to be
− a

1+a if and only if a 6= −1. In other words, b is not well defined if a = −1.

• Z× Z with ∗ defined by (a, b) ∗ (c, d) = (ad+ bc, bd) for all a, b, c, d ∈ Z.

This is not a group. (1) For any a, b, c, d ∈ Z, ad + bc ∈ Z. Hence, (a, b) ∗ (c, d) =
(ad+ bc, bd) ∈ Z× Z.

(2) The operation ∗ is associative: Let (a, b), (c, d), (g, h) ∈ Z× Z. Then

[(a, b)∗ (c, d)]∗ (g, h) = (ad+ bc, bd)∗ (g, h) = ((ad+ bc)h+ bdg, bdh) = (adh+ bch+ bdg, bdh)

and

(a, b)∗[(c, d)∗(g, h)] = (a, b)∗(ch+dg, dh) = ((adh+ b(ch+ dg), bdh) = (adh+bch+bdg, bdh).

(3) The identity element is (0, 1): Assume that (a, b)∗(c, d) = (a, b) and solve (a, b)∗(c, d) =
(ad + bc, bd) = (a, b) in terms of c and d. So, ad + bc = a and bd = b. These equalities have
solution only for c = 0 and d = 1.

However,

3



(4) The inverse element does not exist in Z× Z. For any (a, b) ∈ Z× Z, (c, d) ∈ Z× Z is
called the inverse if (a, b) ∗ (c, d) = (0, 1), equivalently, ad+ bc = 0 and bd = 1. But d = 1

b /∈ Z
unless b = 1 or b = −1.

8. Exercise 4.3.2. Let G be a group and let a, b be elements of G. Show that

(ab)−1 = b−1a−1.

Give an example of a group G with elements a, b for which (ab)−1 6= a−1b−1. [Warning: Do
not give the same answer as the one given in the book.] (2 pts)

By definition, (ab)−1(ab) = e. Multiply both sides on the right by b−1 to get (ab)−1a = b−1.
Now, by a−1 to get (ab)−1 = b−1a−1.

As for an example, let G = GL(2,R) and choose

a =
(

1 2
0 1

)
, b =

(
1 0
3 1

)
Then,

a−1 =
(

1 −2
0 1

)
, b−1 =

(
1 0
−3 1

)
.

We find

(ab)−1 =
(

1 −2
−3 7

)
but

a−1b−1 =
(

7 −2
−3 1

)
.

9. Exercise 4.3.3. Let G be a group in which a2 = e for all a ∈ G. Show that G is Abelian.

(2 pts)

By the assumption, aa = e for all a ∈ G. So, a−1 = a. Also, for any a, b ∈ G, ab ∈ G since
G is a group. Therefore (ab)2 = e. It follows that

(ab)(ab) = e⇔ ababb−1 = eb−1 ⇔ aba = b−1 = b⇔ abaa−1 = ba−1 ⇔ ab = ba.

10. Is the subset {(1 2 4), (2 3)(1 4), (1 3)(2 4)} a subgroup of S(4)? Why (not)?

(2 pts)

One of the conditions we need to check is that for any a, b ∈ {(1 2 4), (2 3)(1 4), (1 3)(2 4)},
the product ab also belongs to {(1 2 4), (2 3)(1 4), (1 3)(2 4)}. However,

(1 2 4)(2 3)(1 4) = (2 3 4)

and (2 3 4) /∈ {(1 2 4), (2 3)(1 4), (1 3)(2 4)}. Therefore it is not a subgroup. (Another direct
observation is that the identity permutation id is not in the given subset.)

4



11. Find the generators of the group Z18 under addition, and list all of its subgroups.

(2 pts)

It is easy to see that Z18 is cyclic and generated by [1]18. It can also be generated by
n · [1]18 if and only if (n, 18) = 1. Therefore

Z18 = 〈[1]18〉 = 〈[5]18〉 = 〈[7]18〉 = 〈[11]18〉 = 〈[13]18〉 = 〈[17]18〉.

The subgroups are

〈[0]18〉 = {0}
〈[2]18〉 = {[0]18, [2]18, [4]18, [6]18, [8]18, [10]18, [12]18, [14]18, [16]18}

= 〈[4]18〉 = 〈[8]18〉 = 〈[10]18〉 = 〈[14]18〉 = 〈[16]18〉
〈[3]18〉 = {[0]18, [3]18, [6]18, [9]18, [12]18, [15]18} = 〈[15]18〉
〈[6]18〉 = {[0]18, [6]18, [12]18} = 〈[12]18〉
〈[9]18〉 = {[0]18, [9]18}.

12. Consider (G8, · ), the group of invertible congruence classes modulo 8. Write down the
distinct left cosets of the subgroup {[1]8, [5]8}. (1 pts)

We have G8 = {[1]8, [3]8, [5]8, [7]8}. So,

[1]8{[1]8, [5]8} = {[1]8, [5]8} = [5]8{[1]8, [5]8},
[3]8{[1]8, [5]8} = {[3]8, [7]8} = [7]8{[1]8, [5]8}.

Therefore, the order of each coset is 2.

13. What are the possible orders of elements of (G15, · ) and which of these integers are
actually orders of elements of G15? (2 pts)

We have φ(15) = φ(3)φ(5) = 8. Therefore, the possible orders are 1, 2, 4, 8. Let us calculate
the subgroups generated by each element in G15.

〈[1]15〉 = {[1]15},
〈[2]15〉 = {[1]15, [2]15, [4]15, [8]15} = 〈[8]15〉,
〈[4]15〉 = {[1]15, [4]15},
〈[7]15〉 = {[1]15, [4]15, [7]15, [13]15} = 〈[13]15〉,
〈[11]15〉 = {[1]15, [11]15},
〈[14]15〉 = {[1]15, [14]15}.

Hence, there are elements of orders 1, 2 and 4 but no element with order 8.
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HOMEWORK WEEK 4

05 AUGUST 2014

Deadline: 12 August 2014, TUESDAY 13:00. (Notice the change of day.)

Q. 1. Show whether the groups G10 and G7 are cyclic or not. If so, determine their generators.

Proof. The subgroups generated by the elements of G7 are

〈[1]7〉 = {[1]7},
〈[2]7〉 = {[1]7, [2]7, [4]7, [6]7},
〈[3]7〉 = {[1]7, [2]7, [3]7, [4]7, [5]7, [6]7},
〈[4]7〉 = {[1]7, [4]7},
〈[5]7〉 = {[1]7, [2]7, [3]7, [4]7, [5]7, [6]7},
〈[6]7〉 = {[1]7, [6]7}.

Therefore G7 = 〈[1]7〉 = 〈[5]7〉 and G7 is cyclic.
Over G10 = {[1]10, [3]10, [7]10, [9]10}, we have

〈[1]10〉 = {[1]10},
〈[3]10〉 = {[1]10, [3]10, [7]10, [9]10},
〈[7]10〉 = {[1]10, [3]10, [7]10, [9]10},
〈[9]10〉 = {[1]10, [9]10}.

Therefore G10 = 〈[1]10〉 = 〈[7]10〉 and G10 is cyclic. (4 pts) �

Q. 2. Let (G, ∗) and (H, ◦) be two groups. Consider the cartesian product G × H with the
operation (g1, h1)(g2, h2) = (g1 ∗g2, h1 ◦h2) for all (g1, h1), (g2, h2) ∈ G×H. Show that G×H
is a group. Prove that G × H is Abelian (commutative) if and only if both G and H are
Abelian.

Proof. First, we show that G×H is a gorup. We go through the four group axioms.
(1) For all (g1, h1), (g2, h2) ∈ G × H, we have (g1, h1)(g2, h2) = (g1 ∗ g2, h1 ◦ h2) and

g1 ∗ g2 ∈ G, h1 ◦ h2 ∈ H. So (g1, h1)(g2, h2) ∈ G×H. This shows that G×H is closed under
the group operation.

(2) For all (g1, h1), (g2, h2), (g3, h3) ∈ G×H, we have

[(g1, h1)(g2, h2)](g3, h3) = (g1 ∗ g2, h1 ◦ h2)(g3, h3) = ((g1 ∗ g2) ∗ g3, (h1 ◦ h2) ◦ h3).

Notice that (g1∗g2)∗g3 = g1∗(g2∗g3) since G is a group. Similarly, (h1◦h2)◦h3) = h1◦(h2◦h3).
So, continuing from the last equation

((g1 ∗ g2) ∗ g3, (h1 ◦ h2) ◦ h3) = (g1 ∗ (g2 ∗ g3), h1 ◦ (h2 ◦ h3))
= (g1, h1)(g2 ∗ g3, h2 ◦ h3)
= (g1, h1)[(g2, h2)(g3, h3)].

Therefore, the group operation is associative.
(3) The identity element is (eG, eH) where eG is the identity element in (G, ∗) and eH is

the identity element in (H, ◦).
(4) The inverse of (g, h) ∈ G×H is (g′, h′) ∈ G×H where g′ is the inverse of g with respect

to ∗ in G and h′ is the inverse of h with respect to ◦ in H. Since all four axioms are satisfied,
we conclude that G×H is a group.

1
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Now let us show the second part of the question. Let (g1, h1), (g2, h2) ∈ G×H. Then,

(g1, h1)(g2, h2) = (g1 ∗ g2, h1 ◦ h2)
and

(g2, h2)(g1, h1) = (g2 ∗ g1, h2 ◦ h1).
By definition, G×H is commutative if and only if (g1, h1)(g2, h2) = (g2, h2)(g1, h1). The latter
holds if and only if (g1 ∗ g2, h1 ◦ h2) = (g2 ∗ g1, h2 ◦ h1), that is, if and only if g1 ∗ g2 = g2 ∗ g1
and h1 ◦ h2 = h2 ◦ h1, in other words, G and H both are commutative. (4 pts) �

Q. 3. Show that Z× Z is not cyclic.

Proof. The standard group operation on Z × Z is given by (a, b)(c, d) = (a + c, b + d) for
(a, b), (c, d) ∈ Z × Z. We will say that Z × Z is cyclic if and only if it can be generated by a
single element (x, y) ∈ Z×Z. That is, if any (a, b) ∈ Z×Z can be written as (a, b) = (nx, ny)
for some n ∈ Z. The equality (a, b) = (nx, ny) has a solution for n if and only if n = a

x and
n = b

y . The common divisor of all integers is 1 (or −1). So, x, y must be 1 or −1. However,
(1, 1) can only generate the elements of the form (a, a) ∈ Z× Z and (1,−1) can generate the
elements of the form (a,−a) ∈ Z× Z. Therefore, Z× Z is not cyclic. (1 pt) �

Q. 4. Consider R2 = R×R as a group with the addition defined by (a, b)+(c, d) = (a+b, c+d)
for all (a, b), (c, d) ∈ R2. Show that the function f : R2 → R2 given by f(x, y) = (x, x) is a
group homomorphism.

Proof. The condition for f to be a group homomorphism is that

f ((a, b) + (c, d)) = f(a, b) + f(c, d)

for all (a, b), (c, d) ∈ R2. By the assumption, f ((a, b) + (c, d)) = f(a+c, b+d) = (a+c, a+c).
On the other hand,

f(a, b) + f(c, d) = (a, a) + (c, c) = (a+ c, a+ c)

Therefore, f ((a, b) + (c, d)) = f(a, b) + f(c, d) and f is a group homomorphism. (1 pt) �

Q. 5. Exercise 5.3.3. Let G be any group and g be an element of G. Define the function
f : G→ G by f(a) = g−1ag for a ∈ G. Show that f is an isomorphism G to itself.

Proof. First of all, f is a group homomorphism since for any a, b ∈ G, we have

f(ab) = g−1abg = g−1agg−1bg = (g−1ag)(g−1bg) = f(a)f(b).

So, we need to show that f is bijective.
Let a, b ∈ G and assume that f(a) = f(b). Then

g−1ag = g−1bg ⇔ ag = bg ⇔ a = b.

Hence, f is one-to-one.
Now, let b ∈ G. Then g−1ag = b if and only if ag = gb, and the latter holds if and only if

a = gbg−1. Hence b = f(a) for a = gbg−1 ∈ G, and f is surjective.
Therefore f is an isomorphism of G to itself. (3 pts) �

Q. 6. Exercise 5.2.4. Let H be a subgroup of the group G and let a be an element of G. Fix
an element b in aH (so b = ah for some h ∈ H). Show that

H = {b−1c | c ∈ aH}.

Proof. Let us denote the set {b−1c | c ∈ aH} by K and show that H = K.
Let ` ∈ H then b` = ah`. By Multiplying both sides of b` = ah` on the left by b−1 we

get ` = b−1ah`. Since h` ∈ H, we have ah` ∈ aH. As a result, ` has the form ` = b−1c for
c = ah`. So, ` ∈ K. Therefore, H ⊆ K.

Let k ∈ K. Then k = b−1c for some c ∈ aH, (or c = ah1 for some h1 ∈ H). So,

k = (ah)−1c = (ah)−1ah1 = h−1a−1ah1 = h−1h1.

Since h, h1 ∈ H and H is a subgroup, hh1 ∈ H. So, k ∈ H. Hence, K ⊆ H.
Consequently, H = K. (2 pts) �
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Q. 7. Exercise 5.4.1. Show that the check digit at the end of an ISBN code can detect an
error made by interchanging two adjacent digits.

Proof. Let us assume that n is the correct integer calculated by
∑10

i=2 i · ai and b is the check
digit. Suppose that ai and ai+1 are exchanged. Then,

n′ = 10 · a10 + 9 · a9 + · · ·+ (i+ 1) · ai + i · ai+1 + · · ·+ 2 · a2
= 10 · a10 + 9 · a9 + · · ·+ (i+ 1) · ai+1 + i · ai + · · ·+ 2 · a2 − ai+1 + ai

= n− ai+1 + ai.

The value of the check digit after the error is equal to

b′ ≡ −n′ mod 11 ≡ −n+ ai+1 − ai ≡ b+ ai+1 − ai.

Therefore, the code detects the error if and only if b′ 6= b, that is, if and only if ai+1 − ai 6= 0.
Since exchanging ai+1 with ai when ai+1 = ai is not error, we conclude that the code detects
that type error.

(2 pts) �

Q. 8. For each of the following generator matrices, find the minimum distance and determine
the number of errors that it can detect and correct.

M1 =

1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 1

 ,

M2 =


1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1
0 0 1 0 1 1 1 1
0 0 0 1 0 1 1 0

 ,

M3 =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 0

 .

Proof. Consider M1. Then 100 is mapped to 100 ·M1 = 1001101 = w1, 010 to 010 ·M1 =
01001101 = w2 and 001 to 001 ·M1 = 00100111 = w3. The minimum weight among w1, w2, w3

is 4. The rest of the codewords are of the form αw1 +βw2 +γw3 for α, β, γ ∈ {0, 1}. However,
it is not possible to produce a codeword of weight 3 or less by that formula. Therefore the
minimum distance between the codewords is 4. The code can detect 3 errors and correct 1
error.

By a similar discussion, we find that the minimum distance between the codewords produced
by the code generated by M2 is 3. So, it can detect 2 errors and correct 1.

Let us considerM3. We have 1000·M3 = 1000111, 0100·M3 = 0100110, 0010·M3 = 0010101
and 0001 ·M3 = 0001110. The minimum weight among those codewords is 3. However, if we
consider the rest of the codewords, we observe that the weight of

0100110 + 0001110 = 0101000

is 2. Therefore the minimum distance is 2 and the code can detect 1 error but correct none.
(3 pts) �

Q. 9. Exercise 5.4.3. Let f : B3 → B9 be a coding function given by

f(abc) = abcabcāb̄c̄

for abc ∈ B3 where x̄ = 1 if x = 0 and x̄ = 0 if x = 1. List the eight codewords of f . Show
that f does not give a group (linear) code.
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Proof. The code maps

000 7→ 000000111

100 7→ 100100011

010 7→ 010010101

001 7→ 001001110

110 7→ 110110001

101 7→ 101101010

011 7→ 011011100

111 7→ 111111000.

However, f is not a linear code since the sum of the two codewords 010010101 + 110110001 =
100100100 is not a codeword. (2 pts) �

Q. 10. Write down the complete coset decoding table for the code generated by the matrix(
1 0 1 0 1 1
0 1 0 1 1 0

)
.

A message is encoded using the letter equivalents

00 = G, 10 = S, 01 = Z, 11 = Y,

and received as
101111, 111111, 011110, 111101, 010000, 101101.

Correct and decode the received message.

Proof. We see that by the code

00 7→ 000000

10 7→ 101011

01 7→ 010110

11 7→ 111101.

The coset decoding table can be formed as follows.

000000 101011 010110 111101
100000 101011 110110 011101
010000 111011 000110 101101
001000 100011 011110 110101
000100 101111 010010 111001
000010 101001 010100 111111
000001 101010 010111 111100
100001 001010 110111 011100
100010 001001 110100 011111
100100 001111 110010 011001
101000 000011 111110 010101
110000 011011 100110 001101
010001 111010 000111 101100
011000 110011 001110 100101
001100 100111 011010 110001
000101 101110 010011 111000

We observe that in the received message 111101 is a codeword. For the rest of the words,
we locate them in the coset decoding table and note the column leader. So, the words

101111, 111111, 011110, 111101, 010000, 101101

are corrected into

101011, 111101, 010110, 111101, 000000, 111101.

The encoded message is formed by the first two digits of those: 10, 11, 01, 11, 00, 11 which
translates into SYZYGY. (3 pts) �



MAT 312 SUMMER II, 2014 MIDTERM
Solutions

Question 1.

a. Find all n ∈ N, with n ≥ 2, for which the following congruences hold.

(i) 13 ≡ 7 mod n, (ii) − 1 ≡ 6 mod n, (iii) 0 ≡ −3 mod n.

b. Find all n ∈ N such that φ(n) = 12.

c. Prove that if an odd prime number can be expressed as p = x2 + y2 with
integers x and y then p ≡ 1 mod 4.

Solution.
a. (i). 13 ≡ 7 mod n⇒ 13 = k · n+ 7 for some k ∈ Z. Equivalently, 6 = k · n, or

n|6. The divisors of 6 are 1, 2, 3 and 6. So, n can be 2, 3 or 6.

(ii). −1 ≡ 6 mod n ⇒ −1 = k · n + 6 for some k ∈ Z. Equivalently, −7 = k · n,
or n|7. The divisors of 7 are 1 and 7. So, n is equal to 7.

(iii) 0 ≡ −3 mod n ⇒ 0 = k · n − 3 for some k ∈ Z. Equivalently, 3 = k · n, or
n|3. The divisors of 7 are 1 and 3. So, n is equal to 3.

b. Let us assume that n = pα1
1 p

α2
2 · · · pαr

r where p1, p2, . . . , pr are distinct primes
and αi ∈ N for all i = 1, . . . , r. Then

φ(n) = φ(pα1
1 )φ(pα2

2 ) · · ·φ(pαr
r )

=
(
pα1

1 − pα1−1
1

) (
pα2

2 − pα2−1
1

)
· · ·

(
pαr
r − pαr−1

r

)
= pα1−1

1 (p1 − 1) · pα2−1
2 (p2 − 1) · · · pαr−1

r (pr − 1).

Note that pαi−1
i (pi − 1) 6= p

αj−1
j (pj − 1) since pi 6= pj for i 6= j. So we just need to

solve pα−1(p− 1) = a for p prime and α where a is a factor of 12. Since 12 = 1 · 12,
12 = 4 · 3 and 12 = 2 · 6 are the only possible factorisations, r is at most 2. We are
considering any factorisations of 12 since the factors (pi−1) are not prime for p > 2.

Consider 12 = 1 · 12. Clearly, pα−1(p − 1) = 1 if and only if p = 1 and α = 1,
and pα−1(p− 1) = 12 if and only if p = 13 and α = 1. Notice that there is no prime
satisfying pα−1 = 12 for any α ∈ N. We have n = 13 or n = 2 · 13 = 26.

Now consider 12 = 4 · 3. If pα−1(p− 1) = 3 then p− 1 = 3, pα−1 = 1 or p− 1 = 1,
pα−1 = 3. However, p = 4 is not a prime. In the latter case, p = 2 but there is no
natural number α giving 2α−1 = 3. So φ(n) cannot be of the form φ(n) = 4 · 3.

1



Finally, consider 12 = 2 · 6. We need to solve pα−1(p− 1) = 2 and pα−1(p− 1) = 6.
For pα−1(p− 1) = 2 we have two solutions:

p = 2, α = 2, or p = 3, α = 1.

For pα−1(p− 1) = 6 we also have two solutions:

p = 7, α = 1, or p = 3, α = 2

(consider 6 = 6 · 1 or 6 = 3 · 2.) Therefore, the possibilities for n are n = 22 · 7 = 28,
n = 22 · 32 = 36 and n = 3 · 7 = 21 (we choose p1, α1 from the first group and
p2, α2 from the second group). Notice that n = 3 · 32 = 33 is not an answer since
φ(33) = 33 − 32 = 18.

c. Since p is odd p ≡ 1 mod 4 or p ≡ 3 mod 4. For any x ∈ Z4, x
2 ∈ {[0]4, [1]4}.

So, x2 + y2 ≡ 1 mod 4 for any x ∈ [0]4 and y ∈ [1]4. However, there is no possible
choices for x and y that could give x2 + y2 ≡ 3 mod 4. Therefore, if p = x2 + y2 then
it has to satisfy p ≡ 1 mod 4.



Question 2. Using the Chinese Remainder Theorem, or otherwise, deduce whether
the following systems of linear congruences have a solution. If they do, calculate the
solutions.

(i) 6x ≡ 5 mod 11 and 3x ≡ 4 mod 5.
(ii) x ≡ 2 mod 21, 4x ≡ 2 mod 18 and 2x ≡ 3 mod 7.

Solution.
(i) First bring the congruences into the form x ≡ a mod n. So, multiply them by

the inverse of 6 mod 11 and the inverse of 3 mod 5, respectively. We have [6]−1
11 = 2,

[3]−1
5 = 2. Then

6x ≡ 5 mod 11

2 · 6x ≡ 2 · 5 mod 11

x ≡ 10 mod 11

and

3x ≡ 4 mod 5

2 · 3x ≡ 2 · 4 mod 5

x ≡ 8 mod 5

x ≡ 3 mod 5.

Notice that (11, 5) = 1. By the theorem, there exists a unique solution to the system
mod 5·11 = 55. Let us calculate the solution. If x is a solution to the first congruence
then x = 11k + 10 for some k ∈ Z. If x is also a solution to the second one, then

x = 11k + 10 ≡ 1 · k + 0 ≡ k ≡ 3 mod 5.

So, k = 5m + 3 for some m ∈ Z. This gives x = 11(5m + 3) + 10 = 55m + 43.
Therefore [43]55 is the unique solution.

(ii) We apply the theorem to x ≡ 2 mod 21 and 2x ≡ 3 mod 7. Again, we need
to bring the latter into the form x ≡ a mod 7 for some a ∈ Z. So multiply the both
sides by [2]−1

7 = [4]7 to get

2x ≡ 3 mod 7

4 · 2x ≡ 4 · 3 mod 7

x ≡ 12 mod 7

x ≡ 5 mod 7.

Now, by the Chinese Remainder Theorem, “x ≡ 2 mod 21, x ≡ 5 mod 7” have
a common solution if and only if (21, 7) = 1. Since this is not the case, there is
no common solution satisfying the two congruences. Therefore, there cannot be a
common solution to “x ≡ 2 mod 21, 4x ≡ 2 mod 18, 2x ≡ 3 mod 7”.



Question 3. Let a ∈ Z+. Show that for any integer n ≥ 1,(
a 1
0 a

)n

=

(
an nan−1

0 an

)
.

Solution.
For n = 1, we have (

a 1
0 a

)1

=

(
a 1
0 a

)
.

Assume that the equality holds for n = k. For n = k + 1 we have(
a 1
0 a

)k+1

=

(
a 1
0 a

)k

·
(
a 1
0 a

)
=

(
ak nak−1

0 ak

)
·
(
a 1
0 a

)
(by the assumption)

=

(
ak+1 (k + 1)ak

0 ak+1

)
.

Therefore the equality is true for all n ≥ 1 by the induction principle. �



Question 4. A public key code has base 69 and exponent 15. It uses the following
letter-to-number equivalents.

B = 1, G = 2, L = 3, A = 4, E = 5, S = 6, “ ” = 7, T = 8, R = 0.

(Note that 7 corresponds to the “space” character.) A message has been converted
to numbers and broken into 2-digits blocks. The coded message is 34/16/28/47.
Decode the message.

Solution.
We have n = 69 = 3·23. So, φ(69) = (3−1)(23−1) = 44. Notice that (44, 15) = 1.

We calculate the other integer x by the formula

1 = x · 15 + s · 44

where s ∈ Z. We find x = 3 since

1 = 3 · 15− 44.

Let us decode 34/16/28/47. We find β1/β2/β3/β4 by

β1 = 343 mod 69 ≡ 52 · 34 ≡ 43 mod 69,

β2 = 163 mod 69 ≡ 49 · 16 ≡ 25 mod 69,

β3 = 283 mod 69 ≡ 25 · 28 ≡ 10 mod 69,

β4 = 473 mod 69 ≡ 1 · 47 ≡ 47 mod 69.

Hence, the coded message is 43/25/10/47 which translates into “ALGEBRA ”. �



Question 5. Let A, B and C be nonempty sets. Prove the following two equalities.

(i) (A \B) ∪ (B \ A) = (A ∪B) \ (B ∩ A),

(ii) A \ (B \ C) = (A \B) ∪ (A ∩ C),

Solution.
(i) We use the equality A \ B = A ∩ Bc and the properties of the set operations
∩, ∪ and “ c ” to get

(A \B) ∪ (B \ A) = (A ∩Bc) ∪ (B ∩ Ac)
= [(A ∩Bc) ∪B] ∩ [(A ∩Bc) ∪ Ac]
= [(A ∪B) ∩ (Bc ∪B)] ∩ [(A ∪ Ac) ∩ (Ac ∪Bc)]

= (A ∪B) ∩ (Ac ∪Bc)

= (A ∪B) ∩ (A ∩B)c

= (A ∪B) \ (B ∩ A).

Alternatively, we can use the definitions.

x ∈ (A \B) ∪ (B \ A) ⇒ x ∈ A \B or x ∈ B \ A
⇒ “x ∈ A and x /∈ B” or “x ∈ B and x /∈ A”

⇒ “x ∈ A or x ∈ B” and “x /∈ A or x /∈ B” and

“x ∈ A or x /∈ A” and “x ∈ B or x /∈ B”

⇒ “x ∈ A or x ∈ B” and “x /∈ A or x /∈ B”

⇒ “x ∈ A ∪B” and “x /∈ A ∩B”

⇒ x ∈ (A ∪B) \ (A ∩B).

Note that both “x ∈ A or x /∈ A” and “x ∈ B or x /∈ B” implies x ∈ U and that
does not effect the claim. Hence, (A \B) ∪ (B \ A) ⊆ (A ∪B) \ (B ∩ A).

Now assume that x ∈ (A ∪B) \ (B ∩ A). Then

x ∈ (A ∪B) \ (B ∩ A) ⇒ x ∈ A ∪B and x /∈ A ∩B
⇒ “x ∈ A or x ∈ B” and “x /∈ A or x /∈ B”

⇒ “x ∈ A and x /∈ A” or “x ∈ A and x /∈ B” or

“x ∈ B and x /∈ B” or “x ∈ B and x /∈ A”

⇒ “x ∈ A and x /∈ B” or or “x ∈ B and x /∈ A”

⇒ x ∈ A \B or x ∈ B \ A.

Note that both “x ∈ A and x /∈ A” and “x ∈ B and x /∈ B” imply x ∈ ∅ and that
does not effect the claim. Hence (A ∪ B) \ (B ∩ A) ⊆ A \ B or x ∈ B \ A. Thus,
(A \B) ∪ (B \ A) = (A ∪B) \ (B ∩ A).



(ii) Similarly,

A \ (B \ C) = A ∩ (B \ C)c

= A ∩ (B ∩ Cc)c

= A ∩ (Bc ∪ (Cc)c)

= A ∩ (Bc ∪ C)

= (A ∩Bc) ∪ (A ∩ C)

= (A \B) ∪ (A ∩ C).


