
 

MAT 310 (Linear Algebra)
Fall 2006

Department of Mathematics,
Stony Brook University

Welcome to MAT 310!

This is the final course in the linear algebra sequence.
We cover all the material in MAT
211 (or AMS 210) as well as some material (for example the Cayley-Hamilton theorem
and the Jordan canonical form) that will be new to most of you. The course will
probably have quite a different emphasis from your previous courses on this subject:
specific calculations will be of far less importance than understanding the statement of
the main theorems and precisely why they are true. Because one of the aims of this
course is to teach you how to write proofs, the homework and recitations are
an
integral part of the course.

This is the link to the
CURRENT HOMEWORK. This page will also contain
links to
solutions.

Course Notes:

(posted Dec 17) The exam will be in the usual room.
I will have office hours on
Tuesday 10am -1pm.

(posted Dec 17) Here are solutions to the review sheet.
p1 p2 p3 p4 Solutions to the
HWs are also posted.

(posted Dec 13) Just to repeat: I will NOT be in the dept tomorrow-- I told one
student today that I would be, but I forgot that I am going to the city.
I have done
some of the Final Review which is now posted HERE. I will update this on Thursday
morning.
(now done)

(posted Dec 13) I forgot to say in HW 11 Ex 2 that
$V$ has dim $n$.

(posted Dec 10) The homework is now posted; sorry it is late.
Vincent will be at
Stony Brook on Wed Dec 13 and will be in his office most of the day. I will be away
that day, though.

(posted Dec 5) There was a mistake in Ex 1(ii) in the HW this week. It is now
corrected.
Also, Vincent sent you all a rather incoherent message about recitations.
The recitations this week as are usual. His message concerns next week
when WED
Dec 13 follows MONDAY's schedule. This means that there is
no recitation on Wed 13.
He invites all of you who are interested
to come to his Thursday class instead.

http://www.math.sunysb.edu/
http://www.sunysb.edu/


(posted Nov 29) Either of the midterms (carefully rewitten) would be suitable for the
proof part of the writing requirement.
If you are interested in this, please submit your
rewrite to me fairly soon (eg next week) so I can check it over. Also, your projects
would do for another part of the writing requirement (and would do for the proof part
if they contained enough proofs...) If you are interested in this, please write on your
project when you submit it that you want me to consider it for the writing
requirement.

(posted Nov 19) I will give back the exams in Tuesday's class. Most of you have
been working really hard, and it shows in the results. Many of you did really well.
There was a wide spread in the results: the distribution was: < 30: 9; 30-39: 4; 40-
49: 3; 50-59 4; 60-69: 6; 70-79: 6; 80-89: 5; 90-110: 7.
a total of 44 exams.
Again,
I will give the 16 students
who got < 50 a chance to improve their grade. They must
hand in a rewritten exam IN CLASS ON TUESDAY NOV 27 together with their old
exam. I will add
half the extra points to the exam grade up to a maximum of 50. (The
exam is posted on the HW page: HW for next week is also posted there.) I will spend
Tuesday's class
discussing the exam and answering any questions there may be about
the projects. On Tuesday Nov 27 I will
start lecturing on the characteristic polynomial
(Ch 8).

(posted Nov 12) I am leaving on the morning of Wed Nov 15 and so will not be able
to hold my usual office hours then, sorry. I will be having office hours on Tuesday as
usual (12-1 in UG office and
1-2 in my office.)

(posted Nov 11) Here are the projects.
Project 1
concerns eigenvectors and
eigenvalues; Project 2 is a minimization problem;
Project 3 is about Fibonacci
numbers;
Project 4 is a basic project intended for students
who are aiming for a C (or
C+);
Project 5 is about the Jordan normal form.
The deadline for all projects is
Thursday, December 14 at 5pm. You should give them to me in my office (or under
the door, if I am not there.)
The projects should be your own work and written in your
own words.
However, you can come to me or Vincent to discuss any questions you
might have about them. Each student should do at most ONE project.

(posted Nov 11) Here is the
review sheet for Midterm 2 (added at 8:45pm: slightly
revised). We will discuss it
in Tuesday's class, together with any other questions you
have.
Since there will also be review time in recitation this week, it might be best if on
Tuesday I tried to answer your more fundamental questions to give you a basis for
doing the review sheet.
So please, if there any subject that
you really have no clue
about, do ask me to go over it.

(posted Nov 10) The HW solutions are now posted.

(posted Oct 31) I am leaving tomorrow (Wed) in the morning for a meeting in
Washington. So I won't be able to manage tomorrow office hours, sorry.
Here is the
Worksheet for Thursday. Most of the problems on HW 8 will be very much like these. I
haven't quite written it yet, but I plan just to change numbers etc. in many problems.
So Thursday's class should be an opportunity for you to
get a head start on the HW for
next week.

(posted Oct 31) There was a small typo in Ex 5 on HW 7 that I have just corrected.



(posted Oct 26) I just got an email saying that USG (the Undergrad student
government) is starting a new program called PASS to make free one on one tutoring
available to all students. You might want to check it out (though I'm not sure they
would have tutors equipped to handle
MAT 310... -- it would be better to come to my
(or Vincent's) office hours...

(posted Oct 26) I added HW problems from Ch 5 and 6 to the
syllabus. I will be
away on Nov 2; Vincent will give another workshop
on some topics from Ch 6.

(posted Oct 12) The average in the exam was 60%;
with distribution: (90-100) 5;
(80-89) 11; (70-79) 8; (60-69) 3;
(50-59) 5; (40-49) 8; (30-39) 3; (0-29) 8.
VERY
rough grade equivalents are: A for 85 and above, B to A- for 70-84;
C to B- for 50 to
69; D to C- for 40 to 49.
For those of you who did not do so well the important thing is
to keep working.
I will allow the grade of your rewrite of the exam to improve your
exam grade up to a maximum of 50. So, the rewrite will count as a HW,
but also I will
add 1/2 of the difference between the new grade and the old to your old grade, to give
you a revised grade of no more
than 50.
(So this will NOT affect those of you who got
over 50).
For fairness, I will keep note of both the revised and the old midterm grades.

(posted Oct 11) Vincent I and will get the exam graded by class time on Thursday at
the latest. (Some of you may get it back in recitation.) From my bit of grading, I think
you have mostly done very well. The homework for this week is to rewrite the exam.
You need not rewrite any question for which you got 90% or more on a question.
Please hand in the rewrite as well as your original exam paper in the usual way next
week. Thanks.

(posted Oct 11) Here are the two versions of the exam.
Version 1 Version 2 Also, I
corrected two types that were pointed out to
me in the list of theorems. You might
want to look at the new list (posted below.)

(posted Oct 11) The lecture tomorrow will be on polynomials. Then we move on to
Ch 5.

(Posted Oct 6) Solutions to HW 4 are now posted.

(posted Oct 5) Here is the final version
of the review sheet, and also the
final list of
theorems.
Please bring these to class today if you can.

(posted Oct 3) I will prepare a review sheet
today or tomorrow to discuss in class on
Thursday.
I will post it on this page as soon as it is ready.

(posted Oct 3) I realised that part (ii) of Ex 3 was wrong and changed it.

(posted Sep 27) Here is the
worksheet for the class on Thursday Sept 28.

(posted Sep 20) Here are some notes to amplify some parts of Ch 2 and Ch 3.

(posted Sep 20) I have extended my Wednesday office hours
to 11:15 - 12:30. I
also have office hours on Tuesday.
The department wants me to hold some of these in
the Undergraduate office.
So I will be 12-1 in UG Office (P143) and 1-2:15 in my office
(3-111).



(posted Sep 18) Someone asked me to post the tex file of the HW. I have now done
this for HW 2. It is on the HW web page.

(posted Sep 12) In today's class some students pointed out some inaccuracies in HW
1. So I have slightly revised it,
correcting Ex 2 (iii) and making Ex 6 more clear.
I also
added a bonus problem. (Note: if you ever think one of the HW problems is wrong etc,
please email me and I'll see if it needs correcting.)

(posted Sep 12) I just sent an email message to all the students
who gave me their
address last week.
Please email me at dusa at math.sunysb.edu if you are registered
for the course
and do NOT receive this email
by the morning of Wed Sep 13. Those
who got it need do nothing (unless you want me
to take you off the list.) Thanks.

(posted Sep 12) I wrote out a model proof for you to guide you in doing your
homework.

(posted Sep 12) I will be away on Sept 14. The lecture will
be given by Professor
Phillips. Topic: first half of Ch 2 especially the proof of 2.4. This is a crucial result.

(posted Sep 7) Here is the
Exercise Sheet for this week's recitations.
You are not
expected to hand anything in. The material in Ex 3-5 is review for
next week and is
not relevant to this week's work.

(posted Aug 30) Please go to your first recitation, even though this will be before the
first lecture. This will be a review class to remind you of some of the basics from MAT
211.

Instructor: Dusa McDuff

Instructor's Office Hours: held in Undergraduate Office (Math P143): Tu 12-1, and
in Math Building 3-111: Tu 1:00-2:15, Wed 11:15-12:30 You are always welcome to
contact me by email (dusa at math.sunysb.edu) either to ask a short question or to
set up an appointment to see me.

TA: Vincent Graziano

TA's Office: Math Building 2-116

TA's Office Hours: TBA

Textbook: S. Axler, Linear Algebra done right, 2nd Ed., Springer Undergraduate Text

(one copy is available on reserve in the Math/Physics/Astronomy Library; later on in
the semester there should be two)

Course Format:

The course meets for lecture Tuesdays and Thursdays in Harriman Hall 108 from 2:20
pm to 3:40 pm. You will get most out of these classes if you prepare beforehand by
reading the relevant section in the textbook before class. My aim in these lectures will
be to explain and illustrate the arguments in the book. I am always glad to answer
questions during class. (If you have more questions, please talk to me after class or

http://www.math.sunysb.edu/~dusa


come to my office hours.)

There are recitations on Wednesday or Thursday. Their main aim is to help you
understand the lecture and do the homework. The syllabus below suggests problems
from the book for you to try on your own, but this is not the assigned homework. I will
write out homework sets for you each week that you can access from this page.
Homework should be handed in to the TA Vincent Graziano in recitation. He will tell
you exactly when it is due. Late homework will be penalized (and if it is too late, e.g.
after the solutions are posted, it will not be accepted.) He will also tell you exactly how
the homework grade will be computed.

It is fine for you to work with others on your homework. But the work you hand in
must be written in your own words. Do not copy other's work or let your own work be
copied; both parties are penalized for copying.

Some links of interest There are many places online where you can get useful
information, eg MathWorld and Wikipedia. Here are some other suggestions.

A useful online linear algebra text with many worked examples and exercises with
solutions.

An online linear algebra tutorial by our own Avi Goldstein. Some of this is too
computational to be very relevant, but there are many helpful worked examples.

A discussion of the many applications of linear algebra. We will not have time to
discuss detailed applications, so you might want to look at this to see the range of
possibilities.

A nice expository paper on the use of linear algebra in search engines.

Examinations:

There will be two in-class midterms (on October 10 and November 16 ). The final,
which will be cumulative, is on December 19, 5:00-7:30 pm . It is your
responsibility to make sure that you can manage these times; tell me of any problems
well beforehand. Incomplete grades will be granted only if documented
circumstances beyond your control prevent you from completing 50% or more of
all class assignments.

Optional projects:

These will be similar in spirit to the projects done in Fall 05, i.e. written papers of less
than 5 pages. You may submit work on at most two of them; the best will be graded
and will add at most an extra 10% to your grade. Further details will be given out later
(by Nov 21 at the latest).

Grading:

Your grade will be based on your examination performance, homework and project (if
any), weighted as follows:

Exam I 20%

http://joshua.smcvt.edu/linearalgebra/
http://joshua.smcvt.edu/linearalgebra/
http://www.agolda.com/211.html
http://aix1.uottawa.ca/~jkhoury/app.htm
http://www.tufts.edu/~mkilme01/siagla/articles/IMAGE.pdf


Exam II 20% 

Final Exam 30%

Homework 30%

Project 10% extra

DSS advisory:

If you have a
physical,
psychological,
medical, or learning disability that may affect
your course work,
please contact Disability Support
Services (DSS) office: ECC
(Educational Communications Center)
Building, room 128, telephone (631) 632-
6748/TDD.
DSS will determine with you what accommodations are necessary and
appropriate. Arrangements should be made early in the semester (before
the first
exam) so that your needs can be accommodated. All information
and documentation
of disability
is confidential.
Students requiring emergency evacuation are encouraged
to discuss their
needs with
their professors and DSS. For procedures and information,
go to the
following web site http://www.ehs.sunysb.edu and search Fire safety and
Evacuation and Disabilities.
  
Schedule (tentative):

The following is the basic syllabus. Please read the relevant parts of the book before
class.

Days Sections
covered

Suggested exercises

Sep 7, 12 Ch 1 p 19: 2-5, 7, 8, 11, 13

Sep 14, 19 Ch 2 p 35: 1, 2, 5, 6, 9, 11, 13, 14

Sep 21 - Oct 3 Ch 3 p 59: 1-3, 5, 7, 9, 10, 12, 15, 16, 19, 20, 22, 26.

Sep 28 a workshop instead of lecture

Oct 5 review

Oct 10 Midterm I on Ch 1,2,3.

Oct 12 Ch 4 p 73, 1-3

Oct 17, 19, 24 Ch 5 4, 5, 7,8,9,10,15,16,18,19,21,23

Oct 26 -Nov 7 Ch 6 1,2,3,4,7,8*,9,10,11,13,15,18, 21,24,27,29,30

Nov 9 Ch 7 (part)

Nov 14 review

Nov 16 Midterm II on Ch 4,5,6

Nov 21 ch 7 ctd projects given out and discussed

Nov 28, 30, ch 8 (parts) TBA

http://www.ehs.sunysb.edu/


Dec 5

Dec 7, 12 ch 10 (parts) TBA

Dec 14 review

Dec 19 Final Exam (Cumulative)



MAT 310 Homework Assignments
Fall 2006

Comments Due Date

Homework 1 9/13/06 or 9/14/06

Homework 2 9/20/06 or 9/21/06

Homework 3 Brief solutions 9/27/06 or 9/28/06

Homework 4 (revised) Solutions 10/4/06 or 10/5/06

Homework 5: rewrite the
exam 

see notes on web page for details 10/18/06 or 10/19/06

Homework 6 Solutions 10/25/06 or 10/26/06

Homework 7 Solutions 11/1/06 or 11/2/06

Homework 8 Solutions 11/8/06 or 11/9/06

For Homework 9 rewrite the
questions on the exam for

which you got less than 90 %

some of you should
hand this in to me on
Tues Nov 26 (see notes on web page).
The others give to
Vincent as usual
(together with the original exam).

11/29/06 or 11/30/06

Homework 10 Solutions (I realised I called some of this
HW11, but it is HW10.) 12/6/06 or 12/7/06

Homework 11 Brief Solutions (only one page) 12/14/06











Math 310: Review for the Final, Dec 19, 5–7:30
Final version

The exam will be cumulative. You are expected to know all the previous definitions and
also:

multiplicity of an eigenvalue;

generalized eigenvalues;

the characteristic and minimal polynomials;

the definition of trace and determinant of a linear map;

the formula for the determinant of an n× n matrix (using permutations).

the formula for the characteristic polynomial in terms of the determinant (see Ex 1 below,
and the book Thm (10.17).)

All this JUST WHEN F = C. I will also NOT ask anything about the adjoint; or anything
from Ch 7. From Ch 8 we did not do square roots or the Jordan normal form. I will ask
you to prove some easy (and short) statements. (as in Ex 2); and also to compute some
examples.

The most important theorems: (8.6), (8.9), (8.18), (8.19), (8.23), (8.28), (8.36); (10.3),
(10.17), (10.33).

Here are some sample problems.

Ex 1 (i) First, some unfinished business from the lecture on Tuesday. Let V be a finite
dimensional vector space over C. I did not have time in class today to point out that
T ∈ L(V ) has 0 as an eigenvalue iff detT = 0. (This is obvious because det T is the
product of the eigenvalues of T .) Using this statement show that λ is an eigenvalue for T iff
det(λI−T ) = 0. Deduce from this that the characteristic polynomial of T is det(zI−T ) = 0.
(Show that this is a monic polynomial q(z) that has the same roots as the characteristic
polynomial.) This justifies one of the standard definitions of the characteristic polynomial.
It also justifies a standard computational method for finding eigenvalues. (Of course I would
not ask you to prove this on an exam, but it’s good review...)
(ii) Use this determinantal formula to compute the eigenvalues of TA : C3 → C3, where

A =

 2 0 2
1 0 1
0 3 0

.

(iii) Find a basis B = v1, v2, v3 with respect to which TA is represented by a diagonal matrix
M(TA,B), and calculate M(TA,B).

Ex 2. Define a linearly independent list. Suppose that the list v1, . . . , vk of vectors in V
is linearly independent but does NOT span V . Show that there is vk+1 ∈ V such that the
list v1, . . . , vk, vk+1 is linearly independent.
Note: Prove this just using the basic definitions, DO NOT quote any theorems from the
book.



Ex 3. Suppose T ∈ L(V ), m is a positive integer and v ∈ V is such that T 2v 6= 0 but
T 3v = 0. Show that (v, Tv, T 2v) is linearly independent. (Hint: Suppose this is false; write
down a linear relation and play with it.) This generalizes; cf p 188 ex 3.)

Ex 4 (i) Give an example of an operator on C4 whose minimal polynomial and characteristic
polynomial are equal.
(ii) Give an example of an operator on C4 with minimal polynomial (z − 1)2(z − 2) and
characteristic polynomial. (z − 1)3(z − 2).

Ex 5 (i) Suppose V is an n-dimensional complex vector space and let T ∈ L(V ). Show
that (nullTn) ∩ (range Tn) = {0}. (Use (8.6).)
(ii) Suppose that the eigenvalues of T are λ0 = 0, λ1, . . . , λk and write V = V0 ⊕ · · · ⊕ Vk

where Vi = null (T − λiI)n as in Thm (8.23). Show that Vi ⊆ range Tn for all i > 0.
Hint: Show by induction on k that null (T − λI)k ⊂ range Tn whenever λ 6= 0.
(iii) Deduce from (i) and (ii) that V = nullTn ⊕ range Tn.
(iv) Give an example of a T with eigenvalues 0 and 3 such that V 6= nullT ⊕ range T .

Ex 6 (i) Let U be the subspace of R5 defined by

U = {(x1, x2, . . . , x5) : x1 = 2x4, x2 = 6x5}.
Find a basis for U .
(ii) Find a basis for a subspace W such that R5 = U⊕W . Hint: first decide what dimension
W should have.)

Ex 7. Suppose that e1, e2 is an orthonormal list in a real inner product space V . Let v ∈ V .
Show that ‖v‖2 = |〈v, e1〉|2 + |〈v, e2〉|2 iff v ∈ span(e1, e2).

Ex 8. Suppose U is a subspace of a real inner product space V . Show that U⊥ = {0} iff
U = V .
Note: in both ex 6 and ex 7 you should argue from the definition of inner product. Do not
just quote results from the book. (eg if you assume that V = U ⊕ U⊥ then 7. is obvious,
but what’s the shortest argument that gives what you want, if assume you do NOT know
this?)

Ex 9 Suppose that T ∈ L(V ) is such that every subspace of V is invariant under T . Show
that T = cI for some scalar c.

Ex 10. Suppose T ∈ L(V ) is such that nullT ∩ range T = {0}. What can you say about
range T 2?



Project 1

(due by 12/14/06 – 5:00pm)

Discuss the problem below in a concise and precise essay, at most 5 typed pages long. Whenever you use a

reference, quote it and do not copy. Use your own words.

Consider the linear operator T : R4 → R4 which has the matrix
−4 3 1 −1
−6 5 0 0

0 0 0 4
0 0 −1 4


with respect to the standard basis.

1. Argue that there is a basis v1, v2, v3, v4 of R4 for which the matrix of T is upper-triangular
by explicit construction, using the methods of Chapter 5. In particular, all eigenvalues are real.
Give them and compute the matrix.

2. Find all invariant subspaces of T . Why is there no basis of eigenvectors, so T is not
diagonalizable?

3. Finally, apply the Gram-Schmidt process to the above basis and construct an orthonor-
mal basis e1, e2, e3, e4 and the corresponding upper-triangular matrix for T according to Schur’s
Theorem (Corollary (6.27) in the text book.).



Project 2

(due by 12/14/06 – 5:00pm)

This project concerns applications of Linear Algebra to approximating continuous functions by polynomials. Dis-

cuss the problem below in a concise and precise essay, at most 5 typed pages long. Whenever you use a reference,

quote it and do not copy. Use your own words.

We want to use the idea of orthogonal projection to approximate a function as in Chapter 6,
pp111-116. Consider the function cosh defined by

coshx =
ex + e−x

2
.

Recall some basic properties of this important function (including its graph, which is also known
as a catenary, since a homogeneous chain freely suspended beween two points will hang conforming
to this shape. Note in particular that cosh is an even function. We now restrict attention to the
fixed interval [−2, 2]. On the real vector space C[−2, 2] of all continuous function f : [−2, 2] → R
we work with the inner product

< f, g >=
∫ 2

−2
f(x)g(x)dx ,

as usual. Let U denote the subspace of all polynomial functions in C[−2, 2] of degree at most 5.
Let v ∈ C[−2, 2] be the restriction of cosh to the interval [−2, 2] and PUv the othogonal projection
of v in U .

1. Discuss first that x, x3, x5 are all orthogonal to v on [−2, 2]. Why is no explicit computation
necessary here? Exploit that odd-degree monomials are odd functions.

2. Why does the previous result guarantee that PUv actually lies in the subspace W ⊂ U
spanned by 1, x2, x4. Now compute PUv = PW v = u by applying the Gram-Schmidt process to
1, x2, x4 and obtain an orthonormal basis e1, e2, e3 of W . So this best approximation of v on [−2, 2]
by polynomials of degree at most 5 will be of the form u(x) = a + bx2 + cx4.

3. As in our text, plot v and u in one graph. To obtain reasonably good graphics you need to
use Maple, Mathematica, or similar programs for plotting, which you should try even if you have
never done it before. Also plot v against its Taylor polynomial about 0, p(x) = 1 + x2

2 + x4

24 . In any
case, decide either from the graphs or by any other method, which of these 2 polynomials u, p is
the better approximation. Of course, both of them are very good. Discuss any other observations
you might have made.



Project 3

(due by 12/14/06 – 5:00pm)

This project concerns some simple applications of Linear Algebra to Fibonacci Numbers. Discuss the problem

below in a concise and precise essay at most 5 typed pages long. Whenever you use a reference, quote it and do not

copy. Use your own words.

Let an denote the basic sequence of Fibonacci numbers defined by the recursive relation

an+2 = an + an+1, a0 = 1, a1 = 1 .

Work out the problems below and find an explicit formula for an.

1. Consider an operator T on the vector space R2 such that T maps the vector (x, y) to the
vector (y, x+y). Show that T maps (an−2, an−1) to (an−1, an), where an is the Fibonacci sequence.
Write the matrix A of T in the standard basis and prove that

An

[
1
1

]
=

[
an

an+1

]
.

2. Diagonalize the operator T by finding its eigenvalues and eigenvectors. Show that the
eigenvectors v1, v2 form a basis in R2. If B denotes the diagonal matrix of T with respect to this
basis, verify that A = P−1BP , where the columns of the transition matrix P are v1, v2 in terms of
the coordinates with respect to the standard basis.

3. Find Bn and conclude that An = P−1BnP from A = P−1BP . Now easily find An and
write an explicit formula for the n-th Fibonacci number.

4. Suppose that the numbers bn, n ≥ 0, are defined by the same recursive relation, but with
b0 = 1, b2 = 3. Thus b2 = 4, b3 = 7 . . . . Find an explicit formula for bn. Check your answer for b10

(using a calculator).



Special Basic Project 4

(due by 12/14/06 – 5:00pm)

This project concerns only very basic aspects of Linear Algebra. It is meant to give those a chance who are in

need of extra credit toward passing at a C level. It can not be counted as credit toward the course grades A and B.

Whenever you use a reference, quote it and do not copy. Use your own words.

1. Let U and W be linear subspaces of a finite dimensional vector space V . Prove that the
following three conditions are equivalent:

(a) U + W = V and U ∩W = 0.
(b) For each vector v ∈ V there are unique vectors u ∈ U and w ∈ W such that v = u + w.
(c) There exists a basis in V such that each vector in this basis belongs either to U or to W .

2. Consider the vectors in R4 defined by

v1 = (1, 0, 1, 1), v2 = (1, 0, 2, 1), v3 = (1, 2, 0, 1) v4 = (3, 2, 3, 3)

(a) What is the dimension of the subspace W of R4 spanned by the four given vectors? Find a
basis for W and extend it to a basis of R4.

(b) Use a basis of R4 as in (a) to characterize all linear transformations T : R4 → R4 that have
the null space equal to W . What can you say about the rank of such a T? (Note: rank = dimension
of the range.)

(c) Give an explicit example of an operator T : R4 → R4 such that the range of T is W .

3. Prove that the vectors

v1 = (1, 1, 1, 1), v2 = (1, 1, 2, 1), v3 = (0, 1, 0, 1), v4 = (1, 1, 1, 0)

form a basis for R4. What are the coordinates of the vector (a, b, c, d) in this basis?

4. Let V be the vector space over R of all real polynomial functions p of degree at most 2.
(a) What are the coordinates of the polynomial function a+bx+cx2 with respect to the ordered

basis {1− x2, 1 + x + x2, 1} in V ?
(b) For any fixed h ∈ R consider the shift operator T : V → V with (Tp)(x) = p(x+h). Consider

also the differentiation operator D : V → V with Dp = p′. Find the range, null space, rank and
nullity of the operators TD, DT , D2 and T 2. Which of these operators are isomorphisms? Write
down the matrices of the operators TD, D2 and T 2 with respect to the ordered basis 1, x, x2.

5. Let T be the linear operator on R2 defined by T (x1, x2) = (−
√

2
2 (x1 + x2),

√
2

2 (x1 − x2)).
(a) What is the matrix of T in the standard ordered basis for R2?
(b) Interpret the operation of T geometrically.
(c) What is the matrix of T in the ordered basis v1, v2, where v1 = (1, 1) and v2 = (2, 0)?
(d) Prove that for every real number λ the operator (T − λI) is invertible.
(e) Find all complex numbers λ such that the operator (T − λI) is not invertible.

6. Let T : V → V be a linear operator on the vector space V with null space W1 and range W2.
Suppose that S : V → V is another linear operator on V commuting with T , i.e. ST = TS. Prove
that W1,W2 are invariant subspaces of both T and S.



Project 5

(due by 12/14/06 – 5:00pm)

This project concerns some problems related to the Jordan form of a linear operator – you should look a little into

Chapter 8, notably the secion on square roots. But not many details will be necessary.

Discuss the problems below in a concise and precise essay, at most 5 typed pages long. Whenever you use a reference,

quote it and do not copy. Use your own words.

1. Suppose T : C4 → C4 is defined by T (z1, z2, z3, z4) = (z2, z3, z4, 0). Prove that T has no
square root. More precisely, prove that there does not exist a linear operator S : C4 → C4 such
that S2 = T .

2. Define N : F5 → F5 by

N(x1, x2, x3, x4, x5) = (2x2, 3x3,−x4, 4x5, 0) .

Find a square root of I + N .

3. Prove that if V is a complex vector space, then every invertible operator on V has a cubic
root.



Math 310: Review for Midterm II, Nov 16

The exam will concentrate on Ch 5 and 6, except for p 91-93, and p 113-117 (about
orthogonal projections and minimization problems). Obviously you also need to know how
to use most of the concepts of Ch 1-3, but there will be no specific questions on this material.
You are expected to know the following definitions, know some relevant examples, and to
be able to do simple calculations using them. You are also expected to know the statements
of the main theorems so that you can quote them in your answers. I will NOT distribute a
list since there aren’t so many this time.

invariant subspace for operator T ;
eigenvalue, eigenvector for T ;
upper triangular matrix;
inner product; orthogonal vectors, orthonormal basis;
orthogonal complement; orthogonal projection of a vector onto a subspace
adjoint T ∗ of T ∈ L(V,W ).

Most important results:
existence and basic properties of eigenvalues/vectors: (5.6), (5.10), (5.13), (5.16), (5.20)
the properties of inner product: (6.3), (6,6), (6.9), and Gram-Schmidt. Orthogonal

projection of a vector on a subspace. Elementary properties of adjoint.

Here are some sample problems. Note also that on the syllabus I suggested some problems
from the book.

Ex 1: (i) Let V be a vector space over C with subspace U . What does it meant to say that
U is invariant under T ∈ L(V )?
(ii) Let V = C∞ and T : V → V be the right shift: T (x1, x2, . . . ) = (0, x1, x2, . . . ). Find a
T -invariant subspace U that is NOT equal to {0} or V .
(iii) What are the eigenvalues and eigenvectors of T?

Ex 2: Let

A :=

 2 2 1
0 2 1
0 0 3

 , B :=

 2 1 1
1 2 0
0 0 3

 .

Let TA, TB ∈ L(R3) be the linear maps given by multiplication by the matrices A,B.
(i) Questions on TA:

(1) Find all eigenvalues and eigenvectors for TA.
(2) Find TWO different bases B := (v1, v2, v3) of R3 such that the matrix M(T ) repre-

senting T with respect to B is upper triangular. (Here B := (v1, v2, v3) is DIFFER-
ENT from B′ := (v′1, v

′
2, v

′
3) if there do not exist scalars a1, a2, a3 so that v′i = aivi

for all i.)
(3) How much choice do you have in choosing such a basis B? (I wouldn’t ask this in

an exam ... but it is good to help you understand.)



(ii) Questions on TB:
(1) Find a subspace U of R3 that is not {0} or R3 and is invariant by TB. Hint: look

at the zero entries of B – what does B do to the elements of the standard basis??
(2) Find the eigenvalues and eigenvectors for TB : U → U .
(3) Find all eigenvalues and eigenvectors for TB : R3 → R3.
(4) Find an invertible matrix Q such that Q−1AQ is diagonal.

Ex 3: (slightly revised) This exercise asks you to find an eigenvector for T : C3 → C3 using
the method in the proof of (5.10). Let T = TA where

A :=

 3 1 −2
2 0 −6
1 −2 1

 .

(1) Let v = (1, 0, 0). Calculate Tv, T 2v, T 3v.
(2) Find a, b, c, d ∈ C so that (aT 3 + bT 2 + cT + dI)v = 0.
(3) Find an eigenvector and eigenvalue for T . Check your answer. Note: the calcu-

lations here should not be too hard. If they are, you’ve made an arithmetic error.
Also: in fact you should be able to find at least two eigenvalues and eigenvectors
from this calculation.

Ex 4: (i) Let U be a subspace of an inner product space (V, 〈, 〉). What is its orthogonal
complement U⊥? Given any subspaces U,W of V show that U ⊆ W iff W⊥ ⊆ U⊥.
(ii) Let U be the subspace of C4 given by the equations x1 +x2 +x3 +x4 = 0 and x1−x2 +
2x3 + x4 = 0.

(1) Find a basis for U⊥. Note: this is an easy question that requires NO calculation!
You just need to understand what the equations for U tell you. But this subspace
is the one considered in Ex1 on HW8, so all calculations are done anyway.

(2) Find an orthonormal basis for U⊥.
(3) Let w = (1, 2, 3, 0). Write w = u + v where u ∈ U and v ∈ U⊥.
(4) Check that ‖w2‖ = ‖u‖2 + ‖v‖2.

Ex 5: (i) Let (V, 〈, 〉) and (W, 〈, 〉) be finite dimensional inner product spaces. Let T ∈
L(V,W ). Define the adjoint T ∗ of T .
(ii) Define T : C2 → C2 by T (z, w) = (iz − w, 2z + (1 + i)w). Use the definition in (i) to
calculate T ∗.
(iii) Now go back to the general case with V,W, T as in (i).

(1) Show that (aT )∗ = aT ∗.
(2) Show that range T ∗ = (nullT )⊥. Note: it is easy to show that range T ∗ ⊆ (null T )⊥

(DO THIS), but not so easy to give a direct argument why (null T )⊥ ⊆ range T ∗. But
note that U ⊆ W iff W⊥ ⊆ U⊥. Therefore instead of proving (nullT )⊥ ⊆ range T ∗ it
is enough to show that (range T ∗)⊥ ⊆ null T. For some (slightly mysterious) reason,
this is easier! (And you note that this what the book does in Prop 6.46.)

(3) Show that range T and range T ∗ have the same dimension. Give an example where
null T and nullT ∗ do NOT have the same dimension.



Math 310: Worksheet 2

Nov 2 2006

(1) (an exercise on the Gram-Schmidt process) Find an orthonormal basis for the
subspace of R4 generated by the following vectors:
(a) (1, 1, 0, 0) and (1,−1, 1, 1).
(b) (1, 1, 0, 0), (1,−1, 1, 1) and (−1, 0, 2, 1)

(2) Some geometry
(a) Check that the subspace U in Ex 1 (b) is given by the equation x − y +

3z − 5t = 0.
(b) Check that v := (3,−2, 0, 5) ∈ U . Find its coordinates with respect to

the basis e1, e2, e3 for U that you found in Ex 1 (b).
Hint: Remember that if e1, . . . , ek is an orthonormal basis for a subspace
U and u ∈ U then the coordinates of u are given by u = 〈u, e1〉e1 + · · ·+
〈u, ek〉ek.

(c) Let w ∈ R4 be any vector and define

u := 〈u, e1〉e1 + 〈u, e2〉e2 + 〈u, e3〉e3.

Show that the vector w− u is perpendicular to U , i.e. 〈w− u, u′〉 = 0 for
all u ∈ U . (It is enough to check this for u′ = e1, e2, e3. Why?) Thus we
may decompose w as the sum u + (w− u) where u ∈ U and w− u ∈ U⊥.

(d) Calculate the decomposition of w = (1, 1, 1, 1) as a sum u+v where u ∈ U
and v ∈ U⊥.

(3) Let V be the vector space of continuous real-valued functions on the interval
[0, 1]. Define the inner product of two such functions f, g by the rule

〈f, g〉 =

∫ 1

0

f(t)g(t)dt.

Note: Sometimes people (e.g. Vincent...) say scalar product instead of inner
product. This means the same.

(a) Using the standard properties of the integral, verify that this is an inner
product; i.e. check that for all f, g, h ∈ V and c ∈ R

• 〈f, f〉 ≥ 0 and = 0 only if f = 0;
• 〈cf, g〉 = c〈f, g〉;
• 〈f + h, g〉 = 〈f, g〉 + 〈h, g〉;
• 〈f, g〉 = 〈g, f〉.

Note: You will find that it is much easier to check positivity by argu-
ing indirectly from properties of the integral rather than by calculating
〈f, f〉 ≥ 0!

(b) Let U be the subspace of V generated by the two functions f(t) = t and
g(t) = t2. Find an orthonormal basis for U .

(c) Let U ′ be the subspace generated by the three functions 1, t, t2 (where 1
is the constant function). Find an orthonormal basis for U ′.



Math 310: Midterm 1

October 10, 2006

Name: ID number:

There are 5 questions worth a total of 100 points, plus one small bonus question
worth 10 points. Please justify all your statements, and write neatly so that we can
read and follow your answers. Continue your answers on the back of the pages. Also,
please turn off cell phones.

Question 1. (20 points) (i) Define a subspace of a vector space.

(ii) Suppose that V is a finite dimensional vector space and that W ⊆ V is a subspace
such that dim W = dim V . Prove carefully that W = V .

1 20pt
2 20pt
3 20pt
4 30pt
5 10pt

Total 100pt
bonus 10pt



Question 2. (20 points) (i) Let (v1, . . . , vn) be a list of vectors in V . What does it
mean to say that this list is linearly independent? Give the formal definition.

(ii) Give an example of a list of three vectors in R4 that is linearly independent and
another that is linearly dependent. (You only need to give brief explanations.)

(iii) Suppose that the list v1, v2, v3 is linearly independent. Show that the list
v1 + 2v2 + v3, v2 + v3, v3 is also linearly independent.



Question 3. (20 points) (i) Find a basis for the subspace

U := {(y1, y2, y3, y4) ∈ F4 : y1 = y2 = y2 + y3 + y4},
and prove that the elements you give do form a basis.

(ii) Suppose that W is another subspace of F4 such that U + W = F4. What can you
say about dim W?



Question 4. (30 points) (i) Show that a linear map T : V → W is injective if and
only if Null T = {0}.
(ii) Let V := P(3) the polynomials of degree ≤ 3 and coefficients in F. Define
T : V → V by T (f) = (z2 + z)f ′′, where f ′′ denotes the second derivative of f .
Describe Null T and Range T . What are their dimensions?

(iii) Find the matrix M(T ) that represents T with respect to the standard basis
f0 := 1, fi = zi, i = 1, 2, 3.



Question 5. (10 points, plus 10 points bonus) Let L : V → W be a linear map.

(i) Suppose that w1, . . . , wn is a linearly independent list in V and that L is injective.
Show that the list (Lw1, . . . , Lwn) is linearly independent.

(ii) Bonus: Is it possible for the list w1, . . . , wn to be linearly dependent while
(Lw1, . . . , Lwn) is linearly independent?



Math 310: Midterm 1

October 10, 2006

Name: ID number:

There are 5 questions worth a total of 100 points, plus one small bonus question
worth 10 points. Please justify all your statements, and write neatly so that we can
read and follow your answers. Continue your answers on the back of the pages. Also,
please turn off cell phones.

Question 1. (20 points) (i) Find a basis for the subspace

W := {(x1, x2, x3, x4) ∈ F4 : x1 = x2 − 3x3 = x3 + x4},
and prove that the elements you give do form a basis.

(ii) Suppose that U is another subspace of F4 such that U + W = F4. What can you
say about dim U?

1 20pt
2 20pt
3 20pt
4 30pt
5 10pt

Total 100pt
bonus 10pt



Question 2. (20 points) (i) Let (w1, . . . , wn) be a list of vectors in V . What does it
mean to say that this list is linearly independent? Give the formal definition.

(ii) Give an example of a list of three vectors in R3 that is linearly independent and
another that is linearly dependent. (You only need to give brief explanations.)

(iii) Suppose that the list w1, w2, w3 is linearly independent. Show that the list
w1 − w2 + 3w3, w2 − w3, w3 is also linearly independent.



Question 3. (20 points) (i) Define a subspace of a vector space.

(ii) Suppose that V is a finite dimensional vector space and that U ⊆ V is a subspace
such that dim U = dim V . Prove carefully that U = V .



Question 4. (30 points) (i) Show that a linear map T : W → V is injective if and
only if Null T = {0}.
(ii) Let W := P(3) the polynomials of degree ≤ 3 and coefficients in F. Define
T : W → W by T (f) = (z − 1)f ′′, where f ′′ denotes the second derivative of f .
Describe Null T and Range T . What are their dimensions?

(iii) Find the matrix M(T ) that represents T with respect to the standard basis
g0 := 1, gi = zi, i = 1, 2, 3.



Question 5. (10 points, plus 10 points bonus) Let T : V → W be a linear map.

(i) Suppose that v1, . . . , vn is a linearly independent list in V and that T is injective.
Show that the list (Tv1, . . . , T vn) is linearly independent.

(ii) Bonus: Is it possible for the list v1, . . . , vn to be linearly dependent while
(Tv1, . . . , T vn) is linearly independent?



Math 310: Review for Midterm I, Oct 4

You are expected to know the following definitions, know some relevant examples, and
to be able to do simple calculations using them.

subspace; sum of two subspaces U + W ; direct sum U ⊕W ;
linear (in)dependence of a list (v1, . . . , vn); span of a list (v1, . . . , vn);
finite and infinite dimensional vector spaces;
basis and dimension of a finite dimensional vector space;
linear map T : V → W ; null space and range of T ; surjective, injective, invertible;
the matrix M(T ) of a linear map T : V → W with respect to given bases of V and W .

In the midterm I will ask you to give some definitions. I will also ask you to prove some
statements. In your answers you may quote any theorem from the list, unless you are given
instructions not to.

Here are some sample problems.

Ex 1: Let V be a finite dimensional space.
(i) Define dim V .
(ii) Suppose dim V = n and v1, . . . , vn spans V . Give a careful proof that v1, . . . , vn is a
basis for V .

You may use any theorem on the list. Any other statement must be proved.

Ex 2: (i) Find a basis for the subspace

V := {(x1, . . . , x4) ∈ F4 : x1 − x2 + x4 = 0, x2 = x3}.
(ii) Extend this to a basis for F4.
(iii) Define a linear map T : F4 → F3 with null T = V . Justify all your claims.

Ex 3: (i) Define an infinite dimensional space.
(ii) Give an example of an infinite dimensional space V and a linear map T : V → V that is

(1) injective but not surjective
(2) surjective but not injective.

(iii) Do such linear maps exist when V is finite dimensional? Give examples or a careful
proof that such examples cannot exist.

Ex 4: Let T : R2 → R2 be the linear map T (x, y) = (x, 3x + 2y). Let B = (v1, v2) be the
basis with v1 = (1,−3), v2 = (0, 1). Find the matrix M(T ) that represents T with respect
to this basis.

Ex 5: Let V = P3(R) the vector space of real polynomials with degree ≤ 3. Let B be the
basis:

f1 = 1, f2 = z, f3 = z2, f4 = z3.

Define T : V → V by T (f) = zf ′(z), where f ′ denotes the derivative of f .
(i) Show that T is linear.



(ii) Give an example of a map S : V → V that is NOT linear, explaining your answer.
(iii) Find the matrix M(T ) that represents T with respect to the basis B.
Note: I added an extra one of these for practice; there certainly will NOT be more than
one question on the exam about this.

Ex 6: Let V be as in Ex 5.
(i) What is a subspace of the vector space V ?.
(ii) Show that the subset W := {f ∈ V : f(1) = 0} is a subspace of V .
(iii) Find a basis for W .
(iv) Let g = 1 − z + z2 − z3. Write g as a linear combination of the elements of the basis
that you found in (iii).

Ex 7: (i) What does it mean to say that the list v1, . . . , vn spans the vector space V ?
(ii) Suppose that the list v1, v2, v3 spans V . Show that the list v1, v2 + v1, v3 + v1 also spans
V .
(iii) Show that your argument in (i) fails with the list v1 + v2, v2 + v3, v3 − v1.
(iv) Is it possible to find 3 vectors v1, v2, v3 that span R2 but are such that v1 + v2, v2 +
v3, v3 − v1 do not?
Note: I wouldn’t put a question like (iv) on the exam because it is too open ended. But it
is a good review question.

Ex 8: (i) What does it mean to say that the list v1, . . . , vn is linearly dependent?
(ii) Use this definition to prove (2.4):

If (v1, . . . , vm) is linearly dependent in V and v1 6= 0 then there exists j ∈ {2, . . . ,m}
such that the following hold:

(1) vj ∈ span(v1, . . . , vj−1);
(2) if the jth term is removed from (v1, . . . , vm), the span of the remaining list equals

span(v1, . . . , vm).

(iii) Give a list v1, v2, v3 ∈ R2 that is linearly dependent, but is such that any pair of vectors
from this list is linearly independent.

Ex 9: (i) Let U,W be subspaces of V . Define U + W .
(ii) Suppose that U, V are 2-dimensional subspaces of R4 such that U ∩ W = {0}. Show
that U + W = R4.

Ex 10: (i) Let T : V → W be a linear map. Define null T and range T .
(ii) Let v1, v2, v3 be a basis for a vector space V and define a linear map T : V → R3 by
setting

T (v1) =

 1
2
1

 , T (v2) =

 −1
0
1

 , T (v3) =

 0
−1
−1

 .

Find a basis for null (T ) and a basis for range T .
(iii) Is T injective?



Math 310: List of theorems

This list will be provided with the midterm.

(1.2,3) A vector space V has a unique additive identity 0. Every element v ∈ V has a unique
additive inverse −v.

(1.4,5,6) 0v = 0 and (−1)v = −v for every v ∈ V . a0 = 0 for every a ∈ F.

(1.9) Suppose that U and W are subspaces of V . Then V = U⊕W if and only if V = U +W
and U ∩W = ∅.
(2.4) If (v1, . . . , vm) is linearly dependent in V and v1 6= 0 then there exists j ∈ {2, . . . ,m}
such that the following hold:

(1) vj ∈ span(v1, . . . , vj−1);
(2) if the jth term is removed from (v1, . . . , vm), the span of the remaining list equal

span(v1, . . . , vm).

(2.6) In a finite dimensional vector space the length of every linearly independent list is less
than or equal to the length of every spanning list of vectors.

(2.8) A list (v1, . . . , vn) of vectors in V is a basis for V if and only if every v ∈ V can be
written uniquely in the form v = a1v1 + · · ·+ anvn.

(2.12) Every linearly independent list of vectors in a finite dimensional vector space can be
extended to a basis of the vector space.
(2.14) Any two bases of a finite dimensional vector space have the same length.

(3.0) Let (v1, . . . , vn) be a basis of V and w1, . . . , wn be any elements in W . Then there is
a unique linear map T : V → W such that

T (vi) = wi, for i = 1, . . . , n.

(3.1) If T : V → W is a linear map, nullT is a subspace of V .

(3.2) A linear map T is injective if and only if null T = {0}.
(3.3) If T : V → W is a linear map, range T is a subspace of V .

(3.4) If V is finite dimensional and T : V → W is a linear map, then range T is a finite
dimensional subspace of W and

dim V = dim T + dim range T.

(3.17) A linear map is invertible if and only if it is injective and surjective.
(3.18) Two finite dimensional vector spaces are isomorphic if and only if they have the same
dimension.



Math 310: Workshop; Sep 28
(1) What is the dimension of the space of m × n matrices? Give a basis for this

space.
Hint Do this first for m × n = 2 × 3 and then generalize. If you find the
general case very hard, go onto the next problems, doing them in the case
n = 2, 3, 4.

(2) What is the dimension of the space of symmetric n×n matrices? Give a basis
for this space. Recall that a matrix A is called symmetric if A = tA. Here tA
is the transpose of A (sometimes also written as AT ); thus it is obtained from
A by reflecting A in the main diagonal.
Hint: To do this, write down some symmetric nmatrices when n = 2, 3, . . . .
What choices can you make?

(3) An n × n matrix A is called skew-symmetric if tA = −A. Show that any
matrix A can be written as a sum

A = B + C

where B is symmetric and C is skew-symmetric. [Hint: Let B = (A + tA)/2.]
Show that if A = B1 + C1, where B1 is symmetric and C1 is skew-symmetric,
then B = B1 and C = C1.

(4) Let M be the space of all n× n matrices. Let

P : M →M

be the map such that

P (A) =
A + tA

2
.

(a) Show that P is linear.
(b) Show that the kernel of P consists of the space of skew-symmetric matri-

ces.
(c) What is the dimension of the kernel of P?
(d) What is Range (T ) and its dimension?
(e) Check that your answer here is consistent with your answers to (1), (2),

(3) and with Thm (3.4).

(5) Let V, W be finite dimensional spaces of the same dimension and L : V → W
be a linear map. Deduce from Thm (3.4) that
(a) L injective implies that L is surjective.
(b) L surjective implies that L is injective.
(c) Construct an isomorphism from the space of all m× n complex matrices

to Cd, where d is your answer to Question (1).

Note: A linear map that is both injective and surjective is called an isomorphism.



Math 310: Notes, Sept 20

Here is the Lemma that I proved in class.

Lemma 1. Suppose that (v1, . . . , vn) is a linearly independent list of vectors in V
and that vn+1 ∈ V . Then the list (v1, . . . , vn+1) is linearly independent iff vn+1 /∈
sp(v1, . . . , vn).

NOTE: “iff” means “if and only if”

We saw in class that it was hard to give a direct proof of the lemma. – How do you
express that vn+1 is NOT in sp(v1, . . . , vn)? In class, instead of proving P is equivalent
to Q, I proved NOT P is equivalent to NOT Q. (Logically these are the same.) In
other words, I proved

Lemma 2. Suppose that (v1, . . . , vn) is a linearly independent list of vectors in V
and that vn+1 ∈ V . Then the list (v1, . . . , vn+1) is linearly dependent iff vn+1 ∈
sp(v1, . . . , vn).

Proof (⇒) Suppose that (v1, . . . , vn+1) is linearly dependent. Then there is a relation

a1v1 + · · ·+ an+1vn+1 = 0

in which the scalars a1, . . . , an+1 are not all 0.
If an+1 = 0 we would have a relation a1v1 + · · ·+ anvn = 0. By the linear indepen-

dence of (v1, . . . , vn) this means that ai = 0 for all i = 1, . . . n. But the ai do not all
vanish. So this is impossible. Hence an+1 6= 0.

Therefore we can divide the above relation by an+1 to get

vn+1 = −
( a1

an+1

v1 = · · ·+ an

an+1

vn

)
∈ sp(v1, . . . , vn).

(⇐) The proof of the converse implication is left to you. (It’s easier.) You must show
that if vn+1 ∈ sp(v1, . . . , vn) then (v1, . . . , vn+1) is linearly dependent. 2.

Chapter 3 contains some very important facts about linear transformations that
are not formulated into Propositions. The next result is taken from p 39-40.

Prop 3 Let (v1, . . . , vn) be a basis of V and w1, . . . , wn be ANY elements in W . Then
there is a UNIQUE linear map T : V → W such that

T (vi) = wi, for i = 1, . . . , n.

Proof First, let us prove that T exists. To do this, we must define T (v) for every
v ∈ V and show that T has the two properties: additivity T (u + v) = Tu + Tv for

all v, w ∈ V

homogeneity T (av) = aT (v) for all a ∈ F, v ∈ V .



Definition of Tv: For each v ∈ V there are unique scalars ai so that v = a1v1 + · · ·+
anvn. Define

T (v) := a1w1 + · · ·+ anwn.

Since v1 = 1v1 + 0v2 + . . . 0vn, we find Tv1 = w1. Similarly, Tvi = wi for all i.

Check additivity: Suppose that v = a1v1 + · · ·+anvn and w = b1v1 + · · ·+ bnvn. Then

v + w = (a1 + b1)v1 + · · ·+ (an + bn)vn.

Therefore by the definition of T ,

T (v + w) = (a1 + b1)w1 + · · ·+ (an + bn)wn.

But by definition

Tv = a1w1 + · · ·+ anwn, Tw = b1w1 + · · ·+ bnwn.

Therefore T (v + w) = Tv + Tw.

Check homogeneity This is similar. Write out T (av) and compare it with aTv.

We have now defined T : V → W with the required properties. We need to
check that it is unique. But this is immediate. The properties (Additivity) and
(Homogeneity) imply that for any vectors vi ∈ V and scalars ai ∈ F we have

T (a1v1 + · · ·+ anvn) = a1Tv1 + . . . anTvn.

Therefore, if we are told that Tvi = wi for all i, T (a1v1 + · · · + anvn) must equal
a1w1 + . . . anwn. Therefore if v = a1v1 + · · ·+ anvn, Tv must be given by the formula

Tv = a1Tv1 + . . . anTvn.

Thus there is only one linear map T that satisfies the given conditions, i.e. T is
unique.

NOTE: If Tvi = wi for all i as above, then the image (or range) of T is the span of
the vectors w1, . . . , wn. Can you prove this?

Example Find a nonzero linear map T : R2 → R3 with image contained in the
subspace W = {(x, y, z) : x + 2z = 0}. What is the range of T? Calculate T (2, 3).
Let v1 = (1, 0), v2 = (0, 1) be the standard basis of R2. Take w1 = w2 = w =
(2, 0,−1) ∈ W . Consider the map T such that T (1, 0) = (2, 0,−1) ∈ W and T (0, 1) =
(2, 0,−1) ∈ W . Then T (a1v1 + a2v2) = a1w + a2w = (a1 + a2)w. In particular
T (2, 3) = 5w = (10, 0,−5). Note that Tv ∈ W for all v ∈ R2, as we would expect.
But the vectors Tv do not span W . Rather they span the line {aw : a ∈ R}. This
line is the span of w1, w2 in this case (since w = w1 = w2). Hence this agrees with
the NOTE above.



Math 310: Model Proof
Sept 12 2006

When you write a proof is it very important to explain clearly the logic of your
argument; what are you assuming? what are you trying to prove? how do you justify
each step?

Some of the proofs in the book are rather too short. Here is an example to explain
what I mean. This is Prop 1.6 in the book. (The proof in the book is a bit longer
than the first one below, but the explanation is still rather brief.)

Proposition 1.6 (−1)v = −v for every v ∈ V .

Proof. For every v ∈ V

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = 0.

Therefore (−1)v = −v. �

This proof is too short. For one, there is no explanation of the conclusion: “There-
fore (−1)v = −v”. This step is justified by Prop 1.3 that says that every element v has
a unique additive inverse, i.e. if v+w = 0 then w is the additive inverse −v. Secondly
the steps in the first statement v+(−1)v = 1v+(−1)v = (1+(−1))v = 0v = 0 are not
explained. These are justified by the familiar axioms of addition and multiplication
together with Prop 1.4.

Later on in the semester it would be fine for you to use the axioms and results in
Ch 1 without comment. In this first week it would be best to explain each step.

Here is a fuller version of the proof.

Proposition 1.6 (−1)v = −v for every v ∈ V .

Proof. For every v ∈ V

v + (−1)v = 1v + (−1)v by the Mult. identity axiom
= (1 + (−1))v by the distributive properties
= 0v
= 0 by Prop 1.4,

Therefore (−1)v = −v by Prop 1.3. �



Math 310: Review Exercises Sept 5, 2006

Ex 1. Review complex numbers.
(i) Calculate (with answers in the form z = a + ib)

(2 + 3i)(4− i), (2− 3i)−1,
1− i

2 + 3i
.

(ii) Recall that for the complex number z = a + ib ∈ C, the modulus |z| is defined to
be

√
a2 + b2. Calculate |2 + 3i|, |1 + i|.

(iii) Check that |(2 + 3i)(1 + i)| = |2 + 3i||1 + i|., i.e. the modulus of a product is the
product of the moduli.

Ex 2. Review matrices, especially matrix multiplication. Calculate
A + B, A− C, AC,CB and BA (if they are defined) when

A :=

[
1 1 0
2 1 1

]
, B :=

 1 0
2 1
3 −2

 , C :=

[
0 1 5
2 −1 1

]
.

Some linear algebra in (real) 3-space R3: Definitions
A 3-vector v or (vector in R3) is an ordered triple of 3 real numbers, usually written

horizontally. eg v = (1, 2, 3) but sometimes vertically: v =

 1
2
3

.

The span of the vectors v1, . . . ,vk consists of all linear combinations

v := a1v1 + · · ·+ akvk, ai ∈ R.

The vectors v1, . . . ,vk are said to be linearly independent if and only if

a1v1 + · · ·+ akvk = 0 implies ai = 0 ∀i,
i.e. the only linear combination

∑
i aivi that equals 0 is the trivial combination with

all coefficients equal to 0. If v1, . . . ,vk are not linearly independent then they are
said to be linearly dependent.
Note: The book gives very slightly different (but equivalent) definitions; we will
discuss this in class.

Here are some questions that use these concepts. Try to make careful arguments,
not just a list of scraps of calculations. (This is good practice for what is coming...)
Ex 3. (i) Let v1 = (1, 2, 1),v2 = (1, 0, 1),v3 = (0, 1,−1). Do these vectors span R3?
(ii) Are these vectors linearly independent?

Ex 4. Same questions for the vectors v1 = (1,−2, 1),v2 = (1, 0,−1),v3 = (0, 1,−1).

Ex 5. Show that the span of the vectors v1 = (1,−2,−1),v2 = (1, 0, 1),v3 = (0, 1, 1)
is the plane x + y − z = 0.



Math 310: Homework 1 (slightly revised)

due Sept 13,14 2006 in recitation

Ex 1. (i) Calculate (with answers in the form z = a + ib)

(1 + i)2, (1 + i)4.

Draw a diagram of these points on the plane.

(ii) Find z = a + ib with a, b > 0 such that z8 = 1.

In the following exercises, let V be a vector space over F (where F = R or C.) You
may use any proposition from Ch 1 provided that you say where it is used.

Ex 2. (i) Let v, w ∈ V be such that v + w = v. Show that w = 0.

(ii) Let v ∈ V and a ∈ F be such that av = 0. Show that either a = 0 or v = 0.

(iii) Let v ∈ V and a ∈ F be such that av = v. Show that a = 1 or v = 0.

Ex 3. For each of the following subsets U of R3, determine whether it is a subspace of
F3. If U is a subspace find W such that U ⊕W = R3. Explain your answer carefully.
(a) {(x1, x2, x3) ∈ R3 : x1 − 2x2 + x3 = 1}.
(b) {(x1, x2, x3) ∈ R3 : (x1)

2 − x2 + x3 = 0}.
(c) {(x1, x2, x3) ∈ R3 : x1 − x2 = 3x3}.

Ex 4. Give an example of a subset U of R2 that is closed under addition and taking
additive inverses, but is not a vector space.

Ex 5. Let P2(R) be the vector space of polynomials in z of degree at most 2 with
real coefficients. Thus P2(R) = {a + bz + cz2 : a, b, c ∈ R}.
(i) Give an example of a subset U of P2(R) that is closed under multiplication by
scalars but is not a subspace.

(ii) Give an example of a subspace of U of P2(R) that is proper, i.e. not equal to {0}
or to the whole space P2(R).

(iii) For the subspace U you found in (ii) describe another subspace W such that
P2(R) = U ⊕W .

Ex 6. Are there subspaces U1, U2, W of R2 such that U1⊕W = U2⊕W but U1 6= U2?
Give an example or a proof that no such subspaces exist.

Bonus problem (added on Tuesday Sep 12)
(i) Suppose that U1, U2, U3 are subspaces of V such that V = U1 +U2 +U3. Formulate
a condition in terms of intersections of suitable subspaces that is equivalent to the
condition that V = U1 ⊕ U2 ⊕ U3.
(ii) The same question for k fold sums.



Math 310: Homework 2
due in recitation on Sept 20/21

Ex 1. Prove that if the list (v1, v2, v3) spans V then so does the list
(v1 + 2v2, v2 − v3, v3).

Ex 2. Prove that if the list (v1, v2, v3) is linearly independent in V then so is the list
(v1 + 2v2, v2 − v3, v3).

Ex 3. Find a basis for the vector space

V = {(x1, . . . , x4) ∈ F4 : x1 + 2x2 + 3x3 + 4x4 = 0}.
What is the dimension of V ?

Ex 4. Suppose that (v1, . . . , vn) is linearly independent in V .

(i) Suppose that for some w ∈ V the list (v1 − w, v2 − w, . . . , vn − w) is linearly
dependent. Show that w ∈ span(v1, . . . , vn).

(ii) Is the converse true? That is, if w 6= 0 is in span(v1, . . . , vn) must it be true that
the list (v1 − w, v2 − w, . . . , vn − w) is linearly dependent?
Hint: What does this say when n = 1, 2? Try these cases first.

Ex 5. Let P(F) be the space of polynomials with coefficients in F.

(i) Find two different 2-dimensional subspaces of P(F).

(ii) Find an infinite dimensional proper subspace of P(F) (i.e. a subspace that does
not equal the whole of P(F).)

Ex 6. (i) Let U, V be subspaces of F7 such that U ⊕V = F7. If dim U = 3 show that
dim V = 4.

(ii) Does this statement remain true if all you know is that U +V = F7? Give a proof
or counterexample.

Note: In this question you may use all the results numbered up to and including
2.12. Anything else should be proved. Try to find the most econimical argument that
you can.



Math 310: Homework 3

due Sept 27,28 2006 in recitation

Many of these exercises ask you to construct linear maps with certain properties.
For this kind of problem Prop 3 (on the sheet I distributed this week) is often useful.

Ex 1. (i) Let V be a real vector space with basis v1, v2, v3. Construct a linear map
T : V → W = R2 that is surjective and has the property that T (v1 + v2 − 3v3) = 0.

(ii) Is it possible to construct a linear map with these properties if W = R3? Give an
example, or explain why not.

Ex 2. (i) Let U be a subspace of V , and suppose that T : U → W is a linear map.
Show that it is always possible to extend T to a linear map T ′ : V → W . i.e. show
that there is a linear map T ′ : V → W such that T ′(u) = T (u) for all u ∈ U .

(ii) Suppose that U = sp(e1, e2) ⊂ R5 = V , W = R4 and that T : U = R2 → R4 is
given by

T (e1) =
4∑

j=1

ej, T (e2) = e1.

(Here e1, . . . , en denotes the standard basis of Rn; see p 27.)

(a) Since T is a map R2 → R4, it is given by multiplication by a matrix A. Write
down this matrix A.

(b) Write down a matrix for T ′. Choose this matrix so that T ′ is injective (if possible)
and surjective (if possible). Explain your answer.

(iii) Now go back to the general problem in (i). Under what conditions on U, V,W, T
can you choose T ′ to be injective? Under what conditions can you choose T ′ to be
surjective? Give the most general conditions you can find.

Ex 3. Suppose that T : V → W is a linear map and that v1, . . . , vn is a basis for V .
Suppose that the list Tv1, . . . , T vn is linearly dependent in W . Show that T is not
injective.
Note: For this question, you may use any result in the book up to and including
Theorem 3.4.

Ex 4. (i) Prove that there does not exist a linear map T : R6 → R2 with null space
equal to

{(x1, . . . , x6) : x1 + x2 + x3 = 0, x2 = −x4 = x6}.
(ii) Give the matrix of a linear map T : R6 → R2 with null space

{(x1, . . . , x6) : x1 + x2 + x3 = 0, x2 = −x4}.



We saw in class that the space L(V, W ) of linear maps from V to W is always a
vector space. Take W = F. We then get the space V ∗ := L(V, F) of F-linear maps
V → F. This is called the dual space of V . The next two exercises ask you to
explore its structure.

Ex 5. Let V = F2 with basis e1, e2. Define elements e∗
1, e

∗
2 ∈ V ∗ by:

e∗
1(e1) = 1, e∗

1(e2) = 0, e∗
2(e1) = 0, e∗

2(e2) = 1.

Show that e∗
1, e

∗
2 form a basis for V ∗. Deduce that dim(F2)∗ = 2.

Bonus ex 6: (i) Show that if V is a vector space of dimension n then V ∗ also has
dimension n.

(ii) If V has infinite dimension then so does V ∗. However, even if we have a basis for
V it is not easy to define a basis for V ∗. For example suppose that V is the set of
infinite sequences that are eventually 0:

V := {(x1, x2, x3, . . . ) : xi 6= 0 for only finitely many i}.
Then V has the basis ei, i ∈ N, where ei has 1 in the ith place and zeros elsewhere.
As before we can define e∗

i ∈ V ∗ which equals 1 on ei and 0 on all other ej. Find an
element of V ∗ that is NOT in sp(e1, e2, e3, . . . ).



Math 310: Homework 4 (revised)

due Oct 4,5 2006 in recitation

NOTE: Ex 3 (ii) is changed, and I added a hint to Ex 2.

Ex 1. (i) Let L : V → W be a linear map. Let w0 be an element of W . Let v0

be an element of V such that L(v0) = w0. Show that any solution of the equation
L(X) = w0 is of type v0 + u, where u is an element of the kernel of L.
Hint: You might find it easier to do (ii) and (iii) before (i)!

(ii) Consider the system of linear equations

2x1 + 3x2 + 2x3 = 1

x1 + x2 + x3 = 1.

Find a linear map L : V → W and element w0 ∈ W such that the solution set of this
system of equations can be identified with the set of vectors v such that Lv = w0.

(iii) Solve the equations in (ii) and express the solutions in the form v0+u as explained
in (i).

Ex 2. Let A = (aij) be an n× n matrix. Define the trace of A to be the sum of the
diagonal elements, that is

tr(A) =
n∑

i=1

aii.

(1) What is the dimension of the space of n×n traceless matrices (i.e., tr(A) = 0)?
(2) Show that the trace is a linear map of the space of n× n matrices into F.
(3) If A, B are n× n matrices, show that tr(AB) = tr(BA).
(4) Prove that there are no matrices A, B such that

AB −BA = In

.

Hint: Part (3) is an exercise in using the double summation notation: if A = (aij)
and B = (bij) then AB = (cik) where cik =

∑
j aijbjk. If you think of cik as the dot

product of the ith row of A with the kth col of B it is not so easy to see why the
trace has this symmetry.

Ex 3. (i) Find the matrix of a nonzero linear map L : R2 → R2 such that L2 = 0.

(ii) Let L : R2 → R2 be a linear map such that L 6= 0 but L2 = 0. What are the
dimensions of NullL and RangeL? Is there any relation between these two spaces?
(Understanding this will help with the bonus question.)

(iii) Let L : V → V be a linear mapping such that L2 = 0. Show that I − L is
invertible. (I is the identity mapping on V .)

Hint: Show that Null (I −L) = {0}. (There is another proof that finds an algebraic
formula for the inverse. This argument works also when V is infinite dimensional.)



Ex 4. Let V = R3 with basis B := (v1, v2, v3) where

v1 =

 1
−1
0

 , v2 =

 1
0
1

 , v3 =

 0
1
0

 .

The basis B determines a unique isomorphism M : V → R3 such that M(v1) =
e1, M(v2) = e2, and M(v3) = e3.

(i) Calculate M(v) for v =

 a
b
c

 ∈ R3.

(ii) Let T : R3 → R3 be multiplication by the matrix

A :=

 1 1 0
0 1 1
3 2 1


Calculate M(T ) where M := M(A, (v1, v2, v3), (v1, v2, v3)). (cf pp 48–53: I will lecture
on this next Tuesday)
Hint: You should be able to use your answer to (i) when doing this.

(iii) Calculate Tv, where v is as in (i) and T is as in (ii). Also calculate M(Tv).

(iv) Check that M(Tv) = M(T )M(v).

Bonus question 5. (i) Find a linear map L : R3 → R3 such that L2 6= 0 but L3 = 0.

(ii) Is there a linear map L : R3 → R3 such that L3 6= 0 but L4 = 0?



Math 310: Homework 6

due Oct 25,26 2006 in recitation

In this homework V is a finite dimensional vector space over C.

Ex 1. (i) Let T ∈ L(V ). Show that the subspaces Null(T − λI) and Range(T − λI)
are invariant under T .

(ii) Let S ∈ L(V ) be any operator such that TS = ST . Show that NullS and RangeS
are invariant under T . Give a second proof of (i) by using this statement.

Ex 2. (i) Suppose that the subspaces U,W of V are invariant under T . Show that
U + W and U ∩W are also invariant.

(ii) Show that if every 2-dimensional subspace of V is invariant under T then every
one dimensional subspace is also invariant. Deduce that T is a scalar multiple of the
identity.

Ex 3. Find all eigenvectors and eigenvalues for the following operators. Also, find a
basis for which the corresponding matrix is upper triangular as in Theorem (5.13).

(i) Let V = P4(C), the polynomials of degree ≤ 4, and T : V → V is T (f) = f ′′ +3f .
(ii) V = R3 and T (x, y, z) = (2y, x, 5z).

Ex 4. (i) Suppose that there is a basis v1, . . . , vn of V such that the matrix M(T )
representing T ∈ L(V ) with respect to this basis is upper triangular. Show there are
subspaces U1 ⊂ U2 ⊂ . . . Un−1 ⊂ V such that

(a) dim Ui = i for all i, and
(b) T (Ui) ⊂ Ui for all i.

Hint: define these subspaces in terms of the basis v1, . . . , vn.

(ii) Find such subspaces Ui in both the examples in Ex 3.

(iii) Suppose in the situation of (i) that T (Ui) ⊂ Ui−1 for some i. Show that T is not
invertible.

Ex 5. (i) Let U,W be subspaces of V with bases (u1, . . . , uk) and (w1, . . . , wm)
respectively. Show that V = U ⊕W iff (u1, . . . , uk, w1, . . . , wm) is a basis for V .

(ii) (BONUS) Let Ui be a subspace of V for i = 1, . . . ,m. Suppose that Ui has
dimension ki with basis vi1, . . . , viki

. Show that V = U1 ⊕ U2 ⊕ · · · ⊕ Um iff the list

(v11, . . . , v1k1 , . . . , vm1, . . . , vmkm)

is a basis for V .
Note: Remember that V = U1⊕U2⊕· · ·⊕Um iff every element of V may be written
UNIQUELY in the form u1 + u2 + · · ·+ um where ui ∈ Ui for all i.

(iii) Suppose in the situation of (ii) that each subspace Ui is invariant under T . Show
that T has at least m linearly independent eigenvectors.



Math 310: Homework 7 (revised)

due Nov 1,2 2006 in recitation

In this homework V is a finite dimensional vector space over R or C. I corrected a
typo in Ex 5.

Ex 1: A question about invertibility. (i) Recall that T ∈ L(V ) is said to be invertible
if there is S ∈ L(V ) such that ST = TS = I. In fact, it is enough to assume that
there is R ∈ L(V ) satisfying just the first identity: RT = I. Prove this, explaining
each step of the argument.

(ii) Prove that if S, T ∈ L(V ) satisfy ST = I then TS = I.

(iii) Deduce carefully from (ii) that if A, B are any n × n matrices over F such that
AB = I then BA = I.

Note: This fact always seems to me to be to be surprising. It is an elementary
computational fact, but I don’t see a way to prove it by a simple calculation.

Ex 2: Prove that if x,y are nonzero vectors in R2 then
〈
x,y

〉
= ‖x‖‖y‖ cos θ, where

θ is the angle between x and y. (Think of x,y as the sides OX, OY of a triangle,
and use the law of cosines.)

Ex 3: (i) Let Aθ =

[
cos θ − sin θ
sin θ cos θ

]
. Show that for any vector x ∈ R2, ‖Aθx‖ = ‖x‖

and the angle between x and Aθ(x) is θ. Thus this matrix Aθ represents the rotation
through angle θ. It is a simple example of an orthogonal matrix.
(ii) Verify that AθAφ = Aθ+φ.
(iii) Find the (complex) eigenvalues and eigenvectors of Aθ. (Here you must think of
the linear transformation v 7→ Aθv as an element of L(C2).)

Ex 4: (i) Let Rθ =

[
cos θ sin θ
sin θ − cos θ

]
. Show that for any vector x ∈ R2, ‖Rθx‖ =

‖x‖. Find the (real) eigenvectors and eigenvalues for Rθ and describe the linear map
x 7→ Rθx geometrically.
(ii) Suppose that B is any 2 × 2 real matrix such that ‖Bx‖ = ‖x‖ for all x. Show
that B either equals Aθ or Rθ for some θ.

Ex 5: (i) Define ‖(x1, x2)‖ := |x1| + |x2| for (x1, x2) ∈ R2. Check that with this
definition the triangle inequality holds, i.e. ‖(x1+y1, x2+y2)‖ ≤ ‖(x1, x2)‖+‖(y1, y2)‖.
(ii) Check that the parallelogram rule given as (6.14) in the book does NOT hold.
(iii) Deduce that there is no inner product on R2 for which this is the associated
norm. (Note: Since ‖ · ‖ is positive and homogeneous, it satisfies the axioms for a
norm. Ex 8 on p 123 – which relies on Ex 6 and Ex 7– shows that if the parallelogram
rule holds for some norm then it does come from an inner product.)

Ex 6: (i) Given an example of a linear map T : R3 → R3 that has only one real
eigenvalue. (Hint: Use Ex 3.)



(Bonus question). (ii) Give the shortest proof you can that every linear map T :
R3 → R3 has at least one real eigenvalue. (You can try to adapt the proof of (5.26)
to the 3-dimensional case.)



Math 310: Homework 8

due Nov 8,9 2006 in recitation

Ex 1 Let U ⊂ R4 be the subspace given by the equations x1 + x2 + x3 + x4 = 0,
x1 − x2 + 2x3 + x4 = 0.

(i) Find a basis of U . (Make the calculations easier by giving the vectors lots of
zeros...)

(ii) Find an orthonormal basis of U .

(iii) Extend this to an orthonormal basis for R4. (First find any extension and then
apply Gram–Schmidt.)

(iv) Let v = (1, 2, 3, 4). Find the coordinates of V with respect to the basis you found
in (iii).

Ex 2. Let e1, . . . , en be any basis of an inner product space V . Define U :=
span(e1, . . . , ek) and W = span(ek+1, . . . , en). Also define U⊥ := {v : 〈v, u〉 = 0, ∀u ∈
U}. (U⊥ is called the orthogonal complement to U .)

(i) Show that V = U ⊕W.
(ii) Show that U⊥ is a subspace. Show also that U⊥ = W.
(iii) Deduce that for any subspace U of V , V = U ⊕ U⊥.
(iv) Now assume that V = R4 and that U is the subspace defined in Ex 1. Calculate
the decomposition of v = (1, 1, 1, 1) as a sum u + w where u ∈ U and w ∈ U⊥.

Ex 3 Let V be the vector space of all n × n matrices over R, and given any two
matrices A, B ∈ V define

〈A, B〉 = trace(AB) =
∑
i,j

aijbji.

(i) Show that this satisfies all axioms for an inner product except possibly for positivity
and nondegeneracy. (e.g. give an example (with n = 2) such that A 6= 0 but
traceA2 = 0.)

(ii) If A is a real symmetric matrix, show that trace(A2) = 0, and trace(A2) > 0
if A 6= 0. Thus the trace defines an inner product on the space of real symmetric
matrices.

(iii) Let V be the symmetric space of real n×n symmetric matrices. What is dim V ?
What is the dimension of the subspace W consisting of those matrices A such that
trace(A) = 0? What is the dimension of the orthogonal complement W⊥ relative to
the inner product defined above?

Ex 4 Let A be an n× n matrix, and define T ∈ L(Fn) by Tv = Av.

(i) Show that T is diagonalizable iff there exists an invertible matrix Q such that
Q−1AQ is a diagonal matrix.
(ii) How can you interpret the columns of the matrix Q? (Hint: think of these as
vectors. What relation do they have to the operator T?)



Ex 5 Two linear operators S and T on a finite-dimensional vector space V are called
simultaneously diagonalizable if there exists a basis B for V such that both M(S, B)
and M(T, B) are diagonal matrices. This is equivalent to saying that there is a basis
for V consisting of vectors that are eigenvectors for both S and T .

(i) Prove that if S and T are simultaneously diagonalizable operators then S and T
commute. (Hint: see what the operators ST and TS do to a suitable basis for V .)

(ii) (Bonus) Prove also that if S and T are diagonalizable operators that commute
then they are simultaneously diagonalizable.

(iii) Let TA, TB ∈ L(Fn) be the operators defined by multiplication by the matrices
A, B. Show that TA, TB are simultaneously diagonalizable iff there is an invertible
matrix Q such that both Q−1AQ and Q−1BQ are diagonal matrices. (cf Ex 4).

(iv) (Bonus) Deduce that if the matrices A, B commute there is an invertible matrix
Q such that both Q−1AQ and Q−1BQ are diagonal matrices.



Math 310: Midterm 2 (slightly edited)

November 16, 2006

Name: ID number:

There are 4 questions worth a total of 100 points, plus one small bonus question
worth 10 points. Please justify all your statements, and write neatly so that we can
read and follow your answers. Any theorems that you use in your arguments should
be carefully stated. Continue your answers on the back of the pages. Also, please
turn off cell phones.

Question 1. (30 points) Let (V, 〈, 〉) be a finite dimensional inner product space over
R.
(i) Define the length ‖v‖ of a vector v ∈ V .
(ii) Show from this definition that ‖v‖2 + ‖w‖2 = ‖v + w‖2 if and only if the vectors
v, w ∈ V are orthogonal.

(iii) Find an orthonormal basis for the subspace x1 + 2x2 − x3 = 0 of R3.

(iv) Find the orthogonal projection of y = (1, 1, 1) onto this subspace.

Notes: When proving (ii) work with the inner product 〈v, w〉. The subspace U in
(iii) is a plane, so the basis should have two vectors in it. (Many of you gave me one
vector, a multiple of (1, 2,−1), i.e. a basis for U⊥.)

1 30pt
2 20pt
3 35pt
4 15pt

Total 100pt
bonus 10pt

Grand Total



Question 2: (20 points) Let V be a finite dimensional vector space over C and
suppose that S, T ∈ L(V ) commute.
(i) Show that null S and range S are invariant under T .
(ii) Suppose in addition that V = null S⊕range S where both null S and range S have
nonzero dimension. Show that T has at least two linearly independent eigenvectors.

Note: (ii) is an easy deduction from one of the theorems in the book; you should say
which one an explain what is going on.



Question 3: (25 points) (i) Let A =

[
0 −1
4 4

]
. Find a basis of C2 such that the

operator TA defined by TAv = Av is represented by an upper triangular matrix M
with respect to this basis. What is M?

(ii) (10 points). Suppose that A is a 3× 3 matrix of the form

 1 ∗ ∗
0 −1 ∗
0 0 4

. where

the entries ∗ are all nonzero. Is there always a basis of C3 with respect to which
TA ∈ L(C3) can be represented by a diagonal matrix?

Note: for (i) you should begin by finding the eigenvalues and eigenvectors of A. It
turns out that these do not form a basis for C2, so you have to figure out what to do
to complete the proof. (ii) is an easy deduction from some theorems.



Question 4: (15 points) (i) Let (V, 〈, 〉) be a finite dimensional inner product space,
and let T ∈ L(V ). Define the adjoint T ∗ of T .

(ii) Show that if the subspace U of V is invariant under T then U⊥ is invariant under
T ∗.

(iii) (Bonus) (10 points) Give an example of an operator T ∈ L(C2) that has a
1-dimensional invariant subspace U such that U⊥ is NOT invariant under T .
Note: in (ii) you should work from the definition you gave in (i).



Math 310: Homework 10 (revised)

due Dec 6,7 2006 in recitation

Ex 1 (a review question) (i) Define a linearly independent list (v1, . . . , vn).

(ii) Using this definition, show that if the lists (v1, . . . , vm, u1, . . . , uk) and (v1, . . . , vm,
w1 . . . , w`) are linearly independent and if also

span(u1, . . . , uk, v1, . . . , vm) ∩ span(w1, . . . , w`) = {0}

then (v1, . . . , vm, u1, . . . , uk, w1 . . . , w`) is also linearly independent.

(iii) Deduce from (ii) that for any subspaces U,W of a finite dimensional vector space
V ,

dim(U + W ) = dim U + dim W − dim(U ∩W ).

Ex 2. (i) Let T : R3 → R3 be the transformation T (x, y, z) = (2x + y, 3y + z, 2z).
Write down the matrix that represents T with respect to the standard basis.

(ii) Find bases B1 := v1, v2, v3 and B2 := w1, w2, w3 such that the matrices M(T, Bi)
that represent T with respect to these bases are:

M(T,B1) :=

 2 1 0
0 2 0
0 0 3

 , M(T, B2) :=

 2 1 1
0 3 0
0 0 2

 .

(iii) Is there a basis B3 such that M(T,B3) =

 2 1 0
0 3 0
0 0 2

?

Ex 3 (i) Let B = v1, . . . , v4 be a basis for V and T ∈ L(V ). Suppose that M(T, B) =
1 −1 0 3
0 2 1 0
0 0 1 1
0 0 0 2

. Let R = T−I and S = T−2I. Write down M(R,B) and M(S, B).

(ii) If U = span(v1, v2, v3) then the proof of (8.10) in the book implies that Null R4 ⊆
U and Null S4 ( U . Why? Prove these statements by calculating Null R4 and Null S4.
Hint: What are the dimensions of these spaces? The calculation will be easier if you
remember that if dim Null R4 = k < 4 then dim Null R4 = dim Null Rk.

(iii) Find a basis for Null R4 and Null S4. You should get 4 vectors in all that form a
basis for V . Which theorem in the book does this follow from?

(iv) Let k = dim Null R4. Then (8.5) and the proof of (8.9) imply that Range Rk =
Range Rk+1. Calculate these two spaces and check this. Do you notice anything about
this space (e.g. is it equal to any other space you have recently calculated?)



Ex 4 (i) Let A :=

[
−2 1
1 −2

]
. Find the eigenvalues of A (using any convenient

method) and hence the characteristic polynomial P (z) of A.

(ii) Calculate A2 and check that p(A) = 0.

Ex 5 Let A :=

 2 1 −2
−2 1 2

0 1 0

. Calculate A2 and A3. Find a linear relation between

A3, A2, A and I. Hence find a polynomial p(z) such that p(A) = 0.
Hint: look at A3 + 2A.

(ii) If p(z) is the characteristic polynomial of A, what does that tell you about the
eigenvalues of A? Find these eigenvalues by some other method and compare answers.

(iii) (Bonus) Why must p(z) be the characteristic polynomial of A?



Math 310: Homework 11

due Dec 14 2006 in recitation or class

Ex 1 Let T1, T2, T3 ∈ L(C3) be the linear maps given by the following matrices:

A1 :=

 2 0 0
0 2 0
0 0 3

 , A2 :=

 2 0 0
0 3 0
0 0 3

 , A3 :=

 2 1 0
0 2 0
0 0 3

 .

Find their minimal and characteristic polynomials.

(ii) Let T ∈ L(V ) where dim V = n. Suppose that q(t) is a monic polynomial of
degree n such that q(T ) = 0. What conditions guarantee that q(t) is the characteristic
polynomial of T? Discuss this question using the maps in (i) as examples.

Ex 2 (i) Let dim V = n. Suppose that for some vector v ∈ V the list v0 := v, v1 :=
Tv, . . . , vn−1 := T n−1v is linearly independent. Why is there a linear relation

T nv = a0v0 + a1v1 + · · ·+ an−1vn−1?

(ii) Let q(t) = tn − an−1t
n−1 − · · · − a1t− a0. Show that q(T )vi = 0 for all i. (Use the

fact that vi = T i(v0) for all i.) Hence deduce that q(T ) = 0.
(iii) Show also that there is no polynomial m of degree < n such that m(T ) = 0. Hence
deduce that q(t) is the minimal and the characteristic polynomial of T . (Compare Ex
1.)
(iv) Use this method to find the characteristic polynomial of TA : C3 → C3 where

A :=

 2 1 0
0 2 0
1 0 2

 , and v =

 1
−1

0

 .

(v) What are the eigenvalues and eigenvectors of TA? (You can use any method here.)

Ex 3 (i) Consider the permutations on 8 letters given by the arrays

m := [m1, . . . ,m8] = [3, 5, 1, 6, 7, 2, 8, 4], n := [n1, . . . , n8] = [3, 8, 1, 6, 7, 2, 5, 4].

Calculate signm and signn. Why do you expect signm = -signn?
(ii) A permutation m is a map {1, . . . , 8} → {1, . . . , 8} given by m(1) = m1, . . . ,m(8) =
m8. To emphasize this one can describe m by two rows:

m :=

[
1 2 3 4 5 6 7 8
3 5 1 6 7 2 8 4

]
.

Another way of describing a permutation is in terms of cycles (d1, d2, . . . dr): this is
the map that takes d1 to d2, d2 to d3 and so on, finally taking dr back to d1. In this
notation, when one writes a product one does the right hand one first. Thus:

(134)(24) =

[
1 2 3 4
3 1 4 2

]
.

Note that (134)(24) = (1342).
(a) Write down (15)(245)(34) in the double row format.



(b) Hence write (15)(245)(34) as a product of disjoint cycles (ie so that no number
occurs in more than one cycle.)

(c) Repeat the above two steps with (23)(245)(34)
(d) Write down the permutation m above as a product of disjoint cycles.

(iii) Use (a) (b) above to write down (15)(245)(34) as a product of transpositions
in two different ways. Check that the number of transpositions has the same parity
in both cases. (A transposition is a cycle of length 2. We saw in class that any
permutation can be written as a product of transpositions. For example (1234) =
(43)(42)(41).)
(iv) Use (d) to write m as a product of k transpositions. Check that (−1)k = signm.

Ex 4 Let

B =


0 1 0 0 0
2 0 1 0 4
0 0 0 1 0
1 0 0 0 2
3 0 1 0 0

 .

Recall that
det B =

∑
m∈perm5

signm bm1,1bm2,2bm3,3bm4,4bm5,5.

Since m is a permutation, each term in this sum contains just one element from each
row and each column of B. For B as above, which permutations give you nontrivial
terms in this sum? (Hint: since for example there is just one element in the first row
which lies in position b12 we must have m2 = 1.) List all these permutations, and
hence calculate det B.

Ex 5 (i) The trace trA of a matrix A is the sum of its diagonal entries. Explain why
trA is the sum of the eigenvalues of the linear map TA.
(ii) Suppose that A is a complex n× n matrix such that A2 = A. Show that trA is a
nonnegative integer. (Hint: What can you say about the eigenvalues of A?)

Ex 6 (Bonus) Suppose that in the situation of Ex 1 the span of the T iv, i = 0, . . . , n−
1, has dimension < n. You can still find a polynomial f(t) such that f(T )(T iv) = 0 for
all i. What can you say about its roots? What relation does this have to the minimal
or characteristic polynomial? You could experiment starting with the matrix

A :=

 1 1 0
0 2 0
1 0 3

 , and v =

 1
0
0

 .


