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Welcome to MAT 308

Textbook: Multivariable Mathematics, (4th ed.) by
Williamson
and Trotter.

Lecturer: Sabyasachi Mukherjee

Office: Math Tower 4115

Office Hours: F 10:30am-12:30pm in my office, M 1:00pm-
2:00pm in MLC (S235), or by appt.

E-mail: sabya@math.stonybrook.edu

Homework

Homework assignments will be posted here and on
BlackBoard. Please hand them in to your recitation instructor
the following week. Please note that your TA will NOT accept
late homework.

Quizzes

There will be a short quiz in your recitation session every
other week. The first quiz will be taken in the week of Feb 6 -
Feb 10.

Exams and Grading

There will be two midterms, and a final exam (dates here),
whose weights in the overall grade are listed below.

15% Homework

http://www.math.stonybrook.edu/~sabya/mat308-spr17/index.php?page=home
mailto:sabya@math.stonybrook.edu


10% Quizzes

20% Midterm 1

20% Midterm 2

35% Final Exam (cumulative)
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General Information

Stony Brook University expects students to maintain
standards of personal integrity that are in harmony with the
educational goals of the institution; to observe national, state,
and local laws as well as University regulations; and to
respect the rights,
privileges, and property of other people.
Faculty must notify the Office of Judicial Affairs of any
disruptive behavior that interferes with their ability to teach,
compromises the safety of the learning environment, or
inhibits students' ability to learn.

Information for students with disabilities
If you have a physical, psychological, medical, or learning
disability that may impact your course work, please contact
Disability Support Services at (631) 632-6748 or
http://studentaffairs.stonybrook.edu/dss/. They will determine
with
you what accommodations are necessary and
appropriate. All
information and documentation is confidential.

Students who might require assistance during emergency
evacuation are
encouraged to discuss their needs with their
professors and
Disability Support Services. For procedures
and information go to the
following website:
http://www.sunysb.edu/ehs/fire/disabilities.shtml

Copyright 2008 Stony Brook University
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Syllabus and Weekly Plan

Week
of Topics Comments

Jan 23

10.1: 1st order DE, direction
fields

10.2: Separation of variables

10.3: linear equations,
integrating factors

Jan 30

3.1: Linear Maps/Euclidean
spaces

3.2, 3.3: Vector Spaces and
Linear Maps

Feb 6

3.4, 3.5 Image and Null
Space, Coordinates and

Dimension

3.6 Eigenvalues and
Eigenvectors

Feb 13
3.6 Eigenvalues and

Eigenvectors

3.7 Inner Products

Feb 20 Ch.3/Ch.10/Midterm Review No HW/Quiz this
week,

http://www.math.stonybrook.edu/~sabya/mat308-spr17/index.php?page=home


Midterm I, Wed. Feb 22 Midterm I in class.

Feb 27

11.1, 11.2 Differential
Operators, Complex

Solutions, Higher Order
Eqns

11.3 Non-homogeneous
Eqns

March 6 11.5 Laplace Transform

11.6 Convolution
March

13 Spring Break

March
20

12.1 Vector Fields

12.2 Linear Systems

March
27

Sequences and Series in
Normed Vector Spaces

Definition and Basic
Properties of Matrix

Exponential

April 3

Jordan Canonical Form,
Computing Matrix

Exponential

13.1, 13.2 Applications of
Diagonalization and Matrix

Exponential to Linear
Systems

April 10 Midterm Review

Midterm, Wed. April 12

No HW/Quiz this
week,

Midterm II in class.



April 17
Nonhomogenous Linear

Systems

14.7 Power Series Solutions

April 24 13.4 Equilibrium and
Stability

May 1 Final Review

May 9
Final Exam 

Tuesday, May 9, 8:30pm-
11:00pm

Copyright 2008 Stony Brook University
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Homework

Homework Set 1

Homework Set 2

Homework Set 3

Homework Set 4

Homework Set 5

Homework Set 6

Homework Set 7

Homework Set 8

Homework Set 9

Copyright 2008 Stony Brook University
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Exams

Midterm I, Wed. Feb 22

Midterm II, Wed. April 12

Final Exam, Tue. May 9

Copyright 2008 Stony Brook University
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A vector space V with an inner product as defined above is called an “inner product space”.
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5.7 Nonhomogeneous Linear Systems 363

5.7 Nonhomogeneous Linear Systems
In Section 3.5 we exhibited two techniques for finding a single particular solution
of a single nonhomogeneous nth-order linear differential equation—the method of
undetermined coefficients and the method of variation of parameters. Each of these
may be generalized to nonhomogeneous linear systems. In a linear system mod-
eling a physical situation, nonhomogeneous terms typically correspond to external
influences, such as the inflow of liquid to a cascade of brine tanks or an external
force acting on a mass-and-spring system.

Given the nonhomogeneous first-order linear system

x0 D AxC f.t/ (1)

where A is an n! n constant matrix and the “nonhomogeneous term” f.t/ is a given
continuous vector-valued function, we know from Theorem 4 of Section 5.1 that a
general solution of Eq. (1) has the form

x.t/ D xc.t/C xp.t/; (2)

where

! xc.t/ D c1x1.t/C c2x2.t/C " " "C cnxn.t/ is a general solution of the associ-
ated homogeneous system x0 D Ax, and

! xp.t/ is a single particular solution of the original nonhomogeneous system in
(1).

Preceding sections have dealt with xc.t/, so our task now is to find xp.t/.

Undetermined Coefficients

First we suppose that the nonhomogeneous term f.t/ in (1) is a linear combination
(with constant vector coefficients) of products of polynomials, exponential func-
tions, and sines and cosines. Then the method of undetermined coefficients for
systems is essentially the same as for a single linear differential equation. We make
an intelligent guess as to the general form of a particular solution xp, then attempt
to determine the coefficients in xp by substitution in Eq. (1). Moreover, the choice
of this general form is essentially the same as in the case of a single equation (dis-
cussed in Section 3.5); we modify it only by using undetermined vector coefficients
rather than undetermined scalars. We will therefore confine the present discussion
to illustrative examples.

Example 1 Find a particular solution of the nonhomogeneous system

x0 D
!

3 2
7 5

"

xC
!

3
2t

"

: (3)

Solution The nonhomogeneous term f D
#

3 2t
$T

is linear, so it is reasonable to select a linear trial
particular solution of the form

xp.t/ D at C b D
!

a1

a2

"

t C
!

b1

b2

"

: (4)

Upon substitution of x D xp in Eq. (3), we get
!

a1

a2

"

D
!

3 2
7 5

" !

a1t C b1

a2t C b2

"

C
!

3
2t

"

D
!

3a1 C 2a2

7a1 C 5a2 C 2

"

t C
!

3b1 C 2b2 C 3
7b1 C 5b2

"

:
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We equate the coefficients of t and the constant terms (in both x1- and x2-compon-ents) and
thereby obtain the equations

3a1 C 2a2 D 0;
7a1 C 5a2 C 2 D 0;
3b1 C 2b2 C 3 D a1;

7b1 C 5b2 D a2:

(5)

We solve the first two equations in (5) for a1 D 4 and a2 D #6. With these values we can
then solve the last two equations in (5) for b1 D 17 and b2 D #25. Substitution of these

coefficients in Eq. (4) gives the particular solution xD
#

x1 x2
$T

of (3) described in scalar
form by

x1.t/ D 4t C 17;
x2.t/ D #6t # 25:

Example 2 Figure 5.7.1 shows the system of three brine tanks investigated in Example 2 of Section 5.2.
The volumes of the three tanks are V1 D 20, V2 D 40, and V3 D 50 (gal), and the common
flow rate is r D 10 (gal=min). Suppose that all three tanks contain fresh water initially, but
that the inflow to tank 1 is brine containing 2 pounds of salt per gallon, so that 20 pounds of

r (gal/min)

r

r

r

Tank 1
V1 (gal)

Tank 2
V2

Tank 3
V3

FIGURE 5.7.1. The three brine
tanks of Example 2.

salt flow into tank 1 per minute. Referring to Eq. (18) in Section 5.2, we see that the vector

x.t/ D
#

x1.t/ x2.t/ x3.t/
$T

of amounts of salt (in pounds) in the three tanks at time t
satisfies the nonhomogeneous initial value problem

dx

dt
D

2

4

#0:5 0 0
0:5 #0:25 0
0 0:25 #0:2

3

5 xC

2

4

20
0
0

3

5 ; x.0/ D

2

4

0
0
0

3

5 : (6)

The nonhomogeneous term f D
#

20 0 0
$T

here corresponds to the 20 lb/min inflow of
salt to tank 1, with no (external) inflow of salt into tanks 2 and 3.

Because the nonhomogeneous term is constant, we naturally select a constant trial

function xp D
#

a1 a2 a3
$T

, for which x0
p $ 0. Then substitution of xD xp in (6) yields

the system
2

4

0
0
0

3

5 D

2

4

#0:5 0 0
0:5 #0:25 0
0 0:25 #0:2

3

5

2

4

a1

a2

a3

3

5C

2

4

20
0
0

3

5

that we readily solve for a1 D 40, a2 D 80, and a3 D 100 in turn. Thus our particular solution

is xp.t/ D
#

40 80 100
$T

.
In Example 2 of Section 5.2 we found the general solution

xc.t/ D c1

2

4

3
#6
5

3

5 e"t=2 C c2

2

4

0
1

#5

3

5 e"t=4 C c3

2

4

0
0
1

3

5 e"t=5

of the associated homogeneous system, so a general solution x D xc C xp of the nonhomo-
geneous system in (6) is given by

x.t/ D c1

2

4

3
#6
5

3

5 e"t=2 C c2

2

4

0
1

#5

3

5 e"t=4 C c3

2

4

0
0
1

3

5 e"t=5 C

2

4

40
80
100

3

5 : (7)

When we apply the zero initial conditions in (6), we get the scalar equations

3c1 C 40 D 0,
#6c1 C c2 C 80 D 0,
5c1 # 5c2 C c3 C 100 D 0
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that are readily solved for c1 D # 40
3 , c2 D #160, and c3 D # 2500

3 . Substituting these
coefficients in Eq. (7), we find that the amounts of salt in the three tanks at time t are given
by

x1.t/ D 40 # 40e"t=2;

x2.t/ D 80C 80e"t=2 # 160e"t=4;

x3.t/ D 100C 100
3

%

#2e"t=2 C 24e"t=4 # 25e"t=5
&

:

(8)

As illustrated in Fig. 5.7.2, we see the salt in each of the three tanks approaching, as t!C1,
a uniform density of 2 lb=gal—the same as the salt density in the inflow to tank 1.6050403020100

t

x

0

40

120

80

20

100

60

x3(t)   100

x2(t)   80

x1(t)   40

FIGURE 5.7.2. Solution curves for
the amount of salt defined in (8).

In the case of duplicate expressions in the complementary function and the
nonhomogeneous terms, there is one difference between the method of undeter-
mined coefficients for systems and for single equations (Rule 2 in Section 3.5). For
a system, the usual first choice for a trial solution must be multiplied not only by
the smallest integral power of t that will eliminate duplication, but also by all lower
(nonnegative integral) powers of t as well, and all the resulting terms must be in-
cluded in the trial solution.

Example 3 Consider the nonhomogeneous system

x0 D
!

4 2
3 #1

"

x #
!

15
4

"

te"2t : (9)

In Example 1 of Section 5.2 we found the solution

xc.t/ D c1

!

1
#3

"

e"2t C c2

!

2
1

"

e5t (10)

of the associated homogeneous system. A preliminary trial solution xp.t/D ate"2t C be"2t

exhibits duplication with the complementary function in (10). We would therefore select

xp.t/ D at2e"2t C bte"2t C ce"2t

as our trial solution, and we would then have six scalar coefficients to determine. It is simpler
to use the method of variation of parameters, our next topic.

Variation of Parameters
Recall from Section 3.5 that the method of variation of parameters may be applied
to a linear differential equation with variable coefficients and is not restricted to
nonhomogeneous terms involving only polynomials, exponentials, and sinusoidal
functions. The method of variation of parameters for systems enjoys the same flexi-
bility and has a concise matrix formulation that is convenient for both practical and
theoretical purposes.

We want to find a particular solution xp of the nonhomogeneous linear system

x0 D P.t/xC f.t/; (11)

given that we have already found a general solution

xc.t/ D c1x1.t/C c2x2.t/C " " "C cnxn.t/ (12)

of the associated homogeneous system

x0 D P.t/x: (13)
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We first use the fundamental matrix ˆ.t/ with column vectors x1, x2, : : : ; xn

to rewrite the complementary function in (12) as

xc.t/ D ˆ.t/c; (14)

where c denotes the column vector whose entries are the coefficients c1; c2; : : : ; cn.
Our idea is to replace the vector “parameter” c with a variable vector u.t/. Thus we
seek a particular solution of the form

xp.t/ D ˆ.t/u.t/: (15)

We must determine u.t/ so that xp does, indeed, satisfy Eq. (11).
The derivative of xp.t/ is (by the product rule)

x0
p.t/ D ˆ0.t/u.t/Cˆ.t/u0.t/: (16)

Hence substitution of Eqs. (15) and (16) in (11) yields

ˆ0.t/u.t/Cˆ.t/u0.t/ D P.t/ˆ.t/u.t/C f.t/: (17)

But

ˆ0.t/ D P.t/ˆ.t/ (18)

because each column vector of ˆ.t/ satisfies Eq. (13). Therefore, Eq. (17) reduces
to

ˆ.t/u0.t/ D f.t/: (19)

Thus it suffices to choose u.t/ so that

u0.t/ D ˆ.t/"1f.t/I (20)

that is, so that

u.t/ D
Z

ˆ.t/"1f.t/ dt: (21)

Upon substitution of (21) in (15), we finally obtain the desired particular solution,
as stated in the following theorem.

THEOREM 1 Variation of Parameters

If ˆ.t/ is a fundamental matrix for the homogeneous system x0 D P.t/x on some
interval where P.t/ and f.t/ are continuous, then a particular solution of the non-
homogeneous system

x0 D P.t/xC f.t/

is given by

xp.t/ D ˆ.t/

Z

ˆ.t/"1f.t/ dt: (22)
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This is the variation of parameters formula for first-order linear systems. If
we add this particular solution and the complementary function in (14), we get the
general solution

x.t/ D ˆ.t/cCˆ.t/

Z

ˆ.t/"1f.t/ dt (23)

of the nonhomogeneous system in (11).
The choice of the constant of integration in Eq. (22) is immaterial, for we

need only a single particular solution. In solving initial value problems it often is
convenient to choose the constant of integration so that xp.a/D 0, and thus integrate
from a to t :

xp.t/ D ˆ.t/

Z t

a

ˆ.s/"1f.s/ ds: (24)

If we add the particular solution of the nonhomogeneous problem

x0 D P.t/xC f.t/; x.a/ D 0

in (24) to the solution xc.t/ D ˆ.t/ˆ.a/"1xa of the associated homogeneous prob-
lem x0 D P.t/x, x.a/ D xa, we get the solution

x.t/ D ˆ.t/ˆ.a/"1xa Cˆ.t/

Z t

a

ˆ.s/"1f.s/ ds (25)

of the nonhomogeneous initial value problem

x0 D P.t/xC f.t/; x.a/ D xa: (26)

Equations (22) and (25) hold for any fundamental matrix ˆ.t/ of the homo-
geneous system x0 D P.t/x. In the constant-coefficient case P.t/ $ A we can use
for ˆ.t/ the exponential matrix eAt —that is, the particular fundamental matrix such
that ˆ.0/ D I. Then, because .eAt /"1 D e"At , substitution of ˆ.t/ D eAt in (22)
yields the particular solution

xp.t/ D eAt

Z

e"At f.t/ dt (27)

of the nonhomogeneous system x0 D P.t/xC f.t/. Similarly, substitution of ˆ.t/ D
eAt in Eq. (25) with a D 0 yields the solution

x.t/ D eAt x0 C eAt

Z t

0

e"At f.t/ dt (28)

of the initial value problem

x0 D P.t/xC f.t/; x.0/ D x0: (29)

Remark If we retain t as the independent variable but use s for the variable of integration,
then the solutions in (27) and (28) can be rewritten in the forms

xp.t/ D
Z

e"A.s"t/f.s/ ds and x.t/ D eAt x0 C
Z t

0
e"A.s"t/f.s/ ds:
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Example 4 Solve the initial value problem

x0 D
!

4 2
3 #1

"

x #
!

15
4

"

te"2t ; x.0/ D
!

7
3

"

: (30)

Solution The solution of the associated homogeneous system is displayed in Eq. (10). It gives the
fundamental matrix

ˆ.t/ D
!

e"2t 2e5t

#3e"2t e5t

"

with ˆ.0/"1 D 1
7

!

1 #2
3 1

"

:

It follows by Eq. (28) in Section 5.6 that the matrix exponential for the coefficient matrix A
in (30) is

eAt D ˆ.t/ˆ.0/"1 D
!

e"2t 2e5t

#3e"2t e5t

"

" 1
7

!

1 #2
3 1

"

D 1
7

!

e"2t C 6e5t #2e"2t C 2e5t

#3e"2t C 3e5t 6e"2t C e5t

"

:

Then the variation of parameters formula in Eq. (28) gives

e"At x.t/ D x0 C
Z t

0
e"Asf.s/ ds

D
!

7
3

"

C
Z t

0

1
7

!

e2s C 6e"5s #2e2s C 2e"5s

#3e2s C 3e"5s 6e2s C e"5s

" !

#15se"2s

#4se"2s

"

ds

D
!

7
3

"

C
Z t

0

!

#s # 14se"7s

3s # 7se"7s

"

ds

D
!

7
3

"

C 1
14

!

#4 # 7t2 C 4e"7t C 28te"7t

#2C 21t2 C 2e"7t C 14te"7t

"

:

Therefore,

e"At x.t/ D 1
14

!

94 # 7t2 C 4e"7t C 28te"7t

40C 21t2 C 2e"7t C 14te"7t

"

:

Upon multiplication of the right-hand side here by eAt , we find that the solution of the initial
value problem in (30) is given by

x.t/ D 1
7

!

e"2t C 6e5t #2e"2t C 2e5t

#3e"2t C 3e5t 6e"2t C e5t

"

" 1
14

!

94 # 7t2 C 4e"7t C 28te"7t

40C 21t2 C 2e"7t C 14te"7t

"

D 1
14

!

.6C 28t # 7t2/e"2t C 92e5t

.#4C 14t C 21t2/e"2t C 46e5t

"

:

In conclusion, let us investigate how the variation of parameters formula in
(22) “reconciles” with the variation of parameters formula in Theorem 1 of Sec-
tion 3.5 for the second-order linear differential equation

y00 C Py0 CQy D f .t/: (31)

If we write y D x1, y0 D x0
1 D x2, y00 D x00

1 D x
0
2, then the single equation in (31) is

equivalent to the linear system x0
1 D x2, x0

2 D #Qx1 # Px2 C f .t/, that is,

x0 D P.t/xC f.t/; (32)

where

x D
!

x1

x2

"

D
!

y
y0

"

; P.t/ D
!

0 1
#Q #P

"

; and f.t/ D
!

0
f .t/

"

:
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Now two linearly independent solutions y1 and y2 of the homogeneous system
y00CPy0CQy D 0 associated with (31) provide two linearly independent solutions

x1 D
!

y1

y0
1

"

and x2 D
!

y2

y0
2

"

of the homogeneous system x0 D P.t/x associated with (32). Observe that the de-
terminant of the fundamental matrix ˆ D

#

x1 x2

$

is simply the Wronskian

W D

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2

y0
1 y0

2

ˇ

ˇ

ˇ

ˇ

ˇ

of the solutions y1 and y2, so the inverse fundamental matrix is

ˆ"1 D
1

W

ˇ

ˇ

ˇ

ˇ

ˇ

y0
2 #y2

#y0
1 y1

ˇ

ˇ

ˇ

ˇ

ˇ

:

Therefore the variation of parameters formula xp D ˆ
R

ˆ"1fdt in (22) yields

"

yp

y0
p

#

D

"

y1 y2

y0
1 y0

2

#

Z

1

W

"

y0
2 #y2

#y0
1 y1

#"

0

f

#

dt

D

"

y1 y2

y0
1 y0

2

#

Z

1

W

"

#y2f

y1f

#

dt:

The first component of this column vector is

yp D
#

y1 y2

$

Z

1

W

"

#y2f

y1f

#

dt D #y1

Z

y2f

W
dt C y2

Z

y1f

W
dt:

If, finally, we supply the independent variable t throughout, the final result on the
right-hand side here is simply the variation of parameters formula in Eq. (33) of
Section 3.5 (where, however, the independent variable is denoted by x).

5.7 Problems
Apply the method of undetermined coefficients to find a par-
ticular solution of each of the systems in Problems 1 through
14. If initial conditions are given, find the particular solution
that satisfies these conditions. Primes denote derivatives with
respect to t .

1. x0 D x C 2y C 3, y0 D 2x C y # 2
2. x0 D 2x C 3y C 5, y0 D 2x C y # 2t
3. x0 D 3x C 4y, y0 D 3x C 2y C t2I x.0/ D y.0/ D 0
4. x0 D 4x C y C et , y0 D 6x # y # et I x.0/ D y.0/ D 1
5. x0 D 6x # 7y C 10, y0 D x # 2y # 2e"t

6. x0 D 9x C y C 2et , y0 D #8x # 2y C tet

7. x0 D #3x C 4y C sin t , y0 D 6x # 5yI x.0/ D 1, y.0/ D 0
8. x0 D x # 5y C 2 sin t , y0 D x # y # 3 cos t

9. x0 D x # 5y C cos 2t , y0 D x # y

10. x0 D x # 2y, y0 D 2x # y C et sin t

11. x0 D 2x C 4y C 2, y0 D x C 2y C 3I x.0/ D 1, y.0/ D #1
12. x0 D x C y C 2t , y0 D x C y # 2t
13. x0 D 2x C y C 2et , y0 D x C 2y # 3et

14. x0 D 2x C y C 1, y0 D 4x C 2y C e4t

Problems 15 and 16 are similar to Example 2, but with two
brine tanks (having volumes V1 and V2 gallons as in Fig. 5.7.1)
instead of three tanks. Each tank initially contains fresh water,
and the inflow to tank 1 at the rate of r gallons per minute has
a salt concentration of c0 pounds per gallon. (a) Find the
amounts x1.t/ and x2.t/ of salt in the two tanks after t min-
utes. (b) Find the limiting (long-term) amount of salt in each
tank. (c) Find how long it takes for each tank to reach a salt
concentration of 1 lb=gal.
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Plot similarly some solution curves for the following differential equations.

1.
dy

dx
D
4x ! 5y
2x C 3y

2.
dy

dx
D
4x ! 5y
2x ! 3y

3.
dy

dx
D
4x ! 3y
2x ! 5y

4.
dy

dx
D

2xy

x2 ! y2

5.
dy

dx
D
x2 C 2xy
y2 C 2xy

Now construct some examples of your own. Homogeneous functions like
those in Problems 1 through 5—rational functions with numerator and denominator
of the same degree in x and y—work well. The differential equation

dy

dx
D

25x C y.1 ! x2 ! y2/.4 ! x2 ! y2/

!25y C x.1 ! x2 ! y2/.4 ! x2 ! y2/
(5)

of this form generalizes Example 5 in this section but would be inconvenient to solve
explicitly. Its phase portrait (Fig. 6.1.22) shows two periodic closed trajectories—
the circles r D 1 and r D 2. Anyone want to try for three circles?

0 4321
x

y

–4 –3 –2 –1
–4

–3

–2

–1

4

3

2

1

0

FIGURE 6.1.22. Phase portrait for
the system corresponding to Eq. (5).

6.2 Linear and Almost Linear Systems
We now discuss the behavior of solutions of the autonomous system

dx

dt
D f .x; y/;

dy

dt
D g.x; y/ (1)

near an isolated critical point .x0; y0/ where f .x0; y0/ D g.x0; y0/ D 0. A critical
point is called isolated if some neighborhood of it contains no other critical point.
We assume throughout that the functions f and g are continuously differentiable in
a neighborhood of .x0; y0/.

We can assume without loss of generality that x0 D y0 D 0. Otherwise, we
make the substitutions u D x ! x0, v D y ! y0. Then dx=dt D du=dt and dy=dt D
dv=dt , so (1) is equivalent to the system

du

dt
D f .uC x0; v C y0/ D f1.u; v/;

dv

dt
D g.uC x0; v C y0/ D g1.u; v/

(2)

that has .0; 0/ as an isolated critical point.

Example 1 The system

dx

dt
D 3x ! x2 ! xy D x.3 ! x ! y/;

dy

dt
D y C y2 ! 3xy D y.1 ! 3x C y/

(3)
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has .1; 2/ as one of its critical points. We substitute u D x ! 1, v D y ! 2; that is, x D uC 1,
y D v C 2. Then

3 ! x ! y D 3 ! .uC 1/ ! .v C 2/ D !u ! v
and

1 ! 3x C y D 1 ! 3.uC 1/C .v C 2/ D !3uC v;
so the system in (3) takes the form

du

dt
D .uC 1/.!u ! v/ D !u ! v ! u2 ! uv;

dv

dt
D .v C 2/.!3uC v/ D !6uC 2v C v2 ! 3uv

(4)

and has .0; 0/ as a critical point. If we can determine the trajectories of the system in (4)
near .0; 0/, then their translations under the rigid motion that carries .0; 0/ to .1; 2/ will be
the trajectories near .1; 2/ of the original system in (3). This equivalence is illustrated by
Fig. 6.2.1 (which shows computer-plotted trajectories of the system in (3) near the critical
point .1; 2/ in the xy-plane) and Fig. 6.2.2 (which shows computer-plotted trajectories of the
system in (4) near the critical point .0; 0/ in the uv-plane).

0 21
x

y

3

2

(1, 2)

1

FIGURE 6.2.1. The saddle point
.1; 2/ for the system
x0 D 3x ! x2 ! xy,
y0 D y C y2 ! 3xy
of Example 1.

0 1
u

v

–1
–1

1

0

(0, 0)

FIGURE 6.2.2. The saddle point
.0; 0/ for the equivalent system
u0 D !u ! v ! u2 ! uv,
v0 D !6u C 2v C v2 ! 3uv.

Figures 6.2.1 and 6.2.2 illustrate the fact that the solution curves of the xy-
system in (1) are simply the images under the translation .u; v/! .uC x0; v C y0/
of the solution curves of the uv-system in (2). Near the two corresponding critical
points—.x0; y0/ in the xy-plane and .0; 0/ in the uv-plane—the two phase portraits
therefore look precisely the same.

Linearization Near a Critical Point
Taylor’s formula for functions of two variables implies that—if the function f .x; y/
is continuously differentiable near the fixed point .x0; y0/—then

f .x0 C u; y0 C v/ D f .x0; y0/C fx.x0; y0/uC fy.x0; y0/v C r.u; v/

where the “remainder term” r.u; v/ satisfies the condition

lim
.u;v/!.0;0/

r.u; v/
p
u2 C v2

D 0:

(Note that this condition would not be satisfied if r.u; v/ were a sum containing
either constants or terms linear in u or v. In this sense, r.u; v/ consists of the
“nonlinear part” of the function f .x0 C u; y0 C v/ of u and v.)
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If we apply Taylor’s formula to both f and g in (2) and assume that .x0; y0/
is an isolated critical point so f .x0; y0/ D g.x0; y0/ D 0, the result is

du

dt
D fx.x0; y0/uC fy.x0; y0/v C r.u; v/;

dv

dt
D gx.x0; y0/uC gy.x0; y0/v C s.u; v/

(5)

where r.u; v/ and the analogous remainder term s.u; v/ for g satisfy the condition

lim
.u;v/!.0;0/

r.u; v/
p
u2 C v2

D lim
.u;v/!.0;0/

s.u; v/
p
u2 C v2

D 0: (6)

Then, when the values u and v are small, the remainder terms r.u; v/ and s.u; v/ are
very small (being small even in comparison with u and v).

If we drop the presumably small nonlinear terms r.u; v/ and s.u; v/ in (5), the
result is the linear system

du

dt
D fx.x0; y0/uC fy.x0; y0/v;

dv

dt
D gx.x0; y0/uC gy.x0; y0/v

(7)

whose constant coefficients (of the variables u and v) are the values fx.x0; y0/,
fy.x0; y0/ and gx.x0; y0/, gy.x0; y0/ of the functions f and g at the critical point
.x0; y0/. Because (5) is equivalent to the original (and generally) nonlinear system
u0 D f .x0 C u; y0 C v/, v0 D g.x0 C u; y0 C v/ in (2), the conditions in (6) suggest
that the linearized system in (7) closely approximates the given nonlinear system
when .u; v/ is close to .0; 0/.

Assuming that .0; 0/ is also an isolated critical point of the linear system,
and that the remainder terms in (5) satisfy the condition in (6), the original system
x0 D f .x; y/, y0 D g.x; y/ is said to be almost linear at the isolated critical point
.x0; y0/. In this case, its linearization at .x0; y0/ is the linear system in (7). In

short, this linearization is the linear system u0 D Ju (where u D
!

u v
"T

) whose
coefficient matrix is the so-called Jacobian matrix

J.x0; y0/ D
#

fx.x0; y0/ fy.x0; y0/
gx.x0; y0/ gy.x0; y0/

$

(8)

of the functions f and g, evaluated at the point .x0; y0/.

Continued

Example 1 In (3) we have f .x; y/ D 3x ! x2 ! xy and g.x; y/ D y C y2 ! 3xy. Then

J.x; y/ D
#

3 ! 2x ! y !x
!3y 1C 2y ! 3x

$

; so J.1; 2/ D
#

!1 !1
!6 2

$

:

Hence the linearization of the system x0 D 3x ! x2 ! xy, y0 D y C y2 ! 3xy at its critical
point .1; 2/ is the linear system

u0 D !u ! v;
v0 D !6uC 2v

that we get when we drop the nonlinear (quadratic) terms in (4).

It turns out that in most (though not all) cases, the phase portrait of an al-
most linear system near an isolated critical point .x0; y0/ strongly resembles—
qualitatively—the phase portrait of its linearization near the origin. Consequently,
the first step toward understanding general autonomous systems is to characterize
the isolated critical points of linear systems.
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Isolated Critical Points of Linear Systems
In Section 5.3 we used the eigenvalue-eigenvector method to study the 2 " 2 linear
system

#

x0

y0

$

D
#

a b
c d

$ #

x
y

$

(9)

with constant-coefficient matrix A. The origin .0; 0/ is a critical point of the system
regardless of the matrix A, but if we further require the origin to be an isolated
critical point, then (by a standard theorem of linear algebra) the determinant ad !bc
of A must be nonzero. From this we can conclude that the eigenvalues !1 and !2 of
A must be nonzero. Indeed, !1 and !2 are the solutions of the characteristic equation

det.A ! !I/ D
ˇ

ˇ

ˇ

ˇ

a ! ! b
c d ! !

ˇ

ˇ

ˇ

ˇ

D .a ! !/.d ! !/ ! bc

D !2 ! .aC d/!C .ad ! bc/
D 0;

(10)

and the fact that ad ! bc 6D 0 implies that ! D 0 cannot satisfy Eq. (10); hence !1

and !2 are nonzero. The converse also holds: If the characteristic equation (10) has
no zero solution—that is, if all eigenvalues of the matrix A are nonzero—then the
determinant ad ! bc is nonzero. Altogether, we conclude that the origin .0; 0/ is an
isolated critical point of the system in Eq. (9) if and only if the eigenvalues of A are
all nonzero. Our study of this critical point can be divided, therefore, into the five
cases listed in the table in Fig. 6.2.3. This table also gives the type of each critical
point as found in Section 5.3 and shown in our gallery Fig. 5.3.16 of typical phase
plane portraits:

Eigenvalues of A Type of Critical Point

Real, unequal, same sign

Real, unequal, opposite sign

Real and equal

Complex conjugate

Pure imaginary

Improper node

Saddle point

Proper or improper node

Spiral point

Center

FIGURE 6.2.3. Classification of the isolated critical point .0; 0/
of the two-dimensional system x0 D Ax.

Closer inspection of that gallery, however, reveals a striking connection be-
tween the stability properties of the critical point and the eigenvalues !1 and !2

of A. For example, if !1 and !2 are real, unequal, and negative, then the origin
represents an improper nodal sink; because all trajectories approach the origin as
t !C1, the critical point is asymptotically stable. Likewise, if !1 and !2 are real,
equal, and negative, then the origin is a proper nodal sink, and is again asymptot-
ically stable. Further, if !1 and !2 are complex conjugate with negative real part,
then the origin is a spiral sink, and is once more asymptotically stable. All three of
these cases can be captured as follows: If the real parts of !1 and !2 are negative,
then the origin is an asymptotically stable critical point. (Note that if !1 and !2 are
real, then they are themselves their real parts.)

Similar generalizations can be made for other combinations of signs of the real
parts of !1 and !2. Indeed, as the table in Fig. 6.2.4 shows, the stability properties
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of the isolated critical point .0; 0/ of the system in Eq. (9) are always determined
by the signs of the real parts of !1 and !2. (We invite you to use the gallery in
Fig. 5.3.16 to verify the conclusions in the table.)

Real Parts of !1 and !2 Type of Critical Point Stability

Both negative
" Proper or improper

nodal sink, or
" Spiral sink

Asymptotically
stable

Both zero (i.e., !1 and !2 are
given by ˙iq with q 6D 0) " Center

Stable but not
asymptotically
stable

At least one positive

" Proper or improper
nodal source, or

" Spiral source, or
" Saddle point

Unstable

FIGURE 6.2.4. Stability properties of the isolated critical point .0; 0/ of the system in Eq. (9) with
nonzero eigenvalues !1 and !2.

These findings are summarized in Theorem 1:

THEOREM 1 Stability of Linear Systems

Let !1 and !2 be the eigenvalues of the coefficient matrix A of the two-
dimensional linear system

dx

dt
D ax C by;

dy

dt
D cx C dy

(11)

with ad ! bc 6D 0. Then the critical point .0; 0/ is

1. Asymptotically stable if the real parts of !1 and !2 are both negative;

2. Stable but not asymptotically stable if the real parts of !1 and !2 are both
zero (so that !1, !2 D ˙qi);

3. Unstable if either !1 or !2 has a positive real part.

It is worthwhile to consider the effect of small perturbations in the coefficients
a, b, c, and d of the linear system in (11), which result in small perturbations of the
eigenvalues !1 and !2. If these perturbations are sufficiently small, then positive
real parts (of !1 and !2) remain positive and negative real parts remain negative.
Hence an asymptotically stable critical point remains asymptotically stable and an
unstable critical point remains unstable. Part 2 of Theorem 1 is therefore the only
case in which arbitrarily small perturbations can affect the stability of the critical
point .0; 0/. In this case pure imaginary roots !1, !2 D ˙qi of the characteristic
equation can be changed to nearby complex roots "1, "2 D r ˙ si , with r either
positive or negative (see Fig. 6.2.5). Consequently, a small perturbation of the coef-
ficients of the linear system in (11) can change a stable center to a spiral point that
is either unstable or asymptotically stable.

λ1 = qiλ

µ1 = r + siµ

µ2 = r– si

λ2 = – qiλ

µ

FIGURE 6.2.5. The effects of
perturbation of pure imaginary roots.
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There is one other exceptional case in which the type, though not the stability,
of the critical point .0; 0/ can be altered by a small perturbation of its coefficients.
This is the case with !1 D !2, equal roots that (under a small perturbation of the
coefficients) can split into two roots "1 and "2, which are either complex conjugates
or unequal real roots (see Fig. 6.2.6). In either case, the sign of the real parts of the
roots is preserved, so the stability of the critical point is unaltered. Its nature may
change, however; the table in Fig. 6.2.3 shows that a node with !1 D !2 can either
remain a node (if "1 and "2 are real) or change to a spiral point (if "1 and "2 are
complex conjugates).

Suppose that the linear system in (11) is used to model a physical situation. It

x

y

λ1 = λ2µ1 µ2

Distinct
real roots

Complex
conjugate
roots

λ λ µ

µ2µ

µ

µ1µ

FIGURE 6.2.6. The effects of
perturbation of real equal roots.

is unlikely that the coefficients in (11) can be measured with total accuracy, so let
the unknown precise linear model be

dx

dt
D a?x C b?y;

dy

dt
D c?x C d?y:

(11?)

If the coefficients in (11) are sufficiently close to those in (11?), it then follows from
the discussion in the preceding paragraph that the origin .0; 0/ is an asymptotically
stable critical point for (11) if it is an asymptotically stable critical point for (11?),
and is an unstable critical point for (11) if it is an unstable critical point for (11?).
Thus in this case the approximate model in (11) and the precise model in (11?)
predict the same qualitative behavior (with respect to asymptotic stability versus
instability).

Almost Linear Systems

Recall that we first encountered an almost linear system at the beginning of this
section, when we used Taylor’s formula to write the nonlinear system (2) in the
almost linear form (5) which led to the linearization (7) of the original nonlinear
system. In case the nonlinear system x0 D f .x; y/, y0 D g.x; y/ has .0; 0/ as an
isolated critical point, the corresponding almost linear system is

dx

dt
D ax C by C r.x; y/;

dy

dt
D cx C dy C s.x; y/;

(12)

where a D fx.0; 0/, b D fy.0; 0/ and c D gx.0; 0/, d D gy.0; 0/; we assume also
that ad ! bc 6D 0. Theorem 2, which we state without proof, essentially implies
that—with regard to the type and stability of the critical point .0; 0/—the effect of
the small nonlinear terms r.x; y/ and s.x; y/ is equivalent to the effect of a small
perturbation in the coefficients of the associated linear system in (11).

THEOREM 2 Stability of Almost Linear Systems

Let !1 and !2 be the eigenvalues of the coefficient matrix of the linear system in
(11) associated with the almost linear system in (12). Then

1. If !1 D !2 are equal real eigenvalues, then the critical point .0; 0/ of (12) is
either a node or a spiral point, and is asymptotically stable if !1 D !2 < 0,
unstable if !1 D !2 > 0.

2. If !1 and !2 are pure imaginary, then .0; 0/ is either a center or a spiral
point, and may be either asymptotically stable, stable, or unstable.
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3. Otherwise—that is, unless !1 and !2 are either real equal or pure
imaginary—the critical point .0; 0/ of the almost linear system in (12) is
of the same type and stability as the critical point .0; 0/ of the associated
linear system in (11).

Thus, if !1 6D !2 and Re.!1/ 6D 0, then the type and stability of the critical point
of the almost linear system in (12) can be determined by analysis of its associated
linear system in (11), and only in the case of pure imaginary eigenvalues is the
stability of .0; 0/ not determined by the linear system. Except in the sensitive cases
!1 D !2 and Re.!i / D 0, the trajectories near .0; 0/ will resemble qualitatively
those of the associated linear system—they enter or leave the critical point in the
same way, but may be “deformed” in a nonlinear manner. The table in Fig. 6.2.7
summarizes the situation.

Eigenvalues !1, !2 Type of Critical Point of

for the Linearized System the Almost Linear System

!1 < !2 < 0

!1 D !2 < 0

!1 < 0 < !2

!1 D !2 > 0

!1 > !2 > 0

!1, !2 D a˙ bi (a < 0)

!1, !2 D a˙ bi (a > 0)

!1, !2 D ˙bi

Stable improper node

Stable node or spiral point

Unstable saddle point

Unstable node or spiral point

Unstable improper node

Stable spiral point

Unstable spiral point

Stable or unstable, center or spiral point

FIGURE 6.2.7. Classification of critical points of an almost linear system.

An important consequence of the classification of cases in Theorem 2 is that
a critical point of an almost linear system is asymptotically stable if it is an asymp-
totically stable critical point of the linearization of the system. Moreover, a critical
point of the almost linear system is unstable if it is an unstable critical point of the
linearized system. If an almost linear system is used to model a physical situation,
then—apart from the sensitive cases mentioned earlier—it follows that the qualita-
tive behavior of the system near a critical point can be determined by examining its
linearization.

Example 2 Determine the type and stability of the critical point .0; 0/ of the almost linear system

dx

dt
D 4x C 2y C 2x2 ! 3y2;

dy

dt
D 4x ! 3y C 7xy:

(13)

Solution The characteristic equation for the associated linear system (obtained simply by deleting the
quadratic terms in (13)) is

.4 ! !/.!3 ! !/ ! 8 D .! ! 5/.!C 4/ D 0;

so the eigenvalues !1 D 5 and !2 D !4 are real, unequal, and have opposite signs. By our
discussion of this case we know that .0; 0/ is an unstable saddle point of the linear system,
and hence by Part 3 of Theorem 2, it is also an unstable saddle point of the almost linear
system in (13). The trajectories of the linear system near .0; 0/ are shown in Fig. 6.2.8, and
those of the nonlinear system in (13) are shown in Fig. 6.2.9. Figure 6.2.10 shows a phase
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0.0 0.2 0.4
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0.0
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FIGURE 6.2.8. Trajectories of the
linearized system of Example 2.
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–0.4 –0.2

0.0
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FIGURE 6.2.9. Trajectories of the
original almost linear system of
Example 2.
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FIGURE 6.2.10. Phase portrait for
the almost linear system in Eq. (13).

portrait of the nonlinear system in (13) from a “wider view.” In addition to the saddle point
at .0; 0/, there are spiral points near the points .0:279; 1:065/ and .0:933;!1:057/, and a node
near .!2:354;!0:483/.

We have seen that the system x0 D f .x; y/, y0 D g.x; y/ with isolated critical
point .x0; y0/ transforms via the substitution x D uC x0, y D v C y0 to an equiv-
alent uv-system with corresponding critical point .0; 0/ and linearization u0 D Ju,
whose coefficient matrix J is the Jacobian matrix in (8) of the functions f and g at
.x0; y0/. Consequently we need not carry out the substitution explicitly; instead, we
can proceed directly to calculate the eigenvalues of J preparatory to application of
Theorem 2.

Example 3 Determine the type and stability of the critical point .4; 3/ of the almost linear
system

dx

dt
D 33 ! 10x ! 3y C x2;

dy

dt
D !18C 6x C 2y ! xy:

(14)

Solution With f .x; y/ D 33! 10x ! 3y C x2, g.x; y/ D !18C 6x C 2y ! xy and x0 D 4, y0 D 3 we
have

J.x; y/ D
#

!10C 2x !3
6 ! y 2 ! x

$

; so J.4; 3/ D
#

!2 !3
3 !2

$

:

The associated linear system

du

dt
D !2u ! 3v;

dv

dt
D 3u ! 2v

(15)

has characteristic equation .! C 2/2 C 9 D 0, with complex conjugate roots ! D !2 ˙ 3i .
Hence .0; 0/ is an asymptotically stable spiral point of the linear system in (15), so Theo-
rem 2 implies that .4; 3/ is an asymptotically stable spiral point of the original almost linear
system in (14). Figure 6.2.11 shows some typical trajectories of the linear system in (15),
and Fig. 6.2.12 shows how this spiral point fits into the phase portrait for the original almost
linear system in (14).
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FIGURE 6.2.11. Spiral trajectories of the
linear system in Eq. (15).
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FIGURE 6.2.12. Phase portrait for the
almost linear system in Eq. (14).

6.2 Problems
In Problems 1 through 10, apply Theorem 1 to determine the
type of the critical point .0; 0/ and whether it is asymptotically
stable, stable, or unstable. Verify your conclusion by using a
computer system or graphing calculator to construct a phase
portrait for the given linear system.

1.
dx

dt
D !2x C y,

dy

dt
D x ! 2y

2.
dx

dt
D 4x ! y,

dy

dt
D 2x C y

3.
dx

dt
D x C 2y,

dy

dt
D 2x C y

4.
dx

dt
D 3x C y,

dy

dt
D 5x ! y

5.
dx

dt
D x ! 2y,

dy

dt
D 2x ! 3y

6.
dx

dt
D 5x ! 3y,

dy

dt
D 3x ! y

7.
dx

dt
D 3x ! 2y,

dy

dt
D 4x ! y

8.
dx

dt
D x ! 3y,

dy

dt
D 6x ! 5y

9.
dx

dt
D 2x ! 2y,

dy

dt
D 4x ! 2y

10.
dx

dt
D x ! 2y,

dy

dt
D 5x ! y

Each of the systems in Problems 11 through 18 has a single
critical point .x0; y0/. Apply Theorem 2 to classify this crit-
ical point as to type and stability. Verify your conclusion by
using a computer system or graphing calculator to construct a
phase portrait for the given system.

11.
dx

dt
D x ! 2y,

dy

dt
D 3x ! 4y ! 2

12.
dx

dt
D x ! 2y ! 8,

dy

dt
D x C 4y C 10

13.
dx

dt
D 2x ! y ! 2,

dy

dt
D 3x ! 2y ! 2

14.
dx

dt
D x C y ! 7,

dy

dt
D 3x ! y ! 5

15.
dx

dt
D x ! y,

dy

dt
D 5x ! 3y ! 2

16.
dx

dt
D x ! 2y C 1,

dy

dt
D x C 3y ! 9

17.
dx

dt
D x ! 5y ! 5,

dy

dt
D x ! y ! 3

18.
dx

dt
D 4x ! 5y C 3,

dy

dt
D 5x ! 4y C 6

In Problems 19 through 28, investigate the type of the criti-
cal point .0; 0/ of the given almost linear system. Verify your
conclusion by using a computer system or graphing calculator
to construct a phase portrait. Also, describe the approximate
locations and apparent types of any other critical points that
are visible in your figure. Feel free to investigate these addi-
tional critical points; you can use the computational methods
discussed in the application material for this section.

19.
dx

dt
D x ! 3y C 2xy,

dy

dt
D 4x ! 6y ! xy

20.
dx

dt
D 6x ! 5y C x2,

dy

dt
D 2x ! y C y2

21.
dx

dt
D x C 2y C x2 C y2,

dy

dt
D 2x ! 2y ! 3xy

22.
dx

dt
D x C 4y ! xy2,

dy

dt
D 2x ! y C x2y

23.
dx

dt
D 2x ! 5y C x3,

dy

dt
D 4x ! 6y C y4

24.
dx

dt
D 5x ! 3y C y.x2 C y2/,

dy

dt
D 5x C y.x2 C y2/

25.
dx

dt
D x ! 2y C 3xy,

dy

dt
D 2x ! 3y ! x2 ! y2

26.
dx

dt
D 3x ! 2y ! x2 ! y2,

dy

dt
D 2x ! y ! 3xy

27.
dx

dt
D x ! y C x4 ! y2,

dy

dt
D 2x ! y C y4 ! x2

28.
dx

dt
D 3x ! y C x3 C y3,

dy

dt
D 13x ! 3y C 3xy
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Differential Equations with Linear Algebra

Homework Problems

1.1. Explicit Solutions. (25 points)

Solve the following equations using the methods (separation of variables, integrating factors)
presented in class.

• x′ + x = 1
et

• 3ettanx dt
dx

+ (1− et)sec2x = 0

• x′ + 1−2t
t2

x = 1

• dy
dx

= x + y

• xy′ + (2x− 3)y = x4

1.2. Initial Value Problem. (10 points)

Solve the following initial value problem.

y′′ = sin(x), y(0) = 1, y′(0) = 1.

1.3. Linear Combination. (5 points)

Verify that if y1(x) and y2(x) are solutions of the respective equations

y′ + gy = f1 and y′ + gy = f2

then c1y1 + c2y2 is, for every pair of constants c1, c2, a solutions of the equation

y′ + gy = c1f1 + c2f2

1.4. Characterizing Isoclines. (10 points)

Consider the linear differential equation y′+ay = c, with a, c constant, a 6= 0. Prove that the
isoclines of the direction field of this equation are horizontal lines and that every horizontal
line is an isocline.

1.5. (Bonus problem) A Bernoulli Equation.

Solve the following differential equation.

3dx
dt

= 2x + t+1
x2 .

Due Date: Thursday, February 2, at the beginning of recitation.
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Differential Equations with Linear Algebra

Homework Problems

2.1. A Non-standard Vector Space Structure on R2. (20 points)

Show that (R2,R,⊕,�) with the operations defined as follows is a vector space.

[
x1

y1

]
⊕
[
x2

y2

]
=

[
x1 + x2 − 1
y1 + y2 + 2

]

c�
[
x
y

]
=

[
cx− c + 1
cy + 2c− 2

]
Here, +, − denote the usual addition and subtraction of real numbers.

2.2. A subspace of Mn(R). (10 points)

Show that the set of all real n× n upper triangular matrices is a subspace of Mn(R).

2.3. Finding a Basis. (10 points)

Let P3 be the vector space of real polynomials of degree at most 3 (with respect to usual ad-
dition of polynomials and multiplication of scalars with polynomials). Let V be the subspace
of P3 defined as:

V = {f(x) ∈ P3 : f(0) + f(1) = 0, f ′(0) = f ′(1)}

Find a basis for V .

2.4. Containment of subspaces. (10 points)

Let W1, W2 and W3 be subspaces of a vector space V such that W1 is contained in W2 ∪W3.
Show that W1 is either contained in W2, or contained in W3.

2.5. Describing Linear Maps. (10 points)

Describe explicitly a linear map from R3 into R3 which has as its range the subspace spanned
by (1, 0,−1) and (1, 2, 2).

2.6. (Bonus problem) Range and Null Space. (10 points)

Let V be a vector space and T : V → V be a linear map. Show that the following two
statements about T are equivalent.

(a) Range(T ) ∩ Null(T ) = {0}.
(b) Null(T ◦ T ) ⊆ Null(T ).

Due Date: Thursday, February 9, at the beginning of recitation.
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Differential Equations with Linear Algebra

Homework Problems

3.1. Vector Spaces and Dimension. (10 points)

For each of the following spaces, show whether or not it is a vector space over the scalar field
R. If it is a vector space, give its dimension.

(a) Symmetric 2 × 2 real matrices, i.e. matrices A such that the transpose AT is equal to
A (with respect to usual matrix addition and multiplication of scalars with matrices).

(b) {(x, y) ∈ R2 : y > 0} (with respect to the standard operations on R2).

3.2. Range and Null Space. (10 points)

Find the null space and range of the map f : R3 → R3 defined by f(x, y, z) =

1 0 1
1 2 0
0 −2 1

xy
z

.

What is the sum of the dimensions of these two subspaces?

3.3. Coordinates of Vectors. (10 points)

Show that B = {

 1
0
−1

 ,

1
1
1

 ,

1
0
0

} is a basis of R3. What are the coordinates of the vectorxy
z

 with respect to the ordered basis B?

3.4. Linear Independence. (10 points)

Suppose that the vectors u1, u2 and u3 in a vector space V are linearly independent. Show
that the vectors u1 + u2, u2 + u3 and u3 + u1 are also linearly independent.

3.5. Diagonalizing Linear Maps. (20 points)

The following matrices A represent linear maps T : R3 → R3 with respect to the standard

(ordered) basis B = {

1
0
0

 ,

0
1
0

 ,

0
0
1

}. For each of them, determine whether or not T is

diagonalizable. If T is diagonalizable, find a basis of R3 consisting of eigenvectors of T and
find an invertible matrix P such that P−1AP is a diagonal matrix.

(a) A =

3 1 −1
2 2 −1
2 2 0

.

(b) A =

 5 −6 −6
−1 4 2

3 −6 −4

.



3.6. (Bonus problem) A Basis of P3. (10 points)

Let P3 be the vector space of all real polynomials of degree at most 3, and f(x) be a real
polynomial of degree 3. Show that {f(x), f ′(x), f ′′(x), 1} is a basis of P3.

Due Date: Thursday, February 16, at the beginning of recitation.
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Differential Equations with Linear Algebra

Homework Problems

4.1. Eigenvalues of Linear Maps. (5+10 points)

(a) Let T : V → V be a linear map with an eigenvalue λ. Show that λ2 is an eigenvalue of
T ◦ T .

(b) Let C∞(R) be the vector space of all infinitely differentiable real functions (with respect
to addition and scalar multiplication of functions). Consider the linear map T := d2

dx2
:

C∞(R) → C∞(R). For λ > 0, prove that any linear combination of ex
√
λ and e−x

√
λ is

an eigenvector for λ.

4.2. Computing Powers of Matrices. (10 points)

Show that if A =

[
0 2
−1 3

]
, then A10 =

[
−1022 2046
−1023 2047

]
.

(Hint: Write A as PDP−1, where D is diagonal.)

4.3. Inner Product or Not?. (5 points)

Consider the vector space R2 with respect to usual addition and scalar multiplication of
vectors. Does the formula 〈x,y〉 = x1y1 − x2y2 (where x = (x1, x2) and y = (y1, y2)) define
an inner product on R2?

4.4. Recovering Angle from Length. (10 points)

Prove that if ||x|| =
√
〈x,x〉 is the norm defined by an inner product 〈x,y〉, then 〈x,y〉 =

1
4

(||x + y||2 − ||x− y||2).

4.5. Symmetric Matrices. (10 points)

Let A be a real symmetric 2×2 matrix. Show that 〈A(x),y〉 = 〈x, A(y)〉 for every x,y ∈ R2

(here 〈 , 〉 denotes the usual dot product in R2).

4.6. Finding an Orthonormal Basis. (10 points)

Let V = P2 [0, 1] be the vector space of all real polynomials of degree at most 2 restricted to
[0, 1]. If V is given the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx,

find an orthonormal basis for V .

(Hint: Apply Gram-Schmidt on the basis {1, x, x2}.)

Due Date: Thursday, February 23, at the beginning of recitation.
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Homework Problems

5.1. Linear Differential Equation with Constant Coefficients. (10+10 points)

Solve the following initial value problems (do not use trial solutions, use the method of
repeated integration):

(a) y′′ + y′ − 6y = 0, y(0) = 2, y′(0) = 2.

(b) y′′ − 2y′ + 2y = 0, y(π) = 2, y′(π) = 0.

5.2. Differential Equations with A Prescribed Solution. (5+5 points)

Find linear differential equations of minimal order (with constant coefficients) that are sat-
isfied by the following functions:

(a) f(x) = 2xe−x + e−x.

(b) g(x) = 3 cos(4x)− 5e2x sin 3x.

5.3. Undetermined Coefficients. (10 points)

Find the general solution of the following linear non-homogenous differential equation using
the method of undetermined coefficients:

y′′ − 4y = 2e2x.

5.4. Variation of Parameters. (10 points)

For the following differential equation, find or guess a solution y1 of the associated homoge-
nous equation. Then determine u(x) so that y(x) = u(x)y1(x) is a solution of the differential
equation containing two arbitrary constants.

x2y′′ − 3xy′ + 3y = x4, x > 0.

(Hint: try y1 = xn, for some positive integer n)

5.5. Linear Independence and Wronskian. (10 points)

Compute the Wronskian of the functions y1(x) = e−3x, y2(x) = cos 2x, and y3(x) = sin 2x,
and conclude that they are linearly independent (on R).

5.6. (Bonus Problem) Exploiting The Power of Wronskians. (10 points)

Let r1, r2 be two distinct real roots of the quadratic equation x2 + px + q = 0, where
p, q ∈ R. We have seen, using exponential functions as trial solutions, that y1(x) = er1x and
y2(x) = er2x are solutions of the linear differential equation

d2y

dx2
+ p

dy

dx
+ qy = 0. (1)

(a) Prove that the Wronskian of y1(x) and y2(x) never vanishes on R.



(b) Let f(x) be an arbitrary solution of (1). Prove that the Wronskian of the functions
{y1(x), y2(x), f(x)} is identically zero. Now use a theorem from the lecture notes to
conclude that {y1(x), y2(x)} is a basis for the vector space of all solutions of (1). In
particular, the space has dimension 2.

Remark. The assumption that r1 and r2 are distinct real numbers is unnecessary, with
minor modifications the above proof goes through in the other cases (i.e. if r1 = r2 ∈ R or
if r1 and r2 are complex conjugate) as well.

Due Date: Thursday, March 9, at the beginning of recitation.
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Homework Problems

6.1. Computing Inverse Laplace Transforms. (7+7+7+9 points)

(a) Find the inverse Laplace transforms of the following functions (you may use any stan-
dard formula involving Laplace transforms listed in the book):

(a) s2−2s
s4+5s2+4

,

(b) 1
s2(s2−1) ,

(c) s
(s−3)(s2+1)

.

(b) Find L−1( 1
(s2+a2)2

).

6.2. Initial Value Problems via Laplace Transform. (10+10 points)

(a) Solve the following initial value problem using Laplace transform:

x′′ + 4x′ + 13x = te−t; x(0) = 0, x′(0) = 2.

(b) Use the convolution theorem to derive the indicated solution x(t) of the given initial
value problem:

x′′ + 4x′ + 13x = f(t); x(0) = 0, x′(0) = 0.

x(t) =
1

3

∫ t

0

f(t− u)e−2u sin(3u)du.

6.3. Laplace Transform of Discontinuous Function. (10 points)

(a) Define the Heaviside function

H(t) =

{
0 for t < 0

1 for 0 ≤ t.

Show that L[H(t− a)](s) = 1
s
e−as.

(b) Solve the differential equation y′′ = H(t− a) (0 < a), with initial conditions y(0) = 1,
y′(0) = 0.

6.4. (Bonus Problem) Bump Function. (10 points)

Prove that the function

Ψ(x) =

{
exp

(
− 1

1−x2

)
for |x| < 1

0 otherwise

is everywhere differentiable and that its derivative is continuous. (In fact, the function has
continuous derivatives of all orders. This is an example of a bump function.)

Due Date: Thursday, March 23, at the beginning of recitation.



Stony Brook University
Sabyasachi Mukherjee, Matthew Dannenberg

Spring 2017

Problem Set 7

Differential Equations with Linear Algebra

Homework Problems

7.1. Existence and Uniqueness of Solutions. (10 points)

(a) Explain which part(s) of the existence and uniqueness theorem (of solutions of differ-
ential equations) fail(s) to apply to the initial value problem

ẋ =

{ √
x, if x ≥ 0,

0, if x < 0,

and x(0) = 0.

(b) Find two distinct solutions of this equation.

7.2. Inverse of a Matrix Using Cayley-Hamilton Theorem. (10 points)

Find the inverse of the matrix

2 4 8
1 0 0
1 −3 −7

 using the Cayley-Hamilton theorem.

7.3. Computing Matrix Exponential: Brute Force Method. (10 points)

Find etA by computing the successive terms I, tA, t2A2/2!, · · · in the series definition, where

A =

[
0 1
1 0

]
.

7.4. Solving Systems of Linear Differential Equations by Two Different Methods. (20 points)

Consider the system of linear differential equations[
ẋ
ẏ

]
=

[
y

−6x+ 5y

]
, (x(0), y(0)) = (1, 2). (1)

(a) Solve (1) using the method of elimination.

(b) Solve (1) using the matrix exponential method.

(c) Did we know a priori that the two methods would produce the same solution?

7.5. Interplay between The Elimination Method and The Matrix Exponential Method. (20
points)

Consider the system of linear differential equations[
ẋ
ẏ

]
=

[
9x− 4y
4x+ y

]
. (2)

(a) Find the general solution of (2) using the method of elimination.

(b) Now use the general solution obtained in part (a) to find particular solutions satisfying
(x(0), y(0)) = (1, 0) and (x(0), y(0)) = (0, 1).



(c) Use the results of part (b) to find etA, where A =

[
9 −4
4 1

]
7.6. Matrix Exponential of a 2× 2 Matrix with Trace Zero. (10 points)

Let A ∈ M2(R) with trace(A) = 0. Show that exp(A) = cos(
√

det(A))I +
sin(
√

det(A))√
det(A)

A,

where
sin(
√

det(A))√
det(A)

is interpreted as 1 when det(A) = 0, in accordance with the limit lim
t→0

sin t

t
=

1.

Hint: Recall the power series expansions of sin and cos.

7.7. Matrix Exponential Using N-D Decomposition. (10 points)

Find eA using the N-D decomposition of A, where A =

 2 0 1
−1 3 1
−1 0 4

.

7.8. (Bonus Problem) An Application of Jordan Canonical Forms. (20 points)

The goal of this problem is to prove that

det
(
eA
)

= etrace(A),

for every A ∈Mn(C). Let us start with a couple of important definitions.

Definition 1 Two matrices A and B are called similar over C if there exists an invertible
matrix P ∈Mn(C) such that A = P−1AP .

Definition 2 Let A = (aij) ∈ Mn(C). The characteristic polynomial of A is defined as
det(λI − A). Clearly, the characteristic polynomial of A is a degree n polynomial in λ.

(a) Show that similar matrices have the same determinant and the same characteristic
polynomial. Conclude that similar matrices have the same eigenvalues with the same
multiplicities.

(b) Let A = (aij) ∈ Mn(R), λn + p1λ
n−1 + · · · + pn be the characteristic polynomial of

A, and {λ1, · · · , λn} be the set of all eigenvalues (not necessarily distinct) of A. Show

that −
n∑
i=1

λi = p1 = −
n∑
i=1

aii. Conclude that similar matrices have the same trace,

which is equal to the sum of all the (common) eigenvalues. In particular, we have

etrace(A) = exp

(
n∑
i=1

λi

)
.

(c) Recall that every complex n× n matrix is similar to its Jordan canonical form. Using
the Jordan canonical form of A, show that eA is similar to an upper triangular ma-
trix with entries eλ1 , eλ2 , · · · , eλn on its principal diagonal. Conclude that det

(
eA
)

=

exp

(
n∑
i=1

λi

)
.

(d) Quod erat demonstrandum.

Due Date: Monday, April 10, at the beginning of class.
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8.1. Method of Undetermined Coefficients. (15 points)

Apply the method of undetermined coefficients to find the general solution of the following
system.

x′ = 6x− 7y + 10, y′ = x− 2y − 2e−t.

8.2. Method of Variation of Parameters. (15 points)

Apply the method of variation of parameters to solve the initial value problem[
x′

y′

]
=

[
2 −4
1 −2

] [
x
y

]
+

[
36t2

6t

]
,

[
x(0)
y(0)

]
=

[
0
0

]
.

8.3. Limitations of Power Series Method. (10 points)

Show that the power series method fails to yield a power series solution of the form y =
∞∑
n=0

cnx
n for the differential equation x2y′ + y = 0.

8.4. Truncated Power Series Solution. (20 points)

Find the first six non-zero terms of the power series solution of the following differential
equation around x = 0.

(x2 − 4)y′′ + 3xy′ + y = 0, y(0) = 4, y′(0) = 1

8.5. (Bonus Problem) Power Series Solution Via Recurrence Relation. (15 points)

Find the general solution in powers of x of the following differential equation. State the
recurrence relation and the radius of convergence of the power series.

(x2 − 1)y′′ + 4xy′ + 2y = 0.

Due Date: Thursday, April 27, at the beginning of class.
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Homework Problems

9.1. Stability Analysis-I. (10 points)

Carry out a stability analysis for the equilibrium point (0, 0) of the following system.

9.2. Stability Analysis-II. (15 points)

Find all equilibrium points of the given system, and carry out a stability analysis for each
equilibrium point.

9.3. Stability Analysis and Bifurcation. (15 points)

We discussed the following theorem in class.

The following problem, which discusses the behavior of an equilibrium point for various
parameters, is an interesting application of the above theorem.



Due Date: Thursday, May 4, at the beginning of recitation.




