
MAT 303: Calculus IV with Applications 
Spring 2014

Final Exam: Monday, May 19, 8:00am-10:45am.

There will be 10 big problems with no more than 15 subproblems. The distribution of problems are (30% means 3 out of 10 big problems) 
30%: 1st order equation 
20%: higher order linear equation 
30%: Linear system 
20%: Series 
2 or 3 of these problems will be related to models and will be similar to the problems in the homework/practice. So please review the models mentioned in the
Review Sheet .

Check the Syllabus for Review Sheet , Old Exam and Old Practice . Please use the review sheet to guide you go over the materials we studied, and review your homework,
midterms, quizzes. I will give solutions to the calculation problems contained in the review sheet.

The format of our exam will be like the Old Exam but with the above distribution of problems and with only the materials in the review sheet. You should also try to do the
old practice exam and more problems from the textbook if you have energy.

Overall Grades:

Syllabus and homework

Differential equations are important in different branches of sciences and engineering. It's used to model the evolution process and dynamical systems.

Click here for the content and prerequisite for the course.

Textbook

Differential Equations and boundary value problems, computing and modeling, 4th edition, by C. Henry Edwards & David E. Penney

Schedule and location

Instructors

Name Office Office hour MLC hour Email

Lecture Dr. Chi Li 3-120 T/Th 1-2:30pm chi.li@stonybrook.edu

R01&R02 Anant Atyam 2-105 Friday 1-2 pm W/F 10:30-11:30 am anant@math.sunysb.edu

R03 Chengjian Yao S-240C Monday 3-4 pm Monday 4-6 pm yao@math.sunysb.edu

Homework

Problem sets will be assigned weekly; check the syllabus webpage for the assignments. For the homework using Mathematica, you are encouraged to submit your work
although it won't be graded. Finally, the lowest two homework grades will be dropped in the calculation of your overall grades.

Each homework is due during your recitation class of the following week (unless otherwises stipulated). No late homework. The recitation instructor will collect the

http://sb.cc.stonybrook.edu/bulletin/current/courses/mat/#303
http://www.prioritytextbook.com/products/Differential-Equations-and-Boundary-Value-Problems%3A-Computing-and-Modeling-(4th-Edition)-Edwards.html?catargetid=1817796885&cadevice=%7Bdevice%7D&gclid=CIj1r4rto7wCFcdQOgodPHMAqA
http://www.math.sunysb.edu/schedules/spr14.html#MAT303
http://www.math.sunysb.edu/~chili
http://www.math.sunysb.edu/~anant


homework and grade three of the problems.

Write the problem up carefully in your own words even if you have consulted the book for the final answer: always show your work. It is OK to discuss homework problems
with other students. However, each student must write up the homework individually in his/her own words, rather than merely copying someone else's.

Quizzes

There are 5 quizzes. Each taking place in the last 15 minutes in Friday class. Usually there will be two problems. No make up quiz. Check the syllabus webpage for the
schedule.

Grading

10% Homework 
10% Quizzes 
20% Midterm 1 
20% Midterm 2 
40% Final Exam

Computing Software: Mathematica

Mathematica is a powerful scientific computational and symbolical software. We will occasionally use the Mathematica to numerically solve the differential equation and
visualize the solution. You can get a version from Stonybrook Softweb . Note that you can also use this software in many public computers through the campus.

Midterm exam

There are two midterms which are given in class.

Midterm 2

Midterm 1

The tentative curve for this midterm is shown in the picture. This is just to give you some idea of the distribution of the grades. The real curve will be made only after the
final exam.

http://www.wolfram.com/mathematica
http://it.stonybrook.edu/software/title/mathematica


Read and Take Notes

Read the relevant materials on the textbook both before and after the lecture. If you really want to master the course, it is wise to attempt or solve as many problems as you
can in the relevant section of the book.

Help

A very useful resource is the Math Learning Center (MLC) located in room S240-A of the mathematics building basement. The Math Learning Center is open every day
and most evenings. Check the schedule on the door.

Another useful resource are your teachers, whose office hours are listed above.

Stony Brook University expects students to maintain standards of personal integrity that are in harmony with the educational goals of the institution; to observe national,
state, and local laws as well as University regulations; and to respect the rights, privileges, and property of other people. Faculty must notify the Office of Judicial Affairs of
any disruptive behavior that interferes with their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn.

DSS advisory: If you have a physical, psychiatric, medical, or learning disability that may affect your ability to carry out the assigned course work, please contact the office
of Disabled Student Services (DSS), Humanities Building, room 133, telephone 632-6748/TDD. DSS will review your concerns and determine what accommodations may be
necessary and appropriate. All information regarding any disability will be treated as strictly confidential.

Students who might require special evacuation procedures in the event of an emergency are urged to discuss their needs with both the instructor and DSS. For important
related information, click here.

http://www.stonybrook.edu/ehs/fire/disabilities.shtml


Final Review Sheets

1 Basic concepts

1. n-th order DE, existence and uniqueness, direction fields, general solutions,
particular solutions, initial value problem, autonomous equation, equilibrium
solution, stability of equilibrium solution

2. linear DE, homogeneous linear DE, non-homogeneous linear DE, basic solu-
tions, complementary solutions, structure of general solution.

3. transformation to 1st order system, linear system, eigenvalues/eigenvectors,
generalized eigenvectors, fundamental solution matrix, exponential of matrices

4. series solutions, radius of convergence, recurrence relations

2 1st order equation

Method: (a) Separable equations
dy

dx
=

1 +
√
y

1 +
√
x
.

(b) Exact equation

(x2 + ln y)dx +

(
y3 +

x

y

)
dy = 0.

(c) Linear 1st order equation (integrating factor)

(1− x2)y′ + xy = 1.

(d) Substitution

• (Homogeneous)

y
dy

dx
− y =

√
x2 + y2.

• (Bernoulli type)

(1 + x)
dy

dx
+ y = y3.

Models: (a) Newton’s Law of cooling: Notes, HW2 (6)

(b) Population model: Notes, HW4 (2,3), Practice1 (4), Mid1 (4).

(c) Acceleration-velocity model: HW5 (1), Practice1 (5)
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3 Linear DE with constant coefficients

Method: (a) Homogeneous linear equations

y′′′ − 2y′′ + y = 0.

(b) Non-homogeneous equations, particular solutions

i. Undetermined coefficients

y′′ + 4y′ + 4y = e−2x.

ii. Variation of parameters

y′′ + y =
1

sin2 x
.

Model: Mechanical vibration HW7 (9-11), HW9 (1-2), Practice2 (3), Midterm 2 (3)-
(4).

(a) Free undamped/damped oscillation

(b) Forced undamped/damped oscillation, Resonance

4 Linear System

Method: (a) Elimination method HW10 (1)-(2), Quiz3 (1), HW11 (3a) (also the fol-
lowing three systems).

(b) Eigenvalue method 
x′1 = 4x1 + 2x2

x′2 = −3x1 − x2

x′3 = x1 + x2 + 2x3

(c) Complex eigenvalue {
x′1 = 7x1 + x2

x′2 = −4x1 + 3x2

(d) Multiple eigenvalues {
x′1 = x1 − 4x2

x′2 = 4x1 + 9x2

(e) Chain of generalized eigenvectors: Notes, HW11 (3b), HW12 (1).
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(f) Exponential of matrices and initial value problems: HW12 (2), (3).

(g) Nonhomogeneous linear system{
x′1 = 2x1 + 3x2 + et

x′2 = 2x1 + x2 + e2t

Model: (2-mass, 3-spring) system: HW9 (4), HW10 (2).

5 Power Series Solutions

Standard Mauclaurin series, Radius of convergence, series solutions, recurrence rela-
tions

1st order: (2x + 1)y′ = y.

2nd order: y′′ − 2xy′ + 6y = 0.
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Syllabus
Week Sections Homework Notes

Week 1:
1/27-1/31

1.1: Mathematical Models

1.2: General and Particular Solutions

1.3: Direction Fields

Part I: 
1.1: 43,44,45 1.2: 36 , 42 , 44 1.3: 22 , 28 
Part II 
HW1 solution

Mathematica: Slope fields and stream lines

Week 2:
2/3-2/7

1.4: Separable Equations

1.5: Linear 1st order equations
Homework 2 
HW2 solution

Notes on separable equations 
Notes on Newton's law of cooling/heating 
Mathematica: Numerical calculation and Plot graphs 
Quiz 1 in Friday class (cancelled)

Week 3:
2/10-2/14 1.6: Substitution/exact equations Homework 3 

HW3 solution Notes on population models 

Week 4:
2/17-2/21

2.1: Population models

2.2: Equilibrium solutions
Homework 4 
HW4 solution

Mathematica: Interactive Manipulation and Piecewise
defined function 

Quiz 2 in Friday class Quiz 2 solution

Week 5:
2/24-2/28

2.3: Acceleration-velocity models

2.4: Numerical Method: Euler method

Review for Midterm I

Homework 5 
HW5 solution

Practice Midterm I 
Practice Midterm I Solution

Mathematica: Numerical Solution of DE 
Implement Euler's method using Mathematica

Week 6:
3/3-3/7

3.1: 2nd order linear equations

Midterm I

3.2: General solutions of linear equations

Solution to midterm 1: Solution 1 , Solution 2

Homework 6 
HW6 solution (by Anant Atyam)

Midterm I in class covering up to 2.4.

Week 7:
3/10-3/14

3.3: Homogeneous constant coefficient equations

3.4: Mechanical vibrations
Homework 7 
HW7 solution (by Chengjian Yao) Mathematica: DSolve , Solve DE using Mathematica

3/17-3/21 Spring Break

Week 8:
3/24-3/28

3.5: Nonhomogeneous equations, undetermined
coefficients

Homework 8 
Solution to Homework 8

A manual for finding particular solution using
undetermined coefficients 
Quiz 3 in Friday class covering up to section 3.3

Week 9:
3/31-4/4

3.5: Variation of parameters

3.6: Forced oscillations and resonance

Homework 9 
Solution to Homework 9

Midterm 2 Practice 
Solution to Practice Midterm 2

Derivation of the formula in the variation of parameters
Mathematica: Manipulate vibrations, beats and resonance

Week 10:
4/7-4/11

4.1: First order systems

4.2: Method of Eliminations

Midterm II

Solution to midterm 2: Solution 1 , Solution 2 Midterm II in class covering up to 4.1.

Week 11:
4/14-4/18

5.1: Matrices and linear systems

5.2: Eigenvalue methods for homogeneous systems

Homework 10 
Solution to Homework 10 (By Chengjian Yao
(with correction/appendix))

Mathematica: Matrix Operations - Create matrix/vector -
Eigensystem

Week 12:
4/21-4/25

5.2: Eigenvalue methods for homogeneous systems

5.4: Multiple eigenvalues
Homework 11 
Solution to Homework 11

Quiz 3 in Friday class covering section up to 5.2 
Quiz 3 solution

Classify the chains for 2*2 or 3*3 matrices

Week 13:
4/28-5/2

5.5: Matrix exponentials

5.6: Nonhomogeneous linear system
Homework 12 
Solution to Homework 12

Week 14:
5/5-5/9

8.1: Power series

8.2: Series solutions
Homework 13 
Solution to Homework 13

Quiz 4 in Friday class covering up to section 5.5 
Quiz 4 solution

Week 15:
5/5-5/9

Review of the course

Reading period

Review sheet , Solutions to review exercises ,
Corrections 
Old Exam , Old Practice exam .

Happy
ending Final exam Monday, May 19, 8:00am-10:45am Solution to the final exam ,

http://reference.wolfram.com/mathematica/ref/N.html
http://reference.wolfram.com/mathematica/ref/Plot.html
http://reference.wolfram.com/mathematica/ref/Manipulate.html
http://reference.wolfram.com/mathematica/ref/Piecewise.html
http://reference.wolfram.com/mathematica/ref/Piecewise.html
http://reference.wolfram.com/mathematica/ref/NDSolve.html
http://reference.wolfram.com/mathematica/ref/DSolve.html
https://reference.wolfram.com/mathematica/tutorial/DSolveOverview.html
http://math.sunysb.edu/~chili/mat303f/particular.pdf
http://math.sunysb.edu/~chili/mat303f/particular.pdf
http://math.sunysb.edu/~chili/mat303f/variation.pdf
http://www.math.sunysb.edu/~chili/mat303f/vibration.nb
https://reference.wolfram.com/mathematica/guide/MatrixOperations.html
https://reference.wolfram.com/mathematica/tutorial/VectorsAndMatrices.html
https://reference.wolfram.com/mathematica/ref/Eigensystem.html
http://math.sunysb.edu/~chili/mat303f/Chain.pdf


Final Exam Name

Math 303 - Differential Equations with Applications

May 15, 2008

• No credit will be given for answers without mathematical or logical justification.

• You may leave answers in implicit form, when appropriate.

• Simplify answers as much as possible.

• No calculators, notes, or books.

Part I

1) (7 pts) Solve for x: dx
dt = tx − t

x , x(0) = 2.

2) (8 pts) Find the general solution: dy
dx = 2x− y

x + 6y .
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3) (15 pts) Solution with a concentration of 0.1 lbs of salt per gallon pours into a tank at a
rate of 2

t+1 gallons per minute. Also, well-mixed solution leaves the tank at the same rate.
How much salt is in the tank after 1 minute, if initially the tank contains 1 gallon of water
mixed with 0.9 lb of salt?
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4) The equation for a particle caught in the gravitational field of a body of mass M is

d2r

dt2
= −G M

r2
,

where G ≈ 6.67× 10−11m3kg−1s−2 and r is the distance to the center of mass of the body.
A particle of dust is caught in the gravitational field of a small, spherically shaped asteroid
of mass 16

6.67 × 1011kg and radius 100m.

a) (10 pts) Use the methods of differential equations to find dr
dt .

b) (10 pts) Initially the dust particle is motionless relative to the asteroid and 300m from
its surface. With what speed will it strike the asteroid’s surface?
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Part II
5) Consider the differential equation

x′′′′ + 2x′′′ + 2x′′ = 4 − 12t

a) (10 pts) Find the complimentary solution

b) (15 pts) Find the general solution.

c) (5 pts) Find the solution, given x(0) = 0, x′(0) = 0, x′′(0) = 8, x′′′(0) = −6.
(There’s an easy way and a hard way.)
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Part III
6) (5 pts) Compute etA, where A =

 0 −1 6
0 0 4
0 0 0

.

7) Consider the equation(
x1

x2

)′
=
(

0 −1
1 0

) (
x1

x2

)
+
(

1
t

)
.

a) (5 pts) If you use the method of undetermined coefficients, what would your ‘guess’ for
xp be?

b) (15 pts) Find xp.
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Part IV

8) Consider the system


x1

x2

x3

x4


′

=


1 0 0 1
0 −1 −2 0
0 2 −1 0
0 0 0 1




x1

x2

x3

x4


a) (10 pts) Find the eigenvalues of the matrix.

b) (20 pts) Find the system’s general solution.
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(continued from previous page)

c) (10 pts) Write down the fundamental matrix Φ(t), and compute Φ(0)−1

HINT: This particular Φ(0) should have some special properties. Before trying to compute Φ(0)−1,

see what you get when you multiply Φ(0) · Φ(0)T .

d) (5 pts) Given x(0) = (−1 1 0 2 )T , find x(t).
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MAT303 Spring 2009

Practice Final
The actual final will consist of twelve problems with no more then

two subproblems

You will be allowed to use calculators

Problem 1

Some of the given differential equations are separable and some are not. Solve

those that are separable.

i (1 + x)ydx + xdy = 0

ii y′ = y1/2

iii y′ + xy = 3

iv xy′ − y lnx = xy2

Problem 2

Some of the differential equations are linear and some are not. Determine those

that are linear and give its integrating factor and solve them.

i xy′ + y = 3

ii xy′ − y = 2x2

iii y′ − 3

x−1
y = (x − 1)4

iv y′ + 1

sin xy − y2 = 0

v xy′ + y = x5

Problem 3

i) Is the equation exact? ii) If it is find the general solution. You may leave

the answer in implicit form.
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• (3x − y)dx − (x + 3y)dy = 0

• (3x2 − xy)dx − (x2 + 3xy)dy = 0, x 6= 0

Problem 4

Find the general solutions of differential equations (you may leave the answer

in implicite form)

i dy/dx = (x + y)/(2x − y)

ii dy/dx = xy + xy4

Problem 5

• The differential equation dx/dt = 1

2
x(2−x)−h models a logistic population

with harvesting at rate h. In the language of dynamics, one may say we

are perturbing a logistic population by a constant h. So we usually want

h to be small.

i In terms of h, what are the equilibrium solutions?

ii What are the stability of the solutions above? (Hint: Set h = 0, and

then look at the stability there. This should tell you the stability of

the solutions above.)

iii What is the bifurcation point?

iv Describe the stability of the bifurcation point. (Hint: Part ii)

v For the problems below, set h to be the bifurcation point found in

Part iv.

a u is a solution with u(2) = 5.5. Compute limt→∞ u(t).

b u is a solution with u(0) = 2. Compute limt→∞ u(t).

c u is a solution with u(0) = 1. Using Eulers Method, approximate

u(2), using step size ∆x = 0.5 to eight decimal places.
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• Suppose that −1 < a < 1 is a constant parameter, and y(t) satisfies the

ODE

y
′

= (a − y2)(y − 2)

:

i Find the equilibria, sketch the phase line, and determine the stability

of the equilibria in each of the following cases:

a −1 < a < 0;

b a = 0

c 0 < a < 1.

ii Suppose that y(t) is the solution of the ODE that satisfies the initial

condition y(0) = 0. What is the behavior of y(t) as t → ∞ in each

of the cases ia,ib,ic.

Problem 6

Compute the general solution of each nonhomogenenous equation by the Method

of Undetermined coefficients

i y
′′

+ y = sinx

ii y
′′

− y
′

− 2y = 2xex + x2

iii y
′′

− 5y
′

+ 4y = e2x cosx + e2x sin x

Problem 7

Use the method of variation of parameter to solve the following initial value

problem

i y
′′

− y
′

− 2y = t2e2t, y(0) = 0, y
′

(0) = 1

ii y
′′

+ y = −2 sin t, y(0) = 1, y
′

(0) = 1

Problem 8
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Use the

• Eulers Method

• Improved Eulers Method

with h = 0.2 to solve the initial value problems on 0 ≤ x ≤ 1

i y′ = 3x + 2y y(0) = 1

ii y′ = xy y(0) = 1

Problem 9

• Solve the second-order linear equation

y
′′

+ 5y
′

+ 6y = 0

i by using characteristic equation,

ii by transforming it into a system of 2 first-order equations.

Problem 10

Find the general solution of the system dx
dt = Ax using the method of ellimina-

tion where

A =
(

1 −1

1 3

)

Problem 11

Find the general solution of the system dx
dt = Ax using the method of eigenvalues

where

i

A =
(

−3 0 −1

3 2 3
2 0 0

)

ii A is from Problem 10.

Problem 12
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The motion of a mass on a spring can be described by the solution of the

initial value problem mu
′′

+ cu
′

+ ku = F (t), u(0) = u0, u
′

(0) = u
′

0
. A mass

weighing 8 lb stretches a spring 6 in. The mass is attached to a viscous damper

with a damping constant of 2 lb-sec/ft., and it is acted on by an external force

of cos 3t lb. The mass is displaced 2 in. downward and released.

i Formulate the initial valued problem describing the motion of the mass.

ii Solve the initial valued problem using either the Method of Undetermined

Coefficients or Variation of Parameters.

Problem 13

Find the general solution of the system

(D2 + 1)x − D2y = 2e−t

(D2 − 1)x + D2y = 0
(1)

As usual D = d/dt
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Newton’s law of cooling/heating

This law says that the rate of cooling/heating is proportional to the difference
of the temperature of the object and cooling/heating source. Suppose the tem-
perature of the cooling/heating source changes according to the function A(t).
Let T = T (t) be the temperature of the object under consideration. Then we
can write down the differential equation:

dT

dt
= −k(T −A(t)).

k is called the cooling/heating constant. This is a 1st order linear differential
equation:

dT

dt
+ kT = kA(t).

We can find the integrating factor:

F (t) = e
∫
kdt = ekt.

So it’s easy to find the solution:

T (t) = e−kt
∫
kektA(t)dt. (1)

Example: Let the cooling/heating constant be k = 0.3. Assume the initial
temperature T (0) = −20◦C. Assume the temperature of the source oscillates
according to the function:

A(t) = 10 sin
( π

12
t
)
.

How does the temperature T (t) of the object change?
Solution: By the above discussion, we just need to calculate:

T (t) = e−0.3t

∫
0.3e0.3t10 sin(πt/12)dt. (2)

To simplify the calculation a little bit, we can use the substitution: u = πt/12,
the right hand side becomes:

T (u) = e−3.6u/π 36

π

∫
e3.6u/π sin(u)du (3)

Now we can integrate by parts twice (let a = 3.6/π)∫
eau sin(u)du =

∫
eaud(− cosu) = −eau cosu+ a

∫
cos(u)eaudu

= −eau cosu+ a

∫
eaud(sinu) = −eau cosu+ aeau sinu− a2

∫
eau sinu

1



So we can solve: ∫
eau sin(u)du = eau

a sinu− cosu

1 + a2
+ C.

Now we can substitute in to (3) to get

T (u) =
36

π

(
a sinu− cosu

1 + a2
+ Ce−au

)
When t = 0, u = 0, so we can use the initial condition T (0) = −20 to get

−20 = T (0) =
36

π

(
− 1

1 + a2
+ C

)
=⇒ C =

1

1 + a2
− 5π

9
.

Substitute u = πt/12 and a = 3.6/π (au = 0.3t), then finally we get the
particular solution:

T (t) =
36

π

( 3.6
π sin πt

12 − cos πt12
1 + (3.6/π)2

+

(
1

1 + (3.6/π)2
− 5π

9

)
e−0.3t

)
≈ 5.68 sin(0.26t)− 4.95 cos(0.26t)− 15.05e−0.3t.

The term −15.05e−0.3t in the solution is called the “damped” part. The follow-
ing is the plot of graphs using Mathematica. The blue curve is the temperature
of the source, and the red curve is the temperature of the object. Also the first
command ( T1[t ] = . . .) defines the function T1(t) to be plotted.

From the graphs, we see that the temperature of the object will also oscillate
in the long term. But the amplitude of oscillation (red curve) is smaller than
the amplitude of the source (blue curve). The oscillation of the temperature of
the object lags behind the oscillation of the source.
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We can actually calculate by using Mathematica. For this rewrite equality (2)
such that it satisfies the initial condition:

T (t) = e−0.3t

(∫ t

0

0.3e0.3x10 sin(πx/12)dx− 20

)
.

Then we can use Mathematica to integrate and plot the graphs:
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Homework 2

1. Solve the following differential equations:

(a) y′ = x2

y(1+x3) .

(b) y′ + y2 sinx = 0.

(c) y′ = 1 + x+ y2 + xy2.

(d) xdx+ ye−xdy = 0, y(0) = 1.

2. Solve the following differential equations:

(a) dy
dx + 2y = xe−2x.

(b) 1
x

dy
dx + y = 1.

(c) x dy
dx + 2y = sinx, y(π) = 1/π.

(d) dy
dx − 2

1−x2 y = 1 + x, y(0) = 1.

3. Carbon extracted from and ancient skull contained only one-fifth as much
14C as carbon extracted from present-day bone. How old is the skull?

4. A spherical tank of radius 4 ft is full of gasoline when a circular bottom
hole with radius 2 in. is opened. How long will all the gasoline drain from
the tank?

5. A tank initially contains 60 gal of pure water. Brine containing 1 lb of salt
per gallon enters the tank at 1 gal/min, and the perfectly mixed solution
leaves the tank at 3 gal/min. Thus the tank is empty after exactly 1/2
hour. Find the amount of salt in the tank after t minutes.

6. Assume the outdoor temperature changes according to the periodic func-
tion:

A(t) = 10 cos
( π

12
t
)
.

Assume the initial indoor temperature is u(0) = 20◦C. Use Newton’s law
of heating/cooling to find the indoor temperature u = u(t). Assume the
cooling constant k = 0.5. Use Mathematica to draw the graph of A(t) and
u(t). What conclusions do you get from the picture of graphs?
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Population models

Notation:

• P = P (t) population at time t;

• β = β(P, t) birth rate;

• δ = δ(P, t) death rate. The most general form of differential equation
modeling the population is:

dP

dt
= (β(P, t)− δ(P, t))P (t), P (0) = P0. (1)

Model 1: Logistic model In this model, β = β0 − kP , δ = δ0. β0, k, δ0 are
constants. So the equation (1) becomes:

dP

dt
= (β0 − kP − δ0)P = kP (M − P ), P (0) = P0. (2)

Here M = (β0−δ0)/k. Equation (2) is called a logistic equation. It’s a separable
equation:

1

M

(
1

P
+

1

M − P

)
dP =

dP

P (M − P )
= kdt

So if we integrate on both sides, we get:

1

M
ln

P

M − P
= kt+ C1 =⇒ P

M − P
= eMC1ekMt = CekMt.

Here C = eMC1 is a positive constant. We can determine it using the initial
condition P (0) = P0:

C =
P0

M − P0
.

Now we can solve P = P (t) to get a general solution:

P (t) =
MCekMt

1 + CekMt
=

M

1 + C−1e−kMt
=

MP0

P0 + (M − P0)e−kMt
. (3)

From the solution (3), we see that

• For any initial population P0 > 0, we always have

lim
t→+∞

P (t) = M.

M is called the carrying capacity in this logistic model.

• P (t) ≡ M is a solution. This solution is called a equilibrium solution.
It is a stable equilibrium.

1



We can use Mathematica to draw solution curves. For simplicity, assume
k = 1, M = 2.

Model 2: Doomsday-Extinction model In this model, β = kP , δ = δ0 with
k, δ0 constants. So the equation (1) becomes

dP

dt
= (kP − δ)P = k(P −M)P, P (0) = P0. (4)

Here M = δ/k. Again this is a separable equation:

1

M

(
1

P −M
− 1

P

)
=

dP

(P −M)P
= kdt.

So we integrate both sides to get:

1

M
log

P −M
P

= kt+ C1 =⇒ P −M
P

= CeMkt.

Here C = eMC1 is a positive constant. Substituting P (0) = P0 we can determine
C:

C =
P0 −M
P0

.

So we can solve P = P (t) to get:

P (t) =
M

1− CeMkt
=

MP0

P0 − (P0 −M)eMkt
. (5)

From the solution (5) we see that:

2



• If P0 > M , then the population will explode to infinity at time when the
denominator becomes 0:

tdoom =
1

Mk
log

P0

P0 −M
.

• If P0 < M , then the population will decay exponentially to 0.

lim
t→+∞

P (t) = 0.

• P (t) ≡M is an (unstable) equilibrium solution.

Again we can use Mathematica to draw some streamlines to visualize the situ-
ation (k = 1,M = 2).
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Homework 4

1. First solve the equation f(x) = 0 to find the critical points of the given
autonomous differential equation. Then determine whether each critical
point is stable or unstable, and construct the corresponding phase diagram
for the differential equation. Next, solve the differential equation explicitly
for x(t). Finally, use either the exact solution or computer generated
solution curves to verify the stability.

(a) x′ = x2 − 4x+ 3.

(b) x′ = x2 − 4x+ 5.

(c) x′ = −x2 + 2x− 1.

(d) x′ = −x2 + 2x+ 3.

2. The differential equation dx
dt = 1

8x(8− x)− h models a logistic population
with harvesting at rate h. Determine the dependence of the number of
critical points on the parameter h, and then construct a bifurcation di-
agram in the hc-plane. Use Manipulate in Mathematica to visualize
the bifurcation process.

3. The differential equation dx
dt = 1

8x(x−8)+s models a explosion/extinction
population with stocking at rate s. Determine the dependence of the num-
ber of critical points c on the parameter s and then construct a bifurcation
diagram in the sc-plane. Use Manipulate in Mathematica to visualize
the bifurcation process.

4. A woman bails out of an airplane, falls freely for 20 s, then opens her
parachute. Assume the drag coefficient ρ = 0.15 without parachute and
ρ = 1.5 with the parachute. Find the velocity v(t) as a function of t and
terminal velocity in the following two situations:

(a) Assume the air resistance is ρv ft/s2.

(b) Assume air resistance is ρv2 ft/s2.

Compare the two velocity functions by plotting their graphs (using Math-
ematica).

5. (*) (Taking account of the moon’s gravitational field, re-solve the prob-
lem 1.2.42 in homework 1) A spacecraft is in free fall toward the surface
of the moon at a speed of 1000 mi/h. Its retrorocket, when fired, provide
a constant deceleration of 20,000 mi/h2. At what height above the lunar
surface should the astronauts fire the retrorockets to insure a soft touch-
down? Note that you need to change the units by using the following
data.

1



G ≈ 6.6726×10−11N ·(m/kg)2, Mmoon = 7.35×1022(kg), Rmoon = 1740km.

6. (*) To what radius would the moon have to be compressed in order for it
to become a black hole - the escape velocity from its surface equal to the
velocity c = 3 × 108m/s of light?

2



MIDTERM I PRACTICE PROBLEMS

(1)
xy′ + 2y = x · y1/2.

(2)
dy

dx
= −3x2 + 2y2

4xy
.

(3)
y′ =

√
x+ y.

(4) (a) A logistic population model with harvesting is given by the differential
equation:

dP

dt
= 6P − P 2 − h.

Determine how the number of equilibrium solutions changes with h by
drawing the bifurcation diagram on the hc-plane.

(b) Find the equilibrium solutions of the differential equation:

dP

dt
= 6P − P 2 − 8.

Classify them as stable or unstable equilibrium solutions using the phase
diagram. If the initial population is 1, what limit population will P (t)
approach?

(5) A woman bails out the plane at an altitude of 5000ft and immediately opens
her parachute. Assume the air resistance is proportional to the velocity and
the drag constant ρ = 2. What’s her velocity at time t? What’s her height
at time t? The gravitational acceleration is 32ft/s2.

(6) Use Euler’s method to approximate to the solution on the interval [−0.3, 0]
with step size −0.1. What value of y(−0.3) do you get?

y′(x) = x+ y2, y(0) = 0.

Note that this is not Bernoulli equation.

1
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Homework 5

1. Suppose that a body moves through a resisting medium with resistance
proportional to vα, so that

dv

dt
= −kvα, v(0) = v0.

(a) If α = 1, find the velocity and position as functions of t with param-
eters k and v0. Does the body travel a finite or infinite distance?

(b) If α > 1, find the velocity and position as functions of t with param-
eters α, k and v0. Does the body travel a finite or infinite distance?

2. Apply Euler’s method twice to approximate to the actual solution on the
interval [0, 12 ], first with step size h = 0.25, then with step size h = 0.1.
Compare the three decimal-place values of the two approximations at x =
1/2 with the value y(1/2) of the actual solution.

(a) y′ = 2y, y(0) = 1.

(b) y′ = 1√
1−x2

, y(0) = 0.

(c) y′ = x+ y, y(0) = −1.

3. Use NDSolve in Mathematica to get numerical solution, find the approx-
imate value at the given point and plot the graphs:

(a) y′ = x2 + y2, y(0) = 1. Find y(0.8). Try to find y(1) and see what
goes wrong.

(b) y′ = x3 + y3. y(0) = 1. Find y(0.4). Can you find y(0.5)?

1



Homework 7

1. Are the three functions cos(2x), 2 cos2(x), 5 sin2(x) linearly independent
or not?

2. Consider three functions y1(x) = x2 +x+1, y2(x) = x+1, y3(x) = x− 1.
Are they linearly dependent or not?

3-8. Find the general solutions in problems 3 through 8.

3. y′′′ − 6y′′ + 10y′ = 0.

4. y(4) − y = 0.

5. y(4) + 2y′′ + y = 0.

6. y(4) − 2y′′ + y = 0.

7. y(3) + 2y′′ + 2y′ + y = 0.

8. y(3) − 2y′ − 4y = 0.

9-11. In problems 9 through 11, a mass is attached to both a spring (with given
spring constant k) and a dashpot (with given damping constant c). The
mass is set in motion with initial position x0 and initial velocity v0.

(a) Find the position function x(t) and determine whether the motion is
overdamped, critically damped, or underdamped.

(b) If it is underdamped, write the position function in the form x(t) =
C1e

−pt cos(ω1t− α1).

(c) Find the undamped position function u(t) = C0 cos(ω0t − α0) that
would result if the mass on the spring were set in motion with the
same initial position and velocity, but with the dashpot disconnected
(so c=0).

(d) Use Mathematica to plot the graphs that illustrate the effect of damp-
ing by comparing the graphs of x(t) and u(t).

9. m = 1, c = 4, k = 3; x0 = 2, v0 = −2.

10. m = 1, c = 4, k = 4; x0 = 2, v0 = −2.

11. m = 1, c = 4, k = 5; x0 = 2, v0 = −2.

12 A body weighing 100 is oscillating attached to a spring and a dashpot.
Its first two maximum displacements of 6 and 2 are observed to occur at
times 1 and 2, respectively. Compute the damping constant and spring
constant.

1



Homework 9

1. Consider a forced mass-spring system with equation mx′′+kx = F0 sin(ωt)
with m = 1, k = 25, F0 = 50, x0 = 0, v0 = 0. Solve the system for each ω.
Manipulate the system using Mathematica with changing ω to visualize
the beats and resonance.

(a) ω = 4.

(b) ω = 5.

(c) ω = 6.

2. Consider the forced mass-spring-dashpot system with equation mx′′ +
cx′ + kx = F0 sin(ωt) with m = 1, c = 2, k = 50, and F0 = 100, and initial
conditions x(0) = 10, x′(0) = 10.

(a) Find the transient solution (i.e. general solution of the homogeneous
differential equation).

(b) If ω = 5, what’s the steady periodic solution? Write it in the standard
form involving the amplitude, frequency and phase angle. Then write
down the general solution to the initial value problem.

(c) Find the amplitude C(ω) of steady periodic forced oscillations with
frequency ω and find the practical resonance frequency ω. Using
Mathematica to plot the graph of C(ω) and to manipulate the sys-
tem using Mathematica with changing ω to visualize the practical
resonance.

3. Transform the given differential equation or system into an equivalent
system of first-order differential equations. Is the system linear or non-
linear? If linear, is it homogeneous or non-homogeneous? Determine how
many initial conditions are needed to determine a unique solution.

(a) mx′′ + cx′ + kx = f(t). (x = x(t))

(b) x′′′ − 6x′′ + 10x′ = x2. (x = x(t))

(c) x′′ − x− y = 0, y′′ + x + y = 0. (x = x(t), y = y(t))

(d) x′′ + x′ − x− y = 0, y′′ + y′ + x + y = cos(t). (x = x(t), y = y(t))

4. Exercise 24 in Section 4.1. Generalize it to the case of three objects and
four springs.

1



Midterm II Practice Problems

1. Consider the non-homogeneous linear differential equation with constant coef-
ficients:

y′′ + 2y′ + y = e−x + xex. (1)

(a) Write down the general complementary solution.

(b) Use the method of undetermined coefficients to find a particular solution
to the equation (1).

(c) Find the solution of (1) satisfying the initial condition:

y(0) = 0, y′(0) = 0.

2. Use the variation of parameters to find a particular solution to the equation:

y′′ + 25y = sec(5x).

3. Consider a (forced) spring-mass-dashpot system: x′′(t) + cx′(t) + 4x(t) =
F0 cos(2t). Suppose the object is released from still when the spring is stretched
by 10 unit length.

(a) If the dashpot is disconnected and F0 = 0, solve the system and classify
the phenomenon.

(b) If the dashpot is disconnected and F0 = 16, solve the system and classify
the phenomenon.

(c) If the damping constant c = 2 and F0 = 0, solve the system and classify
the phenomenon.

(d) If the damping constant c = 2 and F0 = 16, solve the system and classify
the phenomenon.

4. Assume x = x(t), y = y(t) satisfy the following system of differential equations:

x′′ + x′ + y′ + x + y = 0, y′′ + y′ + x′ + y + x = 0.

Transform this into an equivalent system of 1st order differential equations.
Determine how many initial conditions are needed to determine a unique solu-
tion.

1
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Homework 10

1. Use elimination method to solve the following systems

(a) x′ = x− y, y′ = −x + y, x(0) = 2, y(0) = 1.

(b) x′ = x + y, y′ = −x + y, x(0) = 2, y(0) = 1.

2. Consider the system of two masses and three springs shown in the figure.

(a) Derive the equations of motion.

(b) Assume m1 = 2, m2 = 1, k1 = 10, k2 = 20, k3 = 10. Use the elimina-
tion method to solve the system. Find the natural frequencies of the
mass-and-spring system and describe its natural modes of oscillation.

(c) Transform the system in part (b) into a system of 1st order differential
equations. Then write the transformed system into the form x′(t) =
Ax.

3. Let

A =

(
1 −4
1 −3

)
, B =

(
1 2
−1 4

)
, C =

(
−3 4
−1 1

)
, ~x1 =

(
2
1

)
.

(a) Calculate the following expressions:

2A− 3B,AI, IB,A2,AB,BA,AC,CA, (AB)C,A(BC),A~x1.

(b) Answer the following questions: Is AI = A? Is IB = B? Is AB =
BA? Is (AB)C = A(BC)? What’s the relation between A and
C? What’s the relation between A and ~x1? What properties do you
expect to hold for matrix operations by these calculations and answer
to above questions?

(c) Find the eigenvalues and eigenvectors of B.

1



4. Consider the general 2× 2 matrix

A =

(
a b
c d

)
.

Verify that the inverse of A is given by:

A−1 =
1

|A|

(
d −b
−c a

)
.

5. Using the eigenvalue method to re-solve the questions in Problem 1.

2
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Homework 11

1. Consider the linear system with constant coefficient matrix A.

d

dt
~x(t) = A~x(t).

(a) Show that a vector valued function ~x(t) = ~v(t)eλt is a solution to the above system if
and only if ~v(t) satisfies the following identity:

d

dt
~v(t) = (A− λI)~v(t). (1)

(b) Consider the following vector-valued polynomial function

~v(t) =
~v1t

k−1

(k − 1)!
+

~v2t
k−2

(k − 2)!
+ · · ·+ ~vk−2t

2

2!
+ ~vk−1t+ ~vk.

Show that this ~v(t) satisfies the identity (1) if and only if the chain of vectors {~v1, · · · , ~vk}
satisfies the following relations:

(A− λI)~vk = ~vk−1, (A− λI)~vk−1 = ~vk−2, · · · (A− λI)~v2 = ~v1, (A− λI)~v1 = 0.

As a consequence, show that ~vk is a generalized eigenvector:

(A− λI)k~vk = 0,

2. Apply the eigenvalue method to find the general solution of the following system. Then
find the corresponding particular solution satisfying the initial conditions. Use the command
StreamPlot of Mathematica to plot the direction field and typical solution curves for the
system.

(a) x′ = x+ y, y′ = −x+ y, x(0) = 2, y(0) = 1.

(b) x′1 = 3x1 + 4x2, x′2 = 5x1 + 2x2, x1(0) = 2, x2(0) = 1.

(c) x′1 = 4x1 + x2, x′2 = −4x1, x1(0) = 2, x2(0) = 1.

(d) x′1 = 4x1 + x2, x′2 = −x1 + 2x2, x1(0) = 2, x2(0) = 1.

3. Solve the following system:

(a) Use elimination method to find the general solution of the following system. x′1 = 2x1 + 2x2
x′2 = −x2 + x3
x′3 = 2x3.

(b) Use eigenvalue method to find the general solution of the following system. x′1 = 3x1 + x2
x′2 = −4x1 − x2
x′3 = 4x1 − 8x2 − 2x3

1



4. Use Mathematica to find the eigenvalues and eigenvectors of the following matrix in order to
find a general solution of the linear system ~x′ = A~x.

A =


15 −21 24 −6 −22
0 −2 8 −12 −4
10 −19 21 −4 −18
0 −14 16 −4 −8
20 −30 30 0 −30



2



Chains of generalized eigenvectors

Principle: For a fixed eigenvalue

• Number of Chains= Number of Eigenvectors=Multiplity-Defect;

• Sum of Length of Chains = Multiplicity of the Eigenvalue.

Caveat: Number of Eigenvectors, denoted by “# EVector” in the following charts, means the
Number of Linearly Independent Eigenvectors.

• For 2× 2 matrices, there are 3 possible cases:

Case 1. Example (Jordan form):

(
λ1 0
0 λ2

)
EValue Mult. # EVector Chain Basic Solution
λ1 1 1 v1 → 0 eλ1tv1
λ2 1 1 v2 → 0 eλ2tv2

Case 2. Example (Jordan form):

(
λ1 1
0 λ1

)
EValue Mult. # EVector Chain Basic Solution
λ1 2 1 v1 → v2 → 0 eλ2t(v1 + v2t), e

λ1tv2

Case 3. (Happens only for A = λ1I)

EValue Mult. # EVector Chain Basic Solution
λ1 2 2 v1 → 0, v2 → 0 eλ1tv1, e

λ1tv2.

• For 3× 3 matrices, there are 6 possible cases:

Case 1. Example (Jordan form):

 λ1 0 0
0 λ2 0
0 0 λ3


EValue Mult. # EVector Chain Basic Solution
λ1 1 1 v1 → 0 eλ1tv1
λ2 1 1 v2 → 0 eλ2tv2
λ3 1 1 v3 → 0 eλ3tv3

Case 2. Example (Jordan form):

 λ1 0 0
0 λ2 1
0 0 λ2


EValue Mult. # EVector Chain Basic Solution
λ1 1 1 v1 → 0 eλ1v1
λ2 2 1 v2 → v3 → 0 eλ2t(v2 + v3t), e

λ2tv3

1



Case 3. Example (Jordan form):

 λ1 0 0
0 λ2 0
0 0 λ2


EValue Mult. # EVector Chain Basic Solution
λ1 1 1 v1 → 0 eλ1tv1

λ2 2 2
v2 → 0 eλ2tv2
v3 → 0 eλ2tv3

Case 4. Example (Jordan form):

 λ1 1 0
0 λ1 1
0 0 λ1


EValue Mult. # EVector Chain Basic Solution

λ1 3 1 v1 → v2 → v3 → 0 eλ1t(v1 + tv2 + t2

2 v3), eλ1t(v2 + tv3), eλ1tv3

Case 5. Example (Jordan form):

 λ1 0 0
0 λ1 1
0 0 λ1


EValue Mult. # EVector Chain Basic Solution

λ1 3 2
v1 → 0 eλ1tv1

v2 → v3 → 0 eλ1t(v2 + tv3), eλ1tv3

Case 6. (Happens only for A = λ1I)

EValue Mult. # EVector Chain Basic Solution
λ1 3 3 v1 → 0, v2 → 0, v3 → 0 eλ1tv1, e

λ1tv2, e
λ1tv3.

Lazier (rougher) way to write down basic solutions: For any fixed eigenvalue λ of multi-
plicity m. One can calculate the set of basic solutions as follows

1. Calculate (A− λI)m.

2. Find m linearly independent generalized eigenvectors {v1, · · · , vm}. This means that:

(A− λI)mvi = 0, for each i = 1, · · · ,m.

3. Write down the m basic solutions for each vi:

xi(t) = eλt
[
vi + t(A− λI)vi +

t2

2!
(A− λ)2vi + · · ·+

+
tm−2

(m− 2)!
(A− λI)m−2vi +

tm−1

(m− 1)!
(A− λI)m−1vi

]
.
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Homework 12

1. Use the eigenvalue method to solve the system (a)-(d) following the steps:

• Calculate the eigenvalues/eigenvectors.

• Determine the number of chains and the length of each chain.

• Try to find the chains by calculating the generalized eigenvectors.

• Write down basic solutions and the general solutions. (You could use “lazier way” to
do this.)

(a).

 x′1 = 4x1 + x2
x′2 = −2x1 + x2
x′3 = x1 + x2 + x3

(b).

 x′1 = 4x1 + x2
x′2 = −2x1 + x2
x′3 = x1 + x2 + 3x3

(c).

 x′1 = 4x1 + x2
x′2 = −x1 + 2x2
x′3 = x1 + x2 + 3x3

(d).

 x′1 = 4x1 + x2
x′2 = −x1 + 2x2
x′3 = −x1 + x2 + 3x3

2. Calculate the exponentials of following matrices using the definition of exponential.

(a).

(
λ1 0
0 λ2

)
(b).

(
λ 1
0 λ

)
(c).

(
0 a
−a 0

)
(d).

 λ 1 0
0 λ 1
0 0 λ

 .

3. For each of the following matrix A, calculate etA using a fundamental solution matrix. Then
use etA to calculate the solution to the initial value prolem:

d~x(t)

dt
= A~x(t), ~x(0) =

(
−3
2

)
.

(a).

(
4 1
−2 1

)
, (b).

(
4 1
−1 2

)
, (c).

(
0 a
−a 0

)
.

4. Solve the nonhomogeneous system:

(a)
d~x(t)

dt
=

(
4 1
−2 1

)
~x(t) +

(
et

e3t

)
.

(b)
d~x(t)

dt
=

(
4 1
−1 2

)
~x(t) +

(
et

e3t

)
.

1















Part II of Homework 1

1. Verify the following function is a general solution of the differential equa-
tion. Then find the constants C1 and C2 under the initial conditions:

(a)

y = C1e
3x + C2e

−3x, y′′ − 9y = 0;

Initial conditions:
y(0) = 0, y′(0) = −3.

(b)

y = C1 cos(3x) + C2 sin(3x), y′′ + 9y = 0.

Initial conditions:

y(π/6) = 1, y′(π/6) = −1.

2. Solve the following differential equations with initial conditions:

y′′′ = x, y(0) = a0, y
′(0) = a1, y

′′(0) = a2.

Here a0, a1, a2 are constants.

3. Does Theorem 1 guarantee local existence and local uniqueness of the
solution to the initial value problem?

(a) y′ = x · y2/3, y(0) = 0.

(b) y′ = x2/3 · y, y(0) = 0.

4. Use Mathematica to generate the slope fields of the following differential
equations, and also streamlines passing through (−1,−1), (−2,−2), (−2, 2).

(a) y′ = −y − sinx.

(b) y′ = −x2 + sin y.

(c) y′ = x2 − y.

1











Selected solutions

Part II: 3 Does Theorem 1 guarantee local existence and local uniqueness of
the solution to the initial value problem?

(a) y′ = x · y2/3, y(0) = 0.

Solution: Let F (x, y) = x · y2/3. F (x, y) is continuous around the point
(0, 0). So there exists a solution passing through (0, 0).

Now

Fy =
∂F

∂y
= x

2

3
y−1/3 =

2x

3y1/3
.

Fy is not continuous at point (0, 0). It’s not even defined at point (0, 0).
So the Theorem 1 does not guarantee the solution to be unique.

If we solve the equation using separating variable method, we get:

dy

y2/3
= xdx =⇒ 3y1/3 =

1

2
x2 + C1 =⇒ y =

(
1

6
x2 + C

)3

.

y(0) = 0 ⇒ C = 0. So we get a solution y = (x2/6)3 = x6

216 . But this is
only one solution for the differential equation. The other solution is y ≡ 0.
The reason that we miss this solution is that we divided y2/3 on both sides
of the original differential equation. So we were assuming y 6= 0.

(b) y′ = x2/3 · y, y(0) = 0.

Solution: Let F (x, y) = x2/3 · y. Because F (x, y) continuous around
(0, 0), there exists a solution passing through (0, 0). Fy = x2/3 is also
continuous around (0, 0), so the solution passing thourgh (0, 0) is unique
by Theorem 1.

If we solve the equation using spearing variable method, we get:

dy

y
= x2/3dx =⇒ ln y =

3

5
x5/3 + C1 =⇒ y = Ce

3
5x

5/3

.

y(0) = 0 ⇒ C = 0. So we get the unique solution: y ≡ 0. In this special
example, we don’t miss y ≡ 0.

But you can try to solve

y′ = y2, y(0) = 0,

to see that you could miss the y ≡ 0 solution.

4
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Mathematica 1: Slope fields and stream lines

Example: Use Mathematica to draw the slope field of the following differential
equation:

dy

dx
= −y2 + 2 cos(x).

We first input the following command and press Shift+Enter to get a figure
of vector fields 1.

VectorPlot[{1, -yˆ2+2Cos[x]},{x,-3,3}, {y,-3,3}]

Pay attention to the following input rules of commands: (a): the upper
cases, and (b): the type of brackets.

Figure 1: Vector field

1



The vectors were scaled according to their lengths, to uniformize the lengths
and remove the arrow heads, we can input:

VectorPlot[{1, -yˆ2+2Cos[x]},{x,-3,3}, {y,-3,3},
VectorScale -> {Tiny, Automatic, None}, VectorStyle ->Arrowheads[0]]

Press Shift+Enter to get figure 2 (slope fields):

Figure 2: Slope field

2



To get specific stream lines, just add the stream points. Here we add three
stream points: (−2,−2), (−2,−0.5), (−2, 0):

VectorPlot[{1, -yˆ2+2Cos[x]},{x,-3,3}, {y,-3,3},
VectorScale->{Tiny, Automatic, None}, VectorStyle->Arrowheads[0],
StreamPoints-> {{-2,-2},{-2,-0.5},{-2,0}}]

Figure 3: Slope field with stream lines

Note that we have added the optional property StreamStyle to specify the
thickness of streamlines.

3



We could also plot lots of stream lines using the commands:

StreamPlot[{1, -yˆ2+2Cos[x]},{x,-3,3}, {y,-3,3}]

Figure 4: Stream field

4













Homework 2

From the above calculation, we get the function of temperature:

u(t) =
5

1 + π2

36

(
2 cos

πt

12
+
π

3
sin

πt

12

)
+ 10

(
2− 1

1 + π2

36

)
e−0.5t

≈ 7.85 cos
πt

12
+ 4.11 sin

πt

12
+ 12.15e−0.5t

≈ 12.15e−0.5t + 8.86 cos
( π
12

(t− 1.84)
)
. (why?)

So we have the following conclusion. The “damped” term 12.15e−0.5t decays
exponentially to 0. The indoor temperature will also oscillate in the long term.
But the amplitude of oscillation is approximately 8.86, which is smaller than the
amplitude of the outdoor temperature (10). The oscillation of indoor temper-
ature lags behind the oscillation of the outdoor temperature by approximately
1.84 hours. These can also be seen from the graphs below.

We can also integrate using mathematica directly:

1



2



Separable equations and applications

1. Solve the following differential equation:

e−x dy

dx
= (1 + y2) sinx; y(0) = 1.

Solution: Step 1: First separate variables:

dy

1 + y2
= ex sinxdx.

Step 2: Integrate on both sides, that is, integrate the left (resp. right)
hand side with respect to y (resp. x) variable:

arctan(y) =

∫
ex sinxdx.

Question: How to integrate the right hand side?

Answer: integration by parts twice:∫
ex sinxdx = −

∫
exd(cosx) = −ex cosx+

∫
(cosx)exdx

= −ex cosx+

∫
exd(sinx)

= −ex cosx+ ex sinx−
∫
ex sinxdx.

So we get: ∫
ex sinxdx =

1

2
ex(sinx− cosx) + C.

So we get the implicit solutions:

arctan y =
1

2
ex(sinx− cosx) + C.

We can solve y = y(x) to get explicit solutions:

y(x) = tan

[
ex

2
(sinx− cosx) + C

]
.

Step 3: Use initial condition to determine the constant C:

y(0) = tan

[
−1

2
+ C

]
= 1 =⇒ C =

π

4
+

1

2
.

So finally we get the particular solution:

y(x) = tan

[
ex

2
(sinx− cosx) +

π

4
+

1

2

]
.

1



2. Application 1: Radioactive decay and radiocarbon dating

The radioactive isotope decays exponentially:

dN

dt
= −kN.

k is some decay constant. Solve this separable equation to get

N(t) = N0e
−kt, N(0) = N0.

Question: What is the half life τ?

Answer:

N(τ) = N(0)/2 =⇒ τ =
ln 2

k
.

For example, for radioactive isotope 14C,

k ≈ 0.0001216⇐⇒ τ ≈ 5700 years.

Example (Exercise 1.4.36): Carbon taken from a purported relic of
the time of Christ contained 4.6 × 1010 atoms of 14C per gram. Carbon
extracted from a present-day specimen of the same substance contained
5.0 × 1010 atoms of 14C per gram. Compute the approximate age of the
relic. What is your opinion as to its authenticity.

Solution: From above, we know that the amount of 14C per gram after
t years is:

N(t) = N0e
−kt, with N0 = 5× 1010, k = 0.0001216.

We can find inverse function

t = −1

k
log

N(t)

N0
.

So we can calculate the age is approximately:

t1 = − 1

0.0001216
log

4.6× 1010

5.0× 1010
≈ 685.7 years.

(You can use Mathematica to calculate: N[-Log[4.6/5]/0.0001216])

By the time when Christ lived, this relic is not authentic.

3. Application 2 (Torricelli’s Law): Notations:

V (t): the volume of water at time t;

y(t): the height level of water surface at time t.

A(y): the area of the slice at height y.

a: area of the hole at bottom;

g: gravitational acceleration ≈ 32 ft/s2 ≈ 9.8 m/s2.

Torricelli’s law says that the velocity of water exiting through the hole
is:

v =
√

2gy.

2



So the volume decreases according to the following differential equation:

dV (t)

dt
= −a

√
2gy.

From geometry, we have:
dV

dy
= A(y).

Using the chain rule for the volume function: V (t) = V (y(t)), we get

dV

dt
=
dV

dy

dy

dt
= A(y)

dy

dt
.

We get (let k = a
√

2g)

A(y)
dy

dt
= −k√y. (1)

Equation (1) is a separable equation.

Example (Exercise 1.4.59): A water tank has the shape obtained by
revolving the parabola x2 = by around the y-axis. A circular plug at the
bottom of the tank is removed at 12 noon, when the depth of water is 4
ft. At 1 P.M. the depth of the water is 1 ft.

(a) Find the depth y(t) of water remaining after t hours.

(b) When will the tank be empty?

(c) If the in initial radius of the top surface of the water is 2 ft, what is
the radius of the circular hole in the bottom?

Solution:

(a) Since the tank is rotationally symmetric, the area A(y) = πx(y)2 =
πby. So the equation (1) becomes:

πby
dy

dt
= −k√y, y(0) = 4, y(1) = 1.

Solve this equation using separable variable method:

√
ydy = − k

πb
dt =⇒ 2

3
y3/2 = − k

πb
t+ C1.

So we get a general solution:

y =

(
C − 3k

2πb
t

)2/3

.

Use the boundary conditions:

C2/3 = 4,

(
C − 3k

2πb

)2/3

= 1 =⇒ C = 8,
3k

2πb
= 7.

So we get the particular solution:

y(t) = (8− 7t)2/3.

3



(b) The tank is empty when the height level is 0:

y(t) = 0 =⇒ t = 8/7 h = 1 h+ 8 min+ 34 sec.(why?)

So the tank will be empty at 1:08:34 P.M..

(c) (the change of units is tricky) By assumption, 22 = x(4)2 = b×4. So
b = 1. So

k =
14πb

3
=

14π

3
.

Because k = a
√

2g = πr2
√

2g. To calculate we need change the
units:

g ≈ 32 ft/s2 = 32
ft

(h/(3600))2
= 32× (3600)2

ft

h2
.

So

r =

√
k

π
√

2g
=

√
14

3
√

2g
≈
√

14

3
√

2× 32× (3600)2
=

1

60

√
7

12

≈ 0.0127 ft = 0.153 in.

(You can use Mathematica to calculate: N[Sqrt[7/12]/60*12])
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Homework 3

1. 2xy3dx+ 3x2y2dy = 0.

2. (t2 + 1) cosudu+ 2t sinudt = 0.

3. (2x− y)y′ = 2y − x.

4. xy′ = y +
√
x2 + y2.

5. y′ = x3y3 − xy.

6. x2y′ + 2xy = 5y3

7. y′ = cos(x− y).

8. (−x+ ey)y′ = xe−y + 1.

9. xy′′ + y′ = x cosx+ sinx.

10. y2y′′ + y′ = 0.

11. Suppose that the population P (t) of a country satisfies the differential
equation

dP

dt
= kP (300 − P ), (Note that: 300=300 million)

with k constant. Its population in 1950 was 200 million and was then
growing at the rate of 1 million per year. Predict this country’s population
for the year 2000. What’s the limiting population?

12. A population P (t) of small rodents has birth rate β = 0.002P (births
per month per rodent) and constant death rate δ. If P (0) = 100 and
P ′(0) = 4, how long will it take this population to double to 200 rodents?

1



Index of /~chili/mat303f/HW3
Name Last modified Size Description

Parent Directory  -  
1-2.JPG 2014-02-22 19:01 414K  
3.JPG 2014-02-22 19:01 381K  
4.JPG 2014-02-22 19:01 424K  
5.JPG 2014-02-22 19:01 389K  
6.JPG 2014-02-22 19:01 345K  
7.JPG 2014-02-22 19:01 369K  
8.JPG 2014-02-22 19:01 430K  
9-10.JPG 2014-02-22 19:01 443K  
9-Correction.JPG 2014-03-02 18:24 1.3M  
11.JPG 2014-02-22 19:01 397K  
12.JPG 2014-02-22 19:01 414K  

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

http://www.math.stonybrook.edu/~chili/mat303f/HW3/?C=N;O=D
http://www.math.stonybrook.edu/~chili/mat303f/HW3/?C=M;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW3/?C=S;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW3/?C=D;O=A
http://www.math.stonybrook.edu/~chili/mat303f/
http://www.math.stonybrook.edu/~chili/mat303f/HW3/1-2.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/3.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/4.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/5.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/6.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/7.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/8.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/9-10.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/9-Correction.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/11.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW3/12.JPG


Index of /~chili/mat303f/HW4
Name Last modified Size Description

Parent Directory  -  
1(a).JPG 2014-02-28 18:07 1.5M  
1(b)-1(c).jpg 2014-02-28 17:56 1.3M  
1(d).jpg 2014-02-28 17:56 1.3M  
2-3.jpg 2014-02-28 17:56 1.4M  
4(a).jpg 2014-02-28 17:56 1.4M  
4(b).jpg 2014-02-28 17:56 1.4M  
5.JPG 2014-02-28 20:56 1.6M  
6.jpg 2014-02-28 17:56 1.4M  
Mathematica-bifurcation.nb 2014-02-28 21:07 6.0K  
Mathematica-parachute.nb 2014-02-28 20:57 45K  

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

http://www.math.stonybrook.edu/~chili/mat303f/HW4/?C=N;O=D
http://www.math.stonybrook.edu/~chili/mat303f/HW4/?C=M;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW4/?C=S;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW4/?C=D;O=A
http://www.math.stonybrook.edu/~chili/mat303f/
http://www.math.stonybrook.edu/~chili/mat303f/HW4/1(a).JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW4/1(b)-1(c).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW4/1(d).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW4/2-3.jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW4/4(a).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW4/4(b).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW4/5.JPG
http://www.math.stonybrook.edu/~chili/mat303f/HW4/6.jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW4/Mathematica-bifurcation.nb
http://www.math.stonybrook.edu/~chili/mat303f/HW4/Mathematica-parachute.nb




Index of /~chili/mat303f/HW5
Name Last modified Size Description

Parent Directory  -  
1(a)-(b).jpg 2014-02-28 17:57 1.3M  
1(b).jpg 2014-02-28 17:57 1.6M  
2(a).jpg 2014-02-28 17:57 1.4M  
2(b).jpg 2014-02-28 17:57 1.2M  
2(c).jpg 2014-02-28 17:57 1.3M  
Euler/ 2014-03-03 14:07 -  
Mathematica-NDSolve.nb 2014-02-28 23:05 32K  

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

http://www.math.stonybrook.edu/~chili/mat303f/HW5/?C=N;O=D
http://www.math.stonybrook.edu/~chili/mat303f/HW5/?C=M;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW5/?C=S;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW5/?C=D;O=A
http://www.math.stonybrook.edu/~chili/mat303f/
http://www.math.stonybrook.edu/~chili/mat303f/HW5/1(a)-(b).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW5/1(b).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW5/2(a).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW5/2(b).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW5/2(c).jpg
http://www.math.stonybrook.edu/~chili/mat303f/HW5/Mathematica-NDSolve.nb


Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Index of /~chili/mat303f/HW5/Euler
Name Last modified Size Description

Parent Directory  -  
Euler.nb 2014-03-03 14:09 33K  

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

http://www.math.stonybrook.edu/~chili/mat303f/HW5/Euler/?C=N;O=D
http://www.math.stonybrook.edu/~chili/mat303f/HW5/Euler/?C=M;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW5/Euler/?C=S;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW5/Euler/?C=D;O=A
http://www.math.stonybrook.edu/~chili/mat303f/HW5/Euler/Euler.nb


Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Generated by CamScanner



Homework 6

1. Consider the 2nd order linear differential equation:

y′′ − 3y′ + 2y = 2x2 + 1. (1)

(a) Write down the associated homogeneous equation.

(b) Solve for the general solution of the homogeneous equation.

(c) Find a particular solution of (1) the form y(x) = Ax2 + Bx + C.

(d) What’s the general solution of the equation (1)?

(e) Find the particular solution of (1) satisfying the initial conditions:

y(0) = 0, y′(0) = 0.

2. Consider the 2nd order linear differential equation:

y′′ + 2y′ + y = 2 cosx− 2 sinx. (2)

(a) Write down the associated homogeneous equation.

(b) Solve for the general solution of the homogeneous equation.

(c) Find a particular solution of (2) of the form y(x) = A cosx+B sinx.

(d) What’s the general solution of the equation (2)?

(e) Find the particular solution of (2) satisfying the initial conditions:

y(0) = 0, y′(0) = 0.

3. Consider the Euler’s equation:

x2y′′ − 2xy′ + y = 0. (3)

(a) Find the solutions of the form xα.

(b) What’s the general solution of (3)?

(c) Find the solution satisfying the initial condition:

y(1) = 2, y′(1) = 3.

(d) Substitute v = lnx. What differential equation for y = y(v) do you
get? Solve it to find the general solution of (3). Do you get the same
answer as (b)?

4. Consider the Euler’s equation:

x2y′′ − 3xy′ + 4y = 0. (4)

1



(a) Find the solutions of the form xα.

(b) Find the solution of the form xα lnx.

(c) What’s the general solution of (4)?

(d) Find the solution satisfying the initial condition:

y(1) = 2, y′(1) = 3.

(e) Substitute v = lnx. What differential equation for y = y(v) do you
get? Solve it to find the general solution of (4). Do you get the same
answer as (b)?

5. Calculate the Wronskian of

(a) y1(x) = er1x, y2(x) = er2x.

(b) y1(x) = erx, y2(x) = xerx.

(c) y1(x) = eax cos(bx), y2(x) = eax sin(bx).

2
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Homework 8

1. For each of equations (a)-(g), find a particular solution yp by setting up the
appropriate form of a particular solution yp and determining the values of
the coefficients. Then write down the general solution to the corresponding
equation.

(a) y′′ + 4y′ + 3y = ex.

(b) y′′ + 4y′ + 3y = ex + 4e−3x.

(c) y′′ + 4y′ + 4y = 8x2 + 8 cos(2x).

(d) y′′ + 4y′ + 4y = 2e−2x.

(e) y′′ + 4y = cos(x) + sin(x).

(f) y′′ + 4y = cos(2x) + sin(2x).

(g) y′′ − 2y′ + 2y = xex.

2. For the following equations

(i) Set up the appropriate form of a particular solution yp, but do not
determine the values of the coefficients.

(ii) On the other hand, use variation of parameters to find a particular
solution yp. Note that you have calculated the needed Wronskian in
homework 6.

(a) y′′ + 4y′ + 3y = 8xe−x.

(b) y′′ + 4y′ + 4y = 6xe−2x.

(c) y′′ − 2y′ + 2y = ex cos(x).

1
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Figure 1: 3(a)

Figure 2: 3(b)

1



Figure 3: 3(c)

Figure 4: 3(d)

2



4. Using Mathematica we find the eigenvalues/eigenvectors of A:

So we get λ1 = −10, λ2 = 10, λ3 = −5, λ4 = 5, λ5 = 0. The corresponding eigenvectors are:

v1 =


1
1
1
1
1

 , v2 =


1
−1
1
1
2

 , v3 =


1
0
1
0
2

 , v4 =


2
0
1
0
2

 , v5 =


0
2
2
1
0

 .

So the general solution to the system is:

~x(t) = C1e
−10t


1
1
1
1
1

 + C2e
10t


1
−1
1
1
2

 + C3e
−5t


1
0
1
0
2

 + C4e
5t


2
0
1
0
2

 + C5


0
2
2
1
0

 .

1
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Homework 13

1. Find a power series solution of the given differential equation. Determine the radius of con-
vergence of the resulting series, and identify the series solution in terms of familiar elementary
functions.

(a) (x− 3)y′ + y = 0.

(b) (1 − x2)y′ + 2xy = 0.

(c) y′′ − 4y = 0.

(d) y′′ + y = x.

2. For equations (a)-(e),

(i) Find general solutions in powers of x of the differential equations. State the recurrence
relation and the guaranteed radius of convergence in each case.

(ii) Use power series to solve the initial value problem y(0) = 0, y′(0) = 1.

(a) (1 − x)y′′ + y = 0.

(b) (x2 − 1)y′′ + 6xy′ + 12y = 0.

(c) y′′ − 2xy′ + 6y = 0. (Hermite equation)

(d) y′′ − 2xy′ + 8y = 0. (Hermite equation)

(e) y′′ = xy. (Airy equation)

1
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