
MAT 303: Calculus IV with Applications


Fall 2007

Department of Mathematics


SUNY at Stony Brook

Differential equations are the language in which the laws of physics are expressed. This course will introduce
 basic methods for solving
ordinary differential equations. There is a particular emphasis on linear differential
 equations with constant coefficients and systems of differential equations. Numerous applications in the
 physical, biological, and social sciences will be discussed.

Instructor: Dr. Corbett Redden

Math Tower 3-114. Phone: 632-8261. email: redden at math dot sunysb dot edu

Office Hours: Wednesday 12:50-2:20p, Thursday 9:30-11:00a, or drop-in, or by appointment.

Recitation instructor and grader: Andrew Stimpson

Math. Tower 3-101, e-mail: stimpson at math dot sunysb dot edu

Office hours ???,

Homework: Working homework problems is the only way to really learn the material. While you are
 encouraged to work with others, you must write up all solutions on your own. Homework sets will usually be
 collected in class on Fridays. No late homework will be accepted, but the lowest homework grade will be
 dropped. If you miss a homework assignment, you should still work out the problems on your own. Also,
 you are encouraged to read the corresponding section of the text book before attending each lecture.

Exams:

Midterm 1: Wednesday, October 10 (in class). Review Sheet, Review Sheet Answers, Midterm 1
 Solutions
Midterm 2: Wednesday, November 14 (in class). Review Sheet (Answers). Midterm 2 Solutions
Final Exam: Monday, December 17, 2-4:30p (in classroom Harriman 116). Review (Answers)
Final Exam Review with Stimpson: Sunday Dec. 16 3p Library N3063


These dates are firm, and make-ups will only be given in the case of unforseeable circumstances beyond the
 student's control. In such a case, the student should contact the instructor as soon as possible.

Class schedule:


 

LEC 1 MWF 11:45am-12:40pm Harriman Hall 116 Corbett Redden

R01 Tu 9:50am-10:45am Physics P117 Andrew Stimpson

R02 Th 2:20pm- 3:15pm Library N3063 Andrew Stimpson

Textbook:: Differential Equations and Boundary Value
Problems: Computing and Modeling (4th Edition),
 by Edwards & Penney.
Pearson/Prentice Hall, 2008. Though we use the 4th edition, it appears that the
 homework problems are identical to the 3rd edition.

Prerequisites: The completion of one of the standard calculus
sequences
(MAT 125-127, MAT 131-132, or
 MAT 141-142) with the grade C or higher
in
MAT 127 or 132 or 142 or AMS 161. The course will rely
 heavily
on material covered in the standard calculus sequences. Familiarity with complex numbers and the

http://www.math.sunysb.edu/~redden
http://www.math.sunysb.edu/~stimpson


 basic
concepts of linear algebra will be important, so the 200-level courses
MAT 203/205 (Calculus III)
 and/or AMS 261/MAT 211 (Linear Algebra) are strongly recommended.

Course Grade: Midterm 1 25%, Midterm 2 25%, Final Exam 35%, Homework 15%

MLC: The Math Learning Center is located in Math Tower S-240A and offers free help to any student
 requesting it. It also provides a locale for students wishing to form study groups.

Disabilities: If you have a physical, psychological, medical
or learning disability that
may impact your
 course work, please contact Disability Support Services, ECC (Educational Communications Center)
 Building, room 128, (631)
632-6748. They will determine with you what accommodations are necessary and

appropriate. All information and documentation is confidential.
Students requiring emergency evacuation are
 encouraged to discuss their
needs with their professors and Disability Support Services. For
procedures
and
 information, go to the following web site:
http://www.www.ehs.stonybrook.edu/fire/disabilities.shtml

http://studentaffairs.stonybrook.edu/disabilityservices/
http://www.stonybrook.edu/fire/disabilities.shtml
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Starred (*) problems are optional problems (not to be turned in) for those students wishing to
 challenge themselves.

Week Section  Notes Homework 

9/5-
9/7

1.1, 1.2,
 1.4 Due Monday 9/17

§1.1: 3, 9, 14, 17, 27, 33, 34 
§1.2: 2, 6, 7, 10, 15, 16, 25, 35
§1.4: 2, 3, 5, 17, 21, 25, 27, 33, 37

9/10-
9/12 1.3, 1.4 §1.3 (3,6,9) due Monday 9/17 §1.3:3, 6, 9 (you may trace on top of book's

 slope fields)

9/17-
9/21 1.5, 1.6 Due Fri. 9/21 §1.3:12-14

§1.5:3, 6, 13, 16, 27, 33

9/24-
9/28

1.6, 2.1-
2.2 Due Fri. 9/28 §1.6: 3, 5, 10, 17, 26, 29, 31, 33, 37, 43, 44, 46

10/1-
10/5 2.3, 2.4 Due Fri. 10/5

§2.1:5, 10, 21
§2.2:1, 2, 3, 7, 21
§2.3:2, 4, 10, 19, 27

10/8-
10/12 3.1, 3.2

Mid 1 10/10 (Review, and Review
 Answers,
Midterm 1 Solutions)

 

10/15-
10/19 3.2, 3.3 Due Monday, 10/22 (b/c of late

 posting)
§3.1: 1, 5, 13, 18, 24, 25, 31, 37, 39, 43, *27,
 *28, *29

10/22-
10/26 3.4, 3.5 Due Fri 10/26 §3.2: 3, 5, 7, 8, 15, 17, *27, *28, *32 

§3.3: 2, 8, 11, 14, 21, 24, 33, 39, *43, *49, *50

10/29-
11/2

3.5, 3.6,
 4.1  Due Fri 11/2 §3.4: 3, 14, 17, 24, 25, *14, *23

§3.5: 3, 9, 13, 16, 33, 34, 47

11/5-
11/9 5.1 Due Fri. 11/9

§3.6: 2, 6, 11, 15, 20, *23, *27
§3.7: 2, *7, *11
§4.1: 1, 5, 12, 13 (no graphing), *24, *29

11/12-
11/16 5.2 Mid 2 11/14 Review (Answers)

 Midterm 2 Solutions
§5.1: 5, 6, 12, 14, 22, 26, 31, 35 Due Mon
 11/19

11/19-
11/21 5.3, 5.4 Due Fri 11/30 (no graphing) §5.2: 1, 3, 7, 8, 11, 21

§5.4: 3, 4, 10, 11, 15

11/26-
11/30 5.4, 5.5 Due Fri 12/7 §5.5:2, 3, 7, 17, 22, 27

§5.2:28, 29

12/3-
12/7 6.1, 6.2 Due Fri 12/14

§5.3: 3, 4 
§6.1: 4, 5
§6.2: 1, 2, 3, 7, 9, 19, 24 (no graphing)



12/10-
12/14

6.1, 6.2,
 Review

Last HW Due Fri
Final Exam Monday 12/17 2p (same
 room as lecture) Review, (Answers)
 Review with Stimpson Sunday Dec.
 16 3p Library N3063

 



Math 303: Fall 2007
Midterm 1: Review Sheet

No calculators, notes, or books will be allowed on the mid-term. The exam
will consist of around 7 questions and last 55 minutes. It is essential that you
clearly and neatly show all work in order to receive full or partial credit on the
problems. Remember that your goal should not just be to arrive at the correct
answer; you should convince the grader that you arrived at your answer by a
correct (and followable) method.

For Midterm 1, you may be asked to:

• Write a differential equation which models a situation in the natural world.

• Solve a first-order differential equation. This includes separable, linear,
homogeneous, and exact equations. You should know how to find a general
solution and solve an initial value problem.

• Reduce certain second-order equations to first-order equations.

• Find equilibrium solutions and their stability. You should understand
their relationship to a physical situation which the equation models.

• Determine the existence and uniqueness of solutions for a first-order equa-
tion.

The best way to study is by working problems, both old and new. Please review
your old homeworks, including any comments, and work out new problems as
well. Here are a few sample problems, with similar problems from the book
referenced.

1. (§1.1: 1-12) Show that the function y satisfies the differential equation

y′ + 2y = 0; y = 3e−2x.

2. (§1.1: 27-36, §2.1, §2.3) Write a differential equation that describes the fol-
lowing situation: The acceleration dv/dt of Lamborghini is proportional to the
difference between 250 km/h and the velocity of the car. Also, determine any
equilibrium solutions and their stability, as well as what they mean in this phys-
ical situation. Solve the differential equation.

3. (§1.4: 1-18) Solve the initial value problem:

dy

dx
= 3x2(y2 + 1); y(0) = 1.

4. (§1.5: 1-25) Solve the equation

2xy′ + y = 10
√

x.
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5. (§1.6: 1-15) Solve the equation

x2y′ = xy + y2.

6. (§1.6: 16-18, 26-30) Solve the equation

xeyy′ = 2(ey + x3e2x).

7. (§1.6: 31-42) Is the following equation exact? If so, solve it.(
x3 +

y

x

)
dx +

(
y2 + lnx

)
dy = 0.

8. (§1.6: 43-54) Reduce the following second-order equation to a first-order
equation:

yy′′ + (y′)2 = yy′.

9. (§2.1: 1-8) Solve the separable equation by using partial fractions

dx

dt
= 7x(x− 13), x(0) = 17.

10. (§2.1: 9-31) The time rate of change of an alligator population P in a swamp
is proportional to the square of P . The swamp contained a dozen alligators in
1988, two dozen in 1998. When will there be four dozen alligators in the swamp?
What happens thereafter?

11. (§2.2: 1-18) Find equilibrium solutions and their stability.

dx

dt
= 3x− x2.

12. (§2.3) Suppose that a motorboat is moving at 40 ft/s when its motor sud-
denly quits, and that 10 s later the boat has slowed to 20 ft/s. Assuming that
the resistance it encounters while coasting is proportional to its velocity, how
far will the boat coast in all?

13. (§2.4, but not computationally intensive) Using Euler’s method with a
step size of .1, estimate y(.2) in the solution to

y′ = −y, y(0) = 1.
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1. y = 3e−2x. Thus, y′ = −6e−2x.

y′ + 2y = −6e−2x + 2 · 3e−2x = 0.

2. dv
dt = k(250 − v). (where k > 0 for physical reasons. If this were not so, the

car would be able to accelerate to an indefinitely large velocity). Equilibrium
solutions occur when 0 = k(250− v), and hence v = 250. By plugging in values
of v to dv/dt, we see that dv/dt > 0 when v < 250 and dv/dt < 0 when v > 250.
Therefore, the equilibrium solution is stable. This means that as time increases,
the car’s velocity approaches 250 km/h.

3. This is a separable equation.∫
dy

y2 + 1
=

∫
3x2dx

tan−1(y) = x3 + C

y = tan(x3 + C)

1 = tan(0 + C)
C = π/4

y(x) = tan(x3 +
π

4
)

Of course, because of the periodicity of tan, one could have picked other values
for C, such as π/4 + 2π.

4. This is a linear equation. To find the proper integrating factor, we should
first put it in standard form.

y′ +
1
2x

y = 5x−1/2.

Then, multiply both sides by the integrating factor

e
R 1

2x dx = e
1
2 ln x = eln x1/2

= x
1
2 .

Therefore, we have that

x1/2y′ +
1
2
x−1/2y = 5

d

dx

(
x1/2y

)
=

d

dx
(5x)

x1/2y = 5x + C

y = 5
√

x +
C√
x

1



5. This equation is homogeneous, and we use the substitution

u = y/x, y = ux,
dy

dx
=

du

dx
x + u.

It is usually a good idea (though not necessary) to first divide by xn where n is
the total degree of each term that appears.

x2 dy

dx
= xy + y2

dy

dx
=

y

x
+ (

y

x
)2

du

dx
x + u = u + u2

du

dx
x = u2

du

u2
=

dx

x

− 1
u

= ln |x|+ C

−x

y
= ln |x|+ C

y =
−x

ln |x|+ C

6. We use substitution
u = ey, u′ = eyy′.

Substituting gives us a linear equation

xeyy′ = 2(ey + x3e2x)

xu′ = 2u + 2x3e2x

u′ − 2
x

u = 2x2e2x

x−2
(
u′ − 2x−1

)
= x−22x2e2x

d

dx

(
x−2u

)
=

d

dx

(∫
2e2xdx

)
x−2u = e2x + C

x−2ey = e2x + C

y = ln(x2e2x + Cx2)

7. We first check exactness by showing that

∂

∂y

(
x3 +

y

x

)
=

1
x

=
∂

∂x

(
y2 + lnx

)
.
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Therefore, this equation is equivalent to d
dxF (x, y) = 0. Solving for F , we find

that
F (x, y) =

∫
(x3 +

y

x
)dx =

1
4
x4 + y lnx + g(y).

y2 + lnx =
∂F

∂y
= ln x + g′(y)

g′(y) = y2

g(y) =
1
3
y3

Therefore, the final solution is F = C, which is

1
4
x4 + y lnx +

1
3
y3 = C.

8. Since there is no x dependence in the equation, we use the substitution

v =
dy

dx
, d2ydx2 =

dv

dx
=

dv

dy

dy

dx
=

dv

dy
v.

Substituting, we get a (linear) first-order equation

yy′′ + (y′)2 = yy′

y
dv

dy
v + v2 = yv

dv

dy
+

1
y
v = 1

9. We have a separable equation

dx

7x(x− 13)
= dt

which we will solve by partial fractions.

1
7x(x− 13)

=
A

7x
+

B

x− 13
A(x− 13) + B(7x) = 1

−13A + 0 = 1
(A + 7B)x = 0x

A =
−1
13

, B = −A

7
=

1
13 · 7

3



Using this, we can now perform in the integral∫
dx

7x(x− 13)
=

∫
dt∫

1
7 · 13

(
−1
x

+
1

x− 13

)
=

∫
dt

1
91

(− ln |x|+ ln |x− 13|) = t + c

ln |x− 13
x

| = 91t + c

x− 13
x

= Ce91t

x =
13

1− Ce91t

17 =
13

1− C

C =
4
17

x =
13

1− 4
17e91t

x =
221

17− 4e91t

10. dP
dt = kP 2 is a separable equation, and has solution

P =
1

C − kt
.

Letting t be the number of years after 1988, we have that P (0) = 12, P (10) = 24,
and plugging these in we find that C = 1

12 , k = 1
240 , giving us

P =
240

20− t
.

Setting P = 48, we find that t = 15, and we see that P has a vertical assymp-
tote at t = 20, which means the population explodes around 2008 (which is next
year... uh-oh....)

11. Equilibrium solutions occur when 3x − x2 = 0, which is x = 0, 3. The
derivative of x is negative when x < 0, positive for 0 < x < 3, and negative for
x > 3 (this can be seen because dx

dt = 3x− x2). Therefore, x = 0 is an unstable
equilibrium, and x = 3 is a stable equilibrium.
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12. dv
dt = −kv, v(0) = 40, v(10) = 20, x(0) = x0. After solving the differ-

ential equation and determining the constants, we have

dx

dt
= v(t) = 40e−.1 ln 2t

x(t) =
−40

.1 ln 2
e−.1 ln 2t + C =

−400
ln 2

e−.1 ln 2t + C

x(t) =
400
ln 2

(
1− e−.1 ln 2t

)
+ x0

Therefore, limt→∞ x(t) = 400
ln 2 + x0, so the boat coasts for 400

ln 2 ft (about 577 ft).

13. Using Euler’s method with step-size .1, we get y(.2) ≈ .81.
i xi yi yi+1 = -.1yi + yi

0 0 1 1-.1 = .9
1 .1 .9 .9 - .1· .9 = .9 - .09 = .81
2 .2 .81
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1. (10 points) Show that y = x4ex is a solution to the differential equation

y′ =

(
4

x
+ 1

)
y.

y′ = 4x3ex + x4ex

( 4
x

+ 1)y = 4
x
x4ex + x4ex = 4x3ex + x4ex.

Therefore, we have a y such that y′ = (4/x + 1)y.

2. (10 points) Find the general solution to

dy

dx
+ 2xy = x.

This is a linear equation, so we multiply by the integrating factor

e
R

2xdx = ex2

,

resulting in

ex2 dy

dx
+ ex2

2xy = ex2

x

d

dx

(
ex2

y
)

=
d

dx

(∫
ex2

xdx

)
=

d

dx

(
1

2
ex2

)
ex2

y =
1

2
ex2

+ C

y =
1

2
+ Ce−x2

3. Newton’s law of cooling states that the time rate of change of the temperature T (t) of a body is
proportional to the difference between T and the temperature A of the surrounding medium.

a. (10 points) Write a differential equation expressing Newton’s law of cooling.

dT

dt
= k(A− T ) = −k(T − A), (k > 0).

Note the sign of k for physical reasons. If an object is cooler than the surrounding temperature,
the temperature will increase. Hence, dT

dt
> 0 if T < A.

b. (10 points) Find all equilibrium solutions and determine their stability. Setting 0 = dT
dt

= k(A−T )
gives us T = A (note that k is a constant here, not a variable depending on t, and hence k = 0 is
not considered an equilibrium solution). To check the stability, we see that dT

dt
> 0 for T < A and

dT
dt

< 0 for T > A. This implies that T = A is a stable equilibrium (draw a phase diagram).
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c. (5 points) What do the equilibrium solution(s) in part (b) tell us about the temperature of
the object?
As time increases, the temperature of the object will tend towards the temperature A of the sur-
rounding medium, regardless of what the starting temperature of the object was.

4. (25 points) Suppose an object slides along the ground, and the only force acting on it is friction.
Let x(t) be the horizontal displacement in feet of the object after t seconds, and suppose that v = dx

dt

satisfies the equation
dv

dt
= −kv.

The object’s velocity is 25 ft/s after 0 seconds, and the velocity is 25e−2 ft/s after 1 seconds.

a. What is the velocity at time t?

dv

dt
= −kv∫

dv

v
=

∫
−kdt

ln |v| = −kt + c

v = Ce−kt

Plugging in our two data points for velocity gives us v(0) = 25 = C and 25e−2 = v(1) = 25e−k,
hence k = 2 and

v(t) = 25e−2t.

b. How far has the object travelled after t seconds?

dx

dt
= 25e−2t

x =

∫
25e−2tdt = −25

2
e−2t + C

x0 = −25

2
e0 + C

Since we are considering x as displacement, this means we set x0 = 0 and have

x(t) = −25

2
e−2t +

25

2
.
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c. After a large amount of time, approximately how far will the object have travelled?

lim
t→∞

x(t) = lim
t→∞

(
−25

2
e−2t +

25

2

)
= 0 +

25

2
.

Hence, for large values of t, the distance travelled is approximately 25
2

ft.

5. (10 points) Solve the initial value problem

2xyy′ = x2 + 2y2, y(1) = 2, (x > 0).

This is a homogeneous equation (you can also use the substitution of u = y2 and obtain a linear
equation). Using

u =
y

x
, y = ux,

dy

dx
=

du

dx
x + u,

we get a separable equation by

2
y

x

dy

dx
= 1 + 2

(y

x

)2

2u(
du

dx
x + u) = 1 + 2u2

2xu
du

dx
= 1∫

2udu =

∫
dx

x

=
y2

x2
= u2 = ln x + C

y2 = x2(ln x + C)

22 = 12(ln 1 + C) = C

y2 = x2(ln x + 4)

y = x
√

ln x + 4

Notice that because of our initial condition, we see that y > 0 and hence we take the positive square
root.

6. (10 points) Show that (
2x + ex2y2xy

)
dx +

(
ex2yx2 + cos y

)
dy = 0

is exact, and find a general solution.

To check exactness, show that

∂

∂y

(
2x + ex2y2xy

)
=

∂

∂x

(
ex2yx2 + cos y

)
,
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both of which are equal to ex2y2x3y + ex2y2x. Since the equation is exact, we will obtain a solution
of the form F (x, y) = C where

F =

∫
(2x + ex2y2xy)dx + g(y) = x2 + ex2y + g(y)

∂F

∂y
= ex2yx2 + cos y

g′(y) = cos y

g(y) = sin y

F (x, y) = x2 + ex2y + sin y = C.

7. (10 points) The motion of a mass m on a spring is governed by Hooke’s Law, which states
that the restoring force of the spring is proportional to the displacement x of the mass from its
equilibrium position. If no other forces act, the motion of the mass is governed by the second-order
differential equation

d2x

dt2
+

(
k

m

)
x = 0,

(where k > 0 is a constant). Using substitution, reduce this second-order equation to a first-order
equation. You do not need to solve the equation.

Use the substitution

p =
dx

dt
, d2xdt2 =

dp

dt
=

dp

dx

dx

dt
=

dp

dx
p,

to give the separable equation
dp

dx
p +

(
k

m

)
x = 0.

4



Math 303 Fall 2007 Midterm 2 Review

On the midterm, you may have one 81
2

x 11 sheet of paper (one-side) with
formulas, notes, and examples (or favorite recipes or ...). There are no cal-
culators allowed, and you may not use any other material, including books,
homework assignments, or class notes. All questions will be partial credit.
It will cover 3.1-3.7 and 4.1 with the emphasis on 3.1-3.6. Notice that there
is some overlap in the following problems.

1. (3.1: 20-26, 3.2: 1-12) Show whether the following sets of sets of functions
are linearly dependent or independent:
a. {cos 2x, sin 2x}
b. {cos2 x, sin2 x}
c. {cos2 x, sin2 x, 4}.

2. (3.1: 1-16, 3.2: 13-20) Verify that the following functions are solutions
to the given differential equation. Solve the initial value problem. (Bonus:
What does the Wronskian of your solutions have to do with solving the initial
value problem?)
a. x2y′′ + 2xy′ − 6y = 0; y1 = x2, y2 = x−3; y(1) = 3, y′(1) = 1
b. y(3) − 6y′′ + 11y′ − 6y = 0; y1 = ex, y2 = e2x, y3 = e3x;

y(0) = 0, y′(0) = 1, y′′(0) = 3.

3. (3.1: 33-48, 3.3: 1-20, 33-36) Find general solutions to the following ho-
mogeneous equations.
a. 3y′ − y = 0
b. y′′ + 2y′ − 15y = 0
c. 9y(3) + 12y′′ + 4y′ = 0
d. y(4) − 8y′′ + 16y = 0

4. (3.1: 1-16, 3.3: 21-26) Solve the following initial value problems.
a. 3y′ − y = 0; y(0) = 5
b. y′′ + 2y′ − 15y = 0; y(0) = 0, y′(0) = 4
c. 9y(3) + 12y′′ + 4y′ = 0; y(0) = 0, y′(0) = 1, y′′(0) = 10

3

5. Show that the function y = sin x satisfies the equation

yy′′ − (y′)2 = −1.

Does it then follow that y = 3 sin x is also a solution? Why or why not?

1



6. (3.2: 21-24, 3.5: 1-20, 31-40) Find a general solution to the following
nonhomogeneous equations and/or solve the initial value problem.
a. y′′ + y = 3x; y(0) = 2, y′(0) = −2
b. y′′ + 9y = 2 cos 3x + 3 sin 3x

7. (3.5:21-30) Set up the appropriate form of a particular solution yp, but do
not determine the values of the coefficients.
a. y′′ − 2y′ + 2y = ex sin x

8. (3.4: 24-33) Show that if a mass-spring-dashpot system with no external
force is underdamped (i.e. c2 < 4km), then the mass passes through the
equilibrium position an infinite number of times.

9. (3.4: 15-21) Find the position function for the following mass-spring-
dashpot system. What happens to the position for large time?
a. m = 1

2
, c = 3, k = 4; x0 = 2, v0 = 0

10. (3.4: 1-4) What is the amplitude and period for the undamped mass-
spring system with m = 2, k = 8, x0 = 3, v0 = 8?

11. (3.6: 1-14)a. Find the position function for the undamped mass-spring
system with external force 4e−t given by the equation

x′′ + x = 4e−t; x0 = 3, v0 = −2.

b. Find the amplitude of the steady-periodic solution to

mx′′ + kx = F0 cos(ωt).

12. (3.6: 15-18) In the following mass-spring-dashpot systems with external
force F0 cos(ωt), is there practical resonance for some ω > 0? If so, at what
frequency ω will this occur? (Hint: The formula for the amplitude of the
steady-periodic solution is

C(ω) =
F0√

(k −mω2)2 + (cω)2
.

a. 2x′′ +
√

2x′ + 5x = F0 cos(ωt).

13. (4.1: 1-10) Transform the mass-spring-dashpot equation mx′′+cx′+kx =
0 into a system of first-order equations.

2



Math 303 Fall 2007 Midterm 2 Review Answers

1. (3.1: 20-26, 3.2: 1-12) Show whether the following sets of sets of functions
are linearly dependent or independent:
a. {cos 2x, sin 2x}
The Wronskian

W = W (cos 2x, sin 2x) =

∣∣∣∣ cos 2x sin 2x
(cos 2x)′ (sin 2x)′

∣∣∣∣
=

∣∣∣∣ cos 2x sin 2x
−2 sin 2x 2 cos 2x

∣∣∣∣ = 2 cos2 2x + 2 sin2 2x = 1

Since W 6= 0, the functions cos 2x and sin 2x are linearly independent.

b. {cos2 x, sin2 x}

W =

∣∣∣∣ cos2 x sin2 x
−2 cos x sin x 2 sin x cos x

∣∣∣∣ = 2 sin x cos x

The Wronskian W is not identically 0 (plug in for a sample value of x like
π/4), and therefore the pair of functions is linearly independent.

c. {cos2 x, sin2 x, 4}.
The relation

4 cos2 x + 4 sin2 x + (−1) · 4 = 0

shows the linear dependence of the three given functions.

2. (3.1: 1-16, 3.2: 13-20) Verify that the following functions are solutions
to the given differential equation. Solve the initial value problem. (Bonus:
What does the Wronskian of your solutions have to do with solving the initial
value problem?)
a. x2y′′ + 2xy′ − 6y = 0; y1 = x2, y2 = x−3; y(1) = 3, y′(1) = 1

x2y′′1 + 2xy′1 − 6y = x22 + 2x2x− 6x2 = 0.

x2y′′2 + 2xy′2 − 6y = x2(12x−5) + 2x(−3x4)− 6x−3 = 0

{
c1y1(1) + c2y2(1) = 3

c1y
′
1(1) + c2y

′
2(1) = 1

{
c1 + c2 = 3

2c1 − 3c2 = 1

{
c1 = 1

c2 = 1

1



Therefore, y = c1y1 + c2y2 = 2x2 + x−3.

b. y(3) − 6y′′ + 11y′ − 6y = 0; y1 = ex, y2 = e2x, y3 = e3x;
y(0) = 0, y′(0) = 1, y′′(0) = 3.

Verifying that y1, y2, y3 are solutions is done by plugging in the functions
and obtaining. For y3 this looks like

e3x(33 − 6 · 32 + 1 · 3− 6 · 3) = 0.

The solution y = −ex + e2x is obtained by solving
c1 + c2 + c3 = 0

c1 + 2c2 + 3c3 = 1

c1 + 4c2 + 9c3 = 3

3. (3.1: 33-48, 3.3: 1-20, 33-36) Find general solutions to the following ho-
mogeneous equations.
In each of the following, we first solve the characteristic equation and use the
roots to construct the general solution.
a. 3y′ − y = 0
3r − 1 = 0. r = 1

3
. y = c1e

1
3
x.

b. y′′ + 2y′ − 15y = 0
r2 + 2r − 15 = 0. r = −5, 3. y = c1e

−5x + cxe
3x.

c. 9y(3) + 12y′′ + 4y′ = 0
9r3 + 12r2 + 4r = r(3r + 2)2. y = c1 + (c2 + c3x)e−2/3x.
d. y(4) − 8y′′ + 16y = 0
r4 − 8r2 + 16 = (r2 − 4)2 = 0. y = (c1 + c2x)e−2x + (c3 + c4x)e2x.

4. (3.1: 1-16, 3.3: 21-26) Solve the following initial value problems.
We found the general solutions in question 3.
a. 3y′ − y = 0; y(0) = 5
y = 5e1/3x.
b. y′′ + 2y′ − 15y = 0; y(0) = 0, y′(0) = 4
y = 1

2
e−5x − 1

2
e3x.

c. 9y(3) + 12y′′ + 4y′ = 0; y(0) = 0, y′(0) = 1, y′′(0) = 10
3

y = 21
2

+ (−21
2

+ 8x)e−2/3x.

2



5. Show that the function y = sin x satisfies the equation

yy′′ − (y′)2 = −1.

Does it then follow that y = 3 sin x is also a solution? Why or why not?
The original differential equation is not linear, so it does not follow that
y = 3 sin x is a solution. In fact, it is easily verified that y = 3 sin x is not a
solution.

6. (3.2: 21-24, 3.5: 1-20, 31-40) Find a general solution to the following
nonhomogeneous equations and/or solve the initial value problem.
a. y′′ + y = 3x; y(0) = 2, y′(0) = −2
First, we solve the complimentary homogeneous equation y′′ + y = 0, giving
us yc = c1 cos x + c2 sin x. Then, we guess that a particular solution of the
non-homogeneous equation will be of the form A3x plus terms coming from
the derivatives (a constant). Because none of these appear in the solution to
the homogeneous equation, we make the guess yp = Ax + B and plugging in
find yp = 3x.

b. y′′ + 9y = 2 cos 3x + 3 sin 3x
First, yc = c1 cos 3x + c2 sin 3x. For our guess at yp, we take the generalized
right hand side plus derivatives, which will look like A cos 3x + B sin 3x and
multiply it by the lowest power of x so that it does not appear in the compli-
mentary solution. This gives yp = Ax cos 3x + Bx sin 3x, and after plugging
in, we solve

−6A sin 3x + 6B cos 3x = 2 cos 3x + 3 sin 3x

to give us yp = −1
2
x cos 3x + 1

3
sin 3x, and hence y = yp + yc = −1

2
x cos 3x +

1
3
sin 3x + c1 cos 3x + c2 sin 3x.

7. (3.5:21-30) Set up the appropriate form of a particular solution yp, but do
not determine the values of the coefficients.
a. y′′ − 2y′ + 2y = ex sin x
First, yc = ex(c1 cos x + c2 sin x). Initially, we would guess

yi = Aex sin x + Bex cos x,

but we notice that that is a solution to the complimentary equation, so we
multiply by a power of x to eliminate such duplication, giving us

yp = xex(A sin x + B cos x).

3



8. (3.4: 24-33) Show that if a mass-spring-dashpot system with no external
force is underdamped (i.e. c2 < 4km), then the mass passes through the
equilibrium position an infinite number of times.
Solving mx′′ + cx′ + kx = 0 with c2 < 4mk gives a solution of the form

x(t) = e−pt(c1 cos ω1t + c2 sin ω1t).

Finding when the mass passes through the equilibrium position is equivalent
to solving x = 0, and c1 cos ω1t+c2 sin ω1t = 0 for an infinite number of t > 0.

9. (3.4: 15-21) Find the position function for the following mass-spring-
dashpot system. What happens to the position for large time?
a. m = 1

2
, c = 3, k = 4; x0 = 2, v0 = 0

1
2
x′′ + 3x′ + 4x = 0. x(t) = c1e

−2t + c2e
−4t.{

c1 + c2 = 2

−2c1 − 4c2 = 0

{
c1 = 4

c2 = −2

x(t) = 4e−2t − 2e−4t, and limt→∞ x(t) = 0, so the mass’ position is approxi-
mately at equilibrium for large time.

10. (3.4: 1-4) What is the amplitude and period for the undamped mass-
spring system with m = 2, k = 8 and x0 = 3, v0 = 8?
2x′′ + 8x = 0. x(t) = A cos 2t + B sin 2t. x(t) = 3 cos 2t + 4 sin 2t. Written
like this, we see that the amplitude will be

√
32 + 42 = 5, and the period will

be 2π
2

= π. This follows explicitly from

x = 3 cos 2t + 4 sin 2t

= 5(
3

5
cos 2t +

4

5
sin 2t)

= 5 cos(2t− α)

where cos α = 3
5
, sin α = 4

5
. (The last step above is given by a trig identity

for cos(a− b).

11. (3.6: 1-14)a. Find the position function for the undamped mass-spring
system with external force 4e−t given by the equation

x′′ + x = 4e−t; x0 = 3, v0 = −2.

x = 2e−t + c1 cos t + c2 sin t = −2e−t + cos t.

b. Find the amplitude of the steady-periodic solution to

mx′′ + kx = F0 cos(ωt).

4



Assuming ω 6=
√

k
m

, we find

xsp(t) = xp(t) =
F0

k −mω2
cos ωt =

F0/m

ω2
0 − ω2

cos ωt.

Therefore, the amplitude is the coefficient F0/m

ω2
0−ω2 .

12. (3.6: 15-18) In the following mass-spring-dashpot systems with external
force F0 cos(ωt), is there practical resonance for some ω > 0? If so, at what
frequency ω will this occur? (Hint: The formula for the amplitude of the
steady-periodic solution is

C(ω) =
F0√

(k −mω2)2 + (cω)2
.

a. 2x′′ +
√

2x′ + 5x = F0 cos(ωt). The amplitude will be

C(ω) =
F0√

(5− 2ω2)2 + (
√

2ω)2

=
F0√

4ω4 − 18ω2 + 25
.

To maximize this, we take the derivative and set it equal to zero, giving us

0 =C ′(ω) =
−1/2F0

(4ω4 − 18ω2 + 25)3/2

(
16ω3 − 36ω

)
0 =4ω(4ω2 − 9)

ω =0,−3

2
,
3

2

We normally assume ω > 0 (this is convention; notice that cos(−ωt) =
cos(ωt)), and we can see that ω = 3

2
is the global maximum, giving us the

value where practical resonance occurs.

13. Transform the mass-spring-dashpot equation mx′′ + cx′ + kx = 0 into a
system of first-order equations.
Let y = x′. Then {

y = x′

my′ + cy + kx = 0

5



Math 303: Midterm 2 Answers

November 14, 2007

1. The functions y1 = e2x and y2 = e3x are solutions to the differential equation

y′′ − 5y′ + 6y = 0.

a. (10 points) Verify that y1 and y2 are linearly independent.

W (y1, y2) =

∣∣∣∣ e2x e3x

2e2x 3e3x

∣∣∣∣ = e5x 6= 0

b. (10 points) Find a solution satisfying the initial conditions y(0) = 1 and y′(0) = 4.

y = c1y1 + c2y2 = c1e
2x + c2e

3x{
y(0) = c1 + c2 = 1

y′(0) = 2c1 + 3c2 = 4

c1 = −1, c2 = 2, y = −e2x + 2e3x

2. (15 points) Find a specific solution to the equation

y′′ − 2y′ + 5y = cos x

First, set up the general form of a particular solution

yp = A cos x + B sin x Notice no overlap with comp. solution

y′p = −A sin x + B cos x

y′′p = −A cos x−B sin x

Plugging in, we see

y′′ − 2y′ + 5y = cos x(−A− 2B + 5A) + sin x(−B + 2A + 5B) = cos x{
4A− 2B = 1

2A + 4B = 0
=⇒

{
A = 1

5

B = − 1
10

yp =
1

5
cos x− 1

10
sin x

1



Since the solution the complimentary homogeneous equation y′′ − 2y′ + 5y = 0 is of the form

yc = ex(c1 cos 2x + c2 sin 2x),

then any equation of the form

y =
1

5
cos x− 1

10
sin x + ex(c1 cos 2x + c2 sin 2x)

for some values c1, c2 is also a specific solution.
3. Find general solutions to the following equations.

a. (10 points) y(3) − 6y′′ + 9y′ = 0

r3 − 6r2 + 9r = r(r − 3)2 = 0

r = 0, 3, 3

y = c1 + (c2 + c3x)e3x

b. (15 points) y(4) − y′′ = 3x.
Note that the complimentary solution yc is not a solution to the above equation, but instead a
solution to y(4)−y = 0. A particular solution yp must be added to it to have a solution of the above
equation.

y = yc + yp

yc :r4 − r2 = r2(r + 1)(r − 1) = 0

r = 0, 0,−1, 1

yc = c1 + c2x + c3e
−x + c4e

x

yi = Ax + B Initial guess

yp = x2(Ax + B) = Ax3 + Bx2 Remove overlap with yc

y(4)
p − y′′ = −6Ax−B = 3x

A = −1

2
, B = 0

yp = −1

2
x3

y = −1

2
x3 + c1 + c2x + c3e

−x + c4e
x

2



4. A mass of m = 1 kg is attached to a large spring with spring constant k = 9 (N/m). It is set in
motion with initial position x0 = 2 (m) from the equilibrium position and initial velocity v0 = −6
(m/s).

a. (15 points) If the mass-spring system is undamped (no resistance) and free (no external
force), then what is the amplitude and period of the position function?

mx′′ + kx = 0

x′′ + 9x = 0

r2 = 9 = 0

r = ±3i

x(t) = A cos 3t + B sin 3t

x′(t) = −3A sin 3t + 3B cos 3t{
A = x0 = 2

3B = v0 = −6

x(t) = 2 cos 3t− 2 sin 3t

For x(t) of the form above, the amplitude will be
√

22 + 22 =
√

8 = 2
√

2.
The period is 2π

3
.

This can also be seen by transforming the solution to

x(t) = 2
√

2 cos(3t +
π

4
.)

b. (10 points) Suppose a dashpot with damping constant c = 2 (Ns/m) is connected to the
spring (still with no external force). What is the pseudo-period of the position function?

x′′ + 2x′ + 9x = 0

r2 + 2r + 9 = 0

r = −1± i2
√

2

x(t) = e−t(c1 cos 2
√

2t + c2 sin 2
√

2t)

The pseudo-period of the above solution is then 2π
2
√

2
= π√

2
.

3



c. (10 points) Suppose that the mass-spring-dashpot system from part (b) is acted on by an
external force of F0 cos(ωt) (Newtons) for some ω. Then, the steady-periodic solution will be of the
form

xsp(t) = C(ω) cos (ωt− α(ω)) ,

where

C(ω) =
F0√

(k −mω2)2 + (cω)2
α(ω) =


tan−1 cω

k−mω2 k > mω2

π/2 k = mω2

π + tan−1 cω
k−mω2 k < mω2

For what value(s) of ω > 0, if any, will the system exhibit practical resonance?

To find practical resonance, we find what value of ω maximizes the amplitude function C(ω).
To do this, we maximize C(ω) by taking the derivative and setting it equal to zero.

C(ω) =
F0√

(9− ω2)2 + (2ω)2

=
F0√

ω4 − 14ω2 + 81

C ′(ω) =
−1/2F0

(ω4 − 14ω2 + 81)3/2

(
4ω3 − 28ω

)
0 = 4ω3 − 28ω = 4ω(ω2 − 7)

ω = 0,−
√

7,
√

7

ω =
√

7

The values ω = 0,±
√

7 all give critical points of the function C(ω). However, we always consider
ω ≥ 0, and by looking at a sign chart, we see that ω =

√
7 gives us the global maximum for C(ω).

Therefore, practical resonance occurs when ω =
√

7.

5. (5 points) Transform the following 3rd-order equation into a system of linear equations

y(3) − 5y′′ + 14y′ + 2y = 1.


y′ = y1

y′1 = y2

y′2 = −2y − 14y1 + 5y2 + 1

4



Math 303 Fall 2007 Final Exam Review

The final exam will be cumulative with a slight emphasis on the material
covered since the second midterm. The best way to review is to work through
the first two midterms and homework-style problems.

On the final, you may have one 81
2

x 11 sheet of paper (one-side) with
formulas, notes, and examples. The cheat-sheet should be made by you and
not merely copied from another student. There are no calculators allowed,
and you may not use any other material, including books, homework assign-
ments, or class notes. All questions will be partial credit.

The review sheets for Midterms 1-2 along with the following problems
provide a good idea of what kind of questions to expect.

1. a. Show directly (by plugging in solution x(t)) that x(t) = eλt is a solution
to ax′′ + bx′ + cx = 0 if and only if λ is a solution to aλ2 + bλ + c = 0.

b. Show directly that −→x (t) = −→v eλt is a solution to −→x (t)′ = A−→x (t) if and
only if −→v is an eigenvector of A with eigenvalue λ.

c. Suppose that −→v1 is an eigenvector of A with eigenvalue λ. If −→x (t) =
(−→v1 t +−→v2)e

λt is a solution to −→x (t)′ = A−→x (t), then determine an explicit re-
lationship between −→v1 and −→v2 (derive the equation for a chain of generalized
eigenvectors).

2. Solve the second-order linear equation

x′′ + 5x′ + 6x = 0

(a) by using the methods from Chapter 3 (use characteristic equation)
(b) by transforming it into a system of 2 first-order equations and using the
techniques of Chapter 5.

3. Find 2 linearly independent solutions to

−→x ′ =

[
3 −1
5 3

]
−→x .

Show that they are linearly independent. Write a general solution.

4. Solve the initial value problem{
dx
dt

= 4x + 2y
dy
dt

= 3x− y
; x(0) = 3, y(0) = −2.

1



5. Find general solutions and write a fundamental matrix solution to −→x ′ =
A−→x for the following matrices

A =

[
4 −3
3 4

]
,

 2 1 −1
−4 −3 −1
4 4 2

 ,

 0 1 2
−5 −3 −7
1 0 0

 ,

 2 0 0
−7 9 7
0 0 2

 ,

 1 0 0
1 3 1
−2 −4 −1

 .

6. Calculate eAt and use this to solve the initial value problem −→x ′ = A−→x

with −→x (0) =

[
1
−2

]
, where

A =

[
2 5
0 2

]
,

 1 0 2
0 1 −3
0 0 1

 .

7. Suppose that we have a two brine tank system with constant flow rate
of 10 gal/min going into and out of both tanks. If the volume of tank I is
50gal and that of tank II is 25 gal, find the amount of salt in both tanks as
a function of time, assuming that the original amount in tank I is 15 gal and
that of tank II is 0 gal.

8. Find equilibrium solutions and determine their stability in the systems:{
dx
dt

= −2x + y
dy
dt

= x− 2y
,

{
dx
dt

= 1− y2

dy
dt

= x + 2y

2



Math 303 Fall 2007 Final Exam Review Answers

1. These can all be seen by directly substituting the solution into the differ-
ential equation. For instance, for part (b), we have that

−→x ′ = λ−→v eλt, A−→x = (A−→v )eλt.

Therefore (since eλt 6= 0), −→x (t) = −→v eλt is a solution if and only if A−→v = λ−→v ,
which is the definition for an eigenvector and eigenvalue of A.

2. x(t) = c1e
−2t + c2e

−3t. Notice that the characteristic equation from part
(a) is the same polynomial as the eigenvalue equation in part (b). In part
(b), you use x′ = y and solve

x′ =

[
0 1
−6 −5

]
x,

which gives you the solution

x(t) =

[
c1e

−2t + c2e
−3t

−2c1e
−2t − 3c2e

−3t

]
.

The top row is the solution to the original equation, and the second row
(y(t)) is dx

dt
).

3. **I meant for this problem to be

−→x ′ =

[
3 −1
5 −3

]
−→x .

Notice the negative sign in front of the 3 (it makes things much nicer). How-
ever, the answer to the problem, as stated, is....

x1 = e3t

[
cos
√

5t√
5 sin

√
5t

]
,x2 = e3t

[
sin
√

5t

−
√

5 cos
√

5t

]
.

Linear independence is shown using the Wronskian,

W (x1,x2) = e3t

∣∣∣∣ cos
√

5t sin
√

5t√
5 sin

√
5t −

√
5 cos

√
5t

∣∣∣∣ =
√

5e3t

1



4. The general solution

−→x (t) = c1

[
1
−3

]
e−2t + c2

[
2
1

]
e5t

is worked out in Example 1 of 5.2. The solution to the initial value problem
is {

x(t) = e−2t + 2e5t

y(t) = −3e−2t + e5t
.

5. Please note that there are multiple equivalent ways of writing solutions on
these problems (depending on the basis vectors one chooses for eigenspaces).

A =

[
4 −3
3 4

]
⇒ −→x (t) = e4t

[
c1 cos 3t− c2 sin 3t
c1 sin 3t + c2 cos 3t

]
(5.2 Ex.3)

A =

 2 1 −1
−4 −3 −1
4 4 2

⇒ Φ(t) =

 et 2 cos 2t− sin 2t cos 2t + 2 sin 2t
−et −3 cos 2t + sin 2t cos 2t− 3 sin 2t

3 cos 2t + sin 2t 3 sin 2t− cos 2t



A =

 0 1 2
−5 −3 −7
1 0 0

⇒ −→x (t) = c1

−2
−2
2

 e−t + c2

−2t + 1
−2t− 5
2t + 1

 e−t + c3

−t2 + t + 1
−t2 − 5t
t2 + t

 e−t

(5.4 Ex. 4)

A =

 2 0 0
−7 9 7
0 0 2

⇒ Φ(t) =

 e2t e2t 0
e2t 0 e9t

0 e2t 0



A =

 1 0 0
1 3 1
−2 −4 −1

⇒ −→x (t) =

−c1 − 2c2 + c3

c2 + c3t
c1 − 2c3t

 et

2



6.

e

24 2 5
0 2

35t

= e

24 2 0
0 2

35t

e

24 0 5
0 0

35t

=

[
e2t

e2t

] [
1 5t
0 1

]
=

[
e2t 5te2t

0 e2t

]

e

26664
1 0 2
0 1 −3
0 0 1

37775t

=

et 0 2tet

0 et −3tet

0 0 et



7. Letting x1(t), x2(t) be the amount of salt in tanks 1 and 2, respectively,
we obtain the system of differential equations{

dx1

dt
= −10

50
x1

dx2

dt
= −10

50
x1 − 10

25
x2

Solving this, we obtain

x =

[
c1e

−1/5t

c1e
−1/5t + c2e

−2/5t

]
=

[
15e−1/5t

15e−1/5t − 15e−2/5t

]

8.{
dx
dt

= −2x + y
dy
dt

= x− 2y
is linear, and has only one equilibrium solution, located at (0, 0).

The eigenvalues of

[
−2 1
1 −2

]
are λ = −1,−3, which are both negative, so

the equilibrium is stable (in fact, it is an asymptotically stable nodal sink).

{
dx
dt

= 1− y2

dy
dt

= x + 2y
has two equilibrium solutions, located at (−2, 1) and (2,−1).

The Jacobean at (-2,1) is

[
0 −2
1 2

]
and has eigenvalues λ = 1 ± i. The real

parts of the eigenvalue are positive, so the equilibrium solution is unstable

(in fact, it is an unstable spiral source). The Jacobean at (1,-1) is

[
0 2
1 2

]
with eigenvalues λ = 1±

√
3, one of which is positive, and the other negative.

Therefore, that equilibrium point is also unstable (and in fact, is an unstable
saddle point).
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