
 MAT 200: Logic, Language and
 Proof 
 Spring 2014

Home
General Information
Syllabus
Exams

Welcome to MAT 200 : Logic, Language and Proof

 MAT 200 : Logic, Language and Proof
 Instructor : Jaepil Lee (jefflee@math.sunysb.edu), Math Tower 3-117,
 Office hour : Mon 1:00 - 2:00
 Grader : Holly Chen(holly@math.sunysb.edu)
Math Tower 5-125B, Office Hour : Thur 10:00 - 11:30

Announcements

Announcements are listed in reverse choronological order: most recent
 announcement at the top.

5/15/2014
Expected letter grades have been posted in Blackboard.

5/9/2014
The final exam will be given on Tuesday, 5/13/14 8:30 PM to 11:00
 PM(finalized). Location is Frey Hall 217.

5/8/2014
Practice exam solution for final is uploaded.

5/3/2014
Practice exam for final is uploaded.

5/3/2014
The final exam will be given on Tuesday, 5/13/14 8:30 PM to 11:00
 PM. Location is TBA.

4/26/2014
Homework 8 updated.

4/16/2014
Homework 7 is also used to boost one of your midterm grade. You
 will need to specify which exam you want to be boosted. The grade
 boost will be computed as follows.
 - If your grade is less than average, then ( (average) - (your current
 grade) ) * 0.75
 - If your grade is above than average, then plus two points.

4/16/2014

http://www.math.sunysb.edu/~jefflee/mat200-spr14/index.php?page=home


Current averages of exams and homework 
 Exam 1 : 28.92, Exam 2 : 39.22, HW1 : 5, HW2 : 4.43, HW3 : 3.46,
 HW4 : 8.54, HW5 : 10.89

4/01/2014
Midterm 2 will be given on April 9, on class.

4/01/2014
Practice exam for midterm 2 updated(you can find it from "Exams" on
 your left). No homework on this week. Prepare for the exam.

3/26/2014
Homework 6 updated.

3/19/2014
Homework 5 updated. Sorry for the delay!

3/10/2014
Stony Brook Geometry Notes updated. You may find it from syllabus
 page.

3/10/2014
Exam 1 statistics : Average 28.62, Standard Deviation 15.75

3/5/2014
Homework 4 updated.

3/3/2014
Practice exam solution uploaded.

2/26/2014
Midterm 1 will be on Mar 5, Wednesday, 4:00 - 5:20pm, at Frey Hall
 217

2/26/2014
A readable note on Zermelo-Fraenkel axiomatic set theory from
 University of Chicago.

2/25/2014
Practice exam for midterm 1 updated(you can find it from "Exams" on
 your left). No homework on this week.

2/19/2014
Homework 3 updated.

2/11/2014
Homework 2 updated.

2/5/2014
Due to the severe weather condition, all classes on this week have
 been canceled. Due date of Homework is also extended to Feb
 10(Mon), in class.



1/28/2014
First Homework updated. You may find it from "Syllabus".

1/23/2014
Web page created. Syllabus uploaded.

Copyright 2008 Stony Brook University
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General Information

Information for students with disabilities
 If you have a physical, psychological, medical, or learning disability that
 may impact your course work, please contact Disability Support Services
 at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will
 determine with you what accommodations are necessary and appropriate.
 All information and documentation is confidential.

 Students who require assistance during emergency evacuation are
 encouraged to discuss their needs with their professors and Disability
 Support Services. For procedures and information go to the following
 website: http://www.sunysb.edu/ehs/fire/disabilities.shtml

Copyright 2008 Stony Brook University
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Syllabus

Textbook : Peter J. Eccles: An Introduction to Mathematical Reasoning:
 numbers, sets and functions and Stony Brook's own Geometry Notes. 

Schedule and classroom : MW 4:00 - 5:20pm, Frey Hall 217 

Course Description : This course will provide skills to argue rigorous
 reasonings and proofs used in upper-division mathematics course. We will
 begin with basic logical language and general usage of it. Then we move
 on fundamental objects of mathematics - sets and functions between
 them. Later part of the course will be dedicated to application of
 mathematical logics to Euclidean geometry and number theory. 

Homework : Homework will be assigned in weekly basis. We will put
 emphasis on written argument or proof, so try to give your own argument
 with clear and legit reasoning. Sometimes homework problems whose
 solution may be found in your textbook may be assigned. Although such
 problems may not be graded, but students should put same emphasis on
 them. 

Exams and Grading : Final grading will be given based on following
 criteria.
Exam 1 25%
Exam 2 25%
Final 30%
Homework 20%

Information for students with disabilities : If you have a physical,
 psychological, medical, or learning disability that may impact your course
 work, please contact Disability Support Services at
 http://studentaffairs.stonybrook.edu/dss/ or (631) 632-6748. They will
 determine with you what accommodations are necessary and appropriate.
 All information and documentation is confidential. 

 Students who require assistance during emergency evacuation are
 encouraged to discuss their needs with their professors and Disability
 Support Services. For procedures and information go to the following
 website: 

http://www.math.sunysb.edu/~jefflee/mat200-spr14/index.php?page=home
http://studentaffairs.stonybrook.edu/dss/


http://www.stonybrook.edu/ehs/fire/disabilities.shtml 

 Academic Integrity : Each student must pursue his or her academic goals
 honestly and be personally accountable for all submitted work.
 Representing another person's work as your own is always wrong. Faculty
 are required to report any suspected instances of academic dishonesty to
 the Academic Judiciary. For more comprehensive information on
 academic integrity, including categories of academic dishonesty, please
 refer to the academic judiciary website at 
http://www.stonybrook.edu/uaa/academicjudiciary/ 

Schedule 
This is the brief course plan. Since the schedule is tentative and subject to
 change, so make sure to visit the course web page in regular basis. 

 Week of Jan 27 : Language of mathematics, Implications
Exercise 1.2, 1.3, 1.4, 2.1, 2.3, 2.4, 2.5, Due on Feb 5, in class.

 Week of Feb 3 : All classes has been canceled due to severe weather
 condition. Keep watching Stony Brook weather announcement.

 Week of Feb 10 : Proofs, Proof by contradiction, Induction principle
Homework of this week can be found here. Due on Feb 19, in class.

 Week of Feb 17 : Induction Principle(continued), Language of set theory
Homework of this week can be found here. Due on Feb 26, in class.

 Week of Feb 24 : quantifiers, Functions, Injections, surjections and
 bijections
There is no homework on this week.

 Week of Mar 3 : Review, Midterm I
Homework of this week can be found here. Due on Mar 12, in class.

 Week of Mar 10 : Geometry note 1-4(introduction, axioms)
 Geometry note. 

 Week of Mar 17 : Spring recess
Homework of this week can be found here. Due on Mar 26, in class.

 Week of Mar 24 : Geometry note 5(triangles)
Homework of this week can be found here. Due on Apr 2, in class.

 Week of Mar 31 : Geometry note 6, 7(parallels, similarity and Pythagoras)
 Week of Apr 7 : Midterm II, Counting
 Week of Apr 14 : Properties of finite set, Counting functions and subset
Homework of this week can be found here. Due on Apr 23, in class.

 Week of Apr 21 : Number system, Modular arithmetic
Homework of this week can be found here. Due on May 5, in class.

http://www.stonybrook.edu/ehs/fire/disabilities.shtml
http://www.stonybrook.edu/uaa/academicjudiciary/


 Week of Apr 28 : Linear congruence, Congruence classes
 Week of May 5 : Partitions and equivalence relations

Copyright 2008 Stony Brook University
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1. Introduction

The treatment of Euclidean geometry you will find presented in these notes is loosely
based1 on an approach proposed by Garrett Birkhoff in 1932. Birkhoff, in turn, was heavily
influenced by earlier work of David Hilbert (1899) and Morris Pasch (1882). However, all of
these approaches — and indeed, virtually all other approaches to axiomatic plane geometry
— are essentially refinements of Euclid’s classical treatise, the Elements. The latter text,
written about 300 BC, provided such a beautifully logical development of plane geometry
that its absolute authority remained essentially unchallenged for well over 2000 years.

1.1. Euclidean geometry as an axiomatic theory. Euclidean geometry tries to de-
scribe geometric properties of various subsets of the plane. The geometric figures we will
discuss should be understood to be sets of points; we will use capital letters for points and
write P ∈ m for “the point P belongs to the figure m,” or “the figure m contains the point
P .” The notion of “point” is taken to be fundamental, and we will not attempt to explain
it in terms of simpler notions. There are some other basic notions (line, distance, angle
measure) that are also left undefined. Instead, we will simply postulate some rules which
these objects obey; these “postulates” are usually called the “axioms of Euclidean geome-
try.” All results in Euclidean geometry should be proved by deducing them from
the axioms; justifications such as, “it is obvious,” “it is well-known,” or “it is clear from
the figure” are not acceptable. We allow use of all tautologies and laws of logic. We also
assume standard facts about the real numbers and their properties.

Although a monumental achievement of classical civilization, Euclid’s Elements must un-
fortunately be judged to be somewhat deficient by current mathematical standards of clarity
and rigor. For this reason, various modern authors have developed their own systematic ways
of remedying the limitations of Euclid’s framework. As there are, however, several different
but equally satisfactory ways of accomplishing this, different modern books on geometry
typically use slighlty different sets of axioms. For this reason, you are advised to exercise
considerable care when comparing these notes to any other treatment of the subject.

1.2. Basic objects. The following concepts are the bedrock on which we will build our
theory. No attempt will be made to define or explain them in terms of anything simpler.
However, everything else in these notes will be defined in terms of these basic notions.

• Points: the plane is assumed to consist of elements, called points.
• Lines: certain special subsets of the plane will be called lines;
• Distances: for any two points A and B, it is assumed that there is a real number
|AB|, called the distance between A and B.
• Angle measures: we will eventually introduce some special geometric figures, called

angles. For every angle ∠ABC, it will be assumed that there there is an associated
real number m∠ABC, called the measure of the angle.

1In writing these notes, Stony Brook faculty members made use of numerous secondary sources, including
textbooks by G. E. Martin, by E. G. Golos, and by C. R. Wylie, Jr.
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2. Incidence Axioms

In this section, we introduce the first axioms which deal with lines, points, and the relation
that “the point P lies on the line l.” This relation is often called an incidence relation; hence
the name of this section. We will not discuss distances or angles yet; they will be treated
later by other axioms.

2.1. First Concepts.

Definition 2.1. Two lines l,m are said to be transverse if they are distinct (l 6= m) and have
at least one point in common. When this is true, we will write l "m.

This is slightly different from saying that l and m intersect as point sets. (Why?) Nonethe-
less, the word intersecting is often used to mean “transverse” in contexts where this is unlikely
to cause any confusion.

Definition 2.2. Two lines l and m are called parallel if they are not transverse. When this
is true, we will write l‖m.

Notice that, by this definition, any line is parallel to itself.

Exercise 2.1: Show that two lines l and m are parallel iff either

• l ∩m = ∅; or
• l = m.

Exercise 2.2: Show that l‖m⇐⇒ m‖l.

2.2. Incidence and Parallel lines Axioms.

Incidence Axiom.

(1) There are at least two distinct points.
(2) For any two distinct points, there is a unique line that contains these two points.
(3) For any line, there exists a point not on this line.

We will denote the unique line containing points A,B by
←→
AB.

Parallel Axiom. For any line l and a point P not on l, there exists a unique line containing
P and parallel to l.

2.3. First theorems.

Theorem 2.1. The intersection of two transverse lines consists of exactly one point.

Exercise 2.3: Prove this theorem.

Definition 2.3. Two transverse lines are said to meet at their unique point of intersection.

Theorem 2.2. For any lines l,m, n, if l‖m and m‖n, then l‖n.

Exercise 2.4: Prove this theorem.

Exercise 2.5: Let A,B,C be distinct points such that C lies on the line
←→
AB. Show that

then A lies on the line
←→
BC.

Exercise 2.6: Lel l,m, n be lines such that l‖m and n " l. Show that n "m.
4



2.4. Historical remarks. Our Parallel Axiom corresponds to the Fifth Postulate in Eu-
clid’s classical treatment. Starting in the Middle Ages, some scholars wondered whether
it was redundant, in the sense that it might actually be a logical consequence of Euclid’s
other postulates. In the 1830’s, however, Bolyai and Lobachevsky independently became
convinced that this could not be the case, and proposed a conjectural alternative geometry,
in which the Parallel Axiom fails, but all the other axioms of Euclidean geometry still hold.
Half a century later, the logical consistency of this alternative geometry was definitively
proved by Klein and Poincaré, who constructed explicit coordinate models of the so-called
“non-Euclidean plane” or “hyperbolic plane”. For a wonderfully readable, yet mathemat-
ically precise account, see Hilbert and Cohn-Vossen, Geometry and the Imagination,
§§34-35.
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3. Ruler Axiom

In this section we impose a new axiom which describes properties of distance and order
relation for points on a line.

3.1. Ruler Axiom.

Ruler Axiom. Let l be any line. Then there is a one-to-one correspondence f : l→ R such
that, for any two points A,B on l, |AB| = |f(A)− f(B)|.

Here the statement that f is a one-to-one correspondence means that for every t ∈ R, there
is exactly one point P ∈ l such that f(P ) = t. In particular, we must have f(P ) 6= f(Q)
whenever P 6= Q.

This axiom roughly says that any line “looks like” the usual number line R. This allows
us to use known properties of R to prove many results about points on lines.

A one-to-one correspondence f : l→ R with the distance property stipulated by the Ruler
Axiom is called a coordinate system on l. It is not unique: there are many coordinate systems
on a given line.

Exercise 3.1: Suppose that f : l→ R is a coordinate system on the line l, and let c ∈ R be
any real constant. Define g : l→ R and h : l→ R by

g(A) = c+ f(A)

h(A) = c− f(A)

for all A ∈ l. Show that g and h are also coordinate systems on l.

Theorem 3.1. Let P and Q be distinct points. Then there exists a coordinate system f on

the line
←→
PQ such that f(P ) = 0 and f(Q) > 0.

Exercise 3.2: Prove this theorem, using Exercise 3.1.

Exercise 3.3: Let f be a coordinate system on
←→
PQ which satisfies the conditions of Theo-

rem 3.1. For every A ∈
←→
PQ, show that

f(A) =

{
|PA|, if |QA| < |QP | or |QA| < |PA|
−|PA|, otherwise.

(Hint: if c is a positive constant, first show that a real number x is positive iff either |x−c| < c
or |x− c| < |x|.) Then use this to show that the added conditions stipulated by Theorem 3.1

in fact determine a unique coordinate system on
←→
PQ.

Exercise 3.4: Let f be the coordinate system on
←→
PQ given by Theorem 3.1. If g is any

coordinate system on
←→
PQ for which g(P ) < g(Q), use Exercise 3.3 to show that

g(A) = c+ f(A),

where c = g(P ). Similarly, if h is any coordinate system on
←→
PQ for which h(P ) > h(Q),

show that
h(A) = c− f(A),

where c = h(P ).

3.2. Order on a line.

Definition 3.1. Let A,B,C be points on a line l. We say that B is between A and C if
there is a coordinate system f on l such that f(A) < f(B) < f(C). When this is true, we
write A−B − C.
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Exercise 3.5: Show that A−B − C iff C −B − A.

Exercise 3.6: Let g be any coordinate system on a line l. If A,B,C are three points of l, use
Exercise 3.4 to show that A−B −C iff either g(A) < g(B) < g(C) or g(A) > g(B) > g(C).

Definition 3.2. Let A,B be distinct points. Then the segment AB is the set of all points

C on the line
←→
AB such that A− C −B.

Note that according to this definition, the endpoints A and B are not included in AB.

Definition 3.3. Let A,B,C be points on a line l, where A 6= C and B 6= C. Then we will
say that A and B are on opposite sides of C if A − C − B. On the other hand, we will say
that A and B are on the same side of C if they are not on opposite sides of C.

Exercise 3.7: Let A,B,C be points on a line l, where A 6= C and B 6= C. Show that A
and B are one the same side of C iff one of the following holds:

• A = B:
• C − A−B; or
• C −B − A.

Theorem 3.2.

(1) Given three distinct points on a line, exactly one of them lies between the other two.
(2) Let A,B,C,D be points on a line l, and suppose that none of the other three points

is equal to D. If A and B are on the same side of D, and if B and C are on the
same side of D, then A and C are on the same side of D.

Exercise 3.8: Prove this theorem.

Theorem 3.3. Let V be a point on the line l. Then the complement of V in l is the union
of two disjoint subsets R1 and R2, such that

• if A,B ∈ R1, then A and B are on the same side of V ;
• if A,B ∈ R2, then A and B are on the same side of V ; but
• if A ∈ R1 and B ∈ R2, then A and B are on opposite sides of V .

The subsets R1 and R2 of l are called rays, or half-lines.

In other words, any point on a line “divides the line into two rays.”

Proof. Choose a coordinate system on l such that f(V ) = 0; by Theorem 3.1, such a coor-
dinate system exists. Define R1 to consist of those points A with f(A) > 0, and define R2

to consist of those points A with f(A) < 0. The stated properties of R1 and R2 then follow
from the fact that 0 lies between two real numbers iff one is positive and one is negative. �

Definition 3.4. Let V and A be distinct points. By Theorem 3.3, V then divides the line
←→
V A into two rays, and exactly one of these rays will contain A. We will denote this preferred

ray by
−→
V A.

Theorem 3.4. Let
−→
V A be a ray, and suppose B ∈

−→
V A. Then

−→
V B=

−→
V A.

Exercise 3.9: Prove this theorem.

3.3. Properties of distance. Here are some easy but useful consequences of the Ruler
Axiom.

Theorem 3.5. For any A,B, |AB| ≥ 0. Moreover, |AB| = 0 iff A = B.

Exercise 3.10: Prove this theorem.
7



Theorem 3.6. Let A,B,C be distinct points such that B ∈ AC. Then

|AB|+ |BC| = |AC|.

Exercise 3.11: Prove this theorem.

Exercise 3.12: Let
−→
V A be a ray, and let r be a positive real number. Show that there is a

unique point P on the ray
−→
V A such that |V P | = r.

Exercise 3.13: If B ∈
−→
V A and |V B| < |V A|, then V −B − A.

Exercise 3.14: Let A and B be distinct points. Show there exists a unique point M on the
segment AB such that |AM | = |MB|. (This point is called the midpoint of AB.)
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4. Protractor Axiom

The purpose of this section is to discuss angles and their measures. Before we can do so,
however, we will first need to introduce the notion of a half-plane.

Definition 4.1. Let l be a line in the plane, and let P and Q be points which are not on l.
Then we will say that P and Q are on opposite sides of l if P 6= Q and the line segment PQ
meets l. We will say that P and Q are on the same side of l if they are not on opposite sides
of l.

4.1. Plane separation axiom.

Plane Separation Axiom. Let l be a line, and let P , Q, and R be three points which do
not lie on l.

(1) If P and Q are on the same side of l, and if Q and R are on the same side of l, then
P and R are also on the same side of l.

(2) If P and Q are on opposite sides of l, and if Q and R are on opposite sides of l, then
P and R are both on the same side of l.

Now, given a line l, the Incidence Axiom tells us that there is a point P 6∈ l. We can then
also find a point R which is on the opposite side of l from P , for instance by choosing some

point A ∈ l, and then using the ruler axiom to find a point R ∈
←→
PA such that P − A − R.

Thus, we can always find two points P and R on opposite sides of any line l.
Now, given two such points P and R on opposite sides of a line l, consider the contrapositive

of the first part of the Plane Separation Axiom. This tells us that any third point Q 6∈ l
is either on the opposite side of l from P , or else on the opposite side of l from R. But
the second part of the axiom, together with our assumption that P and R are on opposite
sides, then tells us that either Q is on the same side of l as R, or else on the same side of
l as P . And both cannot hold, since the first part of the axiom would otherwise allow us to
conclude that P and R were on the same side, in contradiction with our assumption. Thus
every point Q 6∈ l must belong to one of the sets

H1 = {points on same side of l as P}
H2 = {points on same side of l as R}

but no point can possibly belong to both. We have therefore proved the following result:

Theorem 4.1. The complement of any line l is the union of two disjoint non-empty sets
H1 and H2, such that

• If A,B ∈ H1, then A and B are on the same side of l;
• If A,B ∈ H2, then A and B are on the same side of l; and
• If A ∈ H1 and B ∈ H2, then A and B are on opposite sides of l.

Definition 4.2. The two subsets H1 and H2 in the above theorem are called half-planes

Thus, the plane separation axiom essentially says that any line divides the plane into two
half-planes.

4.2. Angles and their interiors.

Definition 4.3. An angle is the figure consisting of a point A and two distinct rays starting

at A. The angle formed by rays
−→
AB and

−→
AC is denoted by ∠BAC.

Later in these notes, we will sometimes use the abbreviated notation ∠A for ∠BAC if it
is absolutely clear from the context which rays form the sides of the angle.
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Definition 4.4. We will say that ∠BAC is a straight angle if A ∈ BC.

Exercise 4.1: Show that an angle ∠BAC is a straight angle iff there is a single line which
contains all three of the points A,B,C.

Definition 4.5. Suppose that ∠BAC is not a straight angle. Then the interior of ∠BAC is
the set of those points which are simultaneously

• on the same side of
←→
AB as C; and

• on the same side of
←→
AC as B.

By contrast, when ∠BAC is a straight angle, we will allow ourselves to choose a half-plane

on one side of
←→
BC, and then refer to this chosen half-plane as the “interior” of ∠BAC. (Of

course, however, the opposite half-plane would have made an equally valid choice).

Exercise 4.2: If ∠BAC is not a straight angle, D lies in the interior of ∠BAC iff

• D /∈
←→
AB;

• D /∈
←→
AC;

• DB ∩
←→
AC= ∅; and

• DC ∩
←→
AB= ∅.

Exercise 4.3: If C lies in the interior of ∠BAD, show that

every other point of
−→
AC lies in the interior of ∠BAD, too. In

this case, we will say that
−→
AC lies inside of ∠BAD.

A

C

B

D

4.3. Angle measure. One of the basic undefined notions of Euclidean geometry is that of
angle measure: it is assumed that for each angle ∠ABC, there is an associated positive real
number m∠ABC called the measure of ∠ABC. No attempt is made to give a definition of
this measure. Instead, the Protractor Axiom below simply specifies some of its properties.
It is common to use Greek letters α, β, γ, . . . , ϕ, θ for angle measures.

4.4. Historical note. The phrase “measure of an angle” is actually relatively modern.
Up to about 50 years ago, the measure of the angle at A was simply denoted by A or ∠A, and
it was left to the reader to distinguish between the angle and its measure. When convenient,
we will follow this convention, and use the same notation for an angle and its measure.

4.5. The Protractor axiom.

Protractor Axiom.

(1) For any angle ∠BAC, 0 < m∠BAC ≤ π.
(2) If ∠BAC is a straight angle, then m∠BAC = π.

(3) Let A,B be distinct points, and let H be one of half-planes into which
←→
AB divides

the plane. Then, for any α ∈ R with 0 < α < π, there exists a unique ray
−→
AC in the

half-plane H such that m∠BAC = α.

(4) If ray
−→
AC lies inside ∠BAD, then m∠BAD = m∠BAC +m∠CAD.

Note that we measure the angles in radians, so that the measure of straight angle is π rather
than 180. Also, we always measure the smaller of the two sectors formed by two rays, so the
measure of any angle is at most π.
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Exercise 4.4: Let A,B be distinct points, and let H be one of the half-planes into which
←→
AB divides the plane. For any real numbers r and α such that r > 0 and 0 < α < π, show
there exists a unique point C in H such that |AC| = r and m∠BAC = α. (Please note that
you can only use the results we have proved; in particular, we do not yet know anything
about circles!)

4.6. When rays are inside an angle. We now come to two important results charac-
terizing when a ray lies inside an angle. First of all, we have:

Theorem 4.2 (Monotonicity of angles). Let A,B,C,D be distinct points such that C and

D lie on the same side of the line
←→
AB. Then m∠BAD < m∠BAC iff

−→
AD is inside the angle

∠BAC.

Exercise 4.5: Show that, without the assumption that C,D lie on the same side of
←→
AB,

Theorem 4.2 would be false.

Exercise 4.6: Prove Theorem 4.2.

The second result discussed in this section is much more subtle:

Theorem 4.3 (Crossbar Theorem). Suppose that ∠BAC is a non-straight angle. Then the

ray
−→
AD is inside of ∠BAC if and only if

−→
AD meets the segment BC.

In one direction, this is actually straightforward:

Exercise 4.7: Suppose the
−→
AD meets the segment BC. Show that

−→
AD is inside of ∠BAC.

Part of the other direction is fairly manageable, too:

Exercise 4.8: Suppose that ∠BAC is a non-straight angle, and that
−→
AD is inside of ∠BAC.

Show that either

• the ray
−→
AD meets the segment BC; or else

• the lines
←→
AD and

←→
BC are parallel.

(Use the fact that every point of
←→
BC is either on the same side of

←→
AB as D, or else on the

same side of
←→
AC as D. Then show than any element of

←→
AD which has one of these properties

actually has both.)

To prove Theorem 4.3, it therefore suffices to show that
←→
AD and

←→
BC cannot be parallel.

In Exercise 6.1 below, you will be able to give a proof of this remaining fact, assuming the
Parallel axiom. We remark in passing, however, that Theorem 4.3 can actually be shown to
hold without assuming the Parallel axiom; it is true even in “non-Euclidean” geometry. Such
a proof, however, is much more difficult, and lies beyond the scope of the present notes.

4.7. Vertical and supplementary angles. Let l,m be distinct lines intersecting at
point A. Then these lines define four angles as shown in the figure below (again, this can be
proved but we omit the proof). In this situation, two angles are called supplementary if they
have a common side; otherwise, they are called vertical. Thus, in the figure below angles

11



∠B1AC1 and ∠C1AB2 are supplementary, while ∠B1AC1 and ∠B2AC2 are vertical.

1B2B

C2

1C

α
1

α
2

β
2

1
β

A

Theorem 4.4.

(1) The sum of the measures of any two supplementary angles is π.
(2) Any two vertical angles have equal measure.

Proof. (1) By part (4) of the Protractor Axiom, the sum of the measures of supplemen-
tary angles is equal to the measure of a straight angle. But by part (b) of the same
axiom, the measure of the straight angle is π.

(2) Let α1, α2 and β1, β2 be the measures of two pairs of vertical angles, arranged as in
the figure above. Then by part (a), α1 + β1 = π. But also by part (a), α2 + β1 = π.
Subtracting these equalities, we get α1 = α2. In a similar way one proves that
β1 = β2.

�

This result shows that when we have two intersecting lines, they define two different angle
measures, α and β = π − α. The “measure of the angle between two lines” is therefore
ambiguous and undefined; one would need specify which of these is being used in order to
give this phrase a precise meaning.

12



5. Triangles

5.1. Basics. A triangle is a figure consisting of three points, A,B,C, not lying on one line,
and the three segments connecting them, AB, BC, AC. The points A,B,C are called the
vertices of the triangle, and the segments AB, BC, and AC are called its sides. A triangle
with vertices A,B,C is denoted 4ABC.

Each triangle defines three angles, ∠BAC,∠ABC,∠BCA. In this context, it is common
to use the abbreviated notation ∠A,∠B,∠C if it is clear which triangle is being discussed.

Thus, every gives six real numbers: measures of the three angles and lengths of the three
sides. It is common to denote α = m∠A, β = m∠B, γ = m∠C and a = |BC|, b = |AC|, c =
|AB|

This definition formalizes our intuitive picture of a triangle as something built out of three
sticks joined together at the ends.

5.2. Congruence.

Definition 5.1. Two triangles, 4ABC and 4A′B′C ′, are congruent if the corresponding
angles have equal measures, and the corresponding sides have equal lengths. That is, the
triangles 4ABC and 4A′B′C ′ are congruent iff the following six conditions hold:

m∠A = m∠A′ |AB| = |A′B′|
m∠B = m∠B′ |AC| = |A′C ′|
m∠C = m∠C ′ |BC| = |B′C ′|

When this is true, we will write 4ABC ∼= 4A′B′C ′.

Please note that writing 4ABC ∼= 4A′B′C ′ not only indicates that the two triangles are
congruent, but also says that they are congruent in such a way that vertex A corresponds
to vertex A′, B to B′, and C to C ′.

Informally, the notion of congruence has the following intuitive meaning: If you imagine a
triangle as a physical object, constructed of sticks joined at their ends, then two triangles are
congruent if you can put one on top of another so that they exactly match. (Note that you
are allowed to turn a triangle “face down” in the process.) Euclid takes this for granted, but
unfortunately never defines what “moving” a triangle is supposed to mean! In fact, many
modern approaches to Euclidean geometry do rigorously define “rigid motions” of geometric
figures, via special transformations of the plane known as “isometries.” But it is often
the case in mathematics that one can actually accomplish a surprising amount by simply
formalizing a few aspects of an intuitive idea, and then pursuing the logical ramifications of
the resulting abstract concept. This is the point of view we will adopt herein.

5.3. The SAS congruence Axiom. The following is often called the SAS Axiom:

Side-Angle-Side Congruence Axiom. If 4ABC and 4A′B′C ′ are triangles such that

m∠ABC = m∠A′B′C ′, |AB| = |A′B′|, and |BC| = |B′C ′|,

then 4ABC ∼= 4A′B′C ′.
One can also try other ways to specify a triangle in terms of three pieces of information,

such as three sides (SSS), three angles (AAA), two angles and a side, or two sides and an
angle. For two angles and a side, there are two possibilities, one in which the side connects
the two angles (ASA), and one in which it does not (AAS). For two sides and an angle, there
are also two possibilities, one in which the two sides are adjacent to the given angle (SAS)
and the other in which one is not (SSA).

13



Exercise 5.1: Convince yourself that SSS and ASA do define a triangle up to congruence,
but AAA and SSA do not. (We currently do not have enough tools to prove this rigorously,
so here you are merely being asked to draw some convincing diagrams.)

Exercise 5.2: Let A,B,C,D be points such that no three of them lie on a line, the segments
AC and BD intersect, and the intersection point M is the midpoint (see Exercise 3.14) for
each of them. Show that

(1) 4AMD ∼= 4CMB
(2) |AD| = |BC|, |AB| = |CD|
(3) m∠ABD = m∠BDC
(4) m∠ABC = m∠ADC.

(In §6.5, we will see that this shows that the quadrilateral ♦ABCD is a parallelogram.)

5.4. Congruence via ASA.

Theorem 5.1 (ASA). If 4ABC and 4A′B′C ′ are triangles such that

m∠ABC = m∠A′B′C ′, |BC| = |B′C ′|, and m∠ACB = m∠A′C ′B′,

then 4ABC ∼= 4A′B′C ′.

Proof. Suppose we are given two triangles4ABC and4A′B′C ′ which satisfy these hypothe-
ses. If |AB| and |A′B′| were the same, we could just invoke the SAS Axiom.

A

B

C

D

A

B

C’

’

’

So let us instead suppose that they are different, and show that
this leads to a contradiction. Without loss of generality, assume
that |A′B′| < |AB|; otherwise, just exchange the names of the
two triangles.

By the Ruler Axiom, we can find a point D on
−→
BA such that

|BD| = |B′A′|. Since |BD| < |BA|, D is between A and B, and
−→
CD is therefore inside ∠ACB. Hence m∠DCB < m∠ACB
by Theorem 4.2. But 4DCB ∼= 4A′C ′B′ by the SAS Axiom.
Hence m∠DCB = m∠A′C ′B′. But m∠A′C ′B = m∠ACB by
hypothesis. Thus

m∠DCB = m∠A′C ′B = m∠ACB > m∠DCB.

Therefore m∠DCB > m∠DCB, which is a contradiction.
Hence |AB| = |A′B′|, and 4ABC ∼= 4A′B′C ′ by SAS.

�

Exercise 5.3: In this proof, some of the references to our previous results are actually less
precise than could be desired. In some cases, for example, it might better to refer, not to an
axiom or theorem, but rather to an associated exercise; in other places, no justification has
been given, but some citation would clearly be appropriate. Carefully check each step in the
proof, listing each such imprecision you find, and indicating the manner in which each could
be improved.

5.5. Isosceles triangles. A triangle is isosceles if two of its sides have equal length. The
two sides of equal length are called legs; the point where the two legs meet is called the apex
of the triangle; the other two angles are called the base angles of the triangle; and the third
side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next
theorem tells us that is equivalent to having two angles of equal measure.
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Theorem 5.2 (Base angles equal). If4ABC is isosceles, with base BC, then m∠B = m∠C.
Conversely, if 4ABC has m∠B = m∠C, then it is isosceles, with base BC.

Exercise 5.4: Prove Theorem 5.2 by showing that 4ABC is congruent to its reflection
4ACB. Note that there are two parts to the theorem, and so you need to give essentially
two separate arguments.

5.6. Congruence via SSS.

Theorem 5.3 (SSS). If 4ABC and 4A′B′C ′ are such that |AB| = |A′B′|, |AC| = |A′C ′|
and |BC| = |B′C ′|, then 4ABC ∼= 4A′B′C ′.

Proof. If the two triangles were not congruent, then one of the angles of 4ABC would have
measure different from the measure of the corresponding angle of 4A′B′C ′. If necessary,
relabel the triangles so that ∠A and ∠A′ are two corresponding angles which differ, with
m∠A′ < m∠A.

We find a pointD and construct the ray
−→
AD so thatm∠DAB = m∠A′, and |AD| = |A′C ′|.

(That this can be done follows from Exercise 4.4) It is unclear where the point D lies: it

could lie inside triangle ABC; it could lie on the line
←→
BC between B and C; or it could lie

on the other side of the line
←→
BC. We need to take up these three cases separately.

Exercise 5.5: Suppose the point D lies on the line
←→
BC. Explain why this yields an imme-

diate contradiction.

For both of the remaining cases, we draw the segments BD and CD. We observe that, by
SAS, 4ABD ∼= 4A′B′C ′. It follows that |BD| = |B′C ′| = |BC| and that |AD| = |A′C ′| =
|AC|. Hence 4BDC is isosceles, with base DC, and 4ADC is isosceles with base CD.
Since the base angles of an isosceles triangle have equal measure, m∠BDC = m∠BCD and
m∠ADC = m∠ACD.

B

A C

D

First, we take up the case that D lies outside 4ABC; that is,

D lies on the other side of
←→
BC from A.

Exercise 5.6: Finish this case of the proof, first by showing
that m∠ADC < m∠BDC and m∠BCD < m∠ACD. Then
use the isosceles triangles to arrive at the contradiction that
m∠ADC < m∠ADC.

We now consider the case where D lies inside 4ABC. Let E

be a point on the line
←→
BC so that C is between B and E to some

point E. Observe that m∠BCD + m∠DCA + m∠ACE = π,
from which it follows that m∠BCD + m∠DCA < π. Next,
extend the segment BD past D to some point F . Also extend
the segment AD past the point D to some point G, and extend
the segment CD past the point D to some point H.

Exercise 5.7: Finish this case of the proof by explaining why
π < m∠BDC + m∠CDA and m∠BCD + m∠DCA < π, and
then show that this leads to the contradiction π < π.

B

A

H

F C

E

GD

�
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5.7. Congruence via AAS.

Theorem 5.4 (AAS). Suppose we are given triangles ABC and A′B′C ′, where m∠A =
m∠A′, m∠B = m∠B′, and |BC| = |B′C ′|. Then 4ABC ∼= 4A′B′C ′.

This theorem can be proved by methods similar to those used in the proofs above. We
will skip this for now, however, and will instead give a much simpler proof later, using a
celebrated result about the sum of the angles of any triangle.

This concludes our generalities concerning congruences of triangles. We have now seen
four basic congruence results: ASA, SAS, SSS and AAS. We also have seen that the other
two possibilities, SSA and AAA, are simply not valid. It follows that, for example, if we are
given the lengths of all three sides of a triangle, then the measures of all three angles are
determined. However, we do not as yet have any means of computing the measures of these
angles in terms of the lengths of the sides.

5.8. Median, altitude, and bisector in an isosceles triangle.

Definition 5.2. Two lines intersecting at a point A are perpendicular or orthogonal if each
of the four angles at A has measure π/2. These angles are called right angles.

It is standard mathematical practice to use the words perpendicular and orthogonal to mean
precisely the same thing. Anyone who tries to draw a distinction between them is joking!

In any triangle 4ABC, there are three special lines passing through the arbitrary vertex
we have chosen to call A, namely:

• the altitude from A is perpendicular to
←→
BC;

• the median from A bisects BC, in the sense that it crosses
←→
BC at the midpoint D of

BC, which we constructed in Exercise 3.14; and
• the angle bisector bisects ∠A, in the sense that if E is the point where the angle

bisector meets BC, then m∠BAE = m∠EAC.

Exercise 5.8: For any triangle 4ABC, show there exists a unique median thorough A and
a unique angle bisector through A.

Later we will show the altitude from A actually exists, and is unique. Note that this isn’t
completely trivial!

For most triangles, the three lines through a given vertex we’ve just defined are all different.
For an isosceles triangle, however, they all actually coincide:

Theorem 5.5. If B is the apex of the isosceles triangle ABC, and BM is the median, then
BM is also the altitude, and is also the angle bisector, from B.

Proof. Consider triangles4ABM and4CBM . Then |AB| = |CB| (by definition of isosceles
triangle), |AM | = |CM | (by definition of midpoint), and m∠MAB = m∠MCB (by Theo-
rem 5.2). Thus, by the SAS Axiom, 4ABM ∼= 4CBM . Therefore, m∠ABM = m∠CBM ,
so BM is the angle bisector.

Also, m∠AMB = m∠CMB. On the other hand, by Protractor Axiom, m∠AMB +
m∠CMB = m∠AMC = π. Thus, m∠AMB = m∠CMB = π/2. �

5.9. Inequalities for general triangles.

Theorem 5.6 (Exterior angle inequality). Consider the triangle

4ABC. Let D be some point on the ray
−→
BC, where C lies

between B and D. Then

(1) m∠ACD > m∠B.
(2) m∠ACD > m∠A. DCB

A
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We will later prove a much stronger result, namely, that m∠ACD = m∠A + m∠B.
However, to get this stronger statement we will need to also invoke the Parallel Axiom,
whereas the result we are about to prove remains true even in “hyperbolic geometry,” where
all of our axioms except the Parallel Axiom hold.

Notice that the following proof depends only on direct use of the SAS Axiom, together
with easy consequences of the Incidence, Ruler and Protractor Axioms. This will be an point
important point when we finish the proof of Theorem 4.3 in Exercise 6.1.

Proof. We first prove part (1).

Choose E to be the midpoint of the segment BC, and extend
AE beyond E to F , so that |AE| = |EF |. Now extend FC
beyond C to some point G.

Exercise 5.9: Finish the proof of part (1) by showing that
m∠B = m∠BCF = m∠DCG < m∠DCA. (Hint: use Exer-
cise 5.2.)

DB

A

E

F

G

C

DCB

A

E

F

Exercise 5.10: Give a proof of part (2) using the figure at left
(E is the midpoint of AC, and |EF | = |BE|.)

�

We already know that if two sides of a triangle are equal, then the angles opposite to these
sides are also equal (Theorem 5.2). The next theorem extends this result: in a triangle, if
one angle is bigger than another, the side opposite the bigger angle must be longer than the
one opposite the smaller angle.

Theorem 5.7. In 4ABC, if m∠A > m∠B, then we must have |BC| > |AC|.

Proof. Assume not. Then either |BC| = |AC| or |BC| < |AC|.
Exercise 5.11: Show that if |BC| = |AC|, the assumption m∠A > m∠B is contradicted.

Now assume |BC| < |AC|, find the point D on AC so that

|BC| = |CD|, and draw the line
←→
BD. Then 4BCD is isosceles,

with apex at C. Hence m∠CBD = m∠CDB. Since ∠CDB
is an exterior angle for 4ABD, by Theorem 5.6, m∠CDB >
m∠A. Also, since D lies between A and C, m∠DBC <
m∠ABC. We now have that m∠CBD < m∠CBA < m∠A <
m∠CDB = m∠CBD; so we have reached a contradiction.

CB

A
D

�

The converse of the previous theorem is also true: opposite a long side, there must be a
big angle.

Theorem 5.8. In 4ABC, if |BC| > |AC|, then m∠A > m∠B.

Proof. Assume not. If m∠A = m∠B, then 4ABC is isosceles, with apex at C, so |BC| =
|AC|, which contradicts our assumption.

If m∠A < m∠B, then, by the previous theorem, |BC| < |AC|, which again contradicts
our assumption. �
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The following theorem doesn’t quite say that a straight line provides the shortest route
between two points, but what it does say is certainly closely related. This result is constantly
used throughout much of mathematics, and is known as “the triangle inequality”.

Theorem 5.9 (The Triangle Inequality). In any triangle 4ABC,

|AB|+ |BC| > |AC|.

Proof. Extend the segment AB past B to the point D so that |BD| =
|BC|, and join the points C and D with a line to form4ADC. Observe
that 4BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD.
It is immediate that m∠DCB < m∠DCA. Looking at 4ADC, it
follows that m∠D < m∠C; by Theorem 5.7, this implies |AD| > |AC|.
Our result now follows, since |AD| = |AB|+ |BD| by Theorem 3.6. �

B C

D

A
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6. Parallel Lines Revisited

Looking over the proofs in the previous sections, we see that we haven’t used the Parallel
Axiom since Section 2. For example, our congruence rules for triangles were proved without
using this axiom. In this section, we will see what new results can be obtained from the
Parallel Axiom.

6.1. Alternate interior angles. We will meet the following situation some number of
times. We are given two lines k1 and k2, and a third line m, where m crosses k1 at A1 and m
crosses k2 at A2. Choose a point B1 6= A1 on k1, and choose a point B2 6= A2 on k2, where
B1 and B2 lie on opposite sides of the line m. Then ∠B1A1A2 and ∠B2A2A1 are referred to
as alternate interior angles.

In any given situation, there are two distinct pairs of alternate
interior angles. That is, let C1 be some point on k1, where B1

and C1 lie on opposite sides of m, and let C2 be some point on
k2, where C2 and B2 lie on opposite sides of m. Then one could
also regard ∠C1A1A2 and ∠C2A2A1 as being alternate interior
angles. However, observe that m∠B1A1A2 + m∠C1A1A2 = π
and m∠B2A2A1 + m∠C2A2A1 = π. It follows that one pair of
alternate interior angles are equal if and only if the other pair
of alternate interior angles are equal.

A

A1 B 1

C

C 1
k1

k
B

2

222

m

Theorem 6.1. If the alternate interior angles are equal, then the lines k1 and k2 are parallel.

Proof. Suppose not. Then the lines k1 and k2 meet at some point D. If necessary, we
interchange the roles of the Bi and the Ci so that ∠B1A1A2 is an exterior angle of 4A1A2D.
Then D and B2 lie on the same side of m, so ∠DA2A1 = ∠B2A2A1. By the exterior angle
inequality,

m∠B1A1A2 > m∠A1A2D = m∠B2A2A1 = m∠B1A1A2,

so we have reached a contradiction. �

6.2. Characterization of parallel lines. Let k1 be a line, and let A2 be a point not
on k1. Pick some point A1 on k1 and draw the line m through A1 and A2. By the Protractor
Axiom, we can find a line k2 through A2 so that the alternate interior angles are equal.
Hence we can find a line through A2 parallel to k1.

Theorem 6.2 (Alternate Interior Angles Equal). Two lines k1 and k2 are parallel if and
only if the alternate interior angles are equal.

Proof. To prove the forward direction, construct the line k3 through A2, where there is a
point B3 on k3, with B3 and B2 on the same side of m, so that m∠B3A2A1 = m∠B1A1A2.
Then, by Theorem 6.1, k3 is a line through A2 parallel to k1. The Parallel Axiom implies
k3 = k1. Hence m∠B3A2A1 = m∠B2A2A1, and the desired conclusion follows.

The other direction is just Theorem 6.1, restated as part of this theorem for convenience.
�

Exercise 6.1: Let ∠BAC be a non-straight angle, and choose D so that
←→
AD‖

←→
BC. Use

Theorem 6.2 to show that either D and B are on opposite sides of
←→
AC, or else that D and

C are on opposite sides of
←→
AB. Conclude that D cannot be in the interior of ∠BAC.

Notice that the proof of Theorem 5.6 only depends on Theorem 6.2, along with the Parallel
and SAS axioms; most importantly, it does not logically depend on the Crossbar Theorem in
any way. For this reason, Exercise 6.1, together with Exercise 4.7 and Exercise 4.8, provides
a complete proof of Theorem 4.3.
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6.3. Perpendicular lines. Recall that a right angle is an angle of measure π/2, and that
two intersecting lines are called perpendicular, or orthogonal, if all four angles formed by
these lines are right angles (notation: l ⊥ m). Using Theorem 4.4 (about vertical and
complementary angles), it is easy to see that if one of the four angles is a right angle, then
so are all of them.

Proposition 6.3. Let m ‖ n, l ⊥ m. Then l ⊥ n.

Theorem 6.4. For any line l and a point P , there exists a unique line n such that P ∈
n, n ⊥ l. This line is called the perpendicular from P to l.

Proof. Existence: Let Q be an arbitrary point on l. By the Pro-
tractor Axiom, there exists a line m going through Q such that
m ⊥ l. Now let n be the line going through P and parallel to
m (exists by the Parallel Axiom). By Proposition 6.3, n ⊥ l.

Uniqueness: Assume n1, n2 are two lines, both containing P and
perpendicular to l. Then, by Theorem 6.2, these two lines are
parallel: n1 ‖ n2. But by definition, if two parallel lines have a
common point, they must coincide, i.e. n1 = n2.

�

P

Q

m n

l

Exercise 6.2: Let A,B be distinct points and let M1,M2 be points on different sides of the

line
←→
AB such that |AM1| = |AM2|, |BM1| = |BM2|. Show that

←→
M1M2⊥

←→
AB.

6.4. The sum of the angles of a triangle.

Theorem 6.5. The sum of the measures of the angles of a triangle is equal to π.

Proof. Consider 4ABC, and let m be the line passing through A and
parallel to BC.

Exercise 6.3: Use alternate interior angles to complete the proof of
this theorem.

� B C

A
m

Exercise 6.4: Prove that the external angle of a triangle is equal to the sum of two other
angles, i.e., m∠ACD = m∠A+m∠B (notation as in Theorem 5.6).

Exercise 6.5: Prove Theorem 5.4 (congruence via AAS).

6.5. Parallelograms and rectangles. A quadrilateral is a figure consisting of four
points A,B,C,D (vertices) and segments AB,BC,CD,DA (sides), such that all points are
distinct, no three points lie on the same line, and no two sides intersect (except at vertices).
We will denote the resulting figure by ♦ABCD.

A quadrilateral ♦ABCD is said to be convex if A and C are on opposite sides of
←→
BD, and

if B and D are on opposite sides of
←→
AC.

Exercise 6.6: Show that the quadrilateral ♦ABCD is convex iff its “diagonal” line segments
AC and BD meet in a point.

Exercise 6.7: If ♦ABCD is a convex quadrilateral, use the Crossbar Theorem to show that
C is in the interior of ∠BAD.

Exercise 6.8: Show that the sum of the measures of the angles in a convex quadrilateral is
equal to 2π. (Hint: cut the quadrilateral into two triangles.)

Exercise 6.9: In the previous exercise, what goes wrong if ♦ABCD is not convex? (Hint:
by our conventions, the measure of an angle can never exceed π.)
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Definition 6.1. A parallelogram is a quadrilateral ♦ABCD in which

opposite sides are parallel; that is,
←→
AB is parallel to

←→
CD, and

←→
AD is

parallel to
←→
BC.

A

B C

D

Lemma 6.6. Any parallelogram is a convex quadrilateral.

Proof. Since CD does not meet
←→
AB and BD does not meet

←→
AC, C is in the interior of ∠BAD

by Exercise 4.2. Thus
−→
AC meets BD by the Crossbar Theorem. Similarly,

−→
CA meets BD.

Since
←→
AC meets

←→
BD in only one point, and since

−→
AC ∩

−→
CA= AC, it follows that AC meets

BD. Hence ♦ABCD is convex by Exercise 6.6. �

Theorem 6.7. Let ♦ABCD be a parallelogram. Then m∠A = m∠C; m∠B = m∠D;
|AB| = |CD|; and |BC| = |AD|.

Exercise 6.10: Prove this theorem. (Hint: Draw a diagonal.)

Theorem 6.8. If ♦ABCD is a quadrilateral in which |AB| = |CD| and |AD| = |BC|, then
♦ABCD is a parallelogram.

Exercise 6.11: Prove this theorem.

Definition 6.2. A rectangle is a quadrilateral in which all four angles are right angles. A
rectangle with all four sides of equal length is called a square.

Theorem 6.9. Any rectangle is a parallelogram.

Exercise 6.12: Prove this theorem.

Exercise 6.13: Let ♦ABCD be a parallelogram with diagonals of equal length (that is,
|AC| = |BD|). Then ♦ABCD is a rectangle.
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7. Similarity, and the Pythagorean Theorem

7.1. Similar triangles. We say that triangles 4ABC and 4A′B′C ′ are similar, with
constant of proportionality k, if ∠A = ∠A′,∠B = ∠B′,∠C = ∠C ′ and

|A′B′|
|AB|

=
|B′C ′|
|BC|

=
|A′C ′|
|AC|

= k.

If this holds for some positive real number k, we write 4ABC ∼ 4A′B′C ′.
From this definition, it is clear that 4ABC ∼= 4A′B′C ′ iff they are similar with constant

of proportionality k = 1.

Exercise 7.1: Show that if4ABC ∼ 4A′B′C ′ with constant k1 and4A′B′C ′ ∼ 4A′′B′′C ′′
with constant k2, then 4ABC ∼ 4A′′B′′C ′′ with constant k1k2.

7.2. Key theorem. The key tool in the study of similar triangles is the following theorem.

Theorem 7.1. Consider a triangle 4ABC and let B′ ∈
−→
AB,

C ′ ∈
−→
AC be such that lines

←→
BC and

←→
B′C ′ are parallel. Then

|AB′|
|AB|

=
|AC ′|
|AC| A B

C

C

B

Exercise 7.2: Assuming Theorem 7.1, use the Parallel Axiom to show, conversely, that if

B′ ∈
−→
AB,C ′ ∈

−→
AC are such that |AC′|

|AC| = |AB′|
|AB| , then

←→
B′C ′‖

←→
BC.

The proof of Theorem 7.1 is surprisingly difficult, and will be completed in stages. We begin
by proving the following important special case:

Lemma 7.2. Theorem 7.1 is true in the special case in which |AB′|
|AB| = n is a positive integer.

Proof. Divide the segment AB′ into n equal length pieces, i.e. find on it points B1 =
B,B2, . . . , Bn = B′ such that |AB1| = |B1B2| = · · · = |Bn−1Bn|. Through each point Bi,

draw a line li which is parallel to
←→
BC. Let Ci be the intersection point of li with

−→
AC.

Next, for each Ci, draw a line parallel to
←→
AB and let Di be the intersection point of this

line with line Bi+1Ci+1.

B
1

B
3

B
n

B
n−1

B
2

1
C

C
2

C
3

C
n

n−1
C

1
D

D
2

D
n−1

A

Exercise 7.3: Show that each of triangles CiDiCi+1 is congruent to the triangle ABC.
(Hint: ♦BiCiDiBi+1 is a parallelogram.)

Thus, |CiCi+1| = |AC|, so |AC ′| = n|AC|, and

|AC ′|
|AC|

= n =
|AB′|
|AB|

�
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Exercise 7.4: Use Lemma 7.2 to prove Theorem 7.1 in the case when |AB′|
|AB| = 1

m
for some

positive integer m.

Exercise 7.5: Now combine Lemma 7.2 and Exercise 7.4 to prove Theorem 7.1 in the case

when |AB′|
|AB| = n

m
is any positive rational number.

Now, one of the fundamental properties of the real numbers R is that one can find rational
numbers between any two distinct real numbers:

∀x, y ∈ R [x < y =⇒ ∃q ∈ Q (x < q < y)]

Using this fact about R, we can now complete the proof of our key theorem.

Proof of Theorem 7.1. Set

k1 =
|AB′|
|AB|

and k2 =
|AC ′|
|AC|

.

We will show by contradiction that k1 = k2. Indeed, suppose not. Then the trichotomy
axiom for R tells us that either k1 < k2, or else k2 < k1. We will show that either of these
possibilities leads to a contradiction.

If k1 < k2, we can choose a rational number q = n
m

such that k1 < q < k2. Let B′′ be the

unique point of
−→
AB such that

|AB′′|
|AB|

= q

and let C ′′ be the point of
−→
AC such that

←→
B′′C ′′ ‖

←→
BC:

��
�
��

�
��

�
��

�
��

�

A AA
B

C
A
A
A
A
A
A

B′

C ′

A
A
A
A
A
AA

B′′

C ′′

Now |AB′| < |AB′′|, since k1 < q. Hence A − B′ − B′′, and A is therefore on the opposite

side of
←→
B′C ′ from B′′. But B′′ and C ′′ are on the same side of

←→
B′C ′, since B′′C ′′ is parallel

to
←→
B′C ′, and so does not meet it. The Plane Separation Axiom therefore tells us that A and

C ′′ are on opposite sides of
←→
B′C ′. Hence A− C ′ − C ′′, so |AC ′| < |AC ′′|, and therefore

k2 =
|AC ′|
|AC|

<
|AC ′′|
|AC|

.

But
|AC ′′|
|AC|

=
|AB′′|
|AB|

= q

by Exercise 7.5, so it follows that k2 < q. But since q was chosen at the outset to satisfy
q < k2, this is a contradiction. Thus k1 < k2 is impossible.

In much the same way, we also obtain a contradiction if k2 < k1. Indeed, if k2 < k1, we
can instead choose a rational number q such that k2 < q < k1, and once again choose B′′ on
−→
AB so that

|AB′′|
|AB|

= q
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and C ′′ on
−→
AC so that

←→
B′′C ′′ ‖

←→
BC:

��
��

�
��

�
��

�
��

�
�

A AA
B

C
A
A
A
A
A
A

B′′

C ′′

A
A
A
A
A
AA

B′

C ′

This time, |AB′| > |AB′′|, since k1 > q. Hence A−B′′ −B′, and A is therefore on the same

side of
←→
B′C ′ as B′′. But C ′′ is on the same side of

←→
B′C ′ as B′′, and hence on the same side

as A, by the Plane Separation Axiom. Hence A− C ′′ − C ′. Thus |AC ′| > |AC ′′|, and

k2 =
|AC ′|
|AC|

>
|AC ′′|
|AC|

.

But
|AC ′′|
|AC|

=
|AB′′|
|AB|

= q

by Exercise 7.5, so we conclude that k2 > q. But since q was chosen to satisfy q > k2, this
is another a contradiction, and our proof is therefore complete. �

7.3. Existence of similar triangles.

Theorem 7.3. In the situation described by Theorem 7.1, 4ABC ∼ 4AB′C ′.

Proof. By Theorem 6.2 (alternate interior angles equal), ∠B = ∠B′ and ∠C = ∠C ′. By

Theorem 7.1, |AC′|
|AC| = |AB′|

|AB| . Thus, it remains to show that |BC′|
|BC| = |AB′|

|AB| .

Let A′ be a point on
−→
BA such that |A′B′| = |AB|, and let

C ′′ ∈
−→
BC be such that

←→
A′C ′′‖

←→
AC ′.

Exercise 7.6: Show that 4A′B′C ′′ ∼= 4ABC. A B

C

C

BA

C

Using Theorem 7.1, one easily sees that |B
′C′|

|B′C′′| = |AB′|
|A′B′| . Since |A′B′| = |AB|, and |B′C ′′| =

|BC|, we get |B
′C′|
|BC| = |AB′|

|AB| . �

Corollary 7.4. For any triangle 4ABC and a real number k > 0, there exists a triangle
4A′B′C ′ similar to 4ABC with constant k.

Exercise 7.7: For a triangle 4ABC, let D be the midpoint of AB and F be the midpoint
of AC. Show that

(1)
←→
DF‖

←→
BC

(2) |DF | = 1
2
|BC|

7.4. Similarity via AAA.

Theorem 7.5 (Similarity via AAA). Let 4ABC, 4A′B′C ′ be such that ∠A = ∠A′,∠B =
∠B′,∠C = ∠C ′. Then these triangles are similar.

Proof. Let k = |A′B′|
|AB| . Construct a triangle 4A′′B′′C ′′ which is similar to 4ABC with

constant of proportionality k. Then |A′B′| = |A′′B′′|, and ∠A = ∠A′ = ∠A′′, ∠B = ∠B′ =
∠B′′, ∠C = ∠C ′ = ∠C ′′. Thus, by ASA, 4A′B′C ′ ∼= 4A′′B′′C ′′. �
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Theorem 7.6 (Similarity via SAS). Let 4ABC, 4A′B′C ′ be such that ∠A = ∠A′, |A
′B′|
|AB| =

|A′C′|
|AC| . Then these triangles are similar.

Exercise 7.8: Prove this theorem.

7.5. Pythagoras’ Theorem. A right triangle is a triangle in which one of the angles is a
right angle. The hypotenuse of a right triangle is the side opposing the right angle.

The following theorem, often attributed to Pythagoras, and so called the Pythagorean
Theorem, seems to have been known “experimentally” to the Babylonians and Egyptians
as early four thousand years ago, and there is considerable historical evidence that this
knowledge had spread to India and China by the time of Pythagoras’ time, some 2500 years
ago. It is quite plausible, however, that the first actual proof of the theorem may have been
found by Pythagoras’ school, and in any case, the earliest general proof to have come down
to us is the one in Euclid’s Elements. The proof given below is not as geometrically intuitive
as the one presumably discovered by Pythagoras — but it is far easier to derive from our
axioms!

Theorem 7.7 (Pythagorean Theorem). Let 4ABC be a right triangle, with ∠C being the
right angle. Then

|AB|2 = |AC|2 + |BC|2.

Proof. For brevity, set a = |BC|, b = |AC|, and c = |AB|. Drop a perpendicular from C to

AB; let M be the point where this perpendicular intersects
←→
AB.

Exercise 7.9: Show that 4ACM ∼ 4ABC, and deduce from
this that |AM | = b2/c.

Exercise 7.10: Show that4CBM ∼ 4ABC, and deduce from
this that |BM | = a2/c. A B

C

M
Combining these two exercises, we get

c = |AM |+ |MB| = a2

c
+
b2

c
.

Multiplying both sides by c, we obtain the Pythagorean theorem a2 + b2 = c2. �

Exercise 7.11: The figure to the right can be used to give a more “geometrically obvious”
proof of Pythagoras’ theorem — if we allow ourselves to use the notion of “area”.

(1) By computing the area of the large square in two ways,
prove the Pythagorean theorem.

(2) Carefully analyze the proof of part (1) and list all the
properties of area you are using. Can you prove any
of them? (This, of course, depends on how one defines
area.)

Exercise 7.12: Let 4ABC and 4A′B′C ′ be such that |AB| = |A′B′|, |BC| = |B′C ′|, and
m∠C = m∠C ′ = π/2. Prove that 4ABC ∼= 4A′B′C ′.
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8. Circles and lines

8.1. Circles. A circle Σ is the set of points at fixed distance r > 0 from a given point, its
center. The distance r is called the radius of the circle Σ.

The circle Σ divides the plane into two regions: the inside, which is the set of points at
distance less than r from the center O, and the outside, which consists of all points having
distance from O greater than r. Note that every line segment from O to a point on Σ has
the same length r.

A line segment from O to a point on Σ is also called a radius; this should cause no confusion.
A line segment connecting two points of Σ is called a chord, if the chord passes through

the center, then it is called a diameter.
As above, we also use the word diameter to denote the length of a diameter of Σ, that is,

the number that is twice the radius.

8.2. Perpendicular bisector. Let A,B be distinct points. The perpendicular bisector of

segment AB is the line l which contains midpoint of AB and is perpendicular to
←→
AB.

Theorem 8.1. Let A,B be distinct points. Then |OA| = |OB| iff O lies on the perpendicular
bisector of AB.

Corollary 8.2. If A,B are two distinct points on a circle Σ, then the center of Σ lies on
perpendicular bisector of AB.

Proposition 8.3. A line k intersects a circle Σ in at most two points.

Exercise 8.1: Prove this proposition, using proof by contradiction.

8.3. Circumscribed circles. The circle Σ is circumscribed about 4ABC if all
three vertices of the triangle lie on the circle. In this case, we also say that the
triangle is inscribed in the circle.

Note that another way to describe a circle circumscribed about a triangle is to say that
it is the smallest circle for which every point inside the triangle is also inside the circle. In
this view, the problem of circumscribing a circle becomes a minimization problem. A given
triangle lies inside many circles, but the circumscribed circle is, in some sense, the smallest
circle which lies outside the given triangle.

It is not immediately obvious that one can always solve this minimization problem, nor
that the solution is unique.

Proposition 8.4 (Uniqueness of Circumscribed Circles). There is at most one circle cir-
cumscribed about any triangle.

Proof. Suppose there are two circles Σ and Σ′ which are circumscribed about 4ABC. Since
points A, B, and C lie on both circles, AB and BC are chords. By Corollary 8.2, the
perpendicular bisectors of AB and BC both pass through the centers of Σ and Σ′. Since
these two distinct lines can intersect in at most one point, Σ and Σ′ share the same center
O. Since AO is a radius for both circles, they have the same center and radius, and hence
are the same circle. �

Theorem 8.5 (Existence of Circumscribed Circles). Given 4ABC, there is always exactly
one circle Σ circumscribed about it.

Proof. We need to show existence of a circumscribed circle; uniqueness was shown in Propo-
sition 8.4.
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Let D and E be the midpoints of sides AB and BC respectively.
Draw the perpendicular bisectors of AB and BC, and let O be the
point where these two lines intersect (note that O need not be inside
the triangle). Draw the lines AO, BO and CO. By Theorem 8.1,
|AO| = |BO| (since O lies on the perpendicular bisector of AB);
similarly, |BO| = |CO|. Thus, if we denote r = |AO| = |BO| =
|CO|, and let Σ be the circle with center at O and radius r, then
points A,B,C are on Σ.

D

B
O

E

C

A

�

Corollary 8.6. In any triangle, the three perpendicular bisectors of the sides meet at a point.

Exercise 8.2: Explain why Theorem 8.5 implies this corollary.

8.4. Altitudes meet at a point.

Theorem 8.7. In any triangle 4ABC, the three altitudes meet at a point.

Proof. Draw line l through vertex A, such that l ‖
←→
BC; similarly, draw lines through vertices

B and C parallel to opposite sides of 4ABC. Let A′, B′, C ′ be the intersection points of
these lines, as shown in the figure.
Exercise 8.3: (1) Prove that each of triangles

4A′BC,4ABC ′,4AB′C is congruent to 4ABC.
(2) Prove that A is the midpoint of B′C ′, B is the midpoint

of A′C ′, and C is the midpoint of A′B′.
(3) Prove that altitudes of 4ABC are the same as perpen-

dicular bisectors of sides of 4A′B′C ′.

BC

A

A

CB

Since, by Corollary 8.6, perpendicular bisectors of 4A′B′C ′ meet at a point, we see that
altitudes of 4ABC meet at a point. �

8.5. Tangent lines. A line that meets a circle in exactly one point is a tangent line to the
circle at the point of intersection. Our first problem is to show that there is one and only
one tangent line at each point of a circle.

Proposition 8.8. Let A be a point on the circle Σ, and let k be the line through A perpen-
dicular to the radius at A. Then k is tangent to Σ.

Proof. There are only three possibilities for k: it either is disjoint from Σ, which cannot be,
as A is a common point; or it is tangent to Σ at A; or it meets Σ at another point B. If k
meets Σ at B then OAB is a triangle, where ∠A is a right angle. Since OA and OB are both
radii, |OA| = |OB|. Hence 4OAB is isosceles. Hence m∠A = m∠B. We have constructed
a triangle with two right angles, which cannot be; i.e., we have reached a contradiction. �

Proposition 8.9. If k is a line tangent to the circle Σ at the point A, then k is perpendicular
to the radius ending at A.

Proof. We will prove the contrapositive: if k is a line passing through A, where k is not
perpendicular to the radius, then k is not tangent to Σ.

Draw the line segment m from O to k, where m is perpendicular
to k. Let B be the point of intersection of k and m. On k, mark off
the distance |AB| from B to some point C, on the other side of B
from A. Since OB is perpendicular to k, m∠OBA = m∠OBC. By
SAS, 4OBA ∼= 4OBC, and so |OC| = |OA|. Thus both A and C
lie on Σ, and k intersects Σ in two points. Thus, k is not tangent
to Σ.

O

A CB
k
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Corollary 8.10. Let A be a point on the circle Σ. Then there is exactly one line through A
tangent to Σ.

Exercise 8.4: Prove this Corollary.

8.6. Inscribed circles.

A circle Σ is inscribed in 4ABC if all three sides of the triangle are
tangent to Σ. One can view the inscribed circle as being the largest circle
whose interior lies entirely inside the triangle. (Note that it is not quite
correct to say that the circle lies entirely inside the triangle, because the
triangle and the circle share three points.)

We start the search for the inscribed circle with the question of what it means for the
circle to have two tangents which are not parallel.

Proposition 8.11. Let A be a point outside the circle Σ, and let k1 and k2 be tangents to
Σ passing through A. Then the line segment OA bisects the angle between k1 and k2.

Proof. Let Bi be the point where ki is tangent to Σ, for i = 1, 2. Draw the lines OB1 and
OB2. Observe that |OB1| = |OB2| = r, and that, since radii are perpendicular to tangents,

∠OB1A = ∠OB2A = π/2. By Pythagoras theorem, |AB1| =
√
|AB1|2 + r2 = |AB2.

By SSS, 4OB1A ∼= 4OB2A. Hence m∠OAB1 = m∠OAB2. �

From the above, we see that if there is an inscribed circle for 4ABC, then its center lies
at the point of intersection of the three angle bisectors, and its radius is the distance from
this point to the three sides. Hence we have proven the following.

Corollary 8.12 (Inscribed circles are unique). Every triangle has at most one inscribed
circle.

Theorem 8.13. Every triangle has an inscribed circle.

Proof.

Let G be the point of intersection of the angle bisectors from A
and B in 4ABC. Let D be the point where the perpendicular
from G meets AB; let E be the point where the perpendicular
from G meets BC; and let F be the point where the perpendic-
ular from G meets AC.
Observe that, by AAS, 4ADG ∼= 4AFG. Similarly, 4BDG ∼=
4BEG and 4CEG ∼= 4CFG.

D

B

E

C

A

G

F

We have shown that the perpendiculars from G to the three sides all have equal length;
call this length r. Then, by Proposition 8.8, the circle centered at G of radius r is tangent
to the three sides of 4ABC exactly at the points D, E and F . �

Corollary 8.14. The three angle bisectors of a triangle meet at a point; this point is the
center of the inscribed circle.

Exercise 8.5: Give a proof of this corollary using the above theorem.

Exercise 8.6: Let A and B be points on the circle Σ. Let k be the line tangent to Σ at A
and let m be the line tangent to Σ at B. Prove that if k and m are parallel, then the line
segment AB is a diameter of Σ.
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8.7. Central angles. Let Σ be a circle with center O, and let A,B be points on Σ. Then
the angle ∠AOB is called central angle. It turns out that the angles in a triangel ABC
inscribed in Σ are closely related with the corresponding central angles.

Proposition 8.15. Let Σ be a circle with center O, and let A,B,C be distinct points on Σ
such that AC is a diameter of Σ. Then m∠ACB = 1

2
m∠AOB

Proof. Consider the triangle BOC. Since |BO| = |OC|, this tri-
angle is isosceles. Thus, by Theorem 5.2(base angles are equal),
∠OBC = ∠OCB. Now consider ∠AOC. This is an external
angle of 4OBC, so by Exercise 6.4, it is equal to the sum of
two other angles: ∠AOC = ∠OBC + ∠OCB = 2∠OCB =
2∠ACB. �

A

B

C
O

α2α

α

The next step is to generalize it to the case when AC is not necessarily a diameter of Σ.
however, one must be careful when doing this. The following “theorem” seems a natural
generalization — however, it is not correct as stated. We give it here as an example of why
it is dangerous to base your proof on things which are “obvious from the figure”.

Theorem 8.16 (INCORRECT). Let Σ be a circle with center
O, and let A,B,C be distinct points on Σ. Then m∠ACB =
1
2
m∠AOB.

“Proof”. Let D be the point on Σ such that CD is a diameter
(it is easy to show that such a point exists and is unique). Then
m∠ACB = m∠ACD + m∠DCB. Since CD is a diameter, we
can apply Proposition 8.15 to triangles 4ACD,4DCB which
gives ∠ACD = 1

2
∠AOD,m∠DCB = 1

2
m∠DOB, so

m∠ACB =
1

2
(m∠AOD +m∠DOB) =

1

2
m∠AOB

�

C
α2α

A

B

O
2β βD

So what is wrong with this theorem and this proof? Here is one problem: if we choose
A,B,C so that ∠ACB > π/2 as shown below, then according to this theorem, ∠AOB =
2∠ACB > π. But by Protractor axiom, the measure of any angle is ≤ π. So we get a
contradiction which shows that this theorem can not be correct as stated.

CD

B

A

O

Closer look also shows what is the likely origin of this trou-
ble. Namely, looking at this example it seems that the for-
mula m∠ACB = 1

2
m∠AOB would be true if we gave dif-

ferent interpretation of m∠AOB: if instead of measuring the
smaller of two angles formed by rays OA and OB (which is
the definition we used in Protractor axiom and elsewhere), we
measured that of the two angles which contains the point D.
This also shows the gap in the proof: the proof assumes that
m∠AOD + m∠DOB = m∠AOB; however, we didn’t explain
why it is so. It could be justified by referring to Protractor ax-

iom — but only if the ray
−→
OD is inside angle ∠AOB. As the

two figures above show, this is not always true.
As mentioned above, the statement of the theorem can be corrected. There are several

ways of doing so. One possibility is to change the way we measure angles, so instead of saying
“for every angle we have its measure”, we would say “for every sector there is a measure”,
with a sector being one of two regions of the plane bounded by the angle. Then replacing
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in Theorem 8.16 m∠AOB by “measure of the sector bounded by ∠AOB which does not
contain point C” would give a correct theorem.

This can be done (and, in fact, this is the way it is done in most elementary geometry
books), but it would require some work — and it is too late to do so now, as we have already
extensively used the notion of anlge and Protractor axiom. Therefore, instead we give the
following reformulation of Theorem 8.16.

Theorem 8.17. Let Σ be a circle with center O, and let A,B,C be distinct points on Σ.
Then

m∠AOB =

{
2m∠ACB, if m∠ACB ≤ π/2

2π − 2m∠ACB, if m∠ACB > π/2
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9. Coordinates

In this section, we show how one can relate this axiomatic approach to Euclidean geometry
with the familiar coordinate one, in which we use a coordinate system to describe a point by
a pair of real numbers — its x and y coordinates. Please note that this is a relatively new
approach to geometry: it was introduced Descartes in 17th century — less than 4 centuries
ago (for comparison, Euclid’s Elements were written 23 centuries ago). We will discuss
advantages and disadvantages of this approach later.

9.1. Coordinate system. A coordinate system is an identification f : P → R2, where P is
the plane (i.e., the set of all point considered in Euclidean geometry) and R2 is the set of
all pairs (x, y) of real numbers. This naturally extends the notion of coordinate system on a
line, discussed in Ruler Axiom.

As with a line, there is more than one coordinate system on the plane. In order to define
a coordinate system, we need to specify the origin and coordinate axes. Here are the precise
definitions.

Definition 9.1. A coordinate system on the plane is the following collection of data:

• A point O (called the origin).

• Rays
−→
OA and

−→
OB such that

←→
OA⊥

←→
OB.

The lines OA and OB are usually called x-axis and y-axis respectively. Please note that
the definition of coordinate system asks not just for the lines but for the rays — this is
needed to determine the direction on each of the axes.

Now comes the promised result about identifying the set of all points with R2.

Theorem 9.1. Every coordinate system O,
−→
OA,

−→
OB defines an identification of the set of

all points with R2.

Proof. To define an identification, we need:

• Describe a map f : {points} → R2

• Show that conversely, for each (x, y) ∈ R2, there is a unique point P corresponding
to it (i.e., such that f(P ) = (x, y)).

To define f , note first that by Ruler Axiom, choice of O and a ray
−→
OA defines a coordinate

system fx :
←→
OA→ R such that fx(O) = 0, fx(A) > 0. Similarly, ray

−→
OB defines a coordinate

system fy :
−→
OB→ R. This allows us to label points on both axes by real numbers.

Now let P a point. Drop perpendiculars PPx, PPy from P to
←→
OA (x-axis) and

←→
OB (y-axis) (such perpendiculars exist and are

unique by Theorem 6.4). So we have two “projections” of P on
the axes. Next, define the x and y coordinates x = fx(Px), y =
fy(Py) by using the coordinate systems fx on the x-axis and fy

on the y-axis. Thus, we have defined a map which for a given
point P gives pair of real numbers x and y. We will say that
x, y are coordinates of P , or that P has coordinates x, y.

O

P

P

P

x

y

A

B

Conversely, let x, y be real numbers. To show that there is a unique point P with coordi-
nates x, y, let Px be the point on the x-axis such that fx(Px) = x (such a point exists and is
unique by the Ruler Axiom); similarly, let Py be the point on y-axis such that fy(Py) = y.
Let l be the perpendicular to x-axis through Px (exists by Protractor Axiom), and m the
perpendicular to y-axis through Py. Let P be the intersection point of l and m. Then we
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claim that P has coordinates (x, y) we started with, and moreover, P is the only point that
has these coordinates. The proofs of these two statements is left as an easy exercise to the
reader. �

As usual, we will write P = (x, y) to say “point P has coordinates (x, y)”. We will also
commonly use word “horizontal” for a line which is parallel to x-axis and “vertical” for a
line which is parallel to y-axis.

Exercise 9.1: Show that any horizontal line is perpendicular to any vertical line.

Exercise 9.2: Show that two distinct points A,B have the same coordinate iff
←→
AB is a

vertical line.

9.2. Equation of a line. In this section we will show that any line l not parallel to y
axis can be described by an equation y = mx + b. This is not quite easy and requires
some preparation. Throughout this section, we assume that we have chosen some coordinate
system on the plane.

Exercise 9.3: Let A = (x1, y1), B = (x2, y2) be distinct points. Prove that
←→
AB is parallel

to the y-axis iff x1 = x2.

Definition 9.2. Let A = (x1, y1), B = (x2, y2) be points such that x1 6= x2. Then we define
slope of segment AB by

m(AB) =
y2 − y1

x2 − x1

Theorem 9.2. Let l be a line which is not parallel to the y-axis, and let A,B, A′, B′ be
points on l such that A 6= B,A′ 6= B′. Then the slopes of segments AB and A′B′ are equal:
m(AB) = m(A′B′).

Proof.

O

A

B

C

A
B

C

l m
n

Let m be the line through A parallel to x-axis (exists and
is unique by Parallel lines axiom), and n the line through
B parallel to y-axis. By Exercise 9.1, m ⊥ n. Let C be
the intersection point of m,n. Then 4ABC is the right
triangle: m∠C = π/2, and |AC| = x2 − x1, |BC| = y2 − y1

where A = (x1, y1), B = (x2, y2).
Similarly, let m′ be the line through A′ parallel to x-axis,
and n′ the line through B′ parallel to y-axis, and let C ′ be
the intersection point of m′, n′. Then 4A′B′C ′ is the right
triangle: m∠C ′ = π/2, and |A′C ′| = x′2−x′1, |B′C ′| = y′2−y′1
where A′ = (x′1, y

′
1), B

′ = (x′2, y
′
2).

Using Theorem 6.2, we see that m∠A = m∠A′,m∠B = m∠B′. Thus,4ABC ∼ 4A′B′C ′
by AAA. Thus, by definition of similar triangles, |A

′C′|
|AC| = |B′C′|

|BC| . Denoting this ratio by k, we

get x′2 − x′1 = k(x2 − x1), y
′
2 − y′1 = k(y2 − y1), so

y′2 − y′1
x′2 − x′1

=
y2 − y1

x2 − x1

�

Exercise 9.4: This proof actually has the same deficiencies as our (incorrect) proof of the
theorem about central angles: it uses some information about relative positions of points on
the line l which is true in the figure shown but was not proved (and, in fact, may be false)
in general. Can you identify what information it uses and in which step?
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Fortunately, the theorem is still true: even though the proof above has gaps, it can be
fixed. Can you do this?

This theorem implies that for a line l not parallel to y-axis, we can define its slope m(l)
as the slope of any segment on this line. According to the theorem above, the result doesn’t
depend on which segment we used.

Now we are ready to prove the main result about equation of a line.

Theorem 9.3. Let l be a line with slope m which contains point P = (x0, y0). Then a point
A = (x, y) lies on l iff x, y satisfy the equation

y − y0 = m(x− x0)

Proof. First, we prove that if A ∈ l then x, y satisfy this equation. Indeed, by Theorem 9.2
and the definition of the slope of a line, the slope of AP must be equal to the slope of l, so
y−y0

x−x0
= m. This is equivalent to the equation above.

Conversely, assume that x, y satisfy y − y0 = m(x− x0). We need to prove that A ∈ l.
Consider the line going through A and parallel to y-axis. Let A′ = (x′, y′) be the point of

intersection of this line with l. Since
←→
AA′ is parallel to y-axis, points A and A′ have the same

x-coordinate. Thus, x = x′. Next, by previous argument, y′− y0 = m(x′− x0) = m(x− x0).
Thus, y′ = m(x− x0) + y0 = y. So A = A′. Since by construction ‘A′ ∈ l, this gives A ∈ l.

�

Of course, writing the equation of a line is only the beginning. We could continue in this
vein and develop equations of a circle, develop trigonometry and so on. However, as we do
not have time to cover all this (and most of this you have already seen in other courses), we
stop here.

9.3. Advantages and disadvantages of coordinate method. One of the natural
questions people ask after seeing the coordinate method is this: why don’t we just forget
axiomatic approach to Euclidean geometry and start by defining the plane to be the set R2,
let lines be defined by equations like y = mx+b, and so on? In fact, some mathematicians (for
example, French mathematician J. Dieudonne) have suggested this approach to the study of
geometry. However, this has some serious drawbacks. For example, consider Corollary 8.14:
three angle bisectors in a triangle intersect at a single point. The proof given in these
notes (and going back to Euclid) is rather nice and is based essentially on the fact that
there is a unique inscribed circle. However, proving the same theorem using the coordinate
approach, by writing equations of the three angle bisectors and then showing that these three
equations have a common solution, while not impossible, results in 2 pages of extremely
messy computations. So the coordinate approach, while powerful, is not a replacement for a
more traditional approach: the best way would to to combine them. By the way, Descartes
himself was fully aware of the drawbacks of the coordinate approach and never suggested
that it is a is a magical cure-all.

And for the purposes of MAT 200, we certainly want the axiomatic approach: the whole
point of this part of the course was to show you logic in action, proving results starting
with the axioms and advancing to more and more complicated ones. Axiomatic approach to
Euclidean geometry provides a very good example of this.
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Homework 2

1. Problem 1, page 53.

2. Problem 3, page 53.

3. Problem 5, page 53.

4. Problem 6, page 54.

5. Problem 9, page 54.

6. Problem 10, page 54.

7. Problem 14, page 55.

8. Show that √
2 +

√
2 +

√
2 + · · ·+

√
2 = 2 cos

( π

2n+1

)
,

where there are n 2s in the expression on the left.

9. (Towers of Hanoi) Suppose you have three posts and a stack of n disks, initially
placed on one post with the largest disk on the bottom and each disk above it is
smaller than the disk below. A legal move involves taking the top disk from on
post and moving it so that it becomes the top disk on another post, but every move
must place a disk either on and empty post, or on top of a disk larger than itself.
Show that for every n there is a sequence of moves that will terminate with all the
disks on a post different from the original one. How many moves are required for
an initial stack of n disks?

1



Homework 3

1. Problem 18, page 55.

2. Problem 20, page 56.

3. Problem 21, page 56.

4. Problem 22, page 56.

5. Problem 25, page 57.

6. Problem 26, page 57.

7. Problem 2, page 115.

8. Problem 4, page 115

9. Read Definition 7.7.1 on page 83, and prove followings.

• A×∅ = ∅
• A× (B ∪ C) = (A×B) ∪ (A× C)

1



Homework 4

1. Problem 5, page 115

2. Problem 7, page 116

3. Problem 8, page 116

4. Problem 9, page 116

5. Problem 18, page 118

6. Let f : R→ R be a function and Gf its graph. i.e, Gf = {(x, y) ∈ R2|y =
f(x)}. We also define hy0 := {(x, y) ∈ R2|y = y0}. Show that if there
is y0 ∈ R such that |Gf ∩ hy0 | ≥ 2, then f is not injective (This is also
known as “horizontal line test”).

7. A set of all functions f : X → Y is denoted Y X . For any finite set S,
prove that |P(S)| = |TS |, where T = {0, 1}.
Hint : First show that each f ∈ TS can be written as

χA(x) =
{

1 if x ∈ A
0 if x /∈ A

for some A ∈ P(S). Then prove the assignment A ∈ P(S) 7→ χA ∈ TS is
bijective (the function χA is called characteristic function of A).

1



Homework 5

1. Exercise 2.5, Geometry Note Page 4.

2. Exercise 2.6, Geometry Note Page 4.

3. Exercise 3.2, Geometry Note Page 6.

4. Exercise 3.3, Geometry Note Page 6.

5. Exercise 3.4, Geometry Note Page 6.

6. Exercise 3.8, Geometry Note Page 7.

7. Exercise 3.9, Geometry Note Page 7.

1



Homework 6

1. Exercise 3.11, Geometry Note Page 8.

2. Exercise 3.12, Geometry Note Page 8.

3. Exercise 3.14, Geometry Note Page 8.

4. Exercise 5.1, Geometry Note Page 14.

5. Exercise 5.2, Geometry Note Page 14.

6. Exercise 5.8, Geometry Note Page 16.

7. Exercise 5.10, Geometry Note Page 17.

1



Homework 7

1. Problem 11.6, page 143

2. Problem 12.3, page 155

3. Problem 12.4, page 155

4. Problem 12.5, page 155

5. 145 points are chosen at random in a one-foot by one-foot square. Prove
that there exists two points no more than

√
2 inches apart.

6. Given n integers a1, a2 · · · , an, not necessarily distinct, there exist integers
k and l with 0 ≤ k < l ≤ n such that the sum ak+1 + ak+2 + · · ·+ al is a
multiple of n.
Hint: Consider following n integers; a1, a1 + a2, a1 + a2 + a3, · · · , a1 +
a2 + · · · an. What are their remainders after divided by n?

1



Homework 8

1. Problem 1, page 182

2. Problem 4, page 182

3. Problem 14, page 184

4. Problem 18, page 185

5. Problem 19.3, page 239

1
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Practice Exam

1. Find negations of following statements.

• For some real number a, f(a) = 0.

• For all integers m and n, there is an integer p such that n ≥ pm.

• ∀n ∈ Z,∃m ∈ Z, m ≤ n.

• (∃q ∈ Z, n = 2q + 1)⇒ (∃p ∈ Z, n2 = 2p + 1).

2. Prove following statements by contradiction.

• 3
√

2 is irrational.

• There exist no integers a and b such that 21a + 30b = 1.

• If a, b ∈ Z, then a2 − 4b− 3 6= 0.

3. Prove following by induction principle.

• n! > 2n for n ≥ 4.

• Let fi be ith Fibonacci number. Show that Σn
i=1f

2
i = fnfn+1.

• Let an be the sequence defined by a1 = 1, a2 = 8, an = an−1 +2an−2, (n ≥ 3).
Prove that an = 3 · 2n−1 + 2(−1)n for all n ∈ Z+.

4. By using truth table, for any sets A, B, C and some universal set U , followings
hold.

• Ac ×Bc ⊂ (A×B)c

• (A−B)− C ⊂ A− (B − C)

• A× (B ∪ C) = (A×B) ∪ (A× C).

5. Prove or disprove followings.

• ∃y ∈ R,∀x ∈ R, xy = 1

• ∀x ∈ R,∃y ∈ R, xy = 1

• ∀n ∈ Z+, (n is even or n is odd).

• (∀x ∈ Z+, n is even) or (∀x ∈ Z+, n is odd)

6. Determine wheter each of following functions is injective, surjective or bijective.

• f1 : R→ R, f1(x) = x3 − x

• f2 : Z→ Z, f2(x) = x3

7. Let f : X → Y is a function and A1, A2 ∈ P(X).

• A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2)

• f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2)

• f(A1 ∪ A2) = f(A1) ∪ f(A2)

• A1 ∩ A2 = ∅⇒ f−1(A1) ∩ f−1(A2) = ∅

1



Practice Exam Solution

1. Find negations of following statements.

• For some real number a, f(a) = 0.
Solution. For every real number a, f(a) 6= 0.

• For all integers m and n, there is an integer p such that n ≥ pm.
Solution. There exist integers m and n, such that n < pm for every integer
p.

• ∀n ∈ Z,∃m ∈ Z, m ≤ n.
Solution. ∃n ∈ Z, ∀m ∈ Z, m > n.

• (∃q ∈ Z, n = 2q + 1)⇒ (∃p ∈ Z, n2 = 2p + 1).
Solution. (∃q ∈ Z, n = 2q + 1) and (∀p ∈ Z, n2 6= 2p + 1)

2. Prove following statements by contradiction.

• 3
√

2 is irrational.
Solution. Suppose not. Let 3

√
2 = p/q, where p/q is a reduced fraction. Then

2 = p3/q3, so p3 = 2q3. It is easy to show that “if n is even⇔ n3 is even.” p3

is even thus p is even. Let p = 2k. Then 4k3 = q3, so q is even, contradiction.

• There exist no integers a and b such that 21a + 30b = 1.
Solution. Suppose there are such a and b. Then left hand side of the equation
is divisible by 3, but right hand side is not.

• If a, b ∈ Z, then a2 − 4b− 3 6= 0.
Solution. We will consider four cases of a, depending on remainder of a
divided by 4. Case 1. If a = 4k, then the left hand side of the equation is
4(4k2 − b) − 3, which cannot be zero. Case 2. If a = 4k + 1, then 4(4k2 +
2k− b)− 2 cannot be zero. Case 3. If a = 4k + 2, then 4(4k2 + 4k + 1− b)− 3
cannot be zero. Case 4. If a = 4k + 3, then 4(4k2 + 6k + 2− b)− 2 cannot be
zero.

3. Prove following by induction principle.

• n! > 2n for n ≥ 4.
Solution. Induction on n. If n = 4, 24 = 4! > 24 = 16. Assume n! > 2n.
Then (n + 1)! = (n + 1) · n! > 2n(n + 1) > n2n + 2n > n2n > 2 · 2n > 2n+1.

• Let fi be ith Fibonacci number. Show that Σn
i=1f

2
i = fnfn+1.

Solution. Induction on n. If n = 1, (f1)
2 = f1 · f2. Assume Σn

i=1f
2
i = fnfn+1.

Then Σn
i=1f

2
i + f 2

n+1 = fnfn+1 + f 2
n+1 = fn+1(fn + fn+1) = fn+1fn+2.

• Let an be the sequence defined by a1 = 1, a2 = 8, an = an−1 +2an−2, (n ≥ 3).
Prove that an = 3 · 2n−1 + 2(−1)n for all n ∈ Z+.
Solution. Induction on n. If n = 1, a1 = 3·1−2 = 1. If n = 2, a2 = 3·2+2 = 8.
Assume an = 3 · 2n−1 + 2(−1)n for all n ≤ k. Then ak+1 = ak + 2ak−1 =
3 · 2k−1 + 2(−1)k + 6 · 2k−2 + 4(−1)k−1 = 3 · 2k−2(2 + 2) + 2(−1)k−1(−1 + 2) =
3 · 2k + 2(−1)k+1.

1



4. By using truth table, for any sets A, B, C and some universal set U , followings
hold.

• Ac ×Bc ⊂ (A×B)c

Solution. Omitted. Will be covered in review.

• (A−B)− C ⊂ A− (B − C)
Solution. Omitted. Will be covered in review.

• A× (B ∪ C) = (A×B) ∪ (A× C).
Solution. Omitted. Will be covered in review.

5. Prove or disprove followings.

• ∃y ∈ R,∀x ∈ R, xy = 1
Solution. False.

• ∀x ∈ R,∃y ∈ R, xy = 1
Solution. False. Counterexample : x = 0.

• ∀n ∈ Z+, (n is even or n is odd).
Solution. True.

• (∀n ∈ Z+, n is even) or (∀n ∈ Z+, n is odd)
Solution. False.

6. Determine wheter each of following functions is injective, surjective or bijective.

• f1 : R→ R, f1(x) = x3 − x
Solution. f1 is not injective, since f1(1) = f1(0) = 0. However, f1 is surjective,
since for any k ∈ R, x3 − x− k = 0 for some x.

• f2 : Z→ Z, f2(x) = x3

Solution. f2 is injective, since f2(n) = f2(m) implies n3−m3 =, and n3−m3 =
(n−m)(n2 + nm + m2) = 0, thus n = m. However, it is not surjective. (i.e,
f2(n) 6= 2 for all n.)

7. Let f : X → Y is a function and A1, A2 ∈ P(X).

• A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2)
Solution. Suppose y ∈ f(A1). Then ∃x ∈ A1, f(x) = y ⇒ x ∈ A2, f(x) =
y. Thus, y ∈ f(A2).

• f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2)
Solution. Let y ∈ f(A1 ∩ A2). Then ∃x ∈ A1 ∩ A2, f(x) = y. This implies
∃x ∈ A1, f(x) = y and ∃x ∈ A2, f(x) = y. Thus y ∈ f(A1 ∩ A2).

• f(A1 ∪ A2) = f(A1) ∪ f(A2)
Solution ⊂ inclusion is obvious(same argument as above). To prove other
direction, let y ∈ f(A1) ∪ f(A2). Then (∃x1 ∈ A1, f(x) = y) or (∃x2 ∈
A2, f(x) = y). In either cases, there exists x ∈ A1 ∪ A2 (x = x1 or x = x2)
such that f(x) = y.

• A1 ∩ A2 = ∅⇒ f−1(A1) ∩ f−1(A2) = ∅
Solution Omitted, since inverse image was not covered in class.

2



Midterm 2 questions

The exam will be based on geometry note, from Chapter 1 to Chapter 7. Al-
though you do not need to memorize all definitions, axioms and theorems(most
of them will be given in the exam), you need to understand and be able to use
to prove questions.

1. We will use a sphere for a model for geometry. A plane is the sphere,
and a line contains two points is a great circle contains the two points.
Convince yourself (possibly by drawing a picture) that this model satisfies
the Incidence Axiom, but fails to satisfy the Parallel Axiom.

2. On page 15, in the proof of Theorem 5.3, discuss why the following state-
ment is true.

“... If the two triangles were not congruent, then one of the
angles of4ABC would have measure different from the measure
of the corresponding angle of 4A′B′C ′. ”

3. Justify following statement on page 18, from the proof of Theorem 5.9.

“... Looking at 4ADC, it follows that m∠D < m∠C.”

4. Theorem 5.6 on page 16 claims m∠ACD > m∠B. By using the Parallel
Axiom, prove that a stronger result; m∠ACD = m∠B +m∠A.

5. For any triangle 4ABC, prove that there is a unique altitude through A,
assuming the Parallel Axiom.

6. Let 4ABC be a right triangle with ∠C = π/2. D ∈ BC such that
←→
CD is

the altitude through C. Prove that

1
|AB|2

+
1

|AC|2
=

1
|CD|2

7. A quadrilateral ♦ABCD is convex if A and C are on opposite sides of←→
BD, and if B and D are on opposite sides of

←→
AC. Show that this definition

can be replaced by following statement (Exercise 6.6).

♦ABCD is convex if AC and BD meet in a point.

Discuss why following cannot replace the definition of convex quadrilat-
eral.

♦ABCD is convex if
←→
AC and

←→
BD meet in a point.

8. Prove that a diagonals segment of a parallelogram bisects the other diag-
onal segment.

1



Final Exam Practice

1. For a non-negative integers n define the sequence an inductively as follows.

a0 = 1
ak+1 = 3ak + 1

Guess the general term of the sequence and prove your answer by mathe-
matical induction.

2. Write following statement using quantifiers: “For every positive real num-
ber ε, there exists a positive real number δ, such that if |x − a| ≤ δ then
|f(x)− f(a)| ≤ ε.” What is the negation of this statement?

3. Functions f : R→ R and f : R→ R are defined as follows.

f(x) =

 x+ 2 if x < −1,
−x if − 1 ≤ x ≤ 1,
x− 2 if x > 1.

g(x) =

 x− 2 if x < −1,
−x if − 1 ≤ x ≤ 1,
x+ 2 if x > 1.

Find functions f ◦ g and g ◦ f . Is the g inverse of f? Is f injective
or bijective? How about g? Sketch and compare the graphs of these
functions.

4. Suppose |AB| = |AC| = |AD|. Prove that ∠CAD = 2∠CBD.

�
�
�
�
�
�

S
S
S
S
S
S�

��
�
��

�
��

�
��

�
�
�
�
�
�

A B

C D

5. Find the coefficient of x9 of (2 + x)7(1− x)4.

6. You have 5 identical red balls, 7 identical blue balls, and 4 identical yellow
balls, and 8 identical green balls. How many different ways to place them
in a row?

7. Let k ∈ Z+, r ∈ Z≥0. Find the number of nonnegative solutions of
x1 + x2 + · · ·xk = r.

8. Show that among any n+ 1 integers, there exists 2 integers so that their
difference is divisible by n.

1



9. A dearrangement of Nn is a bijection f : Nn → Nn with no fixed points.
Show that the number of dearrangement is

n!
(

1
2!
− 1

3!
+

1
4!
− · · ·+ (−1)n 1

n!

)
(Problem 17, page 185)

10. Prove that (0, 1) ⊂ R is not enumerable.

11. For any set X, show that |X| < |P(X)|.

12. Write the greatest common divisor of 662 and 242 as an integral linear
combination of 662 and 242, by using Euclidean algorithm.

13. Find all solutions of 242x ≡ 22 (mod 662) in Z662.

14. Fix positive integers a and b. Show that

{am+ bn | m,n ∈ Z and am+ bn > 0}

has the minimum element c, and c is a common divisor of a and b.

15. Define a relation on R such that x ∼ y ⇐⇒ x2 = y2. Show that this
relation is an equivalence relation. Describe a class [4] in set builder
notation.

16. Show that 3x2 + 4y2 = 5z2 has no integral solution other than (0, 0, 0).

17. Show that following functions are not well defined.

f : Q→ Q, f
(a
b

)
=
a2

b3

g : Z6 → Z4, g([a]6) = [a+ 1]4

2



Final Exam Practice

1. For a non-negative integers n define the sequence an inductively as follows.

a0 = 1
ak+1 = 3ak + 1

Guess the general term of the sequence and prove your answer by mathe-
matical induction.
Solution. We will find p so that the recurrence relation is ak+1 + p =
3(ak + p).

ak+1 + p = 3ak + 1 + p = 3
(
ak +

1 + p

3

)
Thus p = (1 + p)/3 ⇔ p = 1/2. Let bk = ak + 1

2 . Then the recurrence
relation is simplified to bk+1 = 3bk, with b0 = 3

2 . Then bn = 3
23n, which

results an = 3
23n − 1

2 .

2. Write following statement using quantifiers: “For every positive real num-
ber ε, there exists a positive real number δ, such that if |x − a| ≤ δ then
|f(x)− f(a)| ≤ ε.” What is the negation of this statement?
Solution. There exists ε > 0 such that for all δ > 0, |x − a| ≤ δ and
|f(x)− f(a)| > ε.

3. Functions f : R→ R and f : R→ R are defined as follows.

f(x) =

 x+ 2 if x < −1,
−x if − 1 ≤ x ≤ 1,
x− 2 if x > 1.

g(x) =

 x− 2 if x < −1,
−x if − 1 ≤ x ≤ 1,
x+ 2 if x > 1.

Find functions f ◦ g and g ◦ f . Is the g inverse of f? Is f injective
or bijective? How about g? Sketch and compare the graphs of these
functions.
Solution. (f ◦ g)(x) = x, but (g ◦ f)(x) is,

(g ◦ f)(x) =


x if x < −3,
−x− 2 if − 3 ≤ x ≤ −1,
x if − 1 ≤ x ≤ 1,
−x+ 2 if 1 ≤ x ≤ 3,
x if x > 3.

Thus f and g are not inverses. In fact, f is surjective but not injective,
and g is injective but not surjective.

1



4. Suppose |AB| = |AC| = |AD|. Prove that ∠CAD = 2∠CBD.
Solution. Omitted.
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5. Find the coefficient of x9 of (2 + x)7(1− x)4.
Solution. Coefficient of x9 is computed by multiplying coefficient of x7

term from the first binomial and x2 term from the second binomial, x6

and x3, and x5 and x4. Coefficients of involving terms are obtained by
using binomial theorem.(

7
7

)
20 ·

(
4
2

)
(−1)2 · x7 · x2

+
(

7
6

)
21 ·

(
4
3

)
(−1)3 · x6 · x3

+
(

7
5

)
22 ·

(
4
4

)
(−1)4 · x5 · x4.

The sum of these terms is 34x9.

6. You have 5 identical red balls, 7 identical blue balls, and 4 identical yellow
balls, and 8 identical green balls. How many different ways to place them
in a row?

Solution.
(5 + 7 + 4 + 8)!

5! · 7! · 4! · 8!
.

7. Let k ∈ Z+, r ∈ Z≥0. Find the number of nonnegative solutions of
x1 + x2 + · · ·xk = r.
Solution. Consider r identical balls and k − 1 identical barriers. Placing
these r+k−1 objects in a row, we will have r ball are split into k different
groups. The number of balls in ith group (i = 1, 2, · · · , k) can be regarded
as the value of xi. Then the number of different ways to place r + k − 1
objects in a row is same as the number of nonnegative integral solutions.
Hence, the number of solutions is (r + k − 1)!/(r! · (k − 1)!).

8. Show that among any n+ 1 integers, there exists 2 integers so that their
difference is divisible by n.
Solution. Let π : Z → Zn be the projection map discussed in class. Let
X be a set of n + 1 integers. Then π|X : X → Zn is a map obtained by
restriction of domain. Since |X| = n + 1 and |Zn| = n, by Pigeonhole
Principle π|X cannot be an injection. So there must be m,n ∈ X such
that [m] = [n] ∈ Zn.

9. A dearrangement of Nn is a bijection f : Nn → Nn with no fixed points.
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Show that the number of dearrangement is

n!
(

1
2!
− 1

3!
+

1
4!
− · · ·+ (−1)n 1

n!

)
(Problem 17, page 185)
Solution. Let X be a set of all bijections from Nn to Nn. Clearly |X| = n!.
Also we let

Ai = {f ∈ X | f(i) = i},

for i = 1, · · · , n. Then,
⋃

iAi is a set of bijections that fix at least one
element. This implies X\

⋃
iAi is the set of dearrangement. Since

⋃
iAi

is a subset of X, |X\
⋃

iAi| = |X| − |
⋃

iAi|.
Before we try to compute |

⋃
iAi|, note that |Ai| = (n − 1)!. Moreover,

letting AI := Ai1 ∩Ai2 ∩ · · · ∩Air
(where I = {i1, i2, · · · ir} ⊂ Nn), we can

easily compute |AI | = (n− |I|)!.∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

∅ 6=I⊂Nn

(−1)|I|−1|AI | (inclusion-exclusion principle)

=
n∑

i=1

∑
I∈Nn

|I|=i

(−1)i−1 |AI |

=
n∑

i=1

∑
I∈Nn

|I|=i

(−1)i−1 (n− i)!

=
n∑

i=1

(
n
i

)
(−1)i−1 (n− i)!

=
n∑

i=1

n!
i! · (n− i)!

(−1)i−1 (n− i)!

=
n∑

i=1

n!
i!
· (−1)i−1.

Thus,

|X| −

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = n!−
n∑

i=1

n!
i!
· (−1)i−1

= n!
(

1
2!
− 1

3!
+

1
4!
− · · ·+ (−1)n 1

n!

)
.

10. Prove that (0, 1) ⊂ R is not enumerable.
Solution. Omitted.

11. For any set X, show that |X| < |P(X)|.
Solution. Omitted.

12. Write the greatest common divisor of 662 and 242 as an integral linear
combination of 662 and 242, by using Euclidean algorithm.
Solution. By Euclidean Algorithm, 2 = 662 · 34 + 242 · (−93).
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13. Find all solutions of 242x ≡ 22 (mod 662) in Z662.
Solution. Since gcd(662, 242) = 2, There should be two solutions in Z662.
Dividing the equation by 2, 121x ≡ 11 (mod 331). By previous question,
2 = 662 ·34 + 242 · (−93)⇔ 1 = 331 ·34 + 121 · (−93). Mapping onto Z331,
we get 1 ≡ 121 · (−93) (mod 331).

121x ≡ 11⇔ (−93) · 121x ≡ (−93) · 11 ≡ −1023 ≡ 301 (mod 331).

Thus x ≡ 301 (mod 331).
Then, solutions of 242x ≡ 22 (mod 662) are

x ≡ 301 or 301 + 331 = 632 (mod 662).

14. Fix positive integers a and b. Show that

{am+ bn | m,n ∈ Z and am+ bn > 0}

has the minimum element c, and c is a common divisor of a and b.
Solution. Let am0 + bn0 = c for some m0, n0 ∈ Z. Note that a ≥ c and
b ≥ c. Suppose not. Dividing a and b by c, we will have remainders r1
and r2 and at least one of them is nonzero. i.e,

a = cq1 + r1, b = cq2 + r2

(r1, r2 < c).
Suppose r1 6= r2. Without loss of generality, we can assume r2 > r1. Then

am0q1 + bn0q1 = cq1 = a− r1
am0q2 + bn0q2 = cq2 = b− r2

Subtracting these two equations will yield,

a(m0q1 −m0q2 − 1) + b(n0q1 − n0q2 + 1) = r2 − r1 < c,

contradiction.
If r1 = r2, we will multiply 2 on second equation above. That is,

am0q1 + bn0q1 = cq1 = a− r1
2am0q2 + 2bn0q2 = 2cq2 = 2b− 2r2.

Again, subtraction will yield

a(m0q1 − 2m0q2 − 1) + b(n0q1 − 2n0q2 + 2) = 2r2 − r1 = r1 < c.

Again, contradiction. Therefore, c is a common divisor of a and b.

15. Define a relation on R such that x ∼ y ⇐⇒ x2 = y2. Show that this
relation is an equivalence relation. Describe a class [4] in set builder
notation.
Solution. Reflexive. x ∼ x⇔ x2 = x2.
Symmetric. x ∼ y ⇔ x2 = y2. This implies y2 = x2 ⇔ y ∼ x.
Transitive. Suppose x ∼ y and y ∼ z. Then x2 = y2 = z2. Thus x ∼ z.
The equivalence class [4] = {4,−4}.
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16. Show that 3x2 + 4y2 = 5z2 has no integral solution other than (0, 0, 0).
Solution. It suffices to consider solutions (x, y, z) such that the greatest
common divisor of a, b, and c is 1. The equation 3x2 + 4y2 = 5z2 will
become 3x2 + 4y2 ≡ 0 (mod 5) by mapping onto Z5. In Z5,

0 7→ 02 ≡ 0,
1 7→ 11 ≡ 1,
2 7→ 22 ≡ 4,
3 7→ 32 ≡ 4,
4 7→ 42 ≡ 1 (mod 5).

Suppose x and y are not multiple of 5. Then x2 and y2 must be one of 1
or 4 (mod 5). In this case, 3x2 + 4y2 cannot be congruent to zero modulo
5. If x = 5k and y = 5l, then the equation 3x2 +4y2 = 5z2 can be reduced
to 15k2 + 20l2 = z2. Again mapping onto Z5, the equation is z2 ≡ 0 (mod
5). This forces z must be a multiple of 5, too. Contradiction. Hence, the
given equation has no solution in Z5, so it has no solution in Z.

17. Show that following functions are not well defined.

f : Q→ Q, f
(a
b

)
=
a2

b3

g : Z6 → Z4, g([a]6) = [a+ 1]4

Solution. f(1/2) = 1/8, but f(2/4) = 4/64 = 1/16. Thus f is not well
defined.
g([1]6) = [1 + 1]4 = [2]4, but g([1]6 = [7]6) = [1 + 7]4 = [8]4 = [0]4. Thus
g is not well defined.

5



FUNDAMENTALS OF ZERMELO-FRAENKEL SET THEORY

TONY LIAN

Abstract. This paper sets out to explore the basics of Zermelo-Fraenkel (ZF) set theory without

choice. We will take the axioms (excluding the axiom of choice) as givens to construct and define
fundamental concepts in mathematics such as functions, real numbers, and the addition operation.

We will then explore countable and uncountable sets and end with the cardinality of the continuum.
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1. Introduction

Set theory is a branch of mathematics that studies collections of objects. Each collection is called
a set and the objects in the collection are called elements of the set. Modern set theory began in the
1870s with the works of Georg Cantor and Richard Dedekind. Later work over the course of the 19th
and 20th centuries revealed many paradoxes in set theory (some of which will be discussed later).
This created a need for an axiomatic system that corrects these paradoxes. Ernst Zermelo proposed
the first axiomatic set theory in 1908. Later, Abraham Fraenkel and Thoralf Skolem proposed some
revisions including the addition of the Axiom Schema of Replacement. The resulting axiomatic set
theory became known as Zermelo-Fraenkel (ZF) set theory. As we will show, ZF set theory is a highly
versatile tool in defining mathematical foundations as well as exploring deeper topics such as infinity.

2. The Axioms and Basic Properties of Sets

Definition 2.1. A set is a collection of objects satisfying a certain set of axioms. (These axioms are
stated below.) Each object in the set is called an element of the set.

Remark 2.2. The membership property is the most basic set-theoretic property. We denote it by ∈.
Thus we read X ∈ Y as “X is an element of Y ” or “X is a member of Y ” or “X belongs to Y ”.

Since the axioms form our definition of a set, we need an axiom to postulate that sets indeed do
exist. More specifically, that at least one set exists.

Axiom of Existence. There exists a set which has no elements.

Date: August 23, 2011.
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2 TONY LIAN

Now that we’ve established that at least one set exists, we need a way to show uniqueness of sets.
Intuitively, there should only be one set that has no elements, but we need the next axiom to prove
this.

Axiom of Extensionality. If every element of X is an element of Y and every element of Y is an
element of X, then X = Y .

From the Axiom of Extensionality, we see that X = Y is a property based on the elements contained
in X and Y . To generalize, if two sets have the same elements, then they are identical. We can now
set out to prove the uniqueness of the set with no elements.

Lemma 2.3. There exists only one set with no elements.

Proof. Suppose there exists two sets A and B which both have no elements.
If x ∈ A then x ∈ B.
If y ∈ B then y ∈ A.
Therefore by the Axiom of Extensionality, A = B.
(x ∈ A is a false antecedent and so “x ∈ A implies x ∈ B” is automatically true. The same is also
true for y ∈ B.) �

Definition 2.4. The unique set with no elements is called the empty set and is denoted by ∅.

Now that we have established that a unique set exists, we are naturally interested in the existence
and uniqueness of other sets.

Axiom Schema of Comprehension. Let P (x) be a property of x. For any A, there exists a B such
that x ∈ B if and only if x ∈ A and P (x) holds.

Lemma 2.5. For every A, there is a unique set B such that x ∈ B if and only if x ∈ A and P (x).

Proof. Suppose B′ is another set such that x ∈ B′ if and only if x ∈ A and P (x).
If x ∈ B implies x ∈ A and P (x), then x ∈ B′.
If x ∈ B′ implies x ∈ A and P (x), then x ∈ B.
Thus we have x ∈ B if and only if x ∈ B′.
Therefore B = B′. �

Axiom of Pair. For any A and B, there exists C such that x ∈ C if and only if x = A or x = B.

Definition 2.6. We define the unordered pair of A and B as the set having exactly A and B as its
elements and use {A,B} to denote it.

Axiom of Union. For any S, there exists U such that x ∈ U if and only if x ∈ A for some A ∈ S.

Definition 2.7. We call the set U the union of S and denote it by
⋃
S.

Definition 2.8. We call A a subset of B if every element of A belongs to B. We denote this by
A ⊆ B.

Axiom of Power Set. For any S, there exists P such that X ∈ P if and only if X ⊆ S.

Definition 2.9. We call P the power set of S and denote it by P(S).

Axiom of Infinity. An inductive set exists.

We will revisit the Axiom of Infinity in more depth. Inductive sets will be defined later in the
paper. They are crucial in defining the set of natural numbers.

Axiom Schema of Replacement. Let P (x, y) be a property such that for every x there is a unique
y for which P (x, y) holds. For every A there exists B such that for every x ∈ A there is y ∈ B for
which P (x, y) holds.
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The Axiom Schema of Replacement aims to correct some of the paradoxes that arise out of the
use of the Axiom Schema of Comprehension. The key difference between the two is that the property
P (x, y) [in Replacement] depends both on x as well as the unique y for which P (x, y) holds, whereas
P (x) [in Comprehension] only depends on x.

Definition 2.10. The union of A and B is the set of all x which belong in either A, B, or both. We
denote it by A ∪B.

Remark 2.11. A ∪B exists by our system of Axioms.
By Axiom of Pair, we have {A,B}.
Apply Axiom of Union on {A,B} to arrive at A ∪B.

Definition 2.12. The intersection of A and B is the set of all x which belong to both A and B. We
denote it by A ∩B.

Remark 2.13. A ∩B also exists by our system of Axioms.
We can apply Axiom Schema of Comprehension to the set A and the property P (x) : x ∈ B. It is
easy to show that A ∩B = {x ∈ A |x ∈ B}.

Definition 2.14. The difference of A and B is the set of all x ∈ A such that x /∈ B. We denote it by
A−B.

Remark 2.15. It should be apparent that we can apply the Axiom Schema of Comprehension to the
set A and the property P (x) : x /∈ B to arrive at A−B = {x ∈ A |x /∈ B}.

Remark 2.16. As expected, each of the sets described above is unique. We will leave the proofs as
exercises to the unconvinced reader.

3. Relations and Functions

Definition 3.1. An ordered pair (a, b) is defined to be {{a}, {a, b}}.

Since sets are unordered ({a, b} = {b, a}), this definition allows us to express ordered pairs as a
unique set of a singleton {a} and an unordered pair {a, b}. Using this system we can further define
ordered triples

(a, b, c) = ((a, b), c) = {{{a}, {a, b}}, {{{a}, {a, b}}, c}}.
Ordered quadruples . . . ordered n-tuples etc. follow in a similar fashion.

Definition 3.2. A set R is a binary relation if all elements of R are ordered pairs. (i.e. for z ∈ R
there exists x and y such that z = (x, y). We can also denote (x, y) ∈ R as xRy, and say that x is in
relation R with y if xRy holds.)

Definition 3.3. The membership relation on A is defined by

∈A= {(a, b) | a ∈ A, b ∈ B, and a ∈ b}.

The identity relation on A is defined by

IdA = {(a, b) | a ∈ A, b ∈ A, and a = b}.

Definition 3.4. Let A, B be sets. The cartesian product of A and B is defined by

A×B = {(a, b) | a ∈ A and b ∈ B}.

Remark 3.5. We can use the axioms to show that the set A×B does in fact exist. By Axiom of Pair,
A ∪ B exists as a unique set. Thus P(A ∪ B) exists. Apply Axiom of Power Set again to show that
P(P(A ∪B)) exists (and is unique). It is apparent that (a, b) = {{a}, {a, b}} ∈P(P(A ∪B)). We
simply apply the Axiom of Schema Comprehension with the properties P (a) : a ∈ A and P (b) : b ∈ B
to finish constructing A×B.
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Definition 3.6. A binary relation F is called a function if aFb1 and aFb2 imply b1 = b2 for any a, b1,
and b2. This unique b is the value of F at a and is denoted F (a) or Fa. If dom F = A and
ran F ⊆ B, we can denote F by F : A→ B, 〈F (a) | a ∈ A〉, 〈Fa | a ∈ A〉, or 〈Fa〉a∈A

Definition 3.7. Let f : A→ B be a function.
1) f is injective if for a1 ∈ A and a2 ∈ A, f(a1) = f(a2) if and only if a1 = a2. We call f an injection.
2) f is surjective if for every b ∈ B, there exists some a ∈ A such that f(a) = b. We call f a surjection.
3) f is bijective if it is both injective and surjective. We call f a bijection.

Definition 3.8.
(a) Functions f and g are called compatible if f(x) = g(x) for all x ∈ dom f ∩ dom g.
(b) A set of functions F is called a compatible system of functions if any two functions f and g from
F are compatible.

Theorem 3.9. If F is a compatible system of functions, then
⋃
F is a function with dom (

⋃
F ) =⋃

{dom f | f ∈ F}. The function
⋃
F extends all f ∈ F .

Proof. We need to show (1)
⋃
F is a function and (2) dom (

⋃
F ) =

⋃
{dom f |f ∈ F}.

(1) Suppose there exists (a, b1) ∈
⋃
F and (a, b2) ∈

⋃
F .

Then there exists functions f1, f2 ∈ F such that f1(a) = b1 and f2(a) = b2.
But since f1 and f2 are compatible and a ∈ domf1 ∩ domf2, therefore b1 = f1(a) = f2(a) = b2.
This shows that

⋃
F is a function.

(2) Suppose x ∈ dom
⋃
F . Then x ∈ domf for some f ∈ F .

Suppose y ∈ domf for some f ∈ F . Then x ∈ dom
⋃
F .

Therefore dom(
⋃
F ) =

⋃
{domf | f ∈ F}. �

Definition 3.10. Let A and B be sets. The set of all functions on A into B is denoted BA.

(We will return to this unique set BA later in the proof of the cardinality of the continuum.)

4. Equivalences and Orderings

In this section, we will finish defining a few important types of relations that will help in defining
natural and real numbers in set theory.

Definition 4.1. Let R be a binary relation in A.
(a) R is reflexive in A if for all a ∈ A, aRa.
(b) R is symmetric in A if for all a, b ∈ A, aRb implies bRa.
(c) R is antisymmetric in A if for all a, b ∈ A, aRb and bRa imply a = b.
(d) R is asymmetric in A if for all a, b ∈ A, aRb implies that bRa does not hold.

(i.e. aRb and bRa cannot both be true.)
(d) R is transitive in A if for all a, b, c ∈ A, aRb and bRc imply aRc.

These individual properties serve as the building blocks for the next three relationships, which will
allow us to truly make progress.

Definition 4.2.
(a) R is an equivalence on A if it is reflexive, symmetric, and transitive in A.
(b) R is a (partial) ordering of A if it is reflexive, antisymmetric, and transitive in
A. The pair (A,R) is called an ordered set.

(c) R is a strict ordering of A if it is asymmetric and transitive in A.

Remark 4.3. Now that we have established the definition of orderings and strict orderings, we can
use ≤ and � to denote orderings and < and ≺ to denote strict orderings. Thus (A,≤) is an ordered
pair consisting of a set A and an ordering ≤, and (B,≺) is a strictly ordered pair consisting of a set
B and a strict ordering ≺.
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There is a close relationship between orderings and strict orderings as we will see in the next
theorem.

Theorem 4.4.
(a) Let R be an ordering of A. Then the relation S in A defined by

aSb if and only if aRb and a 6= b

is a strict ordering of A.
(b) Let S be a strict ordering of A. Then the relation R in A defined by

aRb if and only if aSb or a = b

is an ordering of A.

Proof.
a) We need to show that S is asymmetric. Suppose aSb and bSa both hold for some a, b ∈ A. Then
aRb and bRa both also hold. It follows that a = b because R is antisymmetric. This is a contradiction
since a 6= b. Therefore S is asymmetric.

b) We need to show that R is antisymmetric. Suppose aRb and bRa both hold for some a, b ∈ A.
Suppose that a 6= b. Then aSb and bSa both hold. This is a contradiction since S is asymmetric.
Therefore a = b, showing that R is antisymmetric. �

Definition 4.5. An ordering < of A is called linear or total if any two elements of A are comparable
in the ordering <. (i.e. for any a, b ∈ A, either a < b, a < b, or a = b.) The pair (A,<) is called a
linearly ordered set

(Intuitively, we see that the ≤ and < relations in the set of real numbers satisfy the definition of
linear orderings, but we can’t view these relations in that light yet because we haven’t yet defined
numbers.)

5. Natural Numbers

In defining the natural numbers we begin by examining the most fundamental set, the empty set.
We can very easily create a pattern that is a prime candidate for the definition of the natural numbers.

∅ has zero elements.

{∅} has one element. (The set containing the empty set as an element has one element, namely,
the empty set.)

{∅, {∅}} has two elements. (The set containing the empty set and the set containing the empty
set.)

And this process would continue infinitely until all the natural numbers have been defined.

But though the empty set is unique, a set containing one element is not. We could very well take
any of the sets created above and construct a set with just one set. (e.g. take {∅, {∅}} and construct
{{∅, {∅}}} to be a set with one element.) We see that the number of elements in a set will be essential
to defining the natural numbers. Therefore we just need to make this definition rigorous.

Definition 5.1. Cardinality is the measure of the number of elements in a set. We denote the
cardinality of a set A by |A|. Sets A and B have the same cardinality if there is a bijection from A to
B. A and B are called equipotent if such a bijection exists.

Remark 5.2. This definition tells us that we do not necessarily need to know how many objects each
set contains to know if they contain the same number. A bijection ensures that each element in
A is paired with a unique element in B, and conversely each element in B is paired with a unique
element in A. Therefore the two sets must have the same cardinality. This use of bijection will become
increasingly important when we begin examining and comparing infinite sets.
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Revisiting our prime candidate for natural numbers, we can revise it as:

0 = ∅

1 = {0} = 0 ∪ {0} = {∅}
2 = {0, 1} = 1 ∪ {1} = {∅, {∅}}
3 = {0, 1, 2} = 2 ∪ {2} = {∅, {∅}, {∅, {∅}}} etc.

We see that each number is defined based on the number that precedes it. This sequence is anchored
by 0. As long as 0 is defined, then 1 can be defined. Once 1 is defined, 2 can also be, and so on. This
brings us to the concept of induction.

Definition 5.3. The successor of a set x is the set S(x) = x ∪ {x}.

Definition 5.4. A set I is called inductive if
(a) 0 ∈ I.
(b) If n ∈ I, then (n+ 1) ∈ I. (Here n+ 1 denotes the successor to n).

Clearly, an inductive set contains 0 and with it, each successor. So any inductive set should contain
the natural numbers. So to define a set that contains only the natural numbers, we arrive at the
following definition:

Definition 5.5. The set of all natural numbers is defined by

N = {n |n ∈ I for every inductive set I}
The elements of N are called the natural numbers.

Remark 5.6. A possible concern is whether we can even define such a set from ZF axioms. Certainly,
the property P (n) : n ∈ I for every inductive set I is a valid property of n. But unless there
exists an inductive set, this property will always create the empty set under the Axiom Schema of
Comprehension. The Axiom of Infinity allows us to move past this obstacle.

Now that we have natural numbers at our disposal, we will explore a few properties of natural
numbers.

Definition 5.7.
(a) The relation < on N is defined by: For all m,n ∈ N, m < n if and only if m ∈ n.
(b) The relation ≤ on N is defined by: For all m,n ∈ N, m ≤ n if and only if m ∈ n or m = n.

Theorem 5.8. (N,<) is a linearly ordered set.

Proof. We need to show (I) The relation < is an ordering of N and (II) Any two elements in N are
comparable. We will do this by induction.

(I) We need to show (A) < is transitive on N and (B) < is asymmetric on N .

(I.A.) Consider the property P (n) : for all k,m ∈ N, if k < m and m < n, then k < n. We need to
show this holds for all n ∈ N .
(i) Base case: Consider P (0).
Since there does not exist an m ∈ N such that m < 0, P (0) is trivially true.
(ii) Induction hypothesis: Suppose P (n) holds. Consider P (n+ 1).
Suppose k < m and m < n+ 1 both hold. This implies m < n or m = n.

Case 1) m < n. Then k < n by induction hypothesis.
Case 2) m = n. Then since k < m, k < n is trivial.

Thus P (n) holds for all n ∈ N .
Therefore < is transitive on N .

(I.B.) Suppose have n < m and m < n. Then by transitivity n < n. Consider the property Q(n) :
n ≮ n. We need to show this holds for all n ∈ N .
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(i) Base case: Consider Q(0).
SupposeQ(0) does not hold. Then we have 0 < 0, which by definition is∅ ∈ ∅, which is a contradiction
to the defnition of ∅.
(ii) Induction hypothesis: Suppose Q(n) holds. Consider Q(n+ 1).
Suppose Q(n+ 1) does not hold. Then n+ 1 < n+ 1, by definition, is n+ 1 ∈ n+ 1.
We know n+ 1 = n ∪ {n}, which implies that n+ 1 ∈ n or n+ 1 = n.

Case 1) n + 1 ∈ n. Thus n + 1 < n. But since n < n + 1, by transitivity we have n < n, which
contradicts the induction hypothesis.

Case 2) n+ 1 = n. This is obviously a contradiction.
Thus Q(n) holds for all n ∈ N .
Therefore < is asymmetric on N .

(II) We need to show any two elements in N are comparable in <. Consider the property R(n) : ∀m ∈
N , either m < n, n < m, or m = n. We need to show this holds for all n ∈ N .
(i) Base case: Consider R(0).
0 ≤ m for all m ∈ N , so 0 < m or m = m. Thus R(0) holds.
(ii) Induction hypothesis: Suppose R(n) holds. Consider R(n+ 1).
Consider an arbitrary m ∈ N . Since R(n) holds, n < m, m < n, or m = n.

Case 1) m < n. Then since n < n+ 1, by transitivity m < n+ 1.
Case 2) m = n. Then since n < n+ 1, m < n+ 1 is trivial.
Case 3) n < m. We need to show m = n+ 1 or n+ 1 < m.

Apply induction on m. Consider the property S(m) : for all n ∈ N if n < m, then n+ 1 ≤ m. Need
to show this holds for all m ∈ N .

a) Base case: Consider S(0). S(0) holds since there is no n < 0.
b) Induction hypothesis: Suppose S(m) holds. Consider S(m+ 1). Assume n < m+ 1⇒ n < m

or m = n.
Case i) n < m. Thus n+ 1 ≤ m by induction hypothesis.
m < m+ 1 implies n+ 1 < m+ 1. Thus n+ 1 ≤ m+ 1.
Case ii) n = m. Thus n+ 1 = m+ 1 implies n+ 1 ≤ m+ 1.

∴ S(m) holds for all m ∈ N .
Thus R(n) holds for all n ∈ N .
Therefore any two elements in N are comparable in <.

Therefore (N,<) is a linearly ordered set. �

Definition 5.9. A linear ordering ≺ of a set A is a well-ordering if every nonempty subset of A has
a ≺ -least element. The structure (A,≺) is called a well-ordered set.

Theorem 5.10. (N,<) is a well-ordered set.

Proof. We will prove by using strong (or complete) induction.
Let X be a nonempty subset of N . Suppose X does not have a < -least element. Then consider the
set N −X.
Case 1) N −X = ∅. Then X = N and so 0 is a < -least element. Contradiction.
Case 2) N −X 6= ∅. There exists an n ∈ N −X such that for all k < n, k ∈ N −X.

(n necessarily exists because 0 ∈ N −X, else 0 ∈ X and would be a < -least element of X.)
Since we have supposed that N −X does not have a least element, thus n /∈ X.
Using strong induction, we see that for all k < n, k ∈ N − X and n ∈ N − X. We can conclude
n ∈ N −X for all n ∈ N . Thus N −X = N implies X = ∅.
This is a contradiction to X being a nonempty subset of N . �

6. Recursion and the Addition Operation

We will now move on to define basic operations on the natural numbers. Though ZF set theory
is an adequate tool for rigorously defining all four basic operations of natural numbers (addition,
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subtraction, multiplication, and division), we will content ourselves to defining addition and leaving
the others to a more specialized text of arithmetic of the natural numbers.

Definition 6.1. A sequence is a function whose domain is a natural number or N . A sequence whose
domain is some natural number n ∈ N is called a finite sequence of length n and is denoted

〈ai | i < n〉 or 〈ai | i = 0, 1, . . . , n− 1〉 or 〈a0, a1, . . . , an−1〉.

The unique characteristic of a sequence is that we can order the elements. Since the domain
is composed of natural numbers, and we’ve proven in the previous chapter that the set of natural
numbers are linearly ordered, we can order the elements in a sequence by the natural number each
element corresponds to. This is essential in our next topic of recursion.

Example 6.2. Let us consider two infinite sequences:

(a) The sequence f : N → N defined by
S0 = 1 Sn+1 = 2n

(b) The sequence g : N → N defined by
F0 = 0 Fn+1 = Fn × (n+ 1).

(Here n+ 1 also denotes the successor to the natural number n.)

The key distinction between these functions is their parameters for defining the n + 1 term. S
is formulated by a property P (x, y) : sx = y. We can immediately conclude from our axioms that
S = {(x, y) ∈ N ×N |P (x, y)} exists and is unique.

Examining F , we see that each Fn+1 depends on the previous term Fn. It is not yet apparent how
we can formulate a property P (x, y) to prove the existence and uniqueness of F as we can of S. Fn+1

can be computed provided that Fn is computed, which brings us to the definition of a computation.

Definition 6.3. A function t : (m + 1) → A is called an m-step computation based on a and g if
t0 = a, and for all k such that 0 ≤ k < m, tk+1 = g(tk, k).

So F can be restated as:

F0 = 0 Fm = 0× 1× 2× . . .×m
showing that F is the result of an m-step computation. Our next theorem will show that such a
recursive function exists and is unique.

Theorem 6.4. The Recursion Theorem
For any set A, any a ∈ A, and any function g : A×N → A, there exists a unique sequence f : N → A
such that

(A) f0 = a
(B) fn+1 = g(fn, n) ∀n ∈ N .

Proof. (The existence of f)
Let a ∈ A and g : N ×A→ A.
Let F = {t ∈P(N ×A) | t is an m-step computation on a and g for some m ∈ N}.
Let f =

⋃
F .

Claim 1: f is a function.

(By theorem 3.9, it is enough to show that F is a system of compatible functions.)
Let t, u ∈ F , dom t = n ∈ N , dom u = m ∈ N .
We can assume without loss of generality that n ≤ m. We will use finite induction to prove tk =
uk ∀k < n.

(a) Base case: k = 0.
We know t and u are computations based on a and g. Thus t0 = a = u0 is trivial.
(b) Induction hypothesis: Let k be such that k + 1 ≤ n. Suppose tk = uk.
Then tk+1 = g(tk, k) = g(uk, k) = uk+1.
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Therefore F is a system of compatible functions.
Therefore f is a function.

Claim 2: dom f = N and ran f ⊆ A.

(It is obvious that dom f ⊆ N and that ran f ⊆ A. We then need to show that N ⊆ dom f to prove
dom f = N . We will prove with induction.)
(a) Base case: Clearly t = {(O, a)} is a 0-step computation. Thus 0 ∈ dom f .
(b) Induction hypothesis: Suppose t is an n-step computation (n ∈ dom f).
Define t′ on (n+ 1) + 1 by

t′k = tk if k ≤ n t′n+1 = g(tn, n).

We can see that t′ is an n+1 step computation. Thus (n+ 1) ∈ dom f .
Therefore dom f = N .

Claim 3: f satisfies conditions (A) and (B)

(a) Clearly f0 = a since t0 = a for all t ∈ F . Thus satisfying (A).
(b) Let t be an (n+1) step computation. Then fk = tk for all k ∈ dom t.
This implies fn+1 = tn+1 = g(tn, n) = g(fn, n). Thus satisfying (B).

Therefore the existence of a function f satisfying the properties required by the Recursion Theorem
follows from Claims 1,2, and 3.

(The uniqueness of f)

Let h : N → A satisfy (A) and (B). We will show fn = hn for all n ∈ N by induction.
(a) Base case: f0 = a = h0 is trivial.
(b) Induction hypothesis: Suppose fn = hn.
Then fn+1 = g(fn, n) = g(hn, n) = hn+1.
Therefore h = f . �

Theorem 6.5. The Parametric Recursion Theorem
Let a : P → A and g : P × A×N → A be functions. There exists a unique function f : P ×N → A
such that
(a) f(p, 0) = a(p) for all p ∈ P
(b) f(p, n+ 1) = g(p, f(p, n), n) for all n ∈ N and p ∈ P .

Proof. Define a parametric m-step computation to be a function t : P × (m + 1) → A such that, for
all p ∈ P ,

t(p, 0) = a(p) and t(p, k + 1) = g(p, t(p, k), k)

for all k such that 0 ≤ k < m. The rest of the proof is similar to the proof of the recursive theorem
with the additional task of carrying p along and so will be omitted. �

Notice that the parametric version takes into account an additional variable of p. This allows us
to define addition of natural numbers because addition is binary operation.

Theorem 6.6. Addition Operation of Natural Numbers
There is a unique binary operation + : N ×N → N such that
(a) +(m, 0) = m for all m ∈ N
(b) +(m,n+ 1) = +(m,n) + 1 for all m,n ∈ N .

Proof. This is the exact same proof as the parametric version of the recursive theorem. Let A = P =
N , a(p) = p for all p ∈ P , and g(p, x, n) = x+ 1 for all p, x, n ∈ N . �

This definition satisfies all properties of addition such as
i) a+ 0 = a
ii) a+ b = b+ a
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iii) a+ (b+ c) = (a+ b) + c
We leave these proofs as an exercise to the ambitious reader.

As mentioned at the beginning of the chapter, ZF set theory is an adequate tool to define all
arithmetic operations of the natural (and real) numbers. We will simply take them as givens from
here on out.

7. Integers, Rationals, and Reals

Now that we have the natural numbers, defining integers and rational numbers is well within reach.

Definition 7.1. Let Z ′ = N ×N . We can define an equivalence relation ≈ on Z ′ by (a, b) ≈ (c, d) if
and only if a+ d = b+ c. Then we denote the set of all integers by

Z = Z ′/ ≈ (The set of all equivalence classes of Z ′ modulo ≈).

Definition 7.2. Let Q′ = Z×(Z−{0}) = {(a, b) ∈ Z2 | b 6= 0}. We can define an equivalence relation
≈ on Q′ by (a, b) ≈ (c, d) if and only if a · d = b · c. Then we denote the set of all rational numbers by

Q = Q′/ ≈ (The set of all equivalence classes of Q′ modulo ≈).

Definition 7.3. A linearly ordered set (P,<) is called dense if for any a, b ∈ P such that a < b, there
exists z ∈ P such that a < z < b.

Lemma 7.4. (Q,<) is dense.

Proof. Let x = (a, b), y = (c, d) ∈ Q be such that x < y.
Consider z = (ad+ bc, 2bd) ∈ Q. It is easily shown that x < z < y. �

Before we can define the real numbers, we will need a few more concepts.

Definition 7.5. Let (P,<) be a linearly ordered set.
A pair of sets (A,B) is called a cut if

(a) A and B are nonempty disjoint subsets of P and A ∪B = P .
(b) If a ∈ A and b ∈ B, then a < b.

(A,B) is called a Dedekind cut if additionally
(c) A does not have a greatest element.

(A,B) is called a gap if additionally
(d) B does not have a least element.

Remark 7.6. We have two kinds of Dedekind cuts
1) Ones where B = {x ∈ P |x ≥ p for some p ∈ P}
2) gaps

This distinction will be needed later in the proof of completion.

We see even though rational numbers are dense, they clearly have gaps. Take for example the two
sets
1) A = {x ∈ Q |x > 0 and x2 > 2}
2) B = {x ∈ Q |x /∈ A}

Clearly (A,B) is a gap in Q. Intuitively, we know that the real numbers cannot have gaps, and so
our next step is to explore how to close gaps. We notice that the existence of gaps is closely related
to the existence of suprema of bounded sets.

Definition 7.7. Let (P,<) be a dense linearly ordered set. P is complete if every nonempty S ⊆ P
bounded above has a supremum. (i.e. (P,<) does not have any gaps.)

There is a close relationship between dense linearly ordered sets and complete linearly ordered sets
as we will show. This close relationship is what will allow us to define the real numbers.
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Theorem 7.8. Let (P,<) be a dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C,≺) such that
(a) P ⊆ C.
(b) If p, q ∈ P , then p < q if and only if p ≺ q.
(c) P is dense in C.
(d) C does not have endpoints.

Furthermore, (C,≺) is unique up to an isomorphism over P . The linearly ordered set (C,≺) is called
the completion of (P,<).

Proof. Part 1: (The existence of completion)

We reference the two kinds of Dedekind cuts from remark 7.6.
We will denote those of the first kind by

[p] = (A,B) where B = {x ∈ P |x ≥ p for some p ∈ P}.
We can then define the set
P ′ = {[p] | p ∈ P}
C = {(A,B) | (A,B) is a Dedekind cut in (P,<)}.

Furthermore, we can order C and P ′ by (A,B) ≺ (A′, B′) if and only if A ⊂ A′.
Claim 1: (P ′,≺) is isomorphic to (P,<).

Let p, q ∈ P and the corresponding [p] = (A,B), [q] = (A′, B′) ∈ P ′ where A = {x ∈ P |x < p} and
A′ = {x ∈ P |x < q}. Suppose p < q. Then it follows that A ⊂ A′. So [p] ≺ [q], which proves the
claim.

Claim 2: (C,≺) is a linearly ordered set.

a) Let [r] = (A,B), [s] = (A′, B′), and [t] = (A′′, B′′) ∈ C where A = {x ∈ P |x < r}, A′ =
{x ∈ P |x < s}, and A′′ = {x ∈ P |x < t}. Suppose [r] ≺ [s] and [s] ≺ [t]. Then A ⊂ A′ and
A′ ⊂ A′′ ⇒ A ⊂ A′′ ⇒ [r] ≺ [t]. Therefore (C,≺) is transitive.

b) Suppose [r] < [s] and [s] < [r]. Then A ⊂ A′ and A′ ⊂ A which is a contradiction.
Therefore (C,≺) is asymmetric.

c) Take [s] and [t]. Since these sets are defined based on s and t ∈ P , one and only one of three cases
can occur: s < t, t < s, or s = t. It follows that A ≺ A′, A′ ≺ A, or A = A′. Thus [s] ≺ [t], [t] ≺ [s],
or [t] = [s]. Therefore (C,≺) is comparable.

Therefore (C,≺) is a linearly ordered set.

Claim 3: (C,≺) satisfies (a)-(d) from the theorem.

(a) By definition, P ′ is a set of Dedekind cuts of P . Therefore P ′ ⊆ C is trivial.

(b) Let [p] = (A,B), [q] = (A′, B′) ∈ P ′ where A = {x ∈ P |x < p} and
A′ = {x ∈ P |x < q}. Suppose [p] ≺ [q] (where ≺ denotes the relation in P ′). It follows that A ⊂ A′.
We know also that [p], [q] ∈ C. ∴ [p] ≺ [q] (where ≺ denotes the relation in C). The converse is
similarly trivial. (This shows that ≺ in P ′ coincides with ≺ in C.)

(c) Let [p] = (A,B), [q] = (A′, B′) ∈ P ′ where A = {x ∈ P |x < p} and
A′ = {x ∈ P |x < q}. Suppose [p] ≺ [q]. Thus p < q and A ⊂ A′. Consider z ∈ A − A′. Then
p < z < q and [p] ≺ [z] ≺ [q]. Since [z] ∈ P ′, we can conlude that P ′ is dense in (C,≺).

(d) Let [p] = (A,B) where A = {x ∈ P |x < p}. Since (P,<) does not have endpoints, there exists
z > p. It follows that there exists [z] such that [p] ≺ [z]. Therefore C does not have endpoints.

Claim 4: (C,≺) is complete.

Let S be a nonempty subset of C that is bounded above.
Let As =

⋃
{A | (A,B) ∈ S} and Bs = P −As =

⋂
{B | (A,B) ∈ S}.
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We can see that (As, Bs) is a dedekind cut and is an upper bound of S.
(We need to show that (As, Bs) is the supremum of S.)
Suppose (A0, B0) is an upper bound of S. Then A ⊆ A0 ∀(A,B) ∈ S. It follows that As ⊆ A0. This
shows that (As, Bs) � (A0, B0). Therefore (As, Bs) is the supremum of S and (C,≺) is complete.

Therefore (C,≺) is the completion of (P,<).

Part 2: (Uniquness of completion up to an isomorphism)

Let (C,≺) and (C∗ ≺∗) be two complete linearly ordered sets satisfying (a)-(d). We need to show
there exists an isomorphism between the two.
If c ∈ C, then let Sc = {p ∈ P | p ≤ c}.
If c∗ ∈ C, then let S∗c = {p ∈ P | p ≤∗ c∗}.
We define the mapping h : C → C∗ as follows: h(c) = sup∗Sc.
We now need to prove that h is onto, preserves orderings, and h(x) = x ∀x ∈ P .
(1) Let c∗ ∈ C∗. Then c∗ = sup∗ Sc, so we can choose c = sup Sc∗ . We see that Sc = Sc∗ and
h(c) = c∗, therefore showing that h is onto.
(2) Let c ≺ d. Then there exists p ∈ P such that c ≺ p ≺ d because P is dense. We see that
sup∗ Sc ≺∗ p ≺∗ sup∗ Sd, showing that h(c) ≺∗ h(d).
(3) Let x ∈ P . Then sup Sx = sup∗ Sx = x, so h(x) = x. �

Definition 7.9. The set of all real numbers is the completion of (Q,<) and is denoted by (R,<).

8. Cardinality of Sets

A very natural question in the study of sets is the number of elements contained in a set. This
question is very simple when the set is finite. (i.e. The set is equipotent to some natural number.)
We simply say that the set has n elements, whatever the natural number n may be. The question
becomes more interesting when examining infinite sets, which is naturally our next task.

Definition 8.1. The cardinality of A is less than or equal to the cardinality of B if there exists an
injection f : A→ B. We denote this by |A| ≤ |B|.

Definition 8.2. If |A| = K, |B| = L, and A ∩B = ∅, then K + L = |A ∪B|.

Definition 8.3. If |A| = K and |B| = L, then K · L = |A×B|.

Lemma 8.4. If A1 ⊆ B ⊆ A and |A1| = |A|, then |A| = |B|.

Proof. We know there exists an injection f : A→ A1. We can define two sequences of sets by

A0 = A; An+1 = f [An] for each n ∈ N
B0 = B; Bn+1 = f [Bn] for each n ∈ N .

We will show that An ⊆ Bn ⊆ An+1 for all n ∈ N by induction.
(a) Base case: n = 0. A0 ⊆ B0 ⊆ A1 is trivial.
(b) Induction hypothesis: Suppose An ⊆ Bn ⊆ An+1 holds. Then f(An) ⊆ f(Bn) ⊆ f(An+1) holds.
And since f(An) = An+1, f(Bn) = Bn+1, and f(An+1) = An+2, then An+1 ⊆ Bn+1 ⊆ An+2 holds.

Let C =
⋃∞
n=0(An −Bn). We can now define a bijection g : A→ B by

g(x) =

{
f(x) if x ∈ C

x ifx ∈ (A− C) .

g|C and g|A−C are one to one functions with disjoint ranges. Furthermore
f [C] ∪ (A− C) = B. Therefore |A| = |B|. �

Theorem 8.5. Cantor-Bernstein Theorem
If |X| ≤ |Y | and |Y | ≤ |X|, then |X| = |Y |.
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Proof. |X| ≤ |Y | implies there exists an injection f : X → Y .
|Y | ≤ |X| implies there exists an injection g : Y → X.
Clearly g◦f : X → X an injection. We can see that g[f [X]] ⊆ g[Y ] ⊆ X. It follows that |X| = |g[f [X]]|
and |Y | = |g[Y ]|. Therefore By Lemma 8.4, we see that |X| = |g[Y ]| = |Y |. �

Definition 8.6. A set S is countable if |S| = |N |. A set S is at most countable if |S| ≤ |N |. (A set
S is countable if there is a bijection between N and S.)

Countability is an essential concept of mathematics when working with infinite values. It distin-
guishes some infinities from others, giving us a basis for study. We will now show some properties of
countability and countable sets.

Theorem 8.7. An infinite subset of a countable set is countable.

Proof. Let A be a countable set and B ⊆ A be an infinite set.
Since A is countable, there exists a bijection between N and A denoted by 〈an〉∞n=0. We can define
another function f by

i) f(0) = b0 = ak0 where k0 is the least k such that ak ∈ B.
ii) f(n+ 1) = bn+1 = akn+1

where kn+1 is the least k such that ak ∈ B, ak 6= bi for all i ≤ n.

We can see that f = {f(n) |n ∈ N} = 〈bn〉∞n=0 exists by the Recursion Theorem and is a bijection
between N and B. �

Theorem 8.8. The union of two countable sets is a countable set.

Proof. Let A = {an |n ∈ N} and B = {bn |n ∈ N} be countable. We can construct a sequence by

c2k = ak and c2k+1 = bk ∀k ∈ N .

We see that 〈cn〉)∞n=0, showing there exists a bijection between N and A ∪ B. Therefore A ∪ B is
countable. �

Corollary 8.9. The union of a finite system of countable sets is countable.

Proof. This is an immediate result of appling induction to the proof of the previous theorem. �

Theorem 8.10. If A and B are two countable sets, then A×B is also countable.

Proof. It is enough to prove that N ×N is countable. (i.e. |N ×N | = |N |.) We will prove this in two
ways. First with a simple visual mapping and second with a function.

(1) We can map N ×N by:

(*Graphic taken from Introduction to Set Theory by Hrbacek and Jech.)

(2) We can also map this by the function

f(k, n) = 2k · (2n+ 1)− 1.

We can see that f is a bijection from N ×N to N . �
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Corollary 8.11. The cartesian product of a finite number of countable sets is countable. (i.e. Nm is
countable for every m ∈ N .)

Proof. This is an obvious result of induction on theorem 8.10. �

Theorem 8.12. The set of all integers Z is countable.

Proof. This a trivial result of our definition of Z and theorem 8.10. �

Theorem 8.13. An equivalence relation on at most countable sets has at most countably many equiv-
alence classes.

Proof. Let A be an at most countable set. Let E be an equivalence relation on A. We can define a
function f : A→ [A]E by f(a) = [a]E . We can see that f is a surjection between an at most countable
set and its equivalence classes. Thus we have |[A]E | = |f [A]| ≤ |A|, proving that [A]E is at most
countable. �

Theorem 8.14. The set of all rational numbers Q is countable.

Proof. This is a trivial result of theorem 8.13. �

From the above few properties, we see that any countable set has the same cardinality. We can
then form the following definition:

Definition 8.15. ℵ0 = |A| for all countable sets A.

Remark 8.16. From the above, we can see that ℵ0 = |N | = |Z| = |Q|. We will examine the cardinality
of the set of all real numbers R in the following section.

We will end with a few properties of cardinal arithmetic.

Theorem 8.17.
A) For all n ∈ N , n+ ℵ0 = ℵ0 + ℵ0 = ℵ0
B) For all n ∈ N − {0}, n · ℵ0 = ℵ0 · ℵ0 = ℵ0
C) For all n ∈ N − {0}, ℵ0n = ℵ0

Proof. Omitted. �

9. Uncountable Sets

Intuitively, we know uncountable sets exist because the set of real numbers is uncountable. What
is not apparent is the size of the real numbers. To find that, we first begin by proving uncountable
sets exist.

Theorem 9.1. Cantor’s Theorem
Uncountable sets exist. Namely, the power set of the natural numbers P(N) is uncountable.

Proof. Suppose P(x) is countable. Then there exists a bijection f : N → P(N). Consider the set
S = {n ∈ N |n /∈ f(n)}. We can see that S is a subset of the natural numbers so S ∈ P(N). Thus
∃z ∈ N such that f(z) = S.

Case 1) z ∈ S. Thus z /∈ f(z) implies z /∈ S.
Case 2) z /∈ S. Thus z ∈ f(z) implies z ∈ S.
This is a paradox, therefore P(N) is uncountable. �

From this we see that |P(N)| > |N |. Our next theorem will give us a set with the same cardinality
as P(N). This set will also have a crucial connection to the cardinality of the set of real numbers.

Theorem 9.2. |P(N)| = |2N |. (Here 2N denotes the set of all functions on N into 2. See definition
3.10.)
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Proof. We will prove this by constructing a bijection f : P(N)→ 2N .

Part 1) Let S ⊆ N . Thus S ∈P(N).
Define XS : N → {0, 1} by

Xs(n) =

{
1 if n ∈ S
0 if n /∈ S .

Let f(S) = XS . We can see that f is an injection from P(N) into 2N . It remains to prove that f is
a surjection as well.

Part 2) To show that f is a surjection, it is enough to show that f(X−1n (1)) = Xn.
Let φ ∈ 2N . Thus φ is a function on N into {0, 1}.

Consider Xφ−1(1)(n) =

{
1 if n ∈ φ−1(1)
0 ifn /∈ φ−1(1)

We can see that Xφ−1(1) = φ. Thus f(φ−1(1)) = Xφ−1(1) = φ.

Thus f is a surjection from 2N into P(N).

Therefore f is a bijection between P(N) and 2N , which proves the theorem. �

Corollary 9.3. |P(X)| = |2X | for any set X.

Proof. Similar to above. Replace N by X. �

Theorem 9.4. The cardinality of the continuum is 2ℵ0

Proof. We will first prove |R| ≤ 2ℵ0 , then prove 2ℵ0 ≤ |R|. We can finally use the Cantor-Bernstein
Theorem to show that |R| = 2ℵ0 .

1) Recall that we constructed real numbers as cuts in the set of rational numbers. Thus R ⊆P(Q)×
P(Q). We can see that |P(Q)| = |2Q|.
Thus |R| ≤ |P(Q)×P(Q)| = |2Q × 2Q| = 2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0 , which shows that |R| ≤ 2ℵ0 .

2) Consider x ∈ [0, 1) ⊆ R. Each x has a unique (countable) decimal expansion.
Let S = {x ∈ [0, 1) | the decimal expansion of x only contains 0’s and 1’s.}.
Let ga(n) = the nth digit in the decimal expansion for a.
We can define a bijection f : S → 2N by

f(x) =< gx(n) |n ∈ N > .

So |S| = |2N | = 2ℵ0 . But since S ⊆ R, we have |S| ≤ |R|. Therefore 2ℵ0 ≤ |R|.
We can apply the Cantor-Bernstein Theorem to conclude |R| = 2ℵ0 . �

Acknowledgments.
I thank my mentors William Chan, Eric Astor, and Matthew Wright for their continual guidance

and support. I thank Dr. J Peter May for granting me this opportunity to study mathematics in
the REU program. I also want to acknowledge that many of the definitions, theorems, and proofs
presented are based on those in Introduction to Set Theory by Karel Hrbacek and Thomas Jech. It
has been my primary guide to writing this paper.

References

[1] Karel Hrbacek and Thomas Jech. Introduction to Set Theory (Second Edition: Revised and Expanded). Marcel

Dekker, Inc. 1984.

[2] Thomas Jech. Set Theory (The Third Millenium Edition: Revised and Expanded). Springer Verlag. 2003.




