MAT 142 - Analysis II

Welcome to Mat 142! The aim of the course is to further develop the rigorous theory of single variable calculus after the Analysis I course.

Click on the top for more information:
The Info section contains times and locations of the lectures and recitations, information about the textbook, etc.

You will find information about office hours and ways to contact your instructors in the Instructors section.

The week-by-week progress of the lectures and the weekly homework assignments are posted in the Schedule \& Homework section.

Information about the exams is contained in the Exams section.

Info

Times and places:

Lectures MW 5.30-6.50pm Physics P112 Lorenzo Foscolo
Recitations M 4-4.53pm Physics P128 Jordan Rainone
Important dates are on the university Spring 2017 academic calendar.

Textbook:

Notes for each lecture will be made available on the Schedule \& Homework page.
The basic textbook for the course is:
[A] Calculus. Vol. 1: One-variable calculus with an introduction to linear algebra, by T. Apostol,

This has already been used in Analysis I and will serve as a reference for the basic definitions and results. However, most of the topics we will discuss during the course are not included in this book. Specific references will be given during the course.

Besides Apostol's book, two classic books on one-variable calculus that is worth consulting from time to time are:
[R] Principles of Mathematical Analysis by W. Rudin, Mc Graw-Hill
[S] Calculus by M. Spivak, Publish or Perish
Note: in the homework and notes for the lectures I will use [A], $[R],[S]$ to refer to these books.

Prerequisites:

C or higher in MAT 141 or permission of the Advanced Track Committee.

Main topics covered:

The main topics we will cover in the course are: applications of integrals to geometry (length of parametrised plane curves, the Isoperimetric Problem); convergence, approximation and compactness results for sequences of functions; existence and uniqueness of solutions to first-order differential equations; Fourier Series and applications to mathematical physics.

Lectures and office hours:

You are expected to attend lectures and recitations every week. Lectures give some basic understanding of the topics covered in the course. Recitations build your problem-solving skills. They are very important because one learns mathematics only by doing it. The time and location of the lectures and recitations are given above.

The lecturer and the recitation instructors hold office hours every week. The times and locations are on the Instructors page, as well as contact details of all the instructors. You are encouraged to see your lecturer or recitation instructor to discuss homework and other questions.

Homework:
Homework is assigned weekly. It is due at the recitation meeting the following week and must be handed in to the recitation instructor. No late homework will be accepted. Every week 10/15 problems will be assigned and 4 of these will be graded.

Grading policy:

There will be two midterm exams worth 20% of the final grade each, a final exam (40\%) and weekly homework (20\%). Check the Exams page for the dates of the exams and make sure to be available at those times.

If you need math help:

We are happy to help! Come to our office hours with questions on homework and lectures. Additional help is also available at the Math Learning Center.

DSS advisory:

If you have a physical, psychiatric, medical, or learning disability that could adversely affect your ability to carry out assigned course work, we urge you to contact the Disabled Student Services office (DSS), Educational Communications Center (ECC) Building, room 128, (631) 632-6748. DSS will review your situation and determine, with you, what accommodations are necessary and appropriate. All information and documentation regarding disabilities will be treated as strictly confidential.
Students for whom special evacuation procedures might be necessary in the event of an emergency are encouraged to discuss their needs with both the instructor and with DSS. Important information regarding these issues can also be found at the following web site: http://ws.cc.stonybrook.edu/ehs/fire/disabilities.shtml

Academic Integrity:

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty are required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology and Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at: http://www.stonybrook.edu/uaa/academicjudiciary

Instructors

Lorenzo Foscolo

Room 2-121, Math Tower

E-mail: lorenzo.foscolo@stonybrook.edu

Office hours:

M 4-5pm in Math Tower 2-121

Tue 1.30-2.30pm in the MLC
Tue 2.30-3.30pm in Math Tower 2-121

Jordan Rainone

Room S-240A, Math Tower
E-mail: jordan.rainone@stonybrook.edu

Office hours:

M 1.30-3.30pm in MLC
F 12-1pm in MLC

Schedule \& Homework

Week 1, Jan 23-29
Problem sheet 1.
(This homework will not be graded. Solutions will be discussed during the lecture of Wednesday Jan 25.)

Week 2, Jan 30 - Feb 5

Review: definition of integrals $\S \S 1.9,1.12,1.16,1.17$ in [A]
the Fundamental Theorem of Calculus §§ 5.1-5.3 in [A]
complex numbers §§ 9.1-9.7 in [A]

Notes: Notes1

Reading: vectors, dot product, norm: §§ 12.1-12.9 in [A]
polar coordinates: §§ 2.9-2.10 in [A]
parametrized curves: Appendix to Chapter 12 in [S]
Homework: HW1 (due on Feb 6 at the recitation meeting)

Week 3, Feb 6 - Feb 12
Reading: uniform continuity and integrability: §§ 3.17-3.18 in [A]
parametrized curves and their length: pp. 135-137 in [R]
curvature: §§ 2.1-2.3 in [P]
For a reference to the topics on curves (length, curvature and the Isoperimetric
Inequality) we are studying you can have a look at sections 1.1, 1.2, 1.3, 2.1, 2.2, 3.1 and 3.2 of
[P] Elementary Differential Geometry, by A. Pressley, Springer Undergraduate Mathematics Series.

Notes: Notes1 and Notes2
Homework: HW2 (due on Feb 13 at the recitation meeting)

Week 4, Feb 13 - Feb 19
Reading: the Isoperimetric Inequality: §§ 3.1-3.2 in [P] sequences: $\S \S$ 10.2-10.3 in [A] and Chapter 3 in [R$]$

Notes: Notes2 and Notes3
Homework: HW3 (due on Feb 20 at the recitation meeting)

Week 5, Feb 20-26
Review and First Midterm Exam

Week 6, Feb 27 - Mar 5
Reading: Newton's Method: exercises 16-17-18 on p. 81 in [R]
Uniform convergence: §§11.1-11.4 in [A] and pp. 143-154 in [R]
Notes: Notes 3 and Notes 4
Homework: HW4 (due on Mar 6 at the recitation meeting)

Week 7, Mar 6-12
Reading: Uniform convergence: Chapter 7, pp. 143-160 in [R]
Notes: Notes 4
Homework: HW5 (due on Mar 20 at the recitation meeting)

Week 8, Mar 20-26
Reading: Weierstrass Approximation Theorem: Chapter 7, pp. 159-160 in [R]
Taylor polynomials: Chapter 7, §§ 7.1-7.8 in [A]
Series of functions: Chapter 11, §§ 11.6-11.16 in [A]
Notes: Notes 4
Homework: HW6 (due on Mar 27 at the recitation meeting)

Week 9, Mar 27 - Apr 2
Reading: Power series, Taylor series: Chapter 11, §§ 11.6-11.13 in [A]

Homework: HW7 (due on Apr 3 at the recitation meeting)

Week 10, Apr 3-9
Second Midterm Exam
Reading: First-order differential equations. Notes 5 provides a guide to readings and exercises and contains detailed references to sections in Chapter 8 of [A].
Homework: problems 1, 2.(a), 2.(b).iv, 2.(c) in Notes5
(due on Apr 9 at the recitation meeting)

Week 11, Apr 10-16
Reading: First-order differential equations. Notes 5 provides a guide to readings and exercises and contains detailed references to sections in Chapter 8 of [A].

Homework: problems 10-11 in §8.5 in [A], 2 and 10 in 8.24 in [A], 4.(d) and 5 in Notes 5
(due on Apr 17 at the recitation meeting)

Week 12, Apr 17-23
Reading: First and second-order differential equations. Notes5 provides a guide to readings and exercises and contains detailed references to sections in Chapter 8 of [A].

Homework: problems 6.(e), 7.(a) and (c) for exercises 3 and 5 in §8.22 of [A], 7.(b) for exercise 6 in $\$ 8.26$ of [A], 8 in Notes5
(due on Apr 24 at the recitation meeting)

Week 13, Apr 24-30
Reading: Second-order differential equations. Notes 5 provides a guide to readings and exercises and contains detailed references to sections in Chapter 8 of [A].
Homework: exercises 15, 17, 19, 20 in §8.14 of [A]
exercises $6,7,12,22$ in $\S 8.17$ of [A]
problems 14.(b) and 14.(c) in Notes5
(due on May 1 at the recitation meeting)

Week 14, May 1-7

Reading: §14.20 in [A].
Review.

Exams

Midterm I: Wednesday Feb 22, 5.30-6.50pm, Physics P112
The Review Sheet 1 contains pointers to all the topics we have covered so far and that you should expect to find on the exam. The exam will contain 3 problems, two on curves and one on sequences.

Midterm II: Monday April 3, 5.30-6.50pm, Physics P112
The exam will cover:

1) Newton's Method and existence of fixed points
2) Uniform convergence of sequences of functions (uniform convergence and continuity/integration/differentiation, Dini's Theorem)
3) Arzelà-Ascoli Theorem
4) Weierstrass Approximation Theorem
5) Taylor polynomials and integral formula for the remainder
6) Uniform convergence of series of functions
7) Power series and radius of convergence
8) Taylor series

Final exam: Thursday May 11, 8.30-11pm, Physics P112
The exam will cover everything we have seen during the semester, with an emphasis on differential equations. You can expect

- a bunch of questions of the form "solve this differential equation/initial value problem"
- a more "theoretical" question about differential equations (such as problems 8, 9 and 10 in Notes 5 about existence and uniqueness of solutions)
- a couple of questions about uniform convergence and/or Taylor series
- a couple of questions about curves (length, curvature) and polar coordinates

In order to prepare for the exam, review past homework assignments, online notes, your personal notes, textbooks and do plenty of exercises (including reproving some of the results we studied).

I will hold office hours as follows:

Monday May 8, 4-5pm, Math Tower 2-121
Tuesday May 9, 11am-1pm, Math Tower 2-121
$1.30-2.30 \mathrm{pm}$ in MLC
If you need help outside of these times, write me an email and we will arrange a time to meet.

MAT 142 - Analysis II

Welcome to Mat 142! The aim of the course is to further develop the rigorous theory of single variable calculus after the Analysis I course.

Click on the top for more information:
The Info section contains times and locations of the lectures and recitations, information about the textbook, etc.

You will find information about office hours and ways to contact your instructors in the Instructors section.

The week-by-week progress of the lectures and the weekly homework assignments are posted in the Schedule \& Homework section.

Information about the exams is contained in the Exams section.

MAT 142 - AnAlysis II: NOTES 1 (WEEK 2-WEEK 3)
I. The plane
$\$ 1$ Vectors
Definition
The vector space of n-tuples \mathbb{R}^{n} is the space of all n-tuples $\underline{v}=\left(v_{1}, \ldots, v_{n}\right)$ of real numbers with the following operations of addition and scalar multiplication:

$$
\begin{aligned}
& \forall \underline{v}=\left(v_{1}, \ldots, v_{n}\right), \underline{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n} \text { and } k \in \mathbb{R} \\
& \underline{v}+\underline{w}=\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right) \in \mathbb{R}^{n} \\
& k \underline{v}=\left(k v_{1}, \ldots, k v_{n}\right) \in \mathbb{R}^{n}
\end{aligned}
$$

Theorem (Properties of vector addition and scalar multiplication)
$\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^{n}$ and $a, b \in \mathbb{R}$ we have:
(i) $\underline{u}+\underline{w}=\underline{w}+\underline{u}$
(ii) $\underline{u}+(\underline{v}+\underline{w})=(\underline{u}+\underline{v})+\underline{w}$
(iii) The vector $\underline{o}=(0, \ldots, 0)$ is an "adilitive identity": $\underline{\underline{v}}+\underline{v}=\underline{v}+\underline{o}=\underline{v}$
(iv) $a(b \underline{u})=(a b) \underline{u}$
(v) $a(\underline{u}+\underline{w})=a \underline{u}+a \underline{w}$
(vi) $(a+b) \underline{u}=a \underline{u}+b \underline{u}$
(vii) $0 \underline{u}=\underline{0}$ and $1 \underline{u}=\underline{u}$
(viii) $\underline{u}=-1 \cdot \underline{u}$ is the additive inverse of $\underline{u}:(\underline{u}+\underline{v})-\underline{u}=\underline{v}$

Remark (Geometric interpretation of vector addition and scalar multiplication)

§1.1 The dot product
Definition
The dot product of two vectors $\underline{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\underline{v}=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} is

$$
\underline{u} \cdot \underline{v}=u_{1} v_{1}+\ldots+u_{n} v_{n}
$$

Theorem (Properties of the dat product) $\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^{n}$ and $k \in \mathbb{R}$ we have:
(i) $\underline{u} \cdot \underline{v}=\underline{v} \cdot \underline{u}$ (commutative law)
(ii) $\underline{u} \cdot(\underline{v}+\underline{w})=\underline{u} \cdot \underline{v}+\underline{\underline{u}} \cdot \underline{w}$ (distributive (aw)
(iii) $k(\underline{u} \cdot \underline{v})=(k \underline{u}) \cdot \underline{v}=\underline{u} \cdot(k \underline{v})$ (homogeneity)
(iv) $\underline{u} \cdot \underline{u} \geqslant 0$ and $\underline{u} \cdot \underline{u}=0$ iff $\underline{u}=\underline{0}$ (positivity)

Remark (Geometric interpretation of the dot product)

Theorem (Cauchy-Schwarz Inequality) $\forall \underline{u}, \underline{v} \in \mathbb{R}^{n}$ we have $(\underline{u} \cdot \underline{v})^{2} \leqslant(\underline{u} \cdot \underline{u})(\underline{v} \cdot \underline{v})$
Moreover equality holds iff $\exists k \in \mathbb{R}$ sit. $\underline{u}=\dot{k} \underline{v}$ or $\underline{v}=k \underline{u}$.
proof
Wog we can assume that $\underline{u} \neq \underline{0} \neq \underline{v}$ (otherwise the result is trivial) Using property (iii) we can further assume $\underline{u} \cdot \underline{u}=1$. Indeed, we can replace \underline{u} with $\frac{\underline{u}}{\sqrt{\underline{u} \cdot \underline{u}}}$.

Consider the vector $\underline{w}=\underline{v}-(\underline{u} \cdot \underline{v}) \underline{u}$. By property (iv) we have $\underline{w} \cdot \underline{w} \geqslant 0$ with equality iff $\underline{w}=\underline{0}$, that is $\underline{v}=k \underline{u}$ with $k=\underline{u} \cdot \underline{v}$.
Now, $\underline{w} \cdot \underline{w}=\underline{v} \cdot \underline{w}-2(\underline{u} \cdot \underline{v})^{2}+(\underline{u} \cdot \underline{v})^{2}$ since $\underline{u} \cdot \underline{u}=1$.
Here we used properties (i), (ii) and (iii).

Rearranging, $\underline{w} \cdot \underline{w} \geqslant 0 \quad(\underline{u} \cdot \underline{v})^{2} \leqslant \underline{v} \cdot \underline{v}=(\underline{u} \cdot \underline{u})(\underline{v} \cdot \underline{v})$
Definition
The norm $\|\underline{u}\|$ of a vector $\underline{u} \in \mathbb{R}^{n}$ is $\|\underline{u}\|=\sqrt{\underline{u} \cdot \underline{u}}$
Theorem (Properties of the norm)
$\forall \underline{u}, \underline{\underline{V}} \in \mathbb{R}^{n}$ and $k \in \mathbb{R}$ we have:
(i) $\|\underline{u}\| \geqslant 0$ and $\|\underline{u}\|=\mathbb{D}$ iff $\underline{u}=\underline{0}$ (positivity)
(ii) $\|k \underline{u}\|=|k|\|\underline{u}\|$ (homogeneity)
(iii) $2\|\underline{u}\|^{2}+2\|\underline{v}\|^{2}=\|\underline{u}+\underline{v}\|^{2}+\|\underline{u}-\underline{v}\|^{2} \quad$ (para $\|$ elogram (aw)
(iv) $4 \underline{u} \cdot \underline{v}=\|\underline{u}+\underline{v}\|^{2}-\|\underline{u}-\underline{v}\|^{2} \quad$ (polarization identity)
(v) $\|\underline{u}+\underline{v}\| \leqslant\|\underline{u}\|+\|\underline{v}\| \quad$ (triangle inequality)
proof of (v)

$$
\begin{aligned}
& \|\underline{u}+\underline{v}\|^{2}=(\underline{u}+\underline{v}) \cdot(\underline{u}+\underline{v})=\|\underline{u}\|^{2}+\|\underline{v}\|^{2}+2 \underline{u} \cdot \underline{v} \\
& (\|\underline{u}\|+\|\underline{v}\|)^{2}=\|\underline{u}\|^{2}+\|\underline{v}\|^{2}+2\|\underline{u}\|\|\underline{v}\|
\end{aligned}
$$

Cauchy-Schwarz Inequality: $\quad \underline{u} 0 \underline{v} \leq|\underline{u} \cdot \underline{v}| \leq\|\underline{u}\|\|\underline{v}\|$
Remark (geometric interpretation)

parallelogram law

triangle inequality

Exercise When does equality holds in the triangle inequality?
Definition
The distance between two points ie $\underline{u}, \underline{v}$ in \mathbb{R}^{n} is

$$
d(\underline{u}, \underline{v})=\|\underline{u}-\underline{v}\|
$$

Theorem (Properties of the distance) $\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^{n}$ we have:
(i) $d(\underline{u}, \underline{v})=d(\underline{v}, \underline{u})$
(ii) $d(\underline{u}, \underline{v})=0$ iff $\underline{u}=\underline{v}$
(iii) $d(\underline{u}, \underline{w}) \leqslant d(\underline{u}, \underline{v})+d(\underline{v}, \underline{w})$
§2: Complex numbers
Definition
Treeopirenume The set of complex numbers \mathbb{C} is \mathbb{R}^{2} endowed with vector sum $(a, b)+(c, d)=(a+c, b+d)$ and the product $(a, b)(c, d)=(a c-b d, a d+b c)$.
(*)
To connect this to the standard complex notation $z=a+b i$ we need three observations:
(i) every vector (a, b) in \mathbb{R}^{2} can be written as

$$
(a, b)=a(1,0)+b(0,1)
$$

(ii) $(1,0)$ is the multiplicative identity in $\mathbb{C}:(1,0)(a, b)=(a, b)$ $\forall(a, b) \in \mathbb{C}$. By abuse of notation we then write $1=(1,0)$
(iii) $(0,1)(0,1)=-1$ and we set $i=(0,1)$
(*) Theorem
\mathbb{C} is an algebra over \mathbb{R}, that is of vector addition, scalar multiplication by a real number and the product satisfy
(i) $(\underline{u}+\underline{v}) \underline{w}=\underline{u} \underline{w}+\underline{v} \underline{w}$
(ii) $\underline{u}(\underline{v}+\underline{w})=\underline{u} \underline{v}+\underline{v} \underline{w}$
(iii) $k(\underline{u} \underline{v})=(k \underline{u}) \underline{v}=\underline{u}(k \underline{v})$
$\forall \quad \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^{2}$ and $k \in \mathbb{R}$
§3. Polar coordinates
Recall: polar form of a complex number $z=\pi e^{i \theta}$

Polar coordinates: $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$
§3.1 Area in polar coordinates
Let $f:[a, b] \longrightarrow \mathbb{R}$ be a function such that

- $f(x) \geqslant 0 \quad \forall x \in[a, b]$
- $0 \leqslant b_{-a} \leqslant 2 \pi$

The polar equation $\pi=f(\theta), \theta \in[a, b]$ describes a curve in the plane in polar coordinates.

Examples
(i) $\pi=2 \sin \theta, \theta \in[0, \pi] \quad\left(x^{2}+(y-1)^{2}=1\right)$
(ii) $\pi=\frac{1}{\cos \theta} \quad(x=1)$
(iii) (spiral of Archimedes) $\quad \pi=\theta$

Given a polar equation $r=f(\theta), \theta \in[a, b]$ consider the radial set R of f over $[a, b]$:

$$
R=\left\{(\pi) \quad(\pi \cos \theta, \pi \sin \theta) \in \mathbb{R}^{2} \mid 0 \leqslant \pi \leqslant f(\theta), \quad \theta \in[a, b]\right\}
$$

Theorem
If f^{2} is integrable on $[a, b]$ then R is measurable and

$$
a(R)=\frac{1}{2} \int_{a}^{b} f^{2}(\theta) d \theta
$$

proof.
Let s, t be two step functions such that

$$
0 \leqslant s(\theta) \leqslant f(\theta) \leqslant t(\theta) \quad \forall \theta \in[a, b]
$$

Let S and T be the radial sets of $s \& t$, respectively, over $[a, b]$. Since $s \leqslant f \leqslant t$ we have $S \subseteq R \subseteq T$ and therefore by the monotone propertice of area $a(S) \leqslant a(R) \leqslant a(T)$.
Now observe that the area of a circular sector $\left\{(n \cos \theta, \pi \sin \theta) \in \mathbb{R}^{2} \mid 0 \leqslant \pi \leqslant r_{0},\right\}$
 is $\frac{1}{2} \pi_{0}^{2}\left(\theta_{2}-\theta_{1}\right)$

We conclude that $a(S)=\frac{i}{2} \int_{a}^{b} S^{2}(\theta) d \theta$ and $a(t)=\frac{1}{2} \int_{a}^{b} t^{2}(\theta) d \theta$ (why?) Hence:

$$
\int_{a}^{b} s^{2}(\theta) d \theta \leqslant 2 a(R) \leqslant \int_{a}^{b} t^{2}(\theta) d \theta
$$

Since f^{2} is integrable and s^{2}, f^{2} are arbitrary step functions with $s^{2} \leqslant f^{2} \leqslant t^{2}$ on $[a, b]$, we have $2 a(R)=\int_{a}^{b} f^{2}(\theta) d \theta$.
II. plane curves
§1. Parametrized curves
Definition
A parametrized (plane) curve is a vector-valued function

$$
\underline{c}=(u, v):[a, b] \longrightarrow \mathbb{R}^{2}
$$

Example
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function st. $f(t) \geqslant 0 \quad \forall t \in[a, b]$ and $0 \leqslant b-a \leqslant 2 \pi$. Then $c(t)=(f(t) \cos t, f(t) \sin t)$ is a parametrization of the curve described by the polar equation $r=f(\theta), \theta \in[a, b]$.

Remark: The distinction between a parametrized curve and its "trace" should be clear: $\quad \underline{c}(t)=(\cos (2 t), \sin (2 t)), t \in[0, \pi]$ has the same trace as

$$
d(t)=(\cos (t), \sin (t)), t \in[0,2 \pi] \quad \text { and }
$$

$$
\underline{e}(t)=(\cos (t), \sin (t)), t \in[0,4 \pi]
$$

Given two parametrized curves $\mathfrak{c}[a, b] \rightarrow \mathbb{R}^{2}, \underline{d}:[a, b] \rightarrow \mathbb{R}^{2}$ and a function $\alpha:[0, t] \longrightarrow \mathbb{R}$ we define

$$
\begin{array}{llll}
\underline{c}+\underline{d}:[a, b] \longrightarrow \mathbb{R}^{2} & \text { by } & (\underline{c}+\underline{d})(t)=\underline{c}(t)+\underline{d}(t) & \text { (wring vector addition) } \\
d \underline{c}:[a, b] \rightarrow \mathbb{R}^{2} & \text { by } & (\alpha \underline{c})(t)=\alpha(t) \underline{c}(t) & \text { (wring scalar multiplication) }
\end{array}
$$

Definition
Let $\subseteq=(u, v)$: TeBTe be a parametrised curve. Then the symbols

$$
\begin{aligned}
& \lim _{t \rightarrow t_{0}} \underline{c}(t) \quad \text { and } \underline{c}^{\prime}(t) \text { mean } \\
& \lim _{t \rightarrow t_{0}} \underline{c}(t)=\left(\lim _{t \rightarrow t_{0}} u(t), \lim _{t \rightarrow t_{0}} v(t)\right) \\
& \underline{c}^{\prime}(t)=\left(u^{\prime}(t), v^{\prime}(t)\right)
\end{aligned}
$$

Remark There is a different equivalent definition of limit, see AW1

$$
\text { One could also define: } \underline{c}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{c(t+h)-c(t)}{h} \quad\binom{\text { Exercise: Show that this it }}{\text { an equivalent definition }}
$$

Remarks: $\quad \underline{c}, \underline{d}:[a, b] \rightarrow \mathbb{R}^{2} \quad \alpha:[a, b] \longrightarrow \mathbb{R}$
(i) $(\underline{c}+\underline{d})^{\prime}=\underline{c}^{\prime}+\underline{d}^{\prime}$
(ii) $(\alpha \underline{c})^{\prime}=\alpha^{\prime} \underline{c}+\alpha \underline{c}^{\prime}$
(iii) Define a function $\underline{c} \cdot \underline{d}:[a, b] \longrightarrow \mathbb{R}$ by $(\underline{c} \cdot \underline{d})(t)=\underline{c}(t) \cdot \underline{d}(t)$

Then $(\underline{c} \bullet \underline{d})^{\prime}(t)=\underline{c}^{\prime}(t) \cdot \underline{d}(t)+\underline{c}(t) \bullet \underline{d}^{\prime}(t)$. [Exercise: prove this formula]
Definition
A parametrized curve $\subseteq:[a, b] \rightarrow \mathbb{R}^{2}$ is regular at $t_{0} \in[a, b]$ if $\subseteq^{\prime}\left(t_{0}\right)$ exists and $\underline{e}^{\prime}\left(t_{0}\right) \neq \underline{0}$.

If \subseteq is regular at t_{0} we define the tangent line of \subseteq at $\subseteq\left(t_{0}\right)$ as the set of points of the form $\underline{c}\left(t_{0}\right)+s s^{\prime}\left(t_{0}\right)$

The graph of $f(x)=|x|$ can be parametrised by a parametrized curve $\subseteq: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $\underline{c}^{\prime}(t)$ exists for all $t \in \mathbb{R}$, but $\underline{c}^{\prime}(0)=\underline{0}$, see $H W 1$ Note how one cannot define the tangent line to the origin \underline{o}.

Definition
Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a parametrized curve and $p:[\alpha, \beta] \rightarrow[a, \beta]$ a function. The parametrized curve $\subseteq \circ p:[\alpha, \beta] \longrightarrow \mathbb{R}^{2}$ defined by $(\underline{c} \circ p)(t)=\underline{c}(p(t))$ is called a reparametrization of \underline{c}.

Lemma (Chain Rule)
(QPQ(Assume that $\underline{e}^{\prime}(t)$ and $p^{\prime}(t)$ exist. Then $(\underline{c} \circ p)^{\prime}(t)$ also exists and $(\underline{c} \circ p)^{\prime}(t)=p^{\prime}(t) s^{\prime}(p(t))$
proof.

$$
\begin{aligned}
& \underline{c}(t)=(u(t), v(t)) \quad(\underline{c} \circ p)(t)=(u(p(t)), v(p(t))) \\
& (\underline{c} \circ p)^{\prime}(t)=\left((u d p)^{\prime}(t),(v \circ p)^{\prime}(t)\right)=\left(u^{\prime}(p(t)) p^{\prime}(t), v^{\prime}(p(t))_{\left.\beta^{\prime}(t)\right)}\right.
\end{aligned}
$$

§2. Length
Let $\leq:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular parametrized curve.
Let $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$.

Define:

$$
\ell(\underline{c}, P)=\sum_{i=1}^{n}\left\|\underline{c}\left(t_{i}\right)-\underline{c}\left(t_{i-1}\right)\right\|
$$

Lemma
(i) If \subseteq parametrizes a straight segment then $\ell(\underline{c}, P)=\|\subseteq(b) \ldots(a)\|$ for every partition P.
(ii) If \subseteq does not parametrize a straight segment then there exists a partition $P=\left\{a, t_{1}, b\right\}$ s.t. $\quad l(c, P)>\|\leq(b)-c(a)\|$
proof.

$$
\begin{aligned}
& \text { (i) } \underline{c}(t)=\underline{c}(a)+\frac{t-a}{b-a}(\underline{c}(b)-\underline{c}(a)) \\
& \Rightarrow\left\|\underline{c}\left(t_{i}\right)-\underline{c}\left(t_{i-1}\right)\right\|=\left|t_{i}-t_{i-1}\right| \frac{\|\underline{c}(b)-\underline{c}(a)\|}{b-a} \\
& \Rightarrow \sum_{i=1}^{n}\left\|c\left(t_{i}\right)-\underline{c}\left(t_{i-1}\right)\right\|=\frac{\|c(b)-c(a)\|}{b-a} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\|\underline{c}(b)-\underline{c}(a)\|
\end{aligned}
$$

(ii) Since the trace of c is not contained in a line, \exists tace $t, b)$ st. $\underline{c}\left(t_{1}\right)-\underline{c}(a)$ is not parallel to $\subseteq(b)-\underline{c}(a)$. Then the Triangle Inequality is strict:

$$
\|\leq(b)-\underline{c}(a)\|<\left\|\leq\left(t_{1}\right)-\subseteq(a)\right\|+\left\|\leq(b)-\underline{c}\left(t_{1}\right)\right\|
$$

Remark Pant (ii) says that a shaight line is the shortest curve between two points.
It also says that $l(\varsigma, P)$ is increasing if we refine the partition.
Definition
The length of the curve \leq is $l(c)=\sup _{p} \ell(\leq, P)$, provided this number exists. In this case we say that \subseteq is rectifiable.

Goal: We want to find a formula for $l(c)$, at least when ϱ^{\prime} is continuous.
Recall:
Theorem (Theorem 3.14 in $[A]$)
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then f is integrable on $[a, b]$.
proof.
Given a partition $P=\left\{t_{0}=a, t_{1}, \ldots, t_{n}=b\right\}$ of $[a, b]$ consider the step functions s and I defined as follows:

$$
\begin{aligned}
& \forall i=1, \ldots, n \quad \text { set } \quad m_{i}=\min _{\left[t_{i-1}, t_{i}\right]} f(t) \quad M_{i}=\max _{\left[t_{i-1}, t_{i}\right]} f(t) \\
& s(t)=m_{i} \text { on }\left[t_{i-1}, t_{i}\right] \quad S(t)=M_{i} \text { on }\left[t_{i-1}, t_{i}\right]
\end{aligned}
$$

Define $I(f, P)=\int_{a}^{b} s(t) d t=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right)$

$$
\bar{I}(f, P)=\int_{a}^{b} S(t) d t=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
$$

Recall that every continuous function on $[a, b]$ is uniformly continuous (Theorem 3.13 in $[A]$): $\forall \varepsilon>0 \quad \exists \delta>0$ st.

$$
|x-y|<\delta \models|f(x)-f(y)|
$$

Fix $\varepsilon>0$ and choose the partition P so that $t_{i}-t_{i-1}<\delta \quad \forall i=1, \ldots, n$ Then $M_{i}-m_{i}<\varepsilon$ and therefore

$$
\bar{I}(f, P)-I(f, P)<\varepsilon \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=(b-a) \varepsilon .
$$

Now, if $I(f)$ and $\bar{I}(f)$ are the lower and upper integrals of f we have

$$
\underline{I}(f, P) \leqslant I(f) \leqslant \bar{I}(f) \leqslant \bar{I}(f, P)
$$

Thus:

$$
\bar{I}(f)-I(f) \leqslant \bar{I}(f, P)-I(f, P)<(b-a) \varepsilon .
$$

Since ε is arbitrary we conclude that $\bar{I}(f)=I(f)$.

Theorem
Let $\underline{c}:[a, b] \longrightarrow \mathbb{R}^{2}$ be a parametrized curve with $\underline{c}^{\prime}:[a, b] \longrightarrow \mathbb{R}^{2}$ continuous. Then \subseteq is rectifiable and

$$
\ell(\underline{c})=\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t
$$

proof.
White $\subseteq(t)=(u(t), v(t))$ for functions $u, v:[a, b] \rightarrow \mathbb{R}$ with continuous derivatives. Note that $\left\|c^{\prime}(t)\right\|=\sqrt{\left[u^{\prime}(t)\right]^{2}+\left[v^{\prime}(t)\right]^{2}}$ is a continuous function on $[a, b]$. Therefore $\int_{a}^{b}\left\|c^{\prime}(t) d t\right\|$ exists. Moreover, from the poof of the pervious the rem $\forall \varepsilon>0, \exists \delta_{1}>0$ sit. if P is a partition of $[a, b]$ with $\left|t_{i}-t_{i-1}\right|<\delta_{1} \forall i=1, \ldots, n$ then

$$
\begin{equation*}
\bar{I}\left(\left\|c^{\prime}\right\|, P\right)-I\left(\left\|c^{\prime}\right\|, P\right)<\varepsilon . \tag{*}
\end{equation*}
$$

Now consider $\left\|\leq\left(t_{i}\right)-s\left(t_{i-1}\right)\right\|$. By the Mean Value Theorem applied to u and v we can find $\xi_{i}, \zeta_{i} \in\left[t_{i-1}, t_{i}\right]$ st.

$$
\begin{align*}
\left\|\underline{c}\left(t_{i}\right)-\underline{c}\left(t_{i-1}\right)\right\| & =\sqrt{\left[u\left(t_{i}\right)-u\left(t_{i-1}\right)\right]^{2}+\left[v\left(t_{i}\right)-v\left(t_{i-1}\right)\right]^{2}} \\
& =\sqrt{\left[u^{\prime}\left(\xi_{i}\right)\right]^{2}+\left[v^{\prime}\left(\zeta_{i}\right)\right]^{2}}\left(t_{i}-t_{i-1}\right) \tag{**}
\end{align*}
$$

Claim: $\forall \varepsilon>0, \exists \delta_{2}>0$ st. if $\left|t_{i}-t_{i-1}\right|<\delta_{2}$ then

$$
\begin{equation*}
\left|\left\|\subseteq\left(t_{i}\right)-\subseteq\left(t_{i-1}\right)\right\|-\left\|c^{\prime}(t)\right\|\left(t_{i}-t_{i-1}\right)\right|<\varepsilon \quad \forall t \in\left[t_{i-1}, t_{i}\right] \tag{***}
\end{equation*}
$$

proof. of Claim:
Finst set $M=\sup _{[a, b]}\left\|c^{\prime}(t)\right\|$ and note that $\left|u^{\prime}(t)\right| \leqslant M$ and $\left|v^{\prime}(t)\right| \leqslant M$ for all $t \in[a, b]$. [Exercise: why is M finite?]
Since the function $x \longmapsto \sqrt{x}$ is uniformly continuous on $\left[0,2 M^{2}\right] \quad[$ why? $]$ $\forall \varepsilon_{p}>0, \exists \delta_{\Gamma}>0$ s.t.

$$
|\sqrt{x}-\sqrt{y}|<\frac{\varepsilon}{b-a} \quad \forall x, y \in\left[0,2 M^{2}\right] \text { with }|x-y|<\delta_{\sqrt{7}}
$$

On the other hand, u^{\prime} and v^{\prime} are also uniformly continuous on $[a, b]$. Thus $\exists \delta_{2}>0$ sit. if $\left|t_{i}-t_{i-1}\right|<\delta$ then

$$
\begin{aligned}
\left|\left[u^{\prime}(x)\right]^{2}-\left[u^{\prime}(y)\right]^{2}\right| & \leqslant\left|u^{\prime}(x)+u^{\prime}(y)\right|\left|u^{\prime}(x)-u^{\prime}(y)\right| \\
& \leqslant 2 M\left|u^{\prime}(x)-u^{\prime}(y)\right| \\
& \leqslant 2 M \cdot \frac{\delta_{\Gamma}}{4 M}=\frac{1}{2} \delta_{\Gamma} \quad \forall x, y \in\left[t_{i-1}, t_{i}\right]
\end{aligned}
$$

and similarly for v !
Hence: $\left.\mid\left[u^{\prime}\left(\xi_{i}\right)\right]^{2}+\left[v^{\prime}\left(\xi_{i}\right)\right]^{2}\right)-\left(\left[u^{\prime}(t)\right]^{2}+\left[v^{\prime}(t)\right]^{2}\right) \mid<\delta_{\Gamma} \quad \forall t \in\left[t_{i-1}, t_{i}\right]$ and we conclude that

$$
\left|\sqrt{\left[u^{\prime}\left(\xi_{i}\right)\right]^{2}+\left[v^{\prime}\left(\zeta_{i}\right)\right]^{2}}-\sqrt{\left[u^{\prime}(t)\right]^{2}+\left[v^{\prime}(t)\right]^{2}}\right|<\frac{\varepsilon}{b-a}
$$

Using (**) and the obvious estimate $t_{i}-t_{i-1} \leqslant b_{-} a$, the Claim is proved
Now fix $\varepsilon>0$ and a partition P with $\left|t_{i}-t_{i-1}\right|<\min \left\{\delta_{1}, \delta_{2}\right\}$ for all $i=1, \ldots, n$.

Then $(* * *)$ implies that

Hence

$$
2 \varepsilon<I\left(c^{\prime} \|, P\right)-\bar{I}\left(\left(\varepsilon^{\prime} \|, P\right)+\varepsilon \leqslant \int_{a}^{b}\left\|c^{\prime}(t)\right\| d t-\ell(\underline{c}, P) \leqslant \bar{I}\left(\left\|c^{\prime}\right\|, P\right)-I\left(\left\|c^{\prime}\right\|, P\right)+\varepsilon<2 \varepsilon\right.
$$

and therefore $\ell(\underline{c})$ exists and satisfies

$$
\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t-2 \varepsilon<\ell(\leq)<\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t+2 \varepsilon
$$

Since $\varepsilon>0$ is arbitrary the Theorem is proved.

Remark [R], Theorem 6.27, gives a slightly different proof.
Example
$\underline{\underline{c}}(t)=(f(t) \cos t, f(t) \sin t), t \in[a, b]$ with f^{\prime} continuous.

$$
l(c)=\int_{a}^{b} \sqrt{f^{2}(t)+\left[f^{\prime}(t)\right]^{2}} d t
$$

Definition
Let $\subseteq:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular parametrized curve with continuous \underline{c}^{\prime}. Fix $t_{0} \in[a, b]$. The arc length of c from t_{0} is

$$
s(t)=\int_{t_{0}}^{t}\left\|s^{\prime}(\xi)\right\| d \tau
$$

Remark Let $t_{1}<t_{2}$ be points in $[a, b]$. Denote by $\int_{\left[t_{1}, t_{2}\right]}$ the curve $\underline{c}:\left[t_{1}, t_{2}\right] \longrightarrow \mathbb{R}^{2}$. Note that

$$
\ell\left(\left.s\right|_{\left[t_{1}, t_{2}\right]}\right)=\int_{t_{1}}^{t_{2}}\left\|c^{\prime}(t)\right\| d t=\int_{t_{0}}^{t_{2}}\left\|c^{\prime}(t)\right\| d t-\int_{t_{0}}^{t_{1}}\left\|c^{\prime}(t)\right\| d t=s\left(t_{2}\right)-s\left(t_{1}\right) .
$$

Definition
We say that $c:[a, b] \longrightarrow \mathbb{R}^{2}$ is parametrised by arc length if $s(t)=t$ - t_{0} for some $t_{0} \in[a, b]$.

Lemma
$\underline{c}:[a, b] \rightarrow \mathbb{R}^{2}$ is parametrised by are length iff $\left\|\underline{c}^{\prime}(t)\right\| \equiv 1$.
poof
By the Fundamental Theorem of Calculus,

$$
s(t)=t-t_{0} \text { for some } t_{0} \in[a, b] \Leftrightarrow \begin{gathered}
s^{\prime}(t)=1 \\
\forall t \in[a, b]
\end{gathered} \Longleftrightarrow \bigcup_{D \text {.f. of arc length }} \Leftrightarrow c^{\prime}(t) \| \equiv 1 \quad \forall t \in[a, b]
$$

Theorem
Every regular parametrised curve with continuous derivative can be parametrised by arc length.

Problem sheet 1

MAT 142, Spring 2017

1. Prove the parallelogram law and the polarization identity: for every pair of vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ we have

$$
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\left\|\mathbf{v}^{2}, \quad\right\| \mathbf{u}+\mathbf{v}\left\|^{2}-\right\| \mathbf{u}-\mathbf{v} \|^{2}=4 \mathbf{u} \cdot \mathbf{v}
$$

2. For a vector $\mathbf{u}=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$ define

$$
\|\mathbf{u}\|_{1}=\left|u_{1}\right|+\left|u_{2}\right|, \quad\|\mathbf{u}\|_{\infty}=\max _{i=1,2}\left|u_{i}\right| .
$$

Determine whether $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ satisfy each of the following properties:
(a). Positivity: $\|\mathbf{u}\| \geq 0$ for all $\mathbf{u} \in \mathbb{R}^{2}$ and $\|\mathbf{u}\|=0$ if and only if $\mathbf{u}=\mathbf{0}$;
(b). Homogeneity: $\|c \mathbf{u}\|=|c|\|\mathbf{u}\|$.
(c). Triangle Inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$.

Draw the sets of points in the plane with $\|\mathbf{u}\|_{1} \leq 1$ and $\|\mathbf{u}\|_{\infty} \leq 1$ respectively.
3. (Exercises 1 and 3 in Chapter 4, Appendix 1 of $[\mathrm{S}]$)

Given a point \mathbf{v} in \mathbb{R}^{2} let $R_{\theta}(\mathbf{v})$ be the point obtained by rotating \mathbf{v} through an angle θ in anticlockwise direction around the origin.
(a). Show that

$$
R_{\theta}(1,0)=(\cos \theta, \sin \theta), \quad R_{\theta}(0,1)=(-\sin \theta, \cos \theta) .
$$

(b). It should be clear that

$$
R_{\theta}(\mathbf{u}+\mathbf{v})=R_{\theta}(\mathbf{u})+R_{\theta}(\mathbf{v}), \quad R_{\theta}(c \mathbf{v})=c R_{\theta}(\mathbf{v})
$$

for every $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ and $c \in \mathbb{R}$. Deduce the formula

$$
R_{\theta}(x, y)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta) .
$$

(c). Show that

$$
R_{\theta}(\mathbf{u}) \cdot R_{\theta}(\mathbf{v})=\mathbf{u} \cdot \mathbf{v}
$$

for every $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$.
(d). Let \mathbf{e} be the vector $\mathbf{e}=(1,0)$ and $\mathbf{w}=R_{\theta}(\mathbf{e})=(\cos \theta, \sin \theta)$. Observe that $\|\mathbf{e}\|=1$, $\|\mathbf{w}\|=1$ and $\mathbf{e} \cdot \mathbf{w}=\cos \theta$. Deduce that for every $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ we have

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.
4. Let $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ be two vectors and define

$$
\mathbf{u} \times \mathbf{v}=u_{1} v_{2}-u_{2} v_{1} .
$$

(a). How does \times behaves with respect to the operations of addition and scalar multiplication? What happens if one interchanges the order of \mathbf{u} and \mathbf{v} ?
(b). Show that $R_{\theta}(\mathbf{u}) \times R_{\theta}(\mathbf{v})=\mathbf{u} \times \mathbf{v}$.
(c). Argue in a similar way as in Problem 2 to show that

$$
\mathbf{u} \times \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.
(d). Deduce that $|\mathbf{u} \times \mathbf{v}|$ is the area of the parallelogram with vertices $\mathbf{0}, \mathbf{u}, \mathbf{v}$ and $\mathbf{u}+\mathbf{v}$.
5. Let $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ be the polar coordinates of two points in the plane. Show that the distance d between the two points is given by

$$
d^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)
$$

6. The cardiod is the curve with polar equation $r=1-\sin \theta, \theta \in[0,2 \pi)$.
(a). Sketch the graph of the cardiod.
(b). Show that it can be described by the equation

$$
\left(x^{2}+y^{2}+y\right)^{2}=x^{2}+y^{2} .
$$

(Take some care in motivating your choice of sign when taking square roots!)
(c). Calculate the area of the region enclosed by the cardiod.
7. Find a parametrized curve that runs clockwise twice around the unit circle centered at the origin.
8. (Parametrization of an interval; exercise 2 in Chapter 4 of $[\mathrm{S}]$)

There is a very useful way of describing the points of the closed interval $[a, b]$ (where we assume, as usual, that $a<b$).
(a). First consider the interval $[0, b]$, for $b>0$. Prove that if $x \in[0, b]$, then $x=t b$ for some t with $0 \leq t \leq 1$. What is the significance of the number t ? What is the mid-point of the interval $[0, b]$?
(b). Now prove that if $x \in[a, b]$, then $x=(1-t) a+t b$ for some t with $0 \leq t \leq 1$. (Hint: This expression can also be written as $a+t(b-a)$.) What is the midpoint of the interval $[a, b]$? What is the point $1 / 3$ of the way from a to b ?
(c). Prove, conversely, that if $0 \leq t \leq 1$, then $(1-t) a+t b$ is in $[a, b]$.
(d). Prove that the points of the open interval (a, b) are those of the form $(1-t) a+t b$ for $0<t<1$.
9. Let $f(t)$ be the function

$$
f(t)=\left\{\begin{array}{cc}
t^{2} & \text { if } t \geq 0 \\
-t^{2} & \text { if } t \leq 0
\end{array}\right.
$$

Let $\mathbf{c}(t)$ be the parametrised curve $\mathbf{c}(t)=\left(f(t), t^{2}\right)$.
(a). Show that f is differentiable.
(b). Calculate $\mathbf{c}^{\prime}(t)$.
(c). Show that the trace of \mathbf{c} is the same of the trace of the parametrized curve $s \mapsto(s,|s|)$.
(This problem shows why it makes sense to insist that $\mathbf{c}^{\prime}(t) \neq \mathbf{0}$ in the definition of a regular parametrized curve.)
10. We say that a parametrized curve $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{2}$ has a weak tangent at t if the unit vector $\frac{\mathbf{c}(t+h)-\mathbf{c}(t)}{\|\mathbf{c}(t+h)-\mathbf{c}(t)\|}$ has a limit when $h \rightarrow 0$. Prove that the cuspidal cubic $\mathbf{c}(t)=\left(t^{3}, t^{2}\right)$, $t \in \mathbb{R}$, has a weak tangent at the origin but it is not regular there. Make a sketch.
11. Consider a curve given by the polar equation $r=f(\theta), \theta \in[a, b]$. We can parametrize the curve by

$$
\mathbf{c}(t)=(f(t) \cos t, f(t) \sin t), t \in[a, b] .
$$

(a). Find a formula for the slope of the tangent line of the curve at the point with polar coordinates $(f(t), t)$.
(b). Calculate the slope of the tangent lines to the spiral of Archimedes $r=\theta, \theta \geq 0$, at the point with $\theta=\frac{\pi}{4}$. Make a sketch of the spiral and the tangent line.
12. There are two natural ways of defining limits of vector-valued functions. Let $\mathbf{c}_{0}=$ $\left(x_{0}, y_{0}\right)$ be a point in \mathbb{R}^{2} and $\mathbf{c}(t)=(x(t), y(t))$ be a vector-valued function $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{2}$.

- Definition 1.

We say that $\lim _{t \rightarrow t_{0}} \mathbf{c}(t)=\mathbf{c}_{0}$ if $\lim _{t \rightarrow t_{0}} x(t)=x_{0}$ and $\lim _{t \rightarrow t_{0}} y(t)=y_{0}$.

- Definition 2.

We say that $\lim _{t \rightarrow t_{0}} \mathbf{c}(t)=\mathbf{c}_{0}$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left\|\mathbf{c}(t)-\mathbf{c}_{0}\right\|<\varepsilon
$$

whenever $\left|t-t_{0}\right|<\delta$.
Prove that the two definitions are equivalent.

MAT 142 - ANALYSIS II: NOTES 2 (WEEK 3 -WEEK 4)
II. plane curves
§3. Curvature
Definition
Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular parauctrized curve. The unit tangent vector $t_{0} \subseteq$ is the unit vector $\underline{\tau}(t)=\frac{c^{\prime}(t)}{\left\|c^{\prime}(t)\right\|}, \forall t \in[a, b]$.
Remark: Suppose that $\subseteq:[a, b] \rightarrow \mathbb{R}^{2}$ is parametrized by arc-length $s \in[a, b]$.
Then $\left\|\underline{c}^{\prime}(s)\right\|=1$ and therefore $\underline{\tau}(s)=\underline{c}^{\prime}(s)$.
Lemma 1
Assume that $\underline{\tau}^{\prime}(t)$ exists. Then $\underline{\tau}^{\prime}(t) \cdot \underline{\tau}(t)=0$.
poof.

$$
\|\underline{\tau}\|^{2}=1 \Leftrightarrow \frac{d}{d t}(\underline{\tau} \cdot \underline{\tau})=2 \underline{\tau}^{\prime} \cdot \underline{\tau}=0
$$

Definition
The unit normal vector of \subseteq is the vector $\underline{n}(t), t \in[a, b]$ such that:
(i) $\| \underline{n}(t) i=1$
(ii) $\underline{n}(t) \cdot \underline{\tau}(t)=0$
(iii) $\underline{\tau}(t) \times \underline{n}(t)>0$

Remark: If $c:[a, b] \rightarrow \mathbb{R}^{2}$ has unit normal n and $p:[a, b] \rightarrow[a, b]$ is defined by $p(t)=a+b-t$, the the unit normal of $\leq o p$ is $-\underline{n}$.

Definition Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular curve parametrized by arc-length and assume that $\underline{\tau}^{\prime}$ exists. By Lemma $1 \quad \underline{\tau}^{\prime}(s)=k(s) \underline{n}(s)$ for some $x:[a, b] \rightarrow \mathbb{R}$. x is called the curvature of \underline{c}.

Proposition
Let $\subseteq[a, b] \rightarrow \mathbb{R}^{2}$ be a regular parametrized curve, not necessarily parametrized by ars-length. Then, when it exists, the curvature K of c satisfies:

$$
|k|=\frac{\left|s^{\prime} x \leq^{\prime \prime}\right|}{\left\|s^{\prime}\right\|^{3}}
$$

poof.
Arc-length of $s: \quad s(t)=\int_{t_{0}}^{t}\left\|c^{\prime}(u)\right\| d u \Leftrightarrow \frac{d s}{d t}=\left\|c^{\prime}\right\|$

$$
\begin{gathered}
\Leftrightarrow \frac{d}{d s}=\frac{1}{\left\|c^{\prime}\right\|} \frac{d}{d t} \\
\underline{\tau}=\frac{c^{\prime}}{\left\|c^{\prime}\right\|} \Leftrightarrow \frac{d}{d s} \underline{\tau}=\frac{1}{\left\|c^{\prime}\right\|} \frac{d}{d t}\left(\frac{c^{\prime} \|}{\left\|c^{\prime}\right\|}\right)=\frac{c^{\prime \prime}}{\left\|c^{\prime}\right\|^{2}}-\frac{c^{\prime}}{\left\|s^{\prime}\right\|^{3}} \frac{d}{d t}\left\|\underline{c}^{\prime}\right\|
\end{gathered}
$$

Now, $\quad \frac{d}{d t}\left(\left\|\underline{c}^{\prime}\right\|\right)=\frac{d}{d t}\left(\sqrt{\underline{c}^{\prime} \cdot \underline{c}^{\prime}}\right)=\frac{\underline{c}^{\prime} \cdot \underline{c}^{\prime \prime}}{\left\|\underline{c}^{\prime}\right\|}$
Therefore:

$$
\begin{aligned}
& \frac{d \tau}{d s}=\frac{1}{\left\|\underline{c}^{\prime}\right\|^{2}}\left(\underline{c}^{\prime \prime}-\frac{\left(\underline{c}^{\prime} \cdot \underline{c}^{\prime \prime}\right)}{\underline{c}^{\prime} \cdot \underline{c}^{\prime}} \underline{c}^{\prime}\right) \quad \Leftrightarrow \\
& x^{2}=\frac{1}{\left\|\underline{c}^{\prime}\right\|^{4}}\left\|\underline{c}^{\prime \prime}-\frac{\left(\underline{s}^{\prime} \cdot \underline{s}^{\prime \prime}\right)}{\left(\underline{c}^{\prime} \cdot \underline{c}^{\prime}\right)} \underline{\underline{c}}^{\prime}\right\|^{2}=\frac{1}{\left\|\underline{c}^{\prime}\right\|^{4}}\left[\left\|\underline{c}^{\prime \prime}\right\|^{2}-2 \frac{\left(\underline{c}^{\prime} \cdot \underline{c}^{\prime \prime}\right)^{2}}{\left(\underline{c}^{\prime} \cdot \underline{c}^{\prime}\right)}+\frac{\left(\underline{c}^{\prime} \cdot \underline{c}^{\prime \prime}\right)^{2}}{\left(\underline{c}^{\prime} \cdot \underline{c}^{\prime}\right)^{2}}\right] \\
& \frac{\underline{c}^{\prime} \cdot \underline{c}^{\prime \prime} \theta}{\left\|\leq^{\prime}\right\| \underline{c}^{\prime \prime} \|}=\cos \theta \rightarrow=\frac{\left\|c^{\prime}\right\|^{2}\left\|\leq^{\prime \prime}\right\|^{2}\left(1-\cos ^{2} \theta\right)}{\left\|\varsigma^{\prime}\right\|^{6}} \\
& =\frac{\left\|\varsigma^{\prime}\right\|^{2}\left\|\leq^{\prime \prime}\right\|^{2} \sin ^{2} \theta}{\left\|\underline{c}^{\prime}\right\|^{6}} \\
& \frac{\underline{c}^{\prime} x \underline{c}^{\prime \prime}}{\left\|c^{\prime}\right\|\left\|c^{\prime \prime}\right\|}=\sin \theta \quad=\frac{\left(\underline{c}^{\prime} \times \underline{c}^{\prime \prime}\right)^{2}}{\left\|\underline{c}^{\prime}\right\|^{6}}
\end{aligned}
$$

Remark: In fact $k=\frac{c^{\prime} \times \subseteq^{\prime \prime}}{\left\|\varsigma^{\prime}\right\|^{3}}$ thanks to our choice of diuction for n.
Definition
and fix $t \in[a, b]$
Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular parametrized curve. For $h \in \mathbb{R}$ sufficiently small let $R(t, h)$ be the radius of the circle passing through the points $\subseteq(t), \underline{c}(t+h), \underline{c}(t-h)$. Then the osculating radius of \subseteq at $t \in[a, b]$, if it exists, is $R(t)=\lim _{n \rightarrow 0} R(t, h)$.

Theorem (Geometric Interpretation of curvature)
Suppose that $R(t)$ and $x(t)$ but exist. Then $R(t)=\frac{1}{|x(t)|}$.
poof.
We are going to use the formula for the radius of the circle that circumscribes a triangle:

$$
R=\frac{a b c}{4 \text { Area }}
$$

where a, b, c are the sides of the triangle and Area is its area.

We use this formula to calculate $R(t, h)$: the triangle we are interested in has vertices $\subseteq(t), \subseteq(t+h), \subseteq(t-h)$. Hence

$$
R(t, h)=\frac{\|s(t+h)-\underline{c}(t)\| \cdot\|c(t)-s(t-h)\| \cdot\|\subseteq(t+h)-s(t-h)\|}{2|[\underline{c}(t+h)-\underline{c}(t)] \times[\underline{c}(t+h)+\underline{c}(t-h)-2 \leq(t)]|}
$$

Here we used the fact that the aria of the triangle with vertices $s(t), \subseteq(t+h), c(t-h)$ is $\frac{1}{2} x$ area of parallelograur w sides

$$
\subseteq(t+h)-\subseteq(t) \& \quad c(t-h)-\subseteq(t)
$$

$=\frac{1}{2} x$ area of parallelograin $w /$ sides

$$
\underline{c}(t+h)-\underline{c}(t) \quad \& \quad \underline{c}(t+h)-\underline{c}(t)+\underline{c}(t-h)-\underline{c}(t)
$$

Now,

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{\underline{c}(t+h)-\subseteq(t)}{h}=c^{\prime}(t) & \lim _{h \rightarrow 0^{+}} \frac{c(t)-\underline{c}(t-h)}{h}=\underline{c}^{\prime}(t) \\
\lim _{h \rightarrow 0^{+}} \frac{\frac{c}{c}(t+h)-c(t-h)}{h}=2 s^{\prime}(t) & \lim _{h \rightarrow 0^{+}} \frac{c(t+h)+c(t-h)-2 c(t)}{h^{2}}=c^{\prime \prime}(t) .
\end{array}
$$

(for example, one can use l^{\prime} Hospital Rule on each coordinate function; ow assumptions on \subseteq guarantee the existence of $\underline{c}^{\prime} \& \subseteq^{\prime \prime}$)
Hence: $\lim _{h \rightarrow 0^{+}} R(t, h)=\frac{\left\|\underline{s}^{\prime}\right\|^{3}}{\left|\underline{c}^{\prime} \times \underline{s}^{\prime \prime}\right|}$

Definition
Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a transformation of the plane. We say that T is
4
(i) the translation by $\vec{v}=(a, b) \in \mathbb{R}^{2}$ if

$$
T(x, y)=(x+a, y+b)
$$

(ii) the rotation of angle $\theta \in \mathbb{R}$ if

$$
T(x, y)=(\cos \theta x-\sin \theta y, \sin \theta x+\cos \theta y)
$$

(iii) a rigid motion if

$$
T(x, y)=(\cos \theta x-\sin \theta y+a, \quad \sin \theta x+\cos \theta y+b)
$$

for some $\theta \in \mathbb{R},(a, b) \in \mathbb{R}^{2}$.

Lemma
Anc-length and curvature of a parametrised curve are invariant under rigid motions.
poof.

$$
\begin{aligned}
& \underline{c}:[a, b] \rightarrow \mathbb{R}^{2} \quad \tilde{\underline{c}}(t)=R_{\theta} \underline{c}(t)+\underline{v} \\
& \tilde{c}^{\prime}(t)=R_{\theta} \underline{c}^{\prime}(t) \quad \tilde{c}^{\prime \prime}(t)=R_{\theta} \underline{c}^{\prime \prime}(t) \\
& \Leftrightarrow \quad \tilde{s}(t)=\int_{t_{0}}^{t}\left\|\tilde{c}^{\prime}(t)\right\| d u=\int_{t_{0}}^{t}\left\|R_{\theta} \underline{c}^{\prime}(t)\right\| d u=\int_{t_{0}}^{t}\left\|\underline{c}^{\prime}(u)\right\| d u=s(t) \\
& \tilde{x}(t)=\frac{\tilde{c}^{\prime}(t) \times \tilde{c}^{\prime \prime}(t)}{\left\|\underline{\tilde{c}}^{\prime}(t)\right\|^{3}}=\frac{R_{\theta} \underline{c}^{\prime}(t) \times R_{\theta} \underline{c}^{\prime \prime}(t)}{\left\|R_{\theta} \underline{c}^{\prime}(t)\right\|^{3}}=\frac{\underline{c}^{\prime}(t) \times \underline{c}^{\prime \prime}(t)}{\left\|\underline{c}^{\prime}(t)\right\|^{3}}=\pi(t)
\end{aligned}
$$

since $R_{\theta} \underline{u} \cdot R_{\theta} \underline{v}=\underline{u} \cdot \underline{v}$ and $R_{\theta} \underline{u} \times R_{\theta} \underline{v}=\underline{u} \times \underline{v}$.
Theorem (Fundamental Theorem of the Local Theory of Plane Curves)
Given a differentiable function $\quad x:[a, b] \rightarrow \mathbb{R}$, there exists a regular parametrized curve $c:[a, b] \rightarrow \mathbb{R}^{2}$ parametrized by arc-length such that $k(t)$ is ts its curvature. Moreover, if $\tilde{\underline{c}}$ is another such curve then $\tilde{c}(\dot{s})=T(\underline{c}(s)), \forall s \in[a, b]$ for some rigid motion T.
poof.
$Q(2)$ First note that if $c:[a, b] \rightarrow \mathbb{R}^{2}$ is parametrized by arc-length, then $\underline{c}^{\prime}(s)=(\cos \theta(s), \sin \theta(s))$ for some function $\theta:[a, b] \rightarrow \mathbb{R}$
Then $\underline{x}^{\prime \prime}(s)=\theta^{\prime}(s)(-\sin \theta(s), \cos \theta(s))=\theta^{\prime}(s) \underline{n}(s)$ and therefore

$$
e^{\prime}(s)=k(s)
$$

Thus define $\quad \theta(s)=\int_{2}^{s} k(u) d u+\theta_{0}$ for some $\theta_{0} \in \mathbb{R}$ and

$$
c(s)=\left(\int_{a}^{s} \cos \theta(t) d t+W_{1}, \int_{a}^{s} \sin \theta(t) d t+v_{2}\right) \text { for some }\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}
$$

The possible different choices of θ_{0} and $\left(v_{1}, v_{2}\right)$ correspond to moving \subseteq by a rigid motion.

Example (Cornu's Spiral)

$$
\begin{aligned}
& x(s)=s \\
& \underline{c}(s)=\left(\int_{0}^{s} \cos \left(\frac{t^{2}}{2}\right) d t, \int_{0}^{s} \sin \left(\frac{t^{2}}{2}\right) d t\right)
\end{aligned}
$$

§4. Length \& Area: the Isoperimetric Inequality
DeFinition
Let $T_{\in} \mathbb{R}$ be a positive constant. A simple closed curve in \mathbb{R}^{2} with period \mathbb{I} is a regular parametrized curve $\mathfrak{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that

$$
\underline{c}(t)=\underline{c}\left(t^{\prime}\right) \Leftrightarrow t^{\prime}=t+k \mathbb{T} \text { for some } k \in \mathbb{Z} .
$$

Examples

simple dosed curve

non-simple closed curves

Theorem (Jordan Curve Theorem)
Let $\underline{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a simple closed curve.. Then $\mathbb{R}^{2},\{\subseteq(t) \mid t \in \mathbb{R}\}$ is the disjoint union of two subsets $\operatorname{int}(\underline{c}$) and ext (\subseteq) such that:
(i) $\operatorname{int}(\underline{c})$ is bounded: int ((\subseteq) is contained inside a circle of sufficiently large radius;
(ii) ext (c) is unbounded;
(iii) $\operatorname{int}(\underline{c})$ and $\operatorname{ext}(\underline{c})$ are connected: any two points in int (c) (ext (c)) can be joined by a curve contained entirely in int (c) (ext ($\subseteq 1$, respectively)
Examples

Is p in $\operatorname{int}(c) \cdot R$ ext (c) ?

Definition
Let $\subseteq: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a simple closed curve with period T and continuous c^{\prime}.
The length $\ell(\subseteq)$ of c is

$$
\ell(\leq)=\int_{0}^{T}\left\|s^{\prime}(t)\right\| d t
$$

Lemma
Let $\subseteq: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a simple closed curve with period T and continuous c^{\prime}. If c is parametrized by arc length then $T=\ell(c)$.
pol.

$$
l(s)=\int_{0}^{T}\left\|c^{\prime}(s)\right\| d s=\int_{0}^{T} d s=T
$$

Definition
Let $\subseteq: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a simple closed carve. We say that \subseteq is positively oriented if the unit nounal $n(t)$ points into int $(c) \forall t \in \mathbb{R}$.
Examples

Goal. Compare $l(c)$ with the area of int (c).
Isopenimetric Problem: which simple closed curve with length l bounds the most area?
Lemma Let $\subseteq: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a simple closed curve. Assume that $\ell(\underline{c})$ and $a\left(\operatorname{int}(\leq 1)\right.$ exist. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rigid motion and consider the curve $\underline{\tilde{c}}(t)=T(\underline{c}(t))$. Then $\underline{\underline{c}}$ is a simple closed curve and $\ell(\tilde{\tilde{c}})=\ell(\underline{c}), \quad a(\operatorname{int}(\tilde{\tilde{c}}))=a(\operatorname{int}(\underline{c}))$.
Remark This says that we can move carves around by rigid motions in the most convenient position. For example we can always assume that:
(i) $\underline{\theta} \in \operatorname{int}(\underline{c})$: if $\underline{v}=(a, b) \in \operatorname{int}(\underline{c})$ consider the curve $\underline{c}-\underline{v}$
on
(ii) $\underline{o}=\underline{c}(0)$: consider the curve $\leq-\leq(0)$

Theorem (Isoperimetric Inequality)
Let \subseteq be a rimple closed curve with continuous \subseteq !. Then

$$
a(\operatorname{int}(\underline{c})) \leqslant \frac{1}{4 \pi} l(\underline{c})^{2}
$$

Moreover, equality holds iff c is a circle.
Definition
A simple closed curve \subseteq is convex if the straight line segment joining any two points in int (c) it entirely contained in int (c).
Examples:

Detrition
Remark
Informally, knowing the Isoperimetric Inequality for convex curves yields the Isoperimetric Inequality for any curve:

Definition
with period T
Let $\mathfrak{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a convex simple closed curve. For every partition $P=\left\{t_{0}=0, t_{1}, \ldots, t_{n}=T\right\}$, let $a(\operatorname{int} \underline{c}, P)$ be the area bounded by the polygonal curve with vertices $\subseteq\left(t_{0}\right), \subseteq\left(t_{1}\right), \ldots, \subseteq\left(t_{n}\right)=\subseteq\left(t_{0}\right)$.
We then set $a(\operatorname{int} \underline{c})=\sup _{p} a(\operatorname{int} \underline{c}, P)$ and say that int \underline{c} is measurable if $a(i n t c)$ exists.
Remark: This is slightly cheating, we should define area wing inscribed \& circumscribed polygons:

Theorem (Green's Formula for Area)
Let $\underline{c}(t)=(x(t), y(t))$ be a positively-oriented simple closed curve with period T and continuous \mathfrak{c}^{\prime}. Then int $(\underline{c}$) is measurable and

$$
a(\operatorname{int}(\underline{c}))=\frac{1}{2} \int_{0}^{T} x y^{\prime}-y x^{\prime} d t
$$

proof.
Assume without loss of generality that $\underline{o} \in \operatorname{int}(\underset{c}{c}$.
Finst note that $x, x^{\prime}, y, y^{\prime}:[0, T] \rightarrow \mathbb{R}$ are continuous functions and therefore:
(i) $\exists M>0$ s.t. $|x(t)|,|y(t)|,\left|x^{\prime}(t)\right|,\left|y^{\prime}(T)\right| \leqslant M \quad \forall t \in[0, T]$
(ii) $\forall \varepsilon>0, \exists \delta>0$ st. $\quad|t-s|<\delta \Leftrightarrow\left\{\begin{array}{l}|x(t)-x(s)|<\varepsilon \\ \text { (uniforen continuity) }\end{array} \quad\left\{\begin{array}{l}|(t)-y(s)|<\varepsilon \\ \left|x^{\prime}(t)-x^{\prime}(s)\right|<\varepsilon \\ \left|y^{\prime}(t)-y^{\prime}(s)\right|<\varepsilon\end{array}\right.\right.$

In particular, it follows that $x y^{\prime}-y x^{\prime}$ is continuous on $[0, T]$ and therefore $\frac{1}{2} \int_{0}^{\top} x y^{\prime}-x^{\prime} y$ at exists. Moreover, $\forall \varepsilon>0, \exists \delta_{1}>0$ st. if
$P=\left\{t_{0}=0, t_{1}, \ldots, t_{n}=T\right\}$ is a partition of $[0, T]$ with $\left|t_{i}-t_{i-1}\right|<\delta_{1}$ then

$$
\begin{equation*}
\bar{I}\left(\frac{x y^{2}-x^{\prime} y}{2}, P\right)-I\left(\frac{x y^{\prime}-x^{\prime} y}{2}, P\right)<\varepsilon \tag{*}
\end{equation*}
$$

Now, given a partition $P=\left\{t_{0}=0, t_{1}, \ldots, t_{n}=T\right\}$ of $[0, T]$ consider the polygonal curve with vertices $c\left(t_{0}\right), \subseteq\left(t_{1}\right), \ldots, \subseteq\left(t_{n}\right)=c\left(t_{0}\right)$

Let $a\left(k e_{i}, P\right)$ denote the area of the region bounded by this polygonal curve.
Then $a($ int $s)=\sup _{p} a($ int $c, P)$ if this sup exists.

Observe that $a($ int $s, P)=\sum_{i=1}^{n} \frac{1}{2} \underline{c}\left(t_{i}\right) \times\left[\underline{c}\left(t_{i}\right)-\underline{c}\left(t_{i-1}\right)\right]$

$$
\text { i.e. } \quad \begin{aligned}
a\left(\text { int }_{\underline{c}}, P\right) & =\frac{1}{2} \sum_{i=1}^{n}\left[x\left(t_{i}\right)\left(y\left(t_{i}\right)-y\left(t_{i-1}\right)\right)-y\left(t_{i}\right)\left(x\left(t_{i}\right)-x\left(t_{i-1}\right)\right)\right] \\
& =\frac{1}{2} \sum_{i=1}^{n}\left[x\left(t_{i}\right) y^{\prime}\left(\zeta_{i}\right)-y\left(t_{i}\right) x^{\prime}\left(\xi_{i}\right)\right]\left(t_{i}-t_{i-1}\right)
\end{aligned}
$$

for some $\zeta_{i}, \xi_{i} \in\left[t_{i-1}, t_{i}\right]$ by the Mean Value Theorem.
Chain: $\forall \varepsilon>0, \exists \delta_{2}>0$ s.t. if $\left|t_{i}-t_{i-1}\right|<\delta_{2}$ then

$$
\left|\left[x\left(t_{i}\right) y^{\prime}\left(\zeta_{i}\right)-y\left(t_{i}\right) x^{\prime}\left(\xi_{i}\right)\right]-\left[x(t) y^{\prime}(t)-y(t) x^{\prime}(t)\right]\right|<\varepsilon \quad \forall t \in\left[t_{i-1}, t_{i+1}\right]
$$

poof. of Claim:
We use boundedness and uniform continuity of $x, y, x^{\prime}, y^{\prime}:[0, T] \rightarrow \mathbb{R}$: $\exists \delta_{2}>0$ st.

$$
\begin{aligned}
& \left|\left[x\left(t_{i}\right) y^{\prime}\left(\zeta_{i}\right)-y\left(t_{i}\right) x^{\prime}\left(\xi_{i}\right)\right]-\left[x(t) y^{\prime}(t)-y(t) x^{\prime}(t)\right]\right|= \\
& \quad=\left|\left[x\left(t_{i}\right)-x(t)\right] y^{\prime}\left(\zeta_{i}\right)+x(t)\left[y^{\prime}\left(\zeta_{i}\right)-y^{\prime}(t)\right]-\left[y\left(t_{i}\right)-y(t)\right] x^{\prime}\left(\xi_{i}\right)-y(t)\left[x^{\prime}\left(\xi_{i}\right)-x^{\prime}(t)\right]\right| \leqslant \\
& \quad \leqslant\left|x\left(t_{i}\right)-x(t)\right|\left|y^{\prime}\left(\zeta_{i}\right)\right|+|x(t)|\left|y^{\prime}\left(\zeta_{i}\right)-y^{\prime}(t)\right|+\left|y\left(t_{i}\right)-y(t)\right|\left|x^{\prime}\left(\xi_{i}\right)\right|+|y(t)|\left|x^{\prime}\left(\xi_{i}\right)-x^{\prime}(t)\right| \\
& \quad \leqslant 4 M \varepsilon^{\prime}<\varepsilon \text { if } \varepsilon^{\prime}<\frac{\varepsilon}{4 M} .
\end{aligned}
$$

Now choose a partition P with $\left|t_{i}-t_{i-1}\right|<\min \left\{\delta_{1}, \delta_{2}\right\}$. Then by the Claim $I\left(\frac{x y^{\prime}-x^{\prime} y}{2}, P\right)-\varepsilon \leqslant a(\operatorname{int} \leqslant, P) \leqslant \bar{I}\left(\frac{x y^{\prime}-x^{\prime} y}{2}, P\right)+\varepsilon$ and therefore by ${ }^{(*)}$

$$
\left.\left\lvert\, a(\text { int } c, P)-\frac{1}{2} \int_{0}^{T} x y^{\prime}-x^{\prime} y d t\right. \right\rvert\,<\varepsilon
$$

Since ε is arbitrary, the Theorear is proved.

Theorem (Wirtinger's Inequality)
Let $F:[0, T] \rightarrow \mathbb{R}$ be a function with continuous derivative such that $F(0)=0=F(T)$. Then

$$
\int_{0}^{T} F(t)^{2} d t \leqslant \frac{T^{2}}{\pi^{2}} \int_{0}^{\pi}\left(F^{\prime}(t)\right)^{2} d t
$$

Moreover, equality holds and only if $F(t)=A \sin \left(\frac{\pi^{t}}{T}\right)$ fore some $A \in \mathbb{R}$.
poof.
Write $F(t)=G(t) \sin \left(\frac{\pi}{T} t\right)$.
Then $F^{\prime}=G^{\prime} \sin \left(\frac{\pi}{T} t\right)+\frac{\pi}{T} G(t) \cos \left(\frac{\pi}{T} t\right)$.
Hence $\int_{0}^{T}\left(F^{\prime}\right)^{2} d t=\int_{0}^{T}\left(G^{\prime}\right)^{2} \sin ^{2}\left(\frac{\pi}{T} t\right)+2 \frac{\pi}{T} G G^{\prime} \sin \left(\frac{\pi}{T} t\right) \cos \left(\frac{\pi}{T} t\right)+\frac{\pi^{2}}{T^{2}} G^{2} \cos ^{2}\left(\frac{\pi}{T} t\right) d t$
Now,

$$
\begin{aligned}
2 \frac{\pi}{T} \int_{0}^{T} G G^{\prime} \sin \left(\frac{\pi}{T} t\right) \cos \left(\frac{\pi}{T} t\right) d t & =\left.\frac{\pi}{T} G^{2} \sin \left(\frac{\pi}{T} t\right) \cos \left(\frac{\pi}{T} t\right)\right|_{0} ^{T} \\
& +\frac{\pi^{2}}{T^{2}} \int_{0}^{T} G^{2}\left[\sin ^{2}\left(\frac{\pi}{T} t\right)-\cos ^{2}\left(\frac{\pi}{T} t\right)\right] d t \\
& =\frac{\pi^{2}}{T^{2}} \int_{0}^{T} G^{2}\left[\sin ^{2}\left(\frac{\pi}{T} t\right)-\cos ^{2}\left(\frac{\pi}{T} t\right)\right] d t
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\int_{0}^{T}\left(F^{\prime}\right)^{2} d t & =\int_{0}^{T}\left(G^{\prime}\right)^{2} \sin ^{2}\left(\frac{\pi}{T} t\right)+\frac{\pi^{2}}{T^{2}} \int_{0}^{T} G^{2} \sin ^{2}\left(\frac{\pi}{T} t\right) d t \\
& \geqslant \frac{\pi^{2}}{T^{2}} \int_{0}^{T} G^{2} \sin ^{2}\left(\frac{\pi}{T} t\right) d t=\frac{\pi^{2}}{T^{2}} \int_{0}^{T} F^{2} d t \quad \&^{\prime \prime}=\text { " if } G^{\prime}=0
\end{aligned}
$$

Theorem (Isoperimetric Inequality for Convex Curves) Let $\subseteq: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a simple dosed convex curve with period T and continuous ϱ^{\prime}. Then

$$
a(\operatorname{int} \underline{c}) \leqslant \frac{1}{4 \pi} \ell(\underline{c})^{2}
$$

and equality holds iff \subseteq is a circle.
poof.
Wlog we can assume that c is parametrised by arcleagth, positively oriented and satisfies $\subseteq(0)=\underline{0}=\underline{\subseteq}(T)$. Recall that $T=l(\subseteq)$ since \subseteq is parametrized by arc length.
We use polar coordinates $x=r \cos \theta, y=r \sin \theta$.
Notation. $\dot{f}=\frac{d}{d t} f$
We calculate:

$$
1=\dot{x}^{2}+\dot{y}^{2}=\dot{r}^{2}+\pi^{2} \dot{\theta}^{2} \quad x \dot{y}-\dot{x} y=\pi^{2} \dot{\theta}
$$

We need to use a thick:

$$
\frac{T^{2}}{4 \pi}=\frac{T}{4 \pi} \int_{0}^{T} \pi^{2}+\pi^{2} \dot{\theta}^{2} d t
$$

Consider:

$$
\begin{gathered}
I:=\frac{4 T}{\pi}\left(\frac{l^{2}(c)}{4 \pi}-a(\operatorname{int}(\underline{c}))\right)=\int_{0}^{T} \frac{T^{2}}{\pi^{2}} \dot{\pi}^{2}+\frac{T^{2}}{\pi^{2}} \pi^{2} \dot{\theta}^{2}-2 \frac{T}{\pi} r^{2} \dot{\theta} d t \\
=\int_{0}^{T}\left(\frac{T^{2}}{\pi^{2}} \dot{r}^{2}-\pi^{2}\right)+\pi^{2}\left(1-\frac{T}{\pi} \dot{\theta}\right)^{2} d t
\end{gathered}
$$

$\geqslant 0$ by Wintinger's Inequality.
Moreover $I=0$ if

$$
\left\{\begin{array}{l}
r(t)=A \sin \left(\frac{\pi}{T} t\right) \text { for some } A \in \mathbb{R} \\
\dot{\theta}=\frac{\pi}{T}
\end{array}\right.
$$

$\Leftrightarrow \quad \pi=A \sin (\theta-c)$ which is the polar equation of a circle.

1. Let $\mathbf{c}(t)=\left(e^{-t} \cos t, e^{-t} \sin t\right), t \in[0, \infty)$.
(a). Prove that $\lim _{t \rightarrow \infty} \mathbf{c}(t)=\mathbf{0}$. Draw a sketch of the trace of \mathbf{c}.
(b). Prove that $\lim _{t \rightarrow \infty} \int_{0}^{t}\left\|\mathbf{c}^{\prime}(\tau)\right\| d \tau$ exists and justify the claim that \mathbf{c} has finite length over $[0, \infty)$.

In the following problems $2-5, \mathbf{c}=(u, v):[a, b] \rightarrow \mathbb{R}^{2}$ is a regular parametrized curve with continuous derivative \mathbf{c}^{\prime}.
2. For every $\left[t_{1}, t_{2}\right] \subset[a, b]$ define

$$
\int_{t_{1}}^{t_{2}} \mathbf{c}(t) d t=\left(\int_{t_{1}}^{t_{2}} u(t) d t, \int_{t_{1}}^{t_{2}} v(t) d t\right) \in \mathbb{R}^{2}
$$

Prove the Fundamental Theorem of Calculus for this notion of integral, i.e. prove that

$$
\mathbf{c}\left(t_{2}\right)-\mathbf{c}\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} \mathbf{c}^{\prime}(t) d t
$$

3. You are going to prove that the straight line between $\mathbf{c}(a)$ and $\mathbf{c}(b)$ is shorter than \mathbf{c}.
(a). Prove that for every $\mathrm{x} \in \mathbb{R}^{2}$ we have

$$
(\mathbf{c}(b)-\mathbf{c}(a)) \cdot \mathbf{x} \leq\|\mathbf{x}\| \int_{a}^{b}\left\|\mathbf{c}^{\prime}(t)\right\| d t
$$

(b). Take $\mathbf{x}=\mathbf{c}(b)-\mathbf{c}(a)$ and deduce that $\|\mathbf{c}(b)-\mathbf{c}(a)\| \leq \ell(\mathbf{c})$. When does equality hold?
4. Define a vector $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ by

$$
x_{1}=\int_{t_{1}}^{t_{2}} u(t) d t, \quad x_{2}=\int_{t_{1}}^{t_{2}} v(t) d t .
$$

Note that we can write

$$
\|\mathbf{x}\|^{2}=x_{1} \int_{t_{1}}^{t_{2}} u(t) d t+x_{2} \int_{t_{1}}^{t_{2}} v(t) d t=\int_{t_{1}}^{t_{2}}\left(x_{1} u(t)+x_{2} v(t)\right) d t
$$

Prove that $\|\mathbf{x}\|^{2} \leq\|\mathbf{x}\| \int_{t_{1}}^{t_{2}}\|\mathbf{c}(t)\| d t$. Deduce that

$$
\left\|\int_{t_{1}}^{t_{2}} \mathbf{c}(t) d t\right\| \leq \int_{t_{1}}^{t_{2}}\|\mathbf{c}(t)\| d t
$$

5. Prove the Mean Value Inequality: there exists $t \in\left[t_{1}, t_{2}\right]$ such that

$$
\left\|\mathbf{c}\left(t_{2}\right)-\mathbf{c}\left(t_{1}\right)\right\| \leq\left\|\mathbf{c}^{\prime}(t)\right\|\left(t_{2}-t_{1}\right)
$$

6. This is an example of a non-rectifiable curve. Define $\mathbf{c}:[0,1] \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{c}(t)=\left(1, t \sin \left(\frac{\pi}{t}\right)\right)
$$

if $t>0$ and $\mathbf{c}(0)=\mathbf{0}$.
(a). Show that \mathbf{c} is continuous.
(b). Consider the arc \mathbf{c}_{n} of \mathbf{c} over the interval $\frac{1}{n+1} \leq t \leq \frac{1}{n}$. Since \mathbf{c} is regular with continuous derivative away from $t=0, \mathbf{c}_{n}$ is rectifiable for every $n \geq 1$. Use Problem 5 to show that

$$
\ell\left(\mathbf{c}_{n}\right) \geq \frac{4}{2 n+1} .
$$

(c). Consider the length of \mathbf{c} over the interval $\frac{1}{N+1} \leq t \leq 1$ and deduce that \mathbf{c} is not rectifiable.
7. The hyperbolic cosine and sine are the functions $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\cosh t=\frac{e^{t}+e^{-t}}{2}, \quad \sinh t=\frac{e^{t}-e^{-t}}{2}
$$

(a). Show that $\cosh ^{2} t-\sinh ^{2} t=1$. Observe that $\cosh t>0$ for all $t \in \mathbb{R}$.
(b). Show that the derivative of $\cosh t$ is $\sinh t$ and the derivative of $\sinh t$ is $\cosh t$.
(c). The catenary is the curve $\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by

$$
\mathbf{c}(t)=(t, \cosh t) .
$$

Show that the curvature of the catenary is

$$
\kappa(t)=\frac{1}{\cosh ^{2} t}
$$

MAT 142 - ANALYSIS II: NOTES 3 (WEEK $4-6$)
III. SEQUENCES
§1. Convergent sequences
Definition: A sequence is a function $\quad f: \mathbb{N} \rightarrow \mathbb{R}$.
Notation: $\{f(n)\}$ or $\left\{a_{n}\right\}$
Definition A sequence $\left\{a_{n}\right\}$ is said to converge to a if $\forall \varepsilon>0, \exists N \in \mathbb{N}$ sit.

$$
\left|a_{n}-a\right|<\varepsilon \quad \forall n \geqslant N .
$$

Theorem
Let $\left\{a_{n}\right\}$ be a sequence.
(a) $\left\{a_{n}\right\}$ converges to a if $\forall \varepsilon>0$ the interval $(a-\varepsilon, a+\varepsilon)$ contains all but finitely many valuer a_{n}.
(b) The limit of a sequence is unique: if $\lim _{n \rightarrow \infty} a_{n}=a \& \lim _{n \rightarrow \infty} a_{n}=a^{\prime}$ then $a=a^{\prime}$.
(c) If $\left\{a_{n}\right\}$ converges then $\left\{a_{n}\right\}$ is bounded: $\exists M>0$ st. $\left|a_{n}\right| \leq M \quad \forall n \in \mathbb{N}$.

Definition
A sequence $\left\{a_{n}\right\}$ is
(i) increasing if $a_{n} \leqslant a_{n+1} \quad \forall n \in \mathbb{N}$
(ii) decreasing if $a_{n} \geqslant a_{n+1} \quad \forall n \in \mathbb{N}$
and monotonic if it is either increasing or decreasing.
Theorem
Every bounded monotonic sequence converges.
poof.
Assume $\left\{a_{n}\right\}$ is increasing and let a be sup a_{n}. Note that a exists since $\left\{a_{n}\right\}$ is bounded.
By definition of sup, $\forall \varepsilon>0 \quad \exists N \in \mathbb{N}$ s.t. $a_{N}>a-\varepsilon$.
Then $\forall n \geqslant N \quad\left|a-a_{n}\right|=a-a_{n} \leqslant a-a_{N}<\varepsilon$
§. 2 Subsequences
Definition Given a sequence $\left\{a_{n}\right\}_{n}$ and a sequence $\left\{n_{k}\right\}_{k}$ of positive integers st. $n_{1}<n_{2}<n_{2}<\ldots$, the sequence $\left\{a_{n_{k}}\right\}_{k}$ is called a ribrequence of $\left\{a_{n}\right\}$.

Example $a_{n}=(-1)^{n} \quad n_{k}=2 k \quad a_{n_{k}}=1 \quad \forall k \in \mathbb{N}$
Theorem (Bolzano-Weientrast Theorem)
Every bounded sequence contains a convergent subsequence. poof.
Let $\left[x_{n}\right\}_{n}$ be a bounded sequence. Then there exist $a_{1}<b_{1}$ st.

Divide the interval $I_{1}=\left[a_{1}, b_{1}\right]$ into two halves $I_{1}=I_{1}^{\prime} \cup I_{1}^{\prime \prime}$
If I_{1}^{\prime} contains infinitely many $x_{n}^{\prime} s$ set $I_{2}=I_{1}^{\prime}$ otherwise $I_{1}^{\prime \prime}$ contains infinitely many x_{n}^{\prime} s and we set $I_{2}=I_{1}^{\prime \prime}$.
Write $I_{2}=\left[a_{2}, b_{2}\right]$ with $a_{1} \leqslant a_{2}<b_{2} \leqslant b_{1}$ and $b_{2}-a_{2}=\frac{b_{1}-a_{1}}{2}$.
Let n_{2} the mallet natural number $\geqslant 2$ sit. $x_{n_{2}} \in I_{2}$. Note that $a_{2} \leqslant x_{n_{2}} \leqslant b_{2}$.
If we proceed in this way we find sequences $\left\{a_{k}\right\},\left\{b_{k}\right\},\left\{x_{n k}\right\}$ st.

$$
a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{k} \leqslant x_{n_{k}} \leqslant b_{k} \leqslant \ldots \leqslant b_{2} \leqslant b_{1} \& 0 \leqslant b_{k}-a_{k}=\frac{b_{1}-a_{1}}{2^{k}}
$$

By the convergence of monotoinc sequencer we have limits

$$
\lim _{k \rightarrow \infty} a_{k}=a \quad \& \quad \lim _{k \rightarrow \infty} b_{k}=b
$$

Since $\left|b_{k}-a_{k}\right| \leqslant \frac{b_{1}-a_{1}}{2^{k}}$ we have in fact $x:=a=b$.
Then also $\lim _{k \rightarrow \infty} x_{n_{k}}=x$.
§3. Cauchy sequences
Def A sequence $\left\{a_{n}\right\}$ is a Cauchy sequence if $\forall \varepsilon>0, \exists N \in \mathbb{N}$ st.

$$
\left|a_{n}-a_{m}\right|<\varepsilon \quad \forall n, m \geqslant N
$$

Theorem (Cauchy Criterion)
A sequence $\left\{a_{n}\right\}$ converges if and only if it is a Cauchy sequence. poof.
If $\lim _{n \rightarrow \infty} a_{n}=a$ then $\forall \varepsilon \quad \exists N \in \mathbb{N}$ sit. $\left|a_{n}-a\right|<\varepsilon / 2 \forall n \geqslant N$.
Then if $n, m \geqslant N$ we have $\left|a_{n}-a_{m}\right|=\left|\left(a_{n}-a\right)+\left(a-a_{m}\right)\right| \leqslant\left|a_{n}-a\right|+\left|a-a_{m}\right|<\varepsilon$.
Suppose now that $\left\{a_{n}\right\}$ is a Cauchy sequence.
First of all we show that $\left\{a_{n}\right\}$ is bounded. Indued, $\exists \mathrm{N}$ st.

$$
\left|a_{n}-a_{m}\right|<1 \quad \forall^{\prime} n, m \geqslant N .
$$

Then

$$
\left|a_{k}\right| \leqslant \max \left\{\left|a_{1}\right|, \ldots,\left|a_{N-1}\right|,\left|a_{N}+1\right|,\left|a_{N-1}\right|\right\}
$$

If $\left\{a_{n}\right\}$ is bounded, by the Bolzano-Wiertrass Theorem there exists a convergent mibrequence $\left\{a_{n_{k}}\right\}_{k} w / \lim _{k \rightarrow \infty} a_{n_{k}}=a$.
Now, $\forall \varepsilon>0 \quad N^{\prime}, K$ sit.

$$
\begin{aligned}
& n, m \geqslant N^{\prime} \\
& k \geqslant K
\end{aligned} \Leftrightarrow \quad \begin{aligned}
& \left|a_{n}-a_{m}\right|<\varepsilon / 2 \\
& \left|a-a_{n_{k}}\right|<\varepsilon / 2
\end{aligned}
$$

Teal Set $N=\max \left\{N^{\prime}, N_{k}\right\}$. Then $\forall n \geqslant N$ we have $\quad\left|a-a_{n}\right|=\left|a-a_{n_{k}}+a_{n_{k}}-a_{n}\right| \leqslant\left|a-a_{n_{k}}\right|+\left|a_{n_{k}}-a_{n}\right|<\varepsilon$ provided k is sufficiently large so that $n_{k} \geqslant N^{\prime}$.
§4. Newton's Method

Example (Newton, 1671)
We want to find a root of the polynomial $P(x)=x^{3}-2 x-5$
Note that $X_{0}=2$ ratisfies $P\left(X_{0}\right)=-1$
Consider a new polynomial P_{1} defined by

$$
P_{1}(x)=P(2+x)=x^{3}+6 x^{2}+10 x-1
$$

If x is small, $x^{3}+6 x^{2}$ is munch smaller than $10 x-1$.
Set $x_{1}=$ FOL $2+\frac{1}{10}$
Define a new polynomial P_{2} by

$$
P_{2}(x)=P\left(x_{1}+x\right)=x^{3}+6.3 x^{2}+11.23 x+0.061
$$

If x is mall, $x^{3}+6.3 x^{2}$ is much smaller than $11.23 x+0.061$
We then set $x_{2}=2+\frac{1}{10}-0.054=2.046$
We calculate $P\left(x_{2}\right) \approx-0.527206664$
Newton's Method
Let $g:[a, b] \rightarrow \mathbb{R}$ be a function $w / \quad g^{\prime}(x) \neq 0 \quad \forall x \in[a, b]$ Fix $x_{0} \in[a, b]$ and consider the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{1}=x_{0}-\frac{g\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}, x_{2}=x_{1}-\frac{g\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}, \cdots, x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}
$$

Q1: When does $\left\{x_{n}\right\}$ converge?
Q2: Assume that $\lim _{n \rightarrow \infty} x_{n}=x$. Does x satisfy $g(x)=0$?
Remark: Given g at above define function $f:[a, b] \rightarrow \mathbb{R}$
by $f(x)=x-\frac{g(x)}{g^{\prime}(x)}$. Then a zero of $g(a$ point x sit. $g(x)=0)$
cowerpond to a fixed point of f (a point x sit. $f(x)=x$).
Note that $x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{2}\right), \ldots, x_{n+1}=f\left(x_{n}\right)$ and that in terms of f we have: Q1: When does $\left\{x_{n}\right\}$ converge?

Q2: Assume $\lim _{n \rightarrow \infty} x_{n}=x$. Does x satisfy $f(x)=x$.

Theorem
Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Fix $x_{0} \in[a, b]$ and define a sequence $\left\{x_{n}\right\}$ by

$$
x_{1}=f\left(x_{0}\right), \quad x_{2}=f\left(x_{1}\right), \ldots, x_{n+1}=f\left(x_{n}\right) .
$$

Asculine that $\lim _{n \rightarrow \infty} x_{n}=x$. Then $f(x)=x$.
poof.
$x=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ since f is continuous.
Example:
$f(x)=[x]+1-\frac{1}{2}([x]+1-x)^{2}$ where $[x]$ is the largest integer $\leqslant x$ $x_{0}=1$

$$
x_{1}=f\left(x_{0}\right)=2-\frac{1}{2}=1.5
$$

$$
x_{2}=f\left(x_{1}\right)=2-\frac{1}{2} \times\left(\frac{1}{2}\right)^{2}=1.875
$$

$$
x_{3}=f\left(x_{2}\right)=1.9921875
$$

$$
x_{4}=f\left(x_{3}\right)=1.9999695
$$

One can check that $\lim _{n \rightarrow \infty} x_{n}=2$. However,

$$
f\left(x_{n}\right)=2-\frac{1}{2}\left(2-x_{n}\right)^{2} \xrightarrow[n \rightarrow \infty]{ } 2 \neq 2.5=f(2)
$$

This shows that the assumption f continuous is necessary.
We now return to Q1: When doer $\left\{x_{n}\right\}$ converge?
Example:

Exercise (Exercise 16, Chap. 3 in $[R]$)
Fix $\alpha>0$. $g(x)=x^{2}-\alpha \leadsto f(x)=x-\frac{g(x)}{g^{\prime}(x)}=\frac{1}{2}\left(x+\frac{\alpha}{x}\right)$
Fix $x_{0}>\sqrt{\alpha}$ and consider the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \ldots, x_{n+1}=f\left(x_{n}\right)
$$

(i) Prove that $\left\{x_{n}\right\}$ is decreasing and conclude that

$$
\lim _{n \rightarrow \infty} x_{n}=\sqrt{\alpha}
$$

(ii) Set $\varepsilon_{n}=x_{n}-\sqrt{\alpha}$ and show that

$$
\varepsilon_{n+1}=\frac{\varepsilon_{n}^{2}}{2 x_{n}}<\frac{\varepsilon_{n}^{2}}{2 \sqrt{\alpha}}
$$

Hence setting $\beta=2 \sqrt{\alpha}$ we have

$$
\varepsilon_{n+1}<\beta\left(\frac{\varepsilon_{0}}{\beta}\right)^{2^{n+1}} \quad \forall n \geqslant 0
$$

(iii) If $\alpha=3 \& x_{0}=2$ show that $\frac{\varepsilon_{0}}{\beta}<\frac{1}{10}$ and therefore

$$
\varepsilon_{4}<4 \cdot 10^{-16} \quad \varepsilon_{5}<4 \cdot 10^{-32}
$$

Definition A function $f:[a, b] \rightarrow[a, b]$ is a contraction if $\exists c \in(0,1)$ st.

$$
|f(x)-f(y)| \leqslant a|x-y| \quad \forall x, y \in[a, b]_{x}
$$

Theorem
Let $f:[a, b] \rightarrow[a, b]$ be a contraction.
Then f hat a unique fixed point x_{r}. Moreover, for every $x_{0} \in[a, b]$ consider the sequence $\left\{x_{n}\right\}$ defined by $x_{1}=f\left(x_{0}\right), x_{n+1}=f\left(x_{n}\right)$.
Then $\lim _{n \rightarrow \infty} x_{n}=x_{*}$.
prof.
Fix $x_{0} \in[a, b]$ and consider the sequence $\left\{x_{n}\right\}$ defined by $x_{1}=f\left(x_{0}\right), x_{n+1}=f\left(x_{n}\right)$. We first show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Indeed,
note that

$$
\begin{equation*}
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right|<\left|x_{n-1}-x_{n-2}\right|<\ldots<c^{n}\left|x_{1}-x_{0}\right|=c^{n}\left|f\left(x_{1}\right)-x_{0}\right| \tag{6}
\end{equation*}
$$

Hence, $\forall n, m \geqslant 1$

$$
\begin{aligned}
\left|x_{n+m}-x_{n}\right|=\left|\sum_{k=0}^{m-1}\left(x_{n+k+1}-x_{n+k}\right)\right| \leqslant\left|f\left(x_{0}\right)-x_{0}\right| \sum_{k=0}^{m-1} c^{n+k} & =c^{n}\left|f\left(x_{0}\right)-x_{0}\right| \frac{1-c^{m}}{1-c} \\
& \leqslant c^{n}\left|f\left(x_{0}\right)-x_{0}\right| \frac{1}{1-c}
\end{aligned}
$$

Since $c<1, \lim _{n \rightarrow \infty} c^{n}=0$ and therefore $\forall \varepsilon>0$
$\exists N$ s.t. $e^{n}\left|f\left(x_{0}\right)-x_{0}\right| \frac{1}{1-c}<\varepsilon \quad \forall n \geqslant N$.
By the Cauchy Criterion, $\left\{x_{n}\right\}$ is convergent. Set $x_{*}=\lim _{n \rightarrow \infty} x_{n}$.
Now observe that f is continuous:
$\forall \varepsilon>0$ if $|x-y|<\frac{\varepsilon}{c}$ we have $|f(x)-f(y)|<c|x-y|<\frac{\varepsilon}{c} \cdot c=\varepsilon$
Hence

$$
x_{*}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=f\left(x_{*}\right)
$$

ie. x_{*} is a fixed point of f.
Finally, suppose that x_{*}^{\prime} is another fixed point. Then

$$
\begin{aligned}
\left|x_{*}-x_{k}^{\prime}\right|=\left|f\left(x_{*}\right)-f\left(x_{*}^{\prime}\right)\right| \leqslant c\left|x_{*}-x_{*}^{\prime}\right| & \Leftrightarrow(1-c)\left|x_{*}-x_{*}^{\prime}\right| \leqslant 0 \\
& \Leftrightarrow x_{*}=x_{0}^{*} \quad \text { since o<c<1 }
\end{aligned}
$$

Theorem
Let $f:[a, b] \rightarrow[a, b]$ be a differentiable function. Then f is a contraction iff $\exists c \in(0,1)$ st. $\left|f^{\prime}(x)\right| \leqslant c \quad \forall x \in(a, b)$.
poof.
If f is a contraction then $\exists c \in(0,1)$ ot.
$|f(x+h)-f(x)| \leqslant c|h|$ and therefore $\left|\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right| \leqslant c$
Conversely, if $\left|f^{\prime}(\xi)\right| \leqslant c \quad \forall \in(a, b)$ we have $\forall x, y \in[a, b]$
$f(x)-f(y)=f^{\prime}(\xi)(x-y)$ for some $\xi \in(a, b)$. by the Mean Value
Hence:

$$
|f(x)-f(y)| \leqslant\left|f^{\prime}(\xi)\right||x-y| \leqslant c|x-y|
$$

1. Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its parametrization

$$
\mathbf{c}(t)=(a \cos t, b \sin t), \quad t \in[0,2 \pi]
$$

(a). Calculate the curvature of the ellipse.
(b). Calculate the area of the region enclosed by the ellipse using Green's Formula.
(c). Show that

$$
\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} d t \geq 2 \pi \sqrt{a b}
$$

and that equality holds if and only if $a=b$.
2. Let \mathbf{c} be the parametrized curve

$$
\mathbf{c}(t)=((1+2 \cos t) \cos t,(1+\cos t) \sin t) .
$$

Show that $\mathbf{c}(t+2 \pi)=\mathbf{c}(t)$ but \mathbf{c} is not a simple closed curve. Draw a sketch.
3. Does there exist a simple closed curve 4 ft long and bounding an area of $2 \mathrm{ft}^{2}$?
4. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots
$$

Find all numbers $a \in \mathbb{R}$ such that there exists a subsequence of $\left\{a_{n}\right\}$ converging to a.
5. The Euler number γ is defined as

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)
$$

Show that γ is well-defined. (Hint: show that the sequence $a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n$ is decreasing.)
6. Let $\left\{a_{n}\right\}$ a bounded sequence. Define two new sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ by

$$
x_{n}=\inf \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}, \quad y_{n}=\sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
$$

(a). Prove that $\left\{x_{n}\right\}$ is decreasing and $\left\{y_{n}\right\}$ is increasing and deduce that both sequences have a limit. Set

$$
\underline{\lim }_{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} x_{n}, \quad \varlimsup_{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} y_{n}
$$

(b). Calculate $\varlimsup_{n \rightarrow \infty} a_{n}$ when $a_{n}=\frac{1}{n}$.
(c). Prove that

$$
\underline{\lim }_{n \rightarrow \infty} a_{n} \leq \varlimsup_{n \rightarrow \infty} a_{n} .
$$

(d). Prove that $\left\{a_{n}\right\}$ is convergent if and only if $\underline{\lim }_{n \rightarrow \infty} a_{n}=\varlimsup_{n \rightarrow \infty} a_{n}$ and that in this case $\lim _{n \rightarrow \infty} a_{n}=\underline{\lim }_{n \rightarrow \infty} a_{n}=\varlimsup_{n \rightarrow \infty} a_{n}$.
7. Prove that every continuous function $f:[a, b] \rightarrow \mathbb{R}$ is uniformly continuous using the Bolzano-Weierstrass Theorem.

MAT 142 - NOTES 4
III. FUNCTIONS
§1. Continuous functions on a closed bounded interval
Definition Let $[a, b]$ a closed bounded interval in \mathbb{R}. Set

$$
\mathcal{C}([u, b])=\{f:[a, b] \rightarrow \mathbb{R} \text { st. } f \text { is continuous }\}
$$

On $\mathcal{C}([a, b])$ we have the following operations:

- sum: $f, g \in C([a, b]) \Leftrightarrow f+g \in C([a, b])$ where $(f+g)(x)=f(x) g(x) \quad \forall x \in[a, b]$
- scalar multiplication: $k \in \mathbb{R}, f \in C([a, b]) \Leftrightarrow k f \in C([a, b])$, where $(k f)(x)=k f(x)$
- product: $f, g \in C([a, b]) \Leftrightarrow f g \in C([a, b])$, where $(f g)(x)=f(x) g(x) \forall x \in[a, b] \quad \forall x \in[a, b]$.

These operations satisfy the obvious compatibility, distributivity, commutativity \& associativity properties, egg. $\quad(f g) h=f(g h) \quad \forall \quad f, g, h \in C([a, b])$, etc.
Rub: Wee say that $C([a, b])$ is an algebra over \mathbb{R}.
Definition Fore every $f \in \mathcal{C}([a, b])$ ret $\|f\|:=\operatorname{mup}_{x \in[a, b]}|f(x)|$
Theorem II. II: $C([a, b]) \rightarrow \mathbb{R}$ 纸 is a norm, that is
(i) $\|k f\|=\|k\|\|f\| \quad \forall k \in \mathbb{R}, f \in C([a, b])$
(ii) $\|f+g\| \leqslant\|f\|+\|g\| \quad \forall f, g \in C([a, b])$
(iii) $\|f\| \geqslant 0$ and $\|f\|=0$ if $f=0$

Moreover:
(iv) $\|f g\| \leqslant\|f\|\|g\|$
poof. of (iv):
$\forall x \in[a, b]$ we have $|f(x) g(x)| \leqslant|f(x)||g(x)| \leqslant\|f\|\|g\|$
since $|f(x)| \leqslant \sup _{y}|f(y)|=\|f\| \quad x \quad|g(x)| \leqslant \sup |g(y)|=\|g\|$
Hence $\|f g\|=\operatorname{mup}_{x}|f(x) g(x)| \leq\|f\|\|g\|$.
§2. Uniform Convergence
Definition Let $\left\{f_{n}\right\}$ be a sequence in $C([a, b])$. We ray that f_{n} converges uniformly to f if $\forall \varepsilon>0, \exists N \in \mathbb{N}$ sit.

$$
\left\|f-f_{n}\right\|<\varepsilon \quad \forall n \geqslant N .
$$

Rms: Equivalently, we say that I_{n} converges uniformly to f if
$\forall \varepsilon>0, \exists N \in \mathbb{N}$ st. $\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \forall n \geqslant N, x \in[a, b]$

Theorem (Uniform convergence \& continuity)
fere Let $\left\{f_{n}\right\}$ be a sequence in $C([a, b])$. If f_{n} converges uniformly to f then $f \in C([a, b])$.
poof. Fix $x \in[a, b]$. We prove that f is continuous at x.
Fix $\varepsilon>0$.
since f_{n} converges uniformly to $f, \exists N \in \mathbb{N}$ st. $\left|f_{n}(y)-f(y)\right|<\frac{\varepsilon}{3} \quad \forall n \geqslant N, \forall y \in[a, b]$ Fix $n \geqslant N$. Since f_{n} is continuous on $[a, b]$ (in particular, it is continuous at x) $\exists \delta>0$ st. $\left|f_{n}(x)-f_{n}(y)\right|<\frac{\varepsilon}{3} \quad \forall \quad y \in(x-\delta, x+\delta)$.
Now, if $y \in(x-\delta, x+\delta)$ we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|f(x)-f_{n}(x)+f_{n}(x)-f_{n}(y)+f_{n}(y)-f(y)\right| \\
& \leqslant\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

Definition A sequence $\left\{f_{n}\right\}$ in $C([a, b])$ is raid to converge pointwise to f if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \quad \forall x \in[a, b]$
Example: $f_{n}:[0,1] \longrightarrow \mathbb{R}, \quad f_{n}(x)=x^{n}$.
Then f_{n} converges pointwise to $f(x)=\left\{\begin{array}{ll}0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } x=1\end{array}\right.$, which is not continuous.

Example:

$$
f_{n}:[0,1] \rightarrow \mathbb{R}, \quad f_{n}(x)=n x\left(1-x^{2}\right)^{n}
$$

The pointwise limit of f_{n} is $f(x)=0$, but the limit is not uniforms.

$$
\int_{0}^{1} f_{n}(x) d x=-\left.\frac{n}{2} \frac{\left(1-x^{2}\right)^{n+1}}{n+1}\right|_{0} ^{1}=\frac{1}{2} \frac{n}{n+1} \xrightarrow[n \rightarrow \infty]{ } \frac{1}{2}
$$

Hence $\quad \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x \neq \int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x$
Theorem (Uniform convergence \& integration)
Let $\left\{f_{n}\right\}$ be a sequence in $C([a, b])$. Assume that f_{n} converges uniformly te f.
Define functions $F_{n}(x)=\int_{a}^{x} f_{n}(t)$ att

$$
F(x)=\int_{a}^{x} f(t) d t .
$$

Then F_{n} converges unifocurly to F on $[a, b]$.
poof.
Note that F_{n}, F are well-defined since $f_{n} \& f$ are continuous and therefore integrable.
By uniform convergence of f_{n} to $f, \forall \varepsilon>0 \quad \exists N \in \mathbb{N}$ st.

$$
\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{b-a} \quad \forall n \geqslant N .
$$

Hence for $n \geqslant N$:

$$
\begin{aligned}
\left|F_{n}(x)-F(x)\right|=\left|\int_{a}^{b} f_{n}(t)-f(t) d t\right| & \leqslant \int_{a}^{b}\left|f_{n}(t)-f(t)\right| d t \\
& <\int_{a}^{b} \frac{\varepsilon}{b-a} d t=\varepsilon
\end{aligned}
$$

Example/Exucise
$f_{n}:[-1,1] \longrightarrow \mathbb{R}, \quad f_{n}(x)=\sqrt{x^{2}+\frac{1}{n^{2}}}$
Show that f_{n} converges uniformly to $|x|=f(x)$
Note that I_{n} is a differentiable function, but f isn't.
Theorem (Uniform convergence \& differentiation)
Let $\left\{f_{n}\right\}$ be a sequence in $C([a, b])$. A rune that f_{n} it differentiable $a[a, b]$ and that f_{n}^{\prime} is continuous. Assume that I_{n} converges pointwise to a function f and that f_{n}^{\prime} converges unifourly to a (continuous) function g.
Then I_{n} converges uniformly to $\& \& q=f$!
poof.
By the theorem on uniform convergence \& integration
$f_{n}(x)-f_{n}(a)=\int_{a}^{x} f_{n}^{\prime}(t) d t \quad$ converges uniformly to $\int_{a}^{x} g(t) d t$
On the other hand the pointwise limit of $f_{n}(x)-f_{n}(a)$ is $f(x)-f(a)$.
Thus f is differentiable \& $f^{\prime}=g$.
§3. More on uniform convergence
Definition A sequence $\left\{f_{n}\right\}$ in $C([a, b])$ is a cauchy sequence if $\forall \varepsilon>0, \exists N \in \mathbb{N}$ st. $\left\|f_{n}-f_{m}\right\|<\varepsilon \quad \forall n, m \geqslant N$.

Theorem (Cawhy criterion)
A sequence $\left\{f_{n}\right\}$ in $C([a, b])$ is convergent if and only if it is Cauchy.
mod.

- convergent \Leftrightarrow Cauchy:
support f_{n} converges uniforeuly to f. Then $\forall \varepsilon>0 \quad \exists N \in \mathbb{N}$ st. $f_{n}<\in\left\|f_{n}-f\right\|<\varepsilon, i_{n} \geqslant N$.
Thus if $n, m \geqslant N$

$$
\left\|f_{n}-f_{m}\right\|=\left\|f_{n}-f+f-f_{m}\right\| \leq\left\|f-f_{n}\right\|+\left\|f-f_{m}\right\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

- Cauchy \Leftrightarrow convergent:

We know that $\forall \varepsilon>0, \exists N \in \mathbb{N}$ sit. $\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon \quad \forall x \in[a, b]$.
Hence for each fixed $x \in[a, b]$ the sequence of real numbers $\left\{f_{n}(x)\right\}$ is convergent.
Set $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.

Fix $\varepsilon>0$. Then $\exists N \in \mathbb{N}$ sit. $\left|f_{n}(x)-f_{m}(x)\right|<\frac{\varepsilon}{2} \quad \forall x \in[a, b], n, m \geqslant N$.
Fix $n \geqslant N$ and consider $\left|f(x)-f_{n}(x)\right|$.
Since $\lim _{m \rightarrow \infty} f_{m}(x)=f(x), \exists N_{x} \in \mathbb{N}$ s.t. $\left|f(x)-f_{m}(x)\right|<\frac{\varepsilon}{2} \quad \forall m \geqslant N_{x}$.
Choose $m \geqslant \max \left\{N, N_{x}\right\}$. Then we have

$$
\left|f_{n}(x)-f(x)\right|=\left|f_{n}(x)-f_{m}(x)+f_{m}(x)-f(x)\right| \leqslant\left|f(x)-f_{m}(x)\right|+\left|f_{n}(x)-f_{m}(x)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Theorem (Dine's Theorem)
Let $\left\{f_{n}\right\}$ be a sequence of continuous functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ with pointwise limit $f:[a, b] \rightarrow \mathbb{R}$. Assume that f it continuous and $\left\{f_{n}(x)\right\}$ is increasing (decreasing) $\forall x \in[a, b]$.
Then fo converges uniformly to f.
poof.
If $f_{n}(x) \leqslant f_{n+1}(x)$ define $g_{n}(x)=f(x)-f_{n}(x)$
If $f_{n}(x) \geqslant f_{n+1}(x)$ define $g_{n}(x)=f_{n}(x)-f(x)$
Either way, we have a sequence of functions $g_{n}:[a, b] \rightarrow \mathbb{R}$ st.

- In is continuous
- $g_{n}(x) \geqslant g_{n+1}(x) \quad \forall x \in[a, b]$
- $\lim _{n \rightarrow \infty} g_{n}(x)=0$ for every fixed $x \in[a, b]$

We have to show that g_{n} converges to 0 uniformly.
Observation: $g_{n}(x) \geqslant 0 \quad \forall x \in[a, b], n \in \mathbb{N}$
If not, $\exists n \in \mathbb{N} \& x \in[a, b]$ sit. $g_{n}(x)<0$. But then $\forall m \geqslant n$

$$
g_{m}(x) \leqslant g_{n}(x)<0
$$

and therefore $0=\lim _{m \rightarrow \infty} g_{m}(x) \leqslant g_{n}(x)<0$, which is a contradiction.
Now, we want to prove: $\forall \varepsilon>0, \exists N \in \mathbb{N}$ s.t. $0 \leqslant g_{n}(x)<\varepsilon \quad \forall n \geqslant N, x \in[a, b]$.
Assume this is not the case: $\exists \varepsilon_{0}>0$ sit. $\forall n \in \mathbb{N} \exists x_{n} \in[a, b]$ with

$$
g_{n}\left(x_{n}\right) \geqslant \varepsilon_{0}>0
$$

The sequence $\left\{x_{n}\right\}$ is a bounded sequence in \mathbb{R}. By the Bolzano-Weiertrast Theorem \exists a convergent subsequence $\left\{x_{n_{k}}\right\}$ wi/ $\lim _{k \rightarrow \infty} x_{n_{k}}=x$.

Now, since $\lim _{n \rightarrow \infty} g_{n}(x)=0 \quad \exists N_{x} \in \mathbb{N}$ 1.t. $0 \leqslant g_{n}(x)<\frac{\varepsilon_{0}}{2} \quad \forall n \geqslant N$.
Fix $n \geqslant N$. Since g_{n} is continuous, $\exists \delta_{n}>0$ s.t. $\left|g_{n}(x)-g_{n}(y)\right|<\frac{\varepsilon_{0}}{2}$ provided $|x-y|<\delta_{n}$.
Since $\lim _{k \rightarrow \infty} x_{n_{k}}=x, \exists k^{*} \in \mathbb{N}$ s.t. $\left|x-x_{n_{k}}\right|<\delta_{n} \quad \forall k \geqslant K$.
Now choose $k \geqslant K$ sit. $n_{k} \geqslant n$ (this is possible since $\lim _{k \rightarrow \infty} n_{k}=\infty$)
Then

$$
\left.\begin{array}{rl}
\varepsilon_{0} \leqslant g_{n_{k}}\left(x_{n_{k}}\right) & \leqslant g_{n}\left(x_{n_{k}}\right)=g_{n}\left(x_{n_{k}}\right)-g_{n}(x)+g_{n}(x)
\end{array}\right) \leqslant\left|g_{n}\left(x_{n_{k}}\right)-g_{n}(x)\right|+g_{n}(x),
$$

Example converges uniformly to 0
$f_{n}(x)=x^{n}$ on $[0, a]$ for every $0<a<1$ redo
§4. Equicontinuous families of functions
Q. The Bolzano-Weiesthas Theorem stater that every bounded sequence of real numbers hat a convergent subsequence. Is something similar true for sequences of fit and uniforar convergence?
Definition Let $\left\{f_{n}\right\}$ be a sequence of functions. We $[a, b]$ say that $\left\{f_{n}\right\}$ is:
(i) pointwise bounded if $\forall x^{\dot{x},[, b]} M_{x}>0$ sit. $\left|f_{n}(x)\right| \leq M_{x} \quad \forall n \in \mathbb{N}$
(ii) uniformly bounded if $\exists M>0$ sit. $\left|f_{n}(x)\right| \leqslant M, \forall n \in \mathbb{N}, x \in[a, b]$

Example

$$
f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}, x \in[0,1]
$$

$\left\{f_{n}\right\}$ is unifrumly bounded: $\left|f_{n}(x)\right| \leq 1 \quad \forall n \in \mathbb{N}, x \in[0,1]$
$\lim _{n \rightarrow \infty} f_{n}(x)=0$ pointwise
$f_{n}\left(\frac{1}{n}\right)=1$ so no mbrequence can converge to 0 unifiruely.
Example $f_{n}(x)=\sin (n x), x \in[0,2 \pi]$

Definition Let $\left\{f_{n}\right\}$ be a sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$.
We say that $\left\{f_{n}\right\}$ is equicontinuout if $\forall \varepsilon>0, \exists \delta>0$ st.

$$
\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon \quad \forall x, y \in[a, b] w /|x-y|<\delta, \forall n \in \mathbb{N}
$$

Proporition
let $\left\{I_{n}\right\}$ be a requence in $C([a, b])$ that converges uniformly to f. Then $\left[f_{n}\right\}$ is equicontinuout.
poof. Fix $\varepsilon>0$:
$f_{n} \rightarrow \delta$ uniforunly: $\exists N \in \mathbb{N}$ st. $\left|f_{n}(x)-f(x)\right|<\varepsilon / 3 \forall n \geqslant N, x \in[a, b]$
f unifounly continuous: $\exists \delta>0$ s.t. $|f(x)-f(y)|<\varepsilon / 3$ whene ver $|x-y|<\delta$ $\delta_{1}, \ldots, \delta_{N-1}$ unifrumly continuous: $\exists \delta_{1}, \ldots, \delta_{N-1}>0$ s.t.

$$
\left|f_{i}(x)-f_{i}(y)\right|<\varepsilon \text { whenever }|x-y|<\delta_{i}
$$

Now if $|x-y|<\sin \left\{\delta_{1}, \ldots, \delta_{N-1}, \delta\right\}$ we have:

$$
\begin{aligned}
& \left|f_{i}(x)-f_{i}(y)\right|<\varepsilon \quad \forall i=1, \ldots, N-1 \\
& \left|f_{n}(x)-f_{n}(y)\right|=\left|f_{n}(x)-f_{1}(x)+f(x)-f(y)+f(y)-f_{n}(y)\right| \\
& \quad \leqslant\left|f_{n}(x)-f(x)\right|+|f(x)-f(y)|+\left|f(y)-f_{n}(y)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon \\
& \forall n \geqslant N
\end{aligned}
$$

Proporition: Let $\left\{f_{n}\right\}$ be a sequence in $C([a, b])$ which is pointwise bounded and equicontinuous. Then $\left\{f_{n}\right\}$ it uniforuly bounded.
pues.
Suppose not: then $\forall n \in \mathbb{N}, \exists x_{n} \in[a, b]$ s.t. $\left|f_{n}\left(x_{n}\right)\right|>n$.
By Bolzano-Weientrass $\left\{x_{n}\right\}$ has a convergent messequence $x_{n k} \xrightarrow[k \rightarrow \infty]{ } x \in[a, b]$. Since $\left\{f_{n}\right\}$ ir pointwise boucrded $\exists M_{x}>0$ st. $\left|f_{n}(x)\right| \leqslant M_{x} \quad \forall n \in \mathbb{N}$. Now cheose $K^{\prime} \in \mathbb{N}$ s.t. $n_{k} \geqslant M_{x}+1 \quad \forall k \geqslant K^{\prime}$.
Since $\left\{f_{n}\right\}$ it equicontinuous, $\exists \delta>0$ s.t. $|x-y|<\delta \Leftrightarrow\left|f_{n}(x)-f_{n}(y)\right|<\frac{1}{2} \quad \forall n \in \mathbb{N}$ Since $\lim _{k \rightarrow \infty} x_{n_{k}}=x, \exists K^{\prime \prime} \in \mathbb{N}$ s.t. $k \geqslant K^{n} \Rightarrow\left|x-x_{n_{k}}\right|<\delta$
Then if $k \geqslant K=\max \left\{K^{\prime}, K^{\prime \prime}\right\}$

$$
\begin{equation*}
M_{x} \geqslant\left|f_{n_{k}}(x)\right|=\left|f_{n_{k}}\left(x_{n_{k}}\right)+f_{n_{k}}(x)-f_{n_{k}}\left(x_{n_{k}}\right)\right| \geqslant\left|f_{n_{k}}\left(x_{n_{k}}\right)\right|-\left|f_{n_{k}}(x)-f_{n_{k}}\left(x_{n_{k}}\right)\right| \geqslant M_{x+1-\frac{1}{7}}^{7} \text { 仡 } \tag{x}
\end{equation*}
$$

Theorem (Anzela'-Axcoli The rem)
Let $\left\{f_{n}\right\}$ be a sequence in $C([a, b])$ which is uniformly bounded and equicontinuous. Then there exists a subsequence $\left\{f_{n k}\right\}$ which it uniformly convergent.

Rms: By the pervious proposition we can replace uniformly bounded w/ pointwise bounded.
proof.
Step 1: \exists a mibrequence $\left\{f_{n_{k}}\right\}$ sit. $\left\{f_{n_{k}}(x)\right\}$ converges $\forall x \in[a, b] \cap \mathbb{Q}$ Since $[a, b] \cap \mathbb{Q}$ is countable we can enumerate it: $[a, b] \cap \mathbb{Q}=\left\{x_{i}\right\}_{i=1}^{\infty}$ Consider the sequence of numbers $\left\{f_{n}\left(x_{1}\right)\right\}$. This is a bounded sequence, to by the Bolzanc-Weierstrass Theorem there exists a supsequence $\left\{f_{1, k}\right\}_{k}$ st. $\left\{f_{1, k}\left(x_{1}\right)\right\}$ converges.
Conrialer the sounded mibrequence $\left\{f_{2, k}\right\}_{k}$ st. $\left\{f_{2, k}\left(x_{2}\right)\right\}$ \& $\left\{f_{2, k}\left(x_{1}\right)\right\}$ converge.
Proceeding inductively like this we construct sequences

$$
\left\{f_{n}\right\}_{n} \supset\left\{f_{1, k}\right\}_{k} \supset\left\{f_{2, k}\right\}_{k} \supset \ldots \supset\left\{f_{i, k}\right\}_{k} \text { st. }
$$

$$
\begin{array}{ccccc}
\left\{f_{i, k}\left(x_{j}\right)\right\}_{k} & \text { converges } & \forall & j=1, \ldots, i \\
f_{1,1} & f_{1,2} & f_{1,3} & f_{1,4} & \cdots \\
f_{2,1} & f_{2,2} & f_{2,3} & f_{2,4} & \ldots \\
f_{3,1} & f_{3,2} & f_{3,3} & f_{3,4} & \cdots
\end{array}
$$

We can then choose $f_{n_{k}}=f_{k, k}$. Since $\left\{f_{n_{k}}\right\}$ is a subsequence of $\left\{f_{i, k}\right\}$ for every $i=1,2,3, \ldots$ we have $\left\{f_{n_{k}}\left(x_{i}\right)\right\}$ converges $\forall i=1,2,3, \ldots$
Step 2: $\left\{f_{n_{k}}\right\}$ converges uniformly.
We pore that $\left\{\delta_{n_{k}}\right\}$ is a Cauchy sequence in $C([a, b])$.
Fix $\varepsilon>0$. $\forall x \in[a, b] \quad \exists$ sequence $\left\{x_{i}\right\} \subset[a, b] \cap Q$ st. $\lim _{i \rightarrow \infty} x_{i}=x$
Moreover, since $\left\{f_{n}\right\}$ is equicontinuous $\exists \delta>0$ sit.

$$
\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon / 3 \quad \forall n \in \mathbb{N}, x, y \in[a, b] \text { s.t. }|x-y|<\delta \text {. }
$$

We UR Since $\lim _{i \rightarrow \infty} x_{i}=x$, we can find i st. $\left|x-x_{i}\right|<\delta$.
Since $x_{i} \in[a, b] \cap \mathbb{Q}, \exists K \in \mathbb{N}$ st. $\left|f_{n_{k}}\left(x_{i}\right)-f_{n_{h}}\left(x_{i}\right)\right|<\frac{\varepsilon}{3} \quad \forall k, h \geqslant K$.
Then if $k, h \geqslant K$ we have:

$$
\begin{aligned}
\left|f_{n_{k}}(x)-f_{n_{h}}(x)\right| & =\left|f_{n_{k}}(x)-f_{n_{k}}\left(x_{i}\right)+f_{n_{k}}\left(x_{i}\right)-f_{n_{n}}\left(x_{i}\right)+f_{n_{h}}\left(x_{i}\right)-f_{n_{h}}(x)\right| \\
& \leqslant\left|f_{n_{k}}(x)-f_{n_{k}}\left(x_{i}\right)\right|+\left|f_{n_{k}}\left(x_{i}\right)-f_{n_{h}}\left(x_{i}\right)\right|+\left|f_{n_{h}}\left(x_{i}\right)-f_{n_{h}}(x)\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

§5. Approximating continuous functions with polynomials, I
Theorem (Weientions Approximation Theorem)
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then there exists a sequence of polynomials $\left\{P_{n}\right.$ such that $\left\{P_{n}\right\}$ converges uniformly to f.
poof.
(f) Fins of all we can assume without lows of generality that $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=0=f(1)$. Indeed, given $f:[a, b] \rightarrow \mathbb{R}$ define

$$
g(x)=f(a+x(b-a))-f(a)-x[f(b)-f(a)]
$$

Then $g:[0,1] \rightarrow \mathbb{R}$ w/ $g(0)=0=g(1)$
Moreover, if $\left\{P_{n}\right\}$ ira sequence of polynomials that converge uniformly to g then $P_{n}\left(\frac{x-a}{b-a}\right)+f(a)+\frac{x-a}{b-a}[f(b)-f(a)]$ are polynomials that converge uniformly to f.
Now, since $f(0)=0=f(1)$ we can think of f continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ by retting $f(x)=0$ if $x \geqslant 1$ i $x \leqslant 0$. Consider the sequence of polynomials $\& Q_{n}:[-1,1] \longrightarrow R$ defined by $Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}$, where $\frac{1}{c_{n}}=\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x$

Note that $\left(1-x^{2}\right)^{n} \geqslant 1-n x^{2} \forall x \in[0,1]$ and therefore

$$
\begin{aligned}
& \int_{-1}^{1}\left(1-x^{2}\right)^{n} d x \geqslant 2 \int_{0}^{1 / \sqrt{n}}\left(1-x^{2}\right)^{n} d x \geqslant 2 \int_{0}^{1 / \sqrt{n}} 1-n x^{2} d x=\frac{4}{3} \frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}} \\
& \Leftrightarrow \quad c_{n}<\sqrt{n} .
\end{aligned}
$$

Now define

$$
P_{n}(x)=\int_{-1}^{1} f(x+y) Q_{n}(y) d y=\int_{-x}^{1-x} f(x+y) Q_{n}(y) d y=\int_{0}^{1} f(z) Q_{n}(z-x) d z
$$

So P_{n} is a polynomial in x.
Now since f is unifrumly continuous on $[0,1], \forall \varepsilon>0, \exists \delta$ sit.

$$
|f(x+y)-f(x)|<\frac{\varepsilon}{2} \quad \forall y \text { st. }|y|<\delta
$$

Hence:

$$
\begin{aligned}
\left|P_{n}(x)-f(x)\right| & \leqslant \int_{-1}^{1}|f(x+y)-f(x)| Q_{n}(y) d y \\
& \leqslant 2\|f\| \int_{-1}^{-\delta} Q_{n}(y) d y+\frac{\varepsilon}{2} \int_{-\delta}^{\delta} Q_{n}(y) d y+2\|f\| \int_{\delta}^{1} Q_{n}(y) d y \\
& \leqslant 4\|f\| \sqrt{n}\left(1-\delta^{2}\right)^{n}+\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

if $n \geqslant N$ where $4\|f\| \sqrt{N}\left(1-\delta^{2}\right)^{N}<\frac{\varepsilon}{2} \quad\left(\right.$ note that $\lim _{n \rightarrow \infty} 4\|f\| \sqrt{n}\left(1-\delta^{2}\right)^{n}=0$)

Problem sheet 4

MAT 142, Spring 2017

1. Let $f:[0,1] \rightarrow[0,1]$ be an increasing continuous function. Show that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=x_{0}$.
(Hint: start with any point $x_{0} \in[0,1]$; if $f\left(x_{0}\right)=x_{0}$ then you're done; assume then that $f\left(x_{0}\right) \neq x_{0}$ and consider the sequence $x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \ldots, x_{n}=f\left(x_{n-1}\right)$ when $f\left(x_{0}\right)>x_{0}$ and when $f\left(x_{0}\right)<x_{0}$.)
2. Fix $c \in[0.5,1]$ and consider the function

$$
f_{c}(x)=c\left(x+\frac{1}{x}\right) .
$$

(a). Prove that $f_{c}:[1, \infty) \rightarrow[1, \infty)$.
(b). Prove that if $c<1$ then f_{c} is a contraction. The theorem proved in class then guarantees that f_{c} has a unique fixed point in $[1, \infty)$. Can you find it?
(c). Suppose now that $c=1$. Prove that f_{1} satisfies

$$
\left|f_{1}(x)-f_{1}(y)\right|<|x-y|, \quad \text { for all } x, y \in[1, \infty) \text { with } x \neq y
$$

(d). Using part (c) show that f_{1} has at most one fixed point in the interval $[1, \infty)$.
(e). Show that f_{1} has no fixed point in $[1, \infty)$.
3. (Exercise 17 in Chapter 3 of $[\mathrm{R}]$) Fix $\alpha>1$ and $x_{0}>\sqrt{\alpha}$. Define a sequence $\left\{x_{n}\right\}$ by

$$
x_{1}=\frac{\alpha+x_{0}}{1+x_{0}}, \quad x_{n+1}=\frac{\alpha+x_{n}}{1+x_{n}}=x_{n}+\frac{\alpha-x_{n}^{2}}{1+x_{n}} .
$$

(a). Prove that $x_{1}>x_{3}>x_{5}>\ldots$ and $x_{0}<x_{2}<x_{4}<\ldots$.
(b). Prove that $\left\{x_{n}\right\}$ converges and that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{\alpha}$.
4. Let α be any number with $\alpha>5$ and consider the function $f(x)=\frac{x^{3}+x^{2}+1}{\alpha}$.
(a). Show that $f:[-1,1] \rightarrow[-1,1]$.
(b). Show that $f:[-1,1] \rightarrow[-1,1]$ is a contraction.
(c). Show that the equation $x^{3}+x^{2}+1=\alpha x$ has a unique solution in $[-1,1]$.
5. Use Newton's Method to approximate a zero of the function $f(x)=\cos x-x^{2}$ near 0 . Find the best approximation within the accuracy of your calculator (that is, stop the iteration whenever you start getting the same result over and over again).
6. For the following sequences of functions determine the pointwise limit on the interval indicated and whether the convergence is uniform.
(a). $f_{n}(x)=e^{-n x^{2}}, x \in[-1,1]$
(b). $f_{n}(x)=\frac{e^{-x^{2}}}{n^{2}}, x \in \mathbb{R}$
(c). $f_{n}(x)=x^{n}-x^{2 n}, x \in[0,1]$
(d). $f_{n}(x)=\sqrt{x+\frac{1}{n}}, x \in[0, \infty)$
(e). $f_{n}(x)=n\left(\sqrt{x+\frac{1}{n}}-\sqrt{x}\right), x \in[a, \infty)$ for some $a>0$

1. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on a closed bounded interval $[a, b]$ and assume that f_{n} converges uniformly to f.
(a). Let $\left\{x_{n}\right\}$ be a sequence of points in $[a, b]$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Prove that $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$.
(b). Prove the converse to part (a): Let f be a continuous functions defined on $[a, b]$ and let f_{n} be a sequence of functions such that $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$ whenever $\lim _{n \rightarrow \infty} x_{n}=x$. Then f_{n} converges to f uniformly.
2. Suppose that $f_{n}, g:[0, \infty) \rightarrow \mathbb{R}$ are continuous functions such that $\int_{0}^{\infty} g(x) d x$ exists, $\left|f_{n}(x)\right| \leq g(x)$ for all $x \in[0, \infty)$ and f_{n} converges uniformly to a function f on $[0, T]$ for every $T>0$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty} f(x) d x
$$

3. For every function $g:[0,1] \rightarrow \mathbb{R}$ with continuous derivative let $\ell(g)$ denote the length of the parametrized curve $\mathbf{c}(t)=(t, g(t)), t \in[0,1]$ (this is the most obvious parametrization of the graph of g). Find a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ that converge uniformly to a function f with $\ell(f) \neq \lim _{n \rightarrow \infty} \ell\left(f_{n}\right)$.
4. Dini's Theorem states that if $\left\{f_{n}\right\}$ is a sequence of functions $f_{n}: I \rightarrow \mathbb{R}$ (where I is an interval in \mathbb{R}) such that:
(i) f_{n} is continuous for all n;
(ii) $I=[a, b]$ is a closed bounded interval;
(iii) $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in I$ (or $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in I$);
(iv) f_{n} converges pointwise to a continuous function f;
then f_{n} converges uniformly to f.
(a). Assume hypotheses (i), (ii), (iii) are satisfied. Show that the pointwise limit $f(x)=$ $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for all $x \in I$. The content of the hypothesis (iv) is to assume that this pointwise limit is a continuous function.
(b). Consider the functions

$$
f_{n}:[0,1] \rightarrow \mathbb{R}, \quad g_{n}:[0, \infty) \rightarrow \mathbb{R}, \quad h_{n}:[0,1] \rightarrow \mathbb{R}, \quad k_{n}:[0,1] \rightarrow \mathbb{R}
$$

defined by:

$$
f_{n}(x)=x^{n} \quad g_{n}(x)=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq x \leq n \\
x-n & \text { if } n \leq x \leq n+1 \\
1 & \text { if } x>n+1
\end{array} \quad h_{n}(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1-\frac{1}{n} \\
0 & \text { if } 1-\frac{1}{n}<x<1 \\
1 & \text { if } x=1\end{cases}\right.
$$

and k_{n} is the function whose graph is:

- the straight line segment from $(0,0)$ to $\left(\frac{1}{2 n}, 1\right)$,
- the straight line segment from $\left(\frac{1}{2 n}, 1\right)$ to $\left(\frac{1}{n}, 0\right)$,
- the straight line segment from $\left(\frac{1}{n}, 0\right)$ to $(1,0)$.

Use these functions to show that all hypotheses in Dini's Theorem are necessary. In other words, for each of these sequences of functions decide whether hypotheses (i)-(iv) hold, calculate the pointwise limit and decide whether the convergence is uniform.
5. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on the closed bounded interval $[a, b]$. Assume that $\left\{f_{n}\right\}$ is equicontinuous and that f_{n} converges pointwise to f.
(a). Show that f is continuous.
(b). Show that f_{n} converges uniformly to f.
6. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on the closed bounded interval $[a, b]$. Assume that f_{n} converges pointwise to f and let $\left\{f_{n_{k}}\right\}$ be a subsequence.
(a). Prove that if $f_{n_{k}}$ converges pointwise to g then $f=g$.
(b). Prove that if $f_{n_{k}}$ converges uniformly to f then f_{n} converges uniformly to f.
(c). Use part (b) and the Arzelà-Ascoli Theorem to give a different proof of part (b) in Problem 5.

1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Let $f_{n}(x)=f(n x)$ for $x \in[0,1]$. Assume that $\left\{f_{n}\right\}$ is equicontinuous. Prove that f is constant.
2. You are going to prove that the function $f:[-1,1] \rightarrow \mathbb{R}$ defined by $f(x)=|x|$ can be approximated uniformly by polynomials without using Weierstrass Approximation Theorem.
(a). Given $x \in[0,1]$, show that the sequence

$$
y_{1}=1, \quad y_{n+1}=\frac{1}{2}\left(x+2 y_{n}-y_{n}^{2}\right)
$$

defines a decreasing sequence in $[0,1]$ converging to \sqrt{x}.
(b). Deduce from part (a) that there exists polynomials $P_{n}:[-1,1] \rightarrow \mathbb{R}$ such that the sequence $\left\{P_{n}\right\}$ converges pointwise to $f(x)=|x|$. (Hint: define $P_{1}(x)=1$ and $P_{n+1}(x)=$ $\frac{1}{2}\left(x^{2}+2 P_{n}(x)-P_{n}(x)^{2}\right)$ for all $n \geq 1$.)
(c). Use Dini's Theorem to show that $\left\{P_{n}\right\}$ converges uniformly to $f(x)=|x|$ in $[-1,1]$. (Hint: deduce from part (a) that $P_{n}(x) \geq P_{n+1}(x) \geq 0$ for all $x \in[-1,1]$.)
3. Prove that every continuous function on a closed bounded interval $[a, b]$ can be approximated uniformly by piece-wise linear functions, that is, functions whose graph is a polygonal curve.
4. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that

$$
\int_{0}^{1} f(x) x^{n} d x=0
$$

for every $n \in \mathbb{N}$. Prove that $f(x)=0$ for all $x \in[0,1]$. (Hint: use the Weierstrass Approximation Theorem to show that $\int_{0}^{1} f^{2} d x=0$.)
5. Exercise 10 in $\S 7.4$ of $[\mathrm{A}]$.
6. Exercise 9 in $\S 7.8$ of $[\mathrm{A}]$.

Note: [A] indicates Apostol, Calculus I.

1. Let $\left\{a_{n}\right\}$ be a sequence of real numbers and suppose that there exists $x_{0} \neq 0$ such that $\sum_{n=0}^{\infty} a_{n} x_{0}^{n}$ converges. Fix $0<r<\left|x_{0}\right|$. Prove that $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges uniformly to a continuous function f on $[-r, r]$.
2. Let f be the function obtained in Problem 1. Show that f is integrable on $[-r, r]$ and

$$
\int_{0}^{x} f(t) d t=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}
$$

3. Let f be the function obtained in Problem 1. Show that f is differentiable on $[-r, r]$ and

$$
\int_{0}^{x} f(t) d t=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

4. Let $\left\{a_{n}\right\}$ be a sequence such that $\sum_{n=1}^{\infty} a_{n}$ converges. By Problem $1, \sum_{n=0}^{\infty} a_{n} x^{n}$ is uniformly convergent on $[-a, a]$ for every $0<a<1$.
(i). Prove Abel's Theorem: $\sum_{n=0}^{\infty} a_{n} x^{n}$ is uniformly convergent in [0, 1]. (Hint: You can use the following fact without proof:

$$
\left|a_{m}+a_{m+1}+\cdots+a_{m+k}\right|<\epsilon \quad \Longrightarrow \quad\left|a_{m} x^{m}+a_{m+1} x^{m+1}+\cdots+a_{m+k} x^{m+k}\right|<\epsilon
$$

for every $x \in[0,1]$.)
(ii). Find a sequence $\left\{a_{n}\right\}$ such that $\sum_{n=0}^{\infty} a_{n}$ converges but $\sum_{n=0}^{\infty} a_{n} x^{n}$ does not converge for $x=-1$.
5. You are going to prove Bernstein's Theorem: Assume that f is a function $f:[0, r] \rightarrow \mathbb{R}$ such that $f^{(n)}(x) \geq 0$ for all $n \geq 0$ and $x \in[0, r]$; then the Taylor series $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}$ converges to $f(x)$ for every $x \in[0, r)$.
(i). Set $E_{n}=f-T_{n}(f)$, where $T_{n}(f)$ is the Taylor polynomial of f of degree n centered at 0 . Show that $0 \leq E_{n}(x) \leq f(x)$ for all $x \in[0, r]$.
(ii). Show that

$$
\frac{E_{n}(x)}{x^{n+1}}=\frac{1}{n!} \int_{0}^{1}(1-s)^{n} f^{(n+1)}(s x) d s
$$

(iii). Deduce from the formula in part (ii) that

$$
\frac{E_{n}(x)}{x^{n+1}}
$$

is a decreasing function of $x \in(0, r]$. In particular, deduce that

$$
E_{n}(x) \leq\left(\frac{x}{r}\right)^{n+1} E_{n}(r) .
$$

(iv). Use part (i) and (iv) to deduce that

$$
E_{n}(x) \leq f(r)\left(\frac{x}{r}\right)^{n+1}
$$

(v). Deduce from part (iv) that $\lim _{n \rightarrow \infty} E_{n}(x)=0$ for all $x \in[0, r)$.
(vi). Is the convergence of $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}$ to f uniform on $[0, a]$ for any $a<r$?

1. [Warm-up] Assume that there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not always zero and satisfies $f^{\prime \prime}+f=0$.
(a). Prove that $f^{2}+\left(f^{\prime}\right)^{2}$ is constant and deduce that either $f(0) \neq 0$ or $f^{\prime}(0) \neq 0$.
(b). Prove that there exists a function s such that $s^{\prime \prime}+s=0, s(0)=0$ and $s^{\prime}(0)=1$. (We will show later in the course that s is the unique such function.) (Hint: look for s of the form $s=a f+b f^{\prime}$ fo constants $a, b \in \mathbb{R}$.)

We can now define the trigonometric functions sine and cosine by $\sin x=s(x)$ and $\cos x=s^{\prime}(x)$. Many of the properties of the trigonometric functions follow easily from the differential equation satisfied by s.
(c). Prove that $(\cos x)^{\prime}=-\sin x$.
(d). Prove that $\sin (x+a)=\sin x \cos a+\sin a \cos x$ and $\cos (x+a)=\cos x \cos a-\sin x \sin a$. (Hint: show that $f(x)=\sin (x+a)$ and $g(x)=\sin x \cos a+\sin a \cos x$ both satisfy the IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y=0 \\
y(0)=\sin a \\
y^{\prime}(0)=\cos a
\end{array}\right.
$$

Assume that this IVP has a unique solution and deduce that $f=g$. Taking derivatives now derive the identity involving $\cos (x+a)$.)

More work is required to define π and show that sin and cos are periodic functions of period 2π, that is, $\sin (x+2 \pi)=\sin (x)$ and $\cos (x+2 \pi)=\cos (x)$ for all $x \in \mathbb{R}$.
(e). Show that $\cos x$ cannot be positive for all $x>0$. (Hint: you can use the following Theorem, that you proved in the quiz at the very beginning of the course: Let f be a twicedifferentiable function $f:[0, \infty) \rightarrow \mathbb{R}$ such that $f(x)>0$ for all $x \geq 0, f$ is decreasing and $f^{\prime}(0)=0$. Then there exists $x_{*}>0$ such that $f^{\prime \prime}\left(x_{*}\right)=0$.)

By part (e) there exists a positive number π such that $\frac{\pi}{2}$ is the smallest positive number such that $\cos x=0$.
(f). Show that $\sin \frac{\pi}{2}=1$.
(g). Show that $\sin x$ and $\cos x$ are periodic functions of period 2π. (Hint: Use repeatedly part (d), first to calculate $\sin 2 \pi$ and $\cos 2 \pi$ and then to calculate $\sin (x+2 \pi)$ and $\cos (x+2 \pi)$.)

PART I: FIRST-ORDER EQUATIONS

Reading: $\S \S 8.1-8.7$ and $8.20-8.27$ in [A].
2. [Exponential growth] Fix $k \in \mathbb{R}$. You are going to solve the differential equation $y^{\prime}=k y$ and study some physical phenomena modelled by this equation.
(a). Prove that $y(x)=y_{0} e^{k x}$ for some constant $y_{0} \in \mathbb{R}$. (Hint: Consider the quantity $y(x) e^{-k x}$.)
(b). The decay of a radioactive substance is modelled by the differential equation $A^{\prime}=k A$ where $A(t)$ is the amount of substance at time t and k is a constant that depends on the radioactive substance.
i. Assuming k given, find a formula for $A(t)$ in terms of $A_{0}=A(0)$.
ii. Exercise 1 in $\S 8.7$ on $[\mathrm{A}]$.
iii. Show that there exists $\tau>0$ (called the half-life of the substance) such that $A(t+\tau)=\frac{1}{2} A(\tau)$ for all $t \in \mathbb{R}$.
iv. Exercise 3 in $\S 8.7$ of [A].
(c). Newton's Law of Cooling states that the temperature of an object decreases at a rate proportional to the difference of its temperature and the ambient temperature.
i. Find a formula for the temperature $T(t)$ of the object at time t in terms of the temperature T_{0} at time $t=0$ assuming that the ambient temperature T_{a} is kept at a fixed constant. (Hint: Note that since T_{a} is a constant $T^{\prime}=\left(T-T_{a}\right)^{\prime}$.)
ii. Exercise 7 in $\S 8.7$ of [A].
3. [Linear first-order equations] A linear first-order differential equation is a differential equation of the form

$$
y^{\prime}+p(x) y=q(x)
$$

where p, q are given functions. We usually try to solve the IVP

$$
\begin{equation*}
y^{\prime}+p(x) y=q(x), \quad y\left(x_{0}\right)=y_{0} . \tag{1}
\end{equation*}
$$

(a). Consider first the case $q=0$. Assume that p is a continuous function on an open interval I such that $x_{0} \in I$ and fix a constant $y_{0} \in \mathbb{R}$. Prove that the solution y of the IVP (1) is $y(x)=y_{0} e^{-P(x)}$, where $P(x)=\int_{x_{0}}^{x} p(t) d t$ is the (unique) antiderivative of p that vanishes at x_{0}. (Hint: Consider the quantity $y(x) e^{P(x)}$.)
(b). More in general, assume that p, q are continuous functions on an open interval I that contains x_{0}. Show that the unique solution of the IVP (1) is

$$
y(x)=e^{-P(x)}\left(y_{0}+\int_{x_{0}}^{x} e^{-P(t)} q(t) d t\right)
$$

where P is defined in part (a). (Hint: Consider the quantity $y(x) e^{P(x)}$.)
(c). Exercises $1-12$ in $\S 8.5$ of $[\mathrm{A}]$.
4. [Separation of variables and other tricks] There is no general formula to solve non-linear first-order equations. However, in some special cases there exists tricks to reduce the solution of the equation to the Fundamental Theorem of Calculus or to a linear equation.
(a). (Separation of variables, see $\S 8.23$ of [A].) Let a be a continuous function defined on an open interval containing y_{0} and q a continuous function defined on an open interval containing the point x_{0}. Assume that the IVP

$$
a(y) y^{\prime}=q(x), \quad y\left(x_{0}\right)=y_{0}
$$

has a unique solution y. Show that y is defined implicitly by

$$
\int_{y_{0}}^{y(x)} a(s) d s=\int_{x_{0}}^{x} q(t) d t
$$

(b). Exercises $1-11$ in $\S 8.24$ of [A]. Write the solution with arbitrary initial condition $y\left(x_{0}\right)=$ y_{0}, for constants x_{0}, y_{0} such that the hypotheses of part (a) are satisfied.
(c). The Bernoulli Equation: exercises 13-18 in $\S 8.5$ of [A].
(d). The Riccati Equation: exercises 19-20 in $\S 8.5$ of [A].
5. [Application: population growth] Exercises 13-18 in $\S 8.7$ of $[\mathrm{A}]$.
6. [Existence and Uniqueness of solutions to first-order differential equations]
(a). Consider the IVP

$$
y^{\prime}=y^{2}, \quad y(0)=1
$$

Find a solution y by separation of variables and show that $\lim _{x \rightarrow 1} y(x)=\infty$.
(b). Consider the IVP

$$
y^{\prime}=y^{\frac{2}{3}}, \quad y(0)=0
$$

Show that $y(x)=0$ and $y(x)=\frac{x^{3}}{27}$ are two distinct solutions of this IVP.
(c). Uniqueness: exercises 26 and 27 in Chapter 5 of $[\mathrm{R}]$ (see Review Sheet 2).
(d). Existence: exercise 25 in Chapter 7 of [R] (see Review Sheet 2).
(e). Here's an alternative proof of Existence and Uniqueness of solutions to first-order differential equations. The procedure of proof is called Picard Iteration. Let $\phi: R \rightarrow \mathbb{R}$ be a function defined on a rectangle $R=[a, b] \times[\alpha, \beta] \subset \mathbb{R}^{2}$. Assume that ϕ is continuous on R and moreover there exists $A>0$ such that

$$
\left|\phi\left(x, y_{2}\right)-\phi\left(x, y_{1}\right)\right| \leq A\left|y_{2}-y_{1}\right|
$$

for all $\left(x, y_{1}\right),\left(x, y_{2}\right) \in R$. Fix $x_{0} \in(a, b)$ and $y_{0} \in(\alpha, \beta)$ consider the IVP

$$
\begin{equation*}
y^{\prime}=\phi(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{2}
\end{equation*}
$$

We are going to prove that this IVP has a unique solution provided $b-a$ is sufficiently small using ideas related to the Contraction Mapping Theorem, which was our main tool to prove the convergence of Newton's Method.
i. Show that y is a solution of the IVP if and only if $y=y_{0}+\int_{x_{0}}^{x} \phi(t, y(t)) d t$.

Let $C([a, b])$ be the space of continuous real-valued functions on the interval $[a, b]$. Recall that we can define a norm on $C([a, b])$ by

$$
\|f\|=\sup _{x \in[a, b]}|f(x)| .
$$

Define a "function" $T: C([a, b]) \rightarrow C([a, b])$ by

$$
T(f)=y_{0}+\int_{x_{0}}^{x} \phi(t, f(t)) d t
$$

By part i we have to show that T has a unique fixed point.
ii. Prove that that

$$
\|T(f)-T(g)\| \leq A(b-a)\|f-g\|
$$

for every $f, g \in C([a, b])$. In particular, by considering a smaller interval we can assume that $b-a$ is small enough so that T is a contraction: there exists $0<c<1$ such that

$$
\|T(f)-T(g)\| \leq c\|f-g\|
$$

for every $f, g \in C([a, b])$.
iii. Deduce that the IVP (2) has at most one solution.
iv. Consider the sequence of functions $y_{n} \in C([a, b])$ defined by

$$
y_{1}=0, \quad y_{n+1}=T\left(y_{n}\right) .
$$

Prove that $\left\{y_{n}\right\}$ is a Cauchy sequence and that y_{n} converges uniformly to a solution of the IVP (2).
7. [Integral curves] Let $y:[a, b] \rightarrow \mathbb{R}$ be a solution of the differential equation $y^{\prime}=$ $\phi(x, y)$. We can consider the graph of y as a curve in \mathbb{R}^{2}. In fact we can think of the differential equation as describing a family of curves, called integral curves of the differential equation, by prescribing their slopes. If ϕ satisfies the conditions in our Existence and Uniqueness Theorems, then for every point in \mathbb{R}^{2} there exists a unique integral curve of the differential equation passing through that point.
(a). Exercises 1-12 in $\S 8.22$ of [A].
(b). Exercises $1-11$ in $\S 8.26$ of [A].
(c). For the examples of part (a) try to study the orthogonal trajectories to the given family of curves.

PART II: SECOND-ORDER EQUATIONS

Reading: §§8.8-8.19 in [A].
8. [Uniqueness of solutions to $\left.y^{\prime \prime}+b y=0\right]$ Fix $b \in \mathbb{R}$ and consider the IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}+b y=0 \tag{3}\\
y\left(x_{0}\right)=y_{0} \\
y^{\prime}\left(x_{0}\right)=z_{0}
\end{array}\right.
$$

You are going to prove that this IVP has a unique solution, in two different ways.
(a). Show that the IVP (3) has a unique solution if the IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}+b y=0 \tag{4}\\
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right.
$$

has the unique solution $y=0$.
(b). The first way of proving uniqueness uses Taylor polynomials.
i. Let y be a solution to the IVP (4). Prove that

$$
y^{(2 n)}(x)=(-1)^{n} b^{n} y(x), \quad y^{(2 n+1)}(x)=(-1)^{n} b^{n} y^{\prime}(x) .
$$

ii. Deduce from i. that the Taylor polynomial of y at 0 of degree $2 n-1$ is 0 and therefore $y(x)=E_{2 n-1}(x)$.
iii. Show that for every $c>0$ there exists a constant $M \geq 0$ such that

$$
\left|y^{(2 n)}(x)\right| \leq M|b|^{n}
$$

for all $x \in[-c, c]$. (Hint: set $M=\max _{[-c, c]}|y(x)|$, which exists since y is continuous.)
iv. By choosing n sufficiently large, show that $|y(x)|<\varepsilon$ on $[-c, c]$ for every $\varepsilon>0$ and deduce that $y=0$.
(c). This proof is more elementary but more "clever".
i. Prove that $b y^{2}+\left(y^{\prime}\right)^{2}=0$.
ii. If $b \geq 0$ deduce immediately from part i. that $y=0$.
iii. Assume now that $b=-k^{2}<0$. Suppose that $y(x) \neq 0$ for all $x \in[\alpha, \beta]$. Use part i. to prove that there exists $C \in \mathbb{R}$ such that either $y(x)=C e^{k x}$ or $y(x)=C e^{-k x}$ for all $x \in[\alpha, \beta]$.
iv. Assume that $y\left(x_{*}\right) \neq 0$ for some $x_{*} \neq 0$. Use the continuity of y to show that there exists a point a with $0 \leq|a|<\left|x_{*}\right|$ such that $y(a)=0$ but $y(x) \neq 0$ on the whole open interval joining a and x_{*}. Use this fact and part iii. to prove that $y=0$.
9. [Homogeneous linear second-order equations with constant coefficients] We can now study existence of solutions to homogeneous linear second-order constant-coefficients equations, that is, differential equations of the form

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

for constants $a, b \in \mathbb{R}$.
(a). Fix $b \in \mathbb{R}$. Find all solutions to the equation

$$
y^{\prime \prime}+b y=0
$$

(Hint: Treat separately the case $b=0, b=k^{2}>0$ and $b=-k^{2}<0$.)
(b). Fix $a, b \in \mathbb{R}$ and consider the equation

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

i. Show that y satisfies $y^{\prime \prime}+a y^{\prime}+b y=0$ if and only if $u(x)=e^{\frac{a}{2} x} y(x)$ satisfies

$$
u^{\prime \prime}+\frac{4 b-a^{2}}{4} u=0
$$

ii. Combine parts i. and (a) to find all solutions to $y^{\prime \prime}+a y^{\prime}+b y=0$.
iii. Deduce that the IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}+a y^{\prime}+b y=0 \\
y\left(x_{0}\right)=y_{0} \\
y^{\prime}\left(x_{0}\right)=z_{0}
\end{array}\right.
$$

has a unique solution.
(c). Exercises $1-16,18,20$ in $\S 8.14$ of $[A]$.
10. [Inhomogeneous linear second-order constant-coefficients equations] Fix $a, b \in \mathbb{R}$. For a twice-differentiable function y write $L(y)=y^{\prime \prime}+a y^{\prime}+b y . L$ is called a differential operator.
(a). Show that $L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right)$ for every pair of twice-differentiable functions y_{1}, y_{2} and constants c_{1}, c_{2}. This is why we say that L is a linear differential operator.
(b). Let $R: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Suppose that y_{*} is a solution of the differential equation $L\left(y_{*}\right)=R$. Show that all solutions of the differential equation $L(y)=R$ are of the form $y=y_{*}+y_{h}$, where y_{h} is a solution of the homogeneous equation $L\left(y_{h}\right)=0$.
(c). By Problem 9, $y_{h}=c_{1} y_{1}+c_{2} y_{2}$, where $c_{1}, c_{2} \in \mathbb{R}$ and y_{1}, y_{2} are two solutions of $L(y)=0$ such that y_{1} / y_{2} is not constant. The Wronskian of y_{1} and y_{2} is the function

$$
W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x) .
$$

Exercises 21-23 in $\S 8.14$ of [A] establish properties of W.
(d). Fix $x_{0} \in \mathbb{R}$ and define

$$
c_{1}(x)=-\int_{x_{0}}^{x} y_{2}(t) \frac{R(t)}{W(t)} d t, \quad c_{2}(x)=\int_{x_{0}}^{x} y_{1}(t) \frac{R(t)}{W(t)} d t .
$$

Set $y_{*}(x)=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x)$ and show that $L\left(y_{*}\right)=R$. (This method to obtain a particular solution of the equation $L(y)=R$ is called variation of parameters.)
(e). Exercises $1-25$ in $\S 8.17$ of [A]. (Hints: 1 . If $b=0$ then the solution is found more quickly by applying the Fundamental Theorem of Calculus twice since $y^{\prime \prime}+a y^{\prime}=\left(y^{\prime}+a y\right)^{\prime} .2$. When $R(x)$ is a polynomial of degree d and $b \neq 0$ then one can quickly find a particular solution y_{*} of the equation $L(y)=R$ guessing that y_{*} must be another polynomial of degree d. 3. If $e^{-m x} R(x)$ is a polynomial of degree d the we can look for a particular solution of the form $y_{*}=e^{m x} \times$ a polynomial of degree d.)
11. [Application: simple harmonic motion (Example 1 in $\S 8.18$ of [A])] Exercises $1-7$ in $\S 8.19$ of $[\mathrm{A}]$.
12. [BVP vs. IVP] We saw above that the IVP problem for second-order linear constant coefficient equations always has a unique solution. One is also interested in studying boundary value problems (BVP) instead of IVPs: fix an interval $\left[x_{1}, x_{2}\right] \subset \mathbb{R}$, constants $a, b, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$ and try to find all twice-differentiable functions y such that

$$
\left\{\begin{array}{l}
y^{\prime \prime}+a y^{\prime}+b y=0 \\
\alpha_{1} y\left(x_{1}\right)+\beta_{1} y^{\prime}\left(x_{1}\right)=0 \\
\alpha_{2} y\left(x_{2}\right)+\beta_{2} y^{\prime}\left(x_{2}\right)=0
\end{array}\right.
$$

In contrast to the IVP, in general a solution to the BVP does not exists. Do exercises 17 and 19 in $\S 8.14$ of [A] for some examples of this.
13. [Linear constant-coefficients homogeneous equations] Fix constants a_{0}, \ldots, a_{n-1} and consider a degree- n linear constant-coefficients equation

$$
\begin{equation*}
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0 \tag{5}
\end{equation*}
$$

In this problem you will get a glimpse of how the theory we have developed for second-order equations generalises to higher-order equations.
(a). Suppose that $\alpha \in \mathbb{C}$ is a root of the polynomial

$$
\begin{equation*}
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0 \tag{6}
\end{equation*}
$$

Show that $y(x)=e^{\alpha x}$ is a (complex-valued) solution of the differential equation (5).
(b). Write $\alpha=a+i b$ and deduce that $y(x)=e^{a x} \cos (b x)$ and $y(x)=e^{a x} \sin (b x)$ are two (real-valued) solutions of (5).
(c). Suppose that α is a double root of the polynomial (6). Show that $y(x)=x e^{\alpha x}$ is a second (complex-valued) solution of (5).
(d). Suppose that α is a root of the polynomial (6) of order r. Show that $y(x)=x^{k} e^{\alpha x}$ is a (complex-valued) solution of (5) for all $0 \leq k \leq r$.
(In this way one can always find n (real-valued) solutions y_{1}, \ldots, y_{n} of (5) (why?) and in fact every solution of the differential equation can be written as $y=c_{1} y_{1}+\cdots+c_{n} y_{n}$.)
14. [Linear second-order equations] A homogeneous linear second-order equation is an equation of the form

$$
y^{\prime \prime}+a(x) y^{\prime}(x)+b(x) y=R(x)
$$

where a, b, R are given continuous functions. One can prove existence and uniqueness for the IVP (see Exercises 28-29 in Chapter 5 and 26 in Chapter 7 of [R]), but there exists no general formula for writing the solution.
(a). In this problem we show that we can always reduce to the case

$$
y^{\prime \prime}+g(x) y=f(x)
$$

Unfortunately there is no general formula for the solution to such an equation.
i. Show that every linear second-order equation can be re-written in the form

$$
\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=r(x)
$$

for continuous functions p, q, r with $p(x)>0$ for all x. (Hint: calculate the derivative of $e^{A(x)} y$ and then choose the function A appropriately; this is similar to how we dealt with linear first-order equations.)
ii. By making a change of variable $s=s(x)$ such that $s^{\prime}(x)=\frac{1}{p(x)}$, reduce the previous equation further to an equation of the form

$$
u^{\prime \prime}+g(s) u=f(s)
$$

where $y(x)=u(s(x))$.
(b). You are going to prove a version of the Sturm Comparison Theorem: suppose that y_{1} and y_{2} are solutions to

$$
y_{1}^{\prime \prime}+g_{1}(x) y_{1}=0, \quad y_{2}^{\prime \prime}+g_{2}(x) y_{2}=0
$$

for continuous functions g_{1}, g_{2} such that $g_{2}(x)>g_{1}(x)$. If a and b are consecutive zeroes of y_{1} then y_{2} must have a zero in the interval (a, b).
i. Show that $y_{1}^{\prime \prime} y_{2}-y_{2}^{\prime \prime} y_{1}=\left(g_{2}-g_{1}\right) y_{1} y_{2}$.
ii. Assume that $y_{1}(x), y_{2}(x)>0$ for all $x \in(a, b)$ and show that

$$
\int_{a}^{b} y_{1}^{\prime \prime}(x) y_{2}(x)-y_{2}^{\prime \prime}(x) y_{1}(x) d x>0
$$

iii. Deduce that

$$
\left(y_{1}^{\prime}(b) y_{2}(b)-y_{1}^{\prime}(a) y_{2}(a)\right)-\left(y_{1}(b) y_{2}^{\prime}(b)-y_{1}(a) y_{2}^{\prime}(a)\right)>0 .
$$

iv. Deduce that it is impossible that $y_{1}(a)=0=y_{1}(b)$. (Hint: consider the sign of $y_{1}^{\prime}(a)$ and $y_{1}^{\prime}(b)$.)
v. Similarly, prove that we cannot have $y_{1}(a)=0=y_{1}(b)$ if we assume that $y_{1}(x)>0$ and $y_{2}(x)<0$ for all $x \in(a, b)$, or $y_{1}(x)<0$ and $y_{2}(x)>0$ for all $x \in(a, b)$, or $y_{1}(x)<0$ and $y_{2}(x)<0$ for all $x \in(a, b)$.
(c). Let y be a solution of the equation

$$
y^{\prime \prime}+\left(x^{2}+k^{2}\right) y=0 .
$$

Use part (b) to show that y has infinitely many zeroes which are within $\frac{\pi}{k}$ of each other.

1. For vectors $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2} we have defined:

- The dot product: $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}$
- The cross product or determinant: $\mathbf{x} \times \mathbf{y}=x_{1} y_{2}-x_{2} y_{1}$
- The norm: $\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}}$
- The distance: $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$

We showed that

- $\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$
- $\mathbf{x} \times \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \sin \theta$
where θ is the angle between the two vectors.

2. We defined polar coordinates

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

- We studied polar equations $r=f(\theta), \theta \in[a, b]$
- We showed that if f^{2} is integrable then the area of the polar region R bounded by the polar equation $r=f(\theta), \theta \in[a, b]$ is

$$
\operatorname{area}(R)=\frac{1}{2} \int_{a}^{b} f^{2}(\theta) d \theta
$$

3. We have studied regular parametrized curves $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{2}$.

- We have defined the tangent vector $\mathbf{c}^{\prime}(t)$ and the unit normal vector $\mathbf{n}(t)$ to \mathbf{c}
- We have defined the length $\ell(\mathbf{c})$ of \mathbf{c} and proved that if \mathbf{c}^{\prime} is continuous then

$$
\ell(\mathbf{c})=\int_{a}^{b}\left\|\mathbf{c}^{\prime}(t)\right\| d t
$$

- We have defined the arc length of \mathbf{c} :

$$
s(t)=\int_{t_{0}}^{t}\left\|\mathbf{c}^{\prime}(u)\right\| d u
$$

where $t_{0} \in[a, b]$. We said that \mathbf{c} is parametrized by arc length if $\left\|\mathbf{c}^{\prime}(t)\right\|=1$ for all $t \in[a, b]$

- We have defined the curvature κ of \mathbf{c} : if \mathbf{c} is parametrized by arc length then

$$
\mathbf{c}^{\prime \prime}(t)=\kappa(t) \mathbf{n}(t)
$$

If \mathbf{c} is not necessarily parametrized by arc length, we found the formula

$$
\kappa(t)=\frac{\mathbf{c}^{\prime}(t) \times \mathbf{c}^{\prime \prime}(t)}{\left\|\mathbf{c}^{\prime}(t)\right\|^{3}}
$$

- We have proved that for every differentiable function $\kappa:[a, b] \rightarrow \mathbb{R}$ there exists a unique curve up to rigid motions with curvature κ
- We have defined simple closed curves and stated the Jordan Closed Theorem: every such curve encloses a bounded connected region int(c) of the plane
- We have shown the Green's Formula for area for convex simple closed curves with period T and with continuous derivative:

$$
\operatorname{area}(\operatorname{int}(\mathbf{c}))=\frac{1}{2} \int_{0}^{T} \mathbf{c}(t) \times \mathbf{c}^{\prime}(t) d t
$$

- We have proved the Isoperimetric Inequality: for every simple closed curve with continuous \mathbf{c}^{\prime} we have

$$
\operatorname{area}(\operatorname{int}(\mathbf{c})) \leq \frac{1}{4 \pi^{2}} \ell(\mathbf{c})^{2}
$$

Moreover, equality holds if and only if \mathbf{c} is a circle.
4. We have studied sequences of real numbers.

- We proved that every monotonic sequence is convergent
- We defined the notion of a subsequence and proved the Bolzano-Weiestrass Theorem: every bounded sequence has a convergent subsequence
- We proved the Cauchy Criterion: a sequence converges if and only if it is a Cauchy sequence

