Home Info Instructors  Schedule & Homework  Exams

MAT 142 - Analysis Il

Welcome to Mat 142! The aim of the course is to further develop the rigorous theory of
single variable calculus after the Analysis | course.

Click on the top for more information:

The Info section contains times and locations of the lectures and recitations, information
about the textbook, etc.

You will find information about office hours and ways to contact your instructors in the
Instructors section.

The week-by-week progress of the lectures and the weekly homework assignments are
posted in the Schedule & Homewaork section.

Information about the exams is contained in the Exams section.



Home Info Instructors  Schedule & Homework  Exams

Info

Times and places:

Lectures MW 5.30-6.50pm Physics P112 Lorenzo Foscolo
Recitations M 4-4.53pm Physics P128 Jordan Rainone

Important dates are on the university Spring 2017 academic calendar.

Textbook:
Notes for each lecture will be made available on the Schedule & Homework page.
The basic textbook for the course is:

[A] Calculus. Vol. 1: One-variable calculus with an introduction to linear algebra, by T.
Apostol,

This has already been used in Analysis | and will serve as a reference for the basic
definitions and results. However, most of the topics we will discuss during the course
are not included in this book. Specific references will be given during the course.

Besides Apostol's book, two classic books on one-variable calculus that is worth
consulting from time to time are:

[R] Principles of Mathematical Analysis by W. Rudin, Mc Graw-Hill
[S] Calculus by M. Spivak, Publish or Perish
Note: in the homework and notes for the lectures | will use [A], [R], [S] to refer to these

books.

Prerequisites:


http://www.stonybrook.edu/commcms/registrar/calendars/acalcontent/ay1617/Ugrd%20Spring%202017%20101316.pdf

C or higher in MAT 141 or permission of the Advanced Track Committee.

Main topics covered:

The main topics we will cover in the course are: applications of integrals to geometry
(length of parametrised plane curves, the Isoperimetric Problem); convergence,
approximation and compactness results for sequences of functions; existence and
uniqueness of solutions to first-order differential equations; Fourier Series and
applications to mathematical physics.

Lectures and office hours:

You are expected to attend lectures and recitations every week. Lectures give some
basic understanding of the topics covered in the course. Recitations build your
problem-solving skills. They are very important because one learns mathematics only
by doing it. The time and location of the lectures and recitations are given above.

The lecturer and the recitation instructors hold office hours every week. The times
and locations are on the Instructors page, as well as contact details of all the
instructors. You are encouraged to see your lecturer or recitation instructor to discuss
homework and other questions.

Homework:

Homework is assigned weekly. It is due at the recitation meeting the following week
and must be handed in to the recitation instructor. No late homework will be accepted.
Every week 10/15 problems will be assigned and 4 of these will be graded.

Grading policy:

There will be two midterm exams worth 20% of the final grade each, a final exam
(40%) and weekly homework (20%). Check the Exams page for the dates of the
exams and make sure to be available at those times.

If you need math help:

We are happy to help! Come to our office hours with questions on homework and
lectures. Additional help is also available at the Math Learning Center.


http://www.math.sunysb.edu/%7Elfoscolo/mat118-spr14/mat118-spr14/Instructors.html
http://mat211-spring17/Exams.html
http://www.math.sunysb.edu/MLC/

DSS advisory:

If you have a physical, psychiatric, medical, or learning disability that could adversely
affect your ability to carry out assigned course work, we urge you to contact the
Disabled Student Services office (DSS), Educational Communications Center (ECC)
Building, room 128, (631) 632-6748. DSS will review your situation and determine,
with you, what accommodations are necessary and appropriate. All information and
documentation regarding disabilities will be treated as strictly confidential.

Students for whom special evacuation procedures might be necessary in the event of
an emergency are encouraged to discuss their needs with both the instructor and with
DSS. Important information regarding these issues can also be found at the following

web site: http://ws.cc.stonybrook.edu/ehs/fire/disabilities.shtml

Academic Integrity:

Each student must pursue his or her academic goals honestly and be personally
accountable for all submitted work. Representing another person’s work as your own
is always wrong. Faculty are required to report any suspected instances of academic
dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School
of Health Technology and Management, Nursing, Social Welfare, Dental Medicine)
and School of Medicine are required to follow their school-specific procedures. For
more comprehensive information on academic integrity, including categories of
academic dishonesty, please refer to the academic judiciary website at:

http://www.stonybrook.edu/uaa/academicjudiciary


http://ws.cc.stonybrook.edu/ehs/fire/disabilities.shtml
http://www.stonybrook.edu/uaa/academicjudiciary
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Exams

Instructors

Lorenzo Foscolo

Room 2-121, Math Tower
E-mail: lorenzo.foscolo@stonybrook.edu

Office hours:

M 4-5pm in Math Tower 2-121
Tue 1.30-2.30pm in the MLC
Tue 2.30-3.30pm in Math Tower 2-121

Jordan Rainone

Room S-240A, Math Tower
E-mail: jordan.rainone@stonybrook.edu

Office hours:

M 1.30-3.30pm in MLC
F 12-1pm in MLC


mailto:lorenzo.foscolo@stonybrook.edu
mailto:jordan.rainone@stonybrook.edu?subject=
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Schedule & Homework

Week 1, Jan 23-29
Problem sheet 1.

(This homework will not be graded. Solutions will be discussed during the lecture of
Wednesday Jan 25.)

Week 2, Jan 30 - Feb 5

Review: definition of integrals §§ 1.9, 1.12, 1.16, 1.17 in [A]
the Fundamental Theorem of Calculus §§ 5.1-5.3 in [A]
complex numbers §§ 9.1-9.7 in [A]

Notes: Notes1

Reading: vectors, dot product, norm: §§ 12.1-12.9 in [A]
polar coordinates: §§ 2.9-2.10 in [A]
parametrized curves: Appendix to Chapter 12 in [S]

Homework: HW1 (due on Feb 6 at the recitation meeting)

Week 3, Feb 6 - Feb 12

Reading: uniform continuity and integrability: §§ 3.17-3.18 in [A]
parametrized curves and their length: pp. 135-137 in [R]
curvature: §§ 2.1-2.3 in [P]

For a reference to the topics on curves (length, curvature and the Isoperimetric
Inequality) we are studying you can have a look at sections 1.1, 1.2, 1.3, 2.1, 2.2, 3.1 and
3.2 of

[P] Elementary Differential Geometry, by A. Pressley, Springer Undergraduate
Mathematics Series.

Notes: Notes1 and Notes2

Homework: HW2 (due on Feb 13 at the recitation meeting)



Week 4, Feb 13 - Feb 19

Reading: the Isoperimetric Inequality: §§ 3.1-3.2 in [P]
sequences: §§ 10.2-10.3 in [A] and Chapter 3 in [R]

Notes: Notes2 and Notes3

Homework: HW3 (due on Feb 20 at the recitation meeting)

Week 5, Feb 20 - 26

Review and First Midterm Exam

Week 6, Feb 27 - Mar 5
Reading: Newton’s Method: exercises 16-17-18 on p. 81 in [R]

Uniform convergence: §§11.1-11.4 in [A] and pp. 143-154 in [R]
Notes: Notes3 and Notes4

Homework: HW4 (due on Mar 6 at the recitation meeting)

Week 7, Mar 6-12
Reading: Uniform convergence: Chapter 7, pp. 143-160 in [R]
Notes: Notes4

Homework: HW5 (due on Mar 20 at the recitation meeting)

Week 8, Mar 20-26

Reading: Weierstrass Approximation Theorem: Chapter 7, pp. 159-160 in [R]
Taylor polynomials: Chapter 7, §§ 7.1-7.8 in [A]
Series of functions: Chapter 11, §§ 11.6-11.16 in [A]

Notes: Notes4

Homework: HW6 (due on Mar 27 at the recitation meeting)

Week 9, Mar 27 - Apr 2
Reading: Power series, Taylor series: Chapter 11, 8§ 11.6-11.13 in [A]



Homework: HW7 (due on Apr 3 at the recitation meeting)

Week 10, Apr 3-9
Second Midterm Exam

Reading: First-order differential equations. Notes5 provides a guide to readings and
exercises and contains detailed references to sections in Chapter 8 of [A].

Homework: problems 1, 2.(a), 2.(b).iv, 2.(c) in Notes5

(due on Apr 9 at the recitation meeting)

Week 11, Apr 10-16

Reading: First-order differential equations. Notes5 provides a guide to readings and
exercises and contains detailed references to sections in Chapter 8 of [A].

Homework: problems 10-11 in §8.5in [A], 2 and 10 in §8.24 in [A], 4.(d) and 5 in Notes5

(due on Apr 17 at the recitation meeting)

Week 12, Apr 17-23

Reading: First and second-order differential equations. Notes5 provides a guide to
readings and exercises and contains detailed references to sections in Chapter 8 of [A].

Homework: problems 6.(e), 7.(a) and (c) for exercises 3 and 5 in §8.22 of [A], 7.(b) for
exercise 6 in §8.26 of [A], 8 in Notes5

(due on Apr 24 at the recitation meeting)

Week 13, Apr 24-30

Reading: Second-order differential equations. Notes5 provides a guide to readings and
exercises and contains detailed references to sections in Chapter 8 of [A].

Homework: exercises 15,17, 19, 20 in §8.14 of [A]
exercises 6,7,12,22in §8.17 of [A]
problems 14.(b) and 14.(c) in Notes5

(due on May 1 at the recitation meeting)

Week 14, May 1-7



Reading: §14.20 in [A].

Review.
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Exams

Midterm |: Wednesday Feb 22, 5.30-6.50pm, Physics P112

The Review Sheet 1 contains pointers to all the topics we have covered so far and
that you should expect to find on the exam. The exam will contain 3 problems, two on
curves and one on sequences.

Midterm |l: Monday April 3, 5.30-6.50pm, Physics P112

The exam will cover:

1) Newton’s Method and existence of fixed points

2) Uniform convergence of sequences of functions (uniform convergence and
continuity/integration/differentiation, Dini’s Theorem)

3) Arzela-Ascoli Theorem

4) Weierstrass Approximation Theorem

5) Taylor polynomials and integral formula for the remainder

6) Uniform convergence of series of functions

7) Power series and radius of convergence

8) Taylor series

Einal exam: Thursday May 11, 8.30-11pm, Physics P112

The exam will cover everything we have seen during the semester, with an emphasis

on differential equations. You can expect

- a bunch of questions of the form “solve this differential equation/initial value
problem”

- a more “theoretical” question about differential equations (such as problems 8, 9
and 10 in Notes 5 about existence and uniqueness of solutions)

- a couple of questions about uniform convergence and/or Taylor series

- a couple of questions about curves (length, curvature) and polar coordinates

In order to prepare for the exam, review past homework assignments, online notes,
your personal notes, textbooks and do plenty of exercises (including reproving some
of the results we studied).

| will hold office hours as follows:



Monday May 8, 4-5pm, Math Tower 2-121

Tuesday May 9, 11am-1pm, Math Tower 2-121
1.30-2.30pm in MLC

If you need help outside of these times, write me an email and we will arrange a time to
meet.
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Welcome to Mat 142! The aim of the course is to further develop the rigorous theory of
single variable calculus after the Analysis | course.

Click on the top for more information:

The Info section contains times and locations of the lectures and recitations, information
about the textbook, etc.

You will find information about office hours and ways to contact your instructors in the
Instructors section.

The week-by-week progress of the lectures and the weekly homework assignments are
posted in the Schedule & Homewaork section.

Information about the exams is contained in the Exams section.



MAT 42 - ANALYSIS IL:NoTesl (week 2 - WEEK 3)

T. THE FLANE

g4, Vectors

Definttion
The vector space of n- tuples R" is the space of all a-tuples vz (v,... )

of (eal numbers with the 40&Wm§ sperations of addition g and scalar
mdh(uwhon

¥ !-’(Vn“'rvn) , W= (w,,._.)wn) eRn and ke IR

Theorom (Properties of vector addifion and scalar multiplication)
me V 21\—")\'1&‘-&" d,hi a,)béfk we hébVL:

i) u+ (wew) = (u+v) ¢ w

i) The vedoe 9= (0,...,0) 5 an dditive Jwﬁtg“: 0+vY=yv+0=V
(%) a(bg - (ab) u

W) a(uew): auys aw

(vi) (a+b)u = au +bu

(vi) Olt=0 and (uw=u

(vi) ~u = _tu is the additive nverse of w: (u4v)_u = v

-
—

Remark ( Geometric nterpretation of vector addition and scalar muldi pli cation)

P



S The dot  product

Dg}{n?jcion
The dot Qﬁ?du.c,t of 4wo vectors 4= (u.,--.,u,,) and V- (v‘)_,,)\/n> n R

UWe V = u\\/i + ... % UnVn

-

Tkwm U’Coeuﬁ?ﬁ O‘C 'H\IL 40‘& ?raolu.d:)
¥ uvweR' and keR we have :

= ¥ou (cwommutative (aw)

e (Y4W) = Uev ¢ Mew  (distributive (aw)

(@) k(4e¥) = (Rudev = wo (ky) (homogeneity)

(W) uweld o and wew=0 W u=0 (psitivly)

Remarl (gwmbt\’ic i:d‘ery&{?vﬁon of Hhe dot rf‘aatudi)

Theorem (Cauckd- Schwarz Inequca«(&y)
¥ o, veRY we have  (u.v)® <€ (u-d) (Ye¥)
k

Moce over :ui\wli{—g holds WF 3 keR st u =i

proof
wlog we can assume that wg 02V [(otherwise the vesult is trivial)

DLl B2 e Using Prayufg (i) we can BRf@r further assume “ed = |
Tadeed , we can wplace w with .
4 12

Consider the vector W= Vv - (4ev) u . 'Bg prapzrfg (iv) we have
WeW 20  with ec(u_a/ufg FF w=20, that is v = ‘lt_,_l. with k= UV .

I

=

Now, wow = VoW _2(uey)* + (4e¥)*  since w.wog

Hoeo we used propeckies (1), (iD) and (ii0).



Definttion

The noem  lull of 2- vacbor ueR™ i Hull= 4 uen

Tkwre,m (?fa‘mfﬁls o‘F {’ka, m‘zrm)
Fuve R" and ke R we have:

G julzo ad quij=p W u=o (pesttivity)
@) fkewl = (h] jull (komrgznéﬂ:g)
G 20ul 20 = Gut v P Ju-xi® (parallelogram (aw)
(W) pue¥ = futyli™= fu-yv)? (polacization identity)
(V) Hu+yll € Nwii+0xl  (risngle inequality)
E‘fo of (V)
2 ‘ 2 7
lutv "= (L+v)o (U+v) = Ul + UYlI + 2 4oy
(Ui 0v0) = Dui+ g 0® + 20upyl

Cauchy-Schwarz Tnequality: oy < [wex| < quip n¥ll

Remark (geometric ihtergre%aﬁon)

Hu+vi)
Vi
“i ¢
?arallz(ogram law tri&ngle iﬂiqua{[{;\y

Exerase When does utua/u{'j holds i Hhe ‘l:riandie Eﬂéqwau{‘jz

Definvbion
The distance between two PoEn‘ts we® u,v an RY i
d(v,v)= fu-y]

Ao



Theorem (Pro?ru’ﬁas of the distance)

§2. Complex numbers

szxn\‘hOHPt

TRR el Qulipe The set of complex numbecs € i« R* endowed

with  vector sum (a,b) + (e, &) (‘H'C, b+td) and the ?rao(uct

(a,b) (e,d) = (ac—bd, adsbe).

08)
To wnnect this & the standard com/e['ix notation Zoatbi we need

theee dbsarvations:
(i) every vector (a,b) in R® can be weitten as
(&)L): (L('lo) + b(o51)

() (1,0) s the muH'\‘)LLLa*thL idan{i+§j w € (1bo) (eb)= (2,b)

& Bd abuse of notation we then write 12(1,0)

Gi) (0,1) (0,1) = =14 ond we set L= (91)

(¥
) Theorem
€ s an @(3@‘0«’3 over R, that is 0 R A0R@ A R p OB ~hdS

o5 veckor addition, mﬁ@'? scalar mw{{nehca’c\oh bj a ceal number and

the Q\”O&wct AR R0 sahs{y

() (u+¥)w = UW +rw
Gy @ (L4W)= uyv + YW
i) k(we) = (huw)y @ = u(ky)




§3.  Plar  coocdinates

i N’
Recall : Tala«r form of a wmeltx humber E= e y /[/
8

Polac coordinates: { = ncos b
3: ILanG

—
x
N2

§31 Area in polar coordinates

Let 'C‘- [-a'/l’] —> R bea fu,nc:(im such that
. {(x) 20 ¥ xéfa,b]
., 0¢ boa ¢ ar

The XJL'M" %w&’don = @(9) > Oe EL, L]

describes 2 curve i the
?\u\e " ?olar cooroum/fas'
§-b

K:%(@)

f=a

Exwg(es
2 A
M n= 2sind , 8¢ fo,1] ( X+ (y-1) = 1 )

(iv) R:.Eal;—é- (X:.l)

(i) (spirsl of Archimedes) n= @

Given 2 \m(ar zc‘uaﬁon n= g(@) , e [e,b]

cnsider the
radial  set R of £ over (3,b] .

R { @B) (neosb,nsin€) e R | o ns J8), Hefub] ]

®



Theorem
W I;K 42 (s inf@grab[e, on [2,b] then R is measurable and
b
«(R)= 1 {7 £*0) 46

proct.
Let s, t be two step funchions sudh that

0<¢(6) < §(0) < £(#) ¥ fefeb]
Lt S and T be the tadial sefs of o2 t,rzsf:wﬁvdy, over (v,6].
Since  s¢ g <t we have ScRcT and therefore bg the monotone
\""?“J‘(f@ of area «(S) < a(R) g a (7).

- . 2
Now observe that the area of 2 circular sector {(ncosé, nnn@)éﬂ{/osas T, 'g

9 [6.,6,]
84, s 1 (4-6)
9"'9|
o b

b
we wnclude hat a(S) = lzg s*0) 46 and a(‘f‘): _‘.S; +%(9) 46 (Wif\g?)

a x

wnee ; b
font gb (@) d6 < 2a(R) < f £4(6) d9.

& @

Since .gz s intagraue and  $7 {;1 are a,rbl‘lffarg step functions with

§* ¢ gzstl o [o,,b]’ we have 2a(R) = S: 42(9) de.



T. & PLANE CURVES

g1, Paramebrized curves

Definvbion
A rarametrized (plane) wrve is 3 vector-valued Ffunchion
¢=(wv): [e,b] — R
Lt §: [a.b] — R be o Junchion st f)20 ¥ te[eb] and o€ b-a €2T
Then ¢(t)= (/{(&)cosf) {(Hsint) s a fm&md?ri?,aﬁon of the curve described
by the polare zqu&ﬁon n=4(0), Gelab]. |

Remack : The dus{—md'ww between & Puamzfnzzi cwive and ks “trace” chould be
elear : c(t) = (cos (ab), sn(at) , te[om] wa has the same trace as

dit)- (cost), sin() , te[o2n] and
_g/(‘k): (COS({;)/ Siﬂ(‘b)) N té G’J ip‘l’]
Given two e:»rama.{‘dud curves C: fz,B]_;{RZ) d: [Q,G]—-?IRZ and a2 Funclion
o{:[o,f]_-qm we defne
c+d: (k] —R* by (c+d) k)= )+ dF) (wring vector addition)
de [ub] —>RE by (0) () A)cE)  (wrng acalon amubtiplition

WM S B R SR N T TR S
Definition
Lt ¢ - (u,V)W be 2 FM&MQ’(TiSQd cuive . Then +he S’JMIDO(Q
fim ct)) and ¢ meon
{1,

ﬁva ct) = ( Lm u(t), &Vg V(f))

c'W= (v, vd))

Remark There s 2 different eqwlva(mf definition of (imit, see Wl HWL
One could also define: CME) - Lim  C(t+h) - 2 (k) (Exmc'm- Show +hat Hhis
ho . ki
h qumvaﬁenﬁ’ dﬂ{»‘.mﬁm) @




Remarks: g,i: [o,b] — (Rz o«: [2,b] —R

i (@e)= d'e+ag
(i) o Define 3 funchon cod: (b1 —R by (cod)®)- clt)o d{#)
Then (E'i)| (t) = S\&)'é(‘e) + c(t)o d_‘(-k), [EX%C\SQ: prove this Formu(a]
Definchon
A yuamz’crizd. curve ¢ [ab] — R s rzju.l&r st toc[a,b] i'i ¢'(t,) exists
amd ) £ 0.

@Ig ¢ is Fegwlu‘ sttt we define the fangent lne of ¢ st c(h) as

the set of toln‘ks of the form c(t)+ SE‘({G)
e

The 3ra,ek of g(X)g x| can be Puameﬁrised "3 3 T”"‘M"’tﬂ"ud
cove  c:R—RE st c'(t) axists {Or adl teR, but ¢'(o)= 9, AL HW)
Note how :m cannot define :Hvzf&ngzn‘b line to the origin 2.
Defincbion
Lt ¢:[ob] —>R® be 2 parametrized curve, and (,p] (bl s
function. The Puamd:riwi anve  cop: [l — R defined Qj
(§0P> t) = ¢ (?(Jc)) is called & m?aramefrizaﬁan of ¢.

lwp .0 ' O
Lemma (Chain Rule)

(@Q'@ O Assume thit ') and '@ axist. Then
(Cp)'\@) aleo exists and  (cop)'®t)- p@) <'(PW)
roof.

cW- (uw,v)  (cop) = (b)), v(’réf)))

(Cop)' ) = ((uc(?)‘(t), (VoP)‘(%)) - ( Wpte)) pt), V'(ﬂ*ﬁp‘(ﬂ) P @




€2, Leng‘Hn
Lt ¢ (0b] — R* be a Mgweu Pmmd’/\iw unve

th P: {to,..,,tn} be « ?MﬁHOn og [Q,B].

Yok (R L R i2 Bl b
1 v .::——L
tr 1
(4

Dc%w; : -

2(c,?) = ?; e (b= e (k)| =b

Lemma
) I ¢ panametrizes 4 straight segment then £ (e,P)= ||e(b- ¢ ()]
foc avery  pactition P
(D) T ¢ does nit parametrize a straight segment then there exists 2 partition
Pa{a,t,b} st L(,P) 3> [c(b)- c(ll

precf

el cl@+ =2 (e-c)
b-a

= l[g({'{,)_ [« (f{,_l) “ = !ti“ti-ll ”Q(U—E(‘U“
b-a

@I 7 (t—ti) = Neb)-c@l

=) CO RN HCE

& e

(i) Since Hhe trace f ¢ s nit cntained in 2 line, 3 P t,< (2,b) st
c(t)-c(a) is not Pu&ﬂd t, ¢ (b)-c(a). Then the Triangle Inequalé{‘y

is strict: leb)-c@I < He(t)-c@ll + lc@)- c(+tH

Remark Pant (i) says that a Aﬁai,gkf Line # & is He shotbert cunve betwoen
twe fomts.

It also sayc that £ (c,P) is nowaring f we nefine the pactition.

Definihion

The »‘Zu\ﬁﬂm a('" He Ve € GiS /Q(g)z /Hsaf Z(E,P> ; {"10‘/;6126[ ‘ftng '
number axists, Tn this case we cay Hhat ¢ is qcbifiable. @



M: We want o {,cn& Iy a {amw@a, é’o"z, L(e), at bt whon e is
conblnuous.

Recalll :
w Theorem (Tﬁwrun ik th [A])
Let JS: [.Q,ln] -—)IR Le a Comb:mwu,s -(unc:(iun‘ _n\en ,g is }nta%mb(e on fa,b:].

e
Given o paatition P-{t=a,ti,..,ta=b] of [ab] considec the step funchions
s and § JLW as {o(ﬁowr&:

m Viston st ez;.t‘m‘é“’

st mp on [tonh]l  SE-M o [ti]
Define @ L (4P)- S* siydt = Zm (to-ter)

TUP - (Cs@dt - 2 M (hi-t)
RLCaﬂ ‘Hxai ,Qv%g wm(:inwous 'Fuwv(im o f%"] S mgformtg Con,ﬁnuou,s

(Tkeomm 343 n [A]}: ¥ €>0 3 $>o0 st Q@g I 28

X-y1<S = [{-4dw)
Fix g>0 and choese Hhe partition P so that t-t_, <SS ¥ i=1,,n
Then M'b"mi, < E and %M’Q‘Foi’l
TP - T UP) < £Z (h-t) = -2)E

Now, 1& ) and T({) are Y lower and upper in‘t@gr&(g of { we have

M = max 4({

Thus -

TW-TIW ¢« TUP-TI(4P) < (-a) &
Giace € 1§ arbi—tmrg we anclude that T(4)= T (§).



ThaoCem
Lt c:feb] =R be o sy purametrized curve with ¢ (e,b] — R
continuous . Thew € 1© ﬂuﬁ&w‘)& and

L(e)= S‘: e @l ot

Waite cy- (u({—)) v(-b)) /&ax gw\c@unf u,Vqu"]-—)R witle  condnuous derivafivec,
Nttt Jo'@) || = J*[u.&uu [V,,&)]z' is @ confinuous function on (e,b].

T‘r\ﬂ,méom g: (@ dt |l exists. Mowover, %M‘l“:ul_ lnoogp oi Hha (wvlouf Hheorem
¥ eyo, 4 §>0 st. § P s a Pﬂf’lﬁﬁm of (2,b] with [t-t.,|<§ ¥i=l,,n

hex @ T (ren Py - I (ehP)ce ()

Now considen  [Jclt)— c (&)l By the Mean Value Theorem applied b w and
Vowe wn fied B e (G, t] st
-

leth) - e )l = f [utt-utk )]s [ViBI-viEDT’
- el el G-t ()

Caim: ¥ ¢50, 3 8,50 st [t -t [< & hen
ce ¥ telt,t] (¥ ¥¥)

| ct)-ct)ll - Nl k-t

,‘hog[ of Claim:
Fst set M= 24 NCOI  sad  nofe fhat (w®] €M and (VE] <M
[EXL(‘CES'L: W‘\ﬂ s M %Lm‘ttz]

for ol tefobl. ] 2
Since Hhe Funchon X —> Ax € wifoumly codinwous o [0,2M7]  Dehg?]

¥éro, 3 8o st
[x-Ty| <€ ¥ xy¢ [0,aM] with [x-Y] < &
b-a




On the other hand 4" and V' ace also wni ow/&j contiawous o [2,6] Thuc
1 650 at. f 4o t..1<S  AHan

‘[u‘(X)]z— [u‘(gﬂ]il ¢ | uw+u'w) Iu‘(x)~u‘(5)'
¢ M Juw-uww

< M. S L oi8e ¥ xye[ht]

and  Simt (artg Lo V! 4
fecor e - (et o) | < 8o ¥ te [kl
QA and we wmdude Hhat

Hence

< €,
ry

‘ J (w1 [V‘(&)]z L J [u‘(Jc)]2+ vw]* |

ug{ng (%) and e obvious wchimate -t < Q)_(,L)‘R\t Clagm € [vwvul .

R0 R 2 Now fix €0 ond o qufifion P owith
bt | ¢ awin £5,8.5 o =y, 0
Than  exe)  mplies Hot
ThP)-¢ ¢ L(eP) <« TB TP+ ¢
Hence |

e Tt -TlenP) + ¢ ¢ g et _ 4 (e,p) ¢ I(cnP)_ (lIC‘lf)P)+g < 2%

and H\umcorz /@(C axsts and S‘Q/'éLS%tZS‘

wc& L8 < fe) < S IC@ldt + 2¢
Sine €50 1S ::,rknjowﬁ Hre moce/m 1S Qroup,d, >



Remark (RT, Theoram 6.1%, gives a Sugk‘b@:{ different frao?c,

Exame(a
c(t)= ('ﬁ(%) cost, {&)Sin{) , tela,b]  with 'g\ conkin wouc.,

Ly = (" JToel &

Deinidion
Lt ¢: (oa,b] — R? be « /wgu,fwb Pmmafuwf wve with cnbinwous ¢
Fix tefeb]. The arc length of ¢ fom €, s

t
s(t) = gt ('@l dz

Remack Lt € t <t b pinfs in [2,6]  Dendle by et He wae
¢ [th] — B> Notw that t
. t, 'tz. ‘ (

'&(Qlft.,t{]) = g,c le®ldt = St lcwidt gta"““’m = s(t)-stt)

w Dt‘ciniﬁ(m

We Say that ¢: E«’L,L]___)[Rz 1S ?wrme{'risecl l’ﬁ anc )@Agﬂu i{
sWot-t  f ome te o],

Lemma
¢:[a,b] —R" s gu’amdusd by arc &uﬂﬂu Z% i@ = 1.

poof

By the Fundamentall Theorem of Calculus o

st): t-t, fusome befob] & SH):1 & B =1 ¥ e [ob]
Ytelah] t

Theorem
Evuj rLgulébr gMJ«MQ{TﬂSQd anve Wl““x wwﬁv\uous c{uiv&;éivw Gn @L

panaimetised by ar Lo gth.

(3)



Problem sheet 1 MAT 142, Spring 2017

1. Prove the parallelogram law and the polarization identity: for every pair of vectors
u, v € R? we have

v+ o= v[* =2[luf* +2v*,  utv]*—[lu-v[*=4u-v,

2. For a vector u = (uy,uz) € R? define

lully = o] + ], oo = max ).

Determine whether || - ||; and || - ||« satisfy each of the following properties:
(a). Positivity: |lu|| > 0 for all u € R? and |[u|| = 0 if and only if u = 0;

(b). Homogeneity: [[cul| = |c|||u]l.

(c). Triangle Inequality: ||u+ v|| < |[ul| + ||v]| for all u,v € R?.

Draw the sets of points in the plane with ||ul[; < 1 and ||u||o < 1 respectively.

3. (Exercises 1 and 3 in Chapter 4, Appendix 1 of [S])
Given a point v in R? let Ry(v) be the point obtained by rotating v through an angle 6
in anticlockwise direction around the origin.

(a). Show that
Ry(1,0) = (cosf,sin ), Ry(0,1) = (—sinb, cosb).

(b). It should be clear that
Rg(u+v) = Rp(u) + Ry(v), Ro(cv) = c Ry(v)
for every u,v € R? and ¢ € R. Deduce the formula

Ro(z,y) = (xcos® — ysinf, xsinf + ycosb).

(c). Show that
Ry(u) - Ry(v) =u-v

for every u,v € R2.

(d). Let e be the vector e = (1,0) and w = Ry(e) = (cosf,sinf). Observe that |le|| = 1,
|w|| =1 and e w = cosf. Deduce that for every u,v € R? we have

u-v =|ul||v] cosé,

where 0 is the angle between u and v.



4. Let u = (u1,us) and v = (v1,v2) be two vectors and define
u XV =1uUVy — UyVq.

(a). How does x behaves with respect to the operations of addition and scalar multiplica-
tion? What happens if one interchanges the order of u and v?

(b). Show that Ry(u) x Rp(v) =u x v.
(c). Argue in a similar way as in Problem 2 to show that
ux v = [luf||v]sin6,
where 6 is the angle between u and v.
(d). Deduce that |u x v| is the area of the parallelogram with vertices 0,u,v and u + v.
5. Let (r,01) and (r9,02) be the polar coordinates of two points in the plane. Show that
the distance d between the two points is given by

d* =1} 4 — 2rira cos (61 — 65).

6. The cardiod is the curve with polar equation r = 1 —sin#6, 6 € [0, 27).
(a). Sketch the graph of the cardiod.
(b). Show that it can be described by the equation
(*+y* +y) =2+
(Take some care in motivating your choice of sign when taking square roots!)

(c). Calculate the area of the region enclosed by the cardiod.

7. Find a parametrized curve that runs clockwise twice around the unit circle centered at
the origin.

8. (Parametrization of an interval; exercise 2 in Chapter 4 of [S])
There is a very useful way of describing the points of the closed interval [a, b] (where we
assume, as usual, that a < b).

(a). First consider the interval [0, b], for b > 0. Prove that if € [0, b], then z = tb for some
t with 0 <t < 1. What is the significance of the number t? What is the mid-point of
the interval [0, b]?

(b). Now prove that if x € [a,b], then x = (1 — t)a + tb for some ¢ with 0 < ¢ < 1. (Hint:
This expression can also be written as a + t(b— a).) What is the midpoint of the interval
la,b]? What is the point 1/3 of the way from a to b?

2



(c). Prove, conversely, that if 0 < ¢ < 1, then (1 —¢)a + tb is in [a, b].

(d). Prove that the points of the open interval (a,b) are those of the form (1 —t)a + tb for
0<t<l1.

9. Let f(t) be the function
2 ift>0

f<t):{ —2 ift <0.
Let c(t) be the parametrised curve c(t) = (f(t),t?).
(a). Show that f is differentiable.
(b). Calculate c'(t).
(c). Show that the trace of c is the same of the trace of the parametrized curve s — (s, |s]).

(This problem shows why it makes sense to insist that ¢/(¢t) # 0 in the definition of a regular
parametrized curve.)

10. We say that a parametrized curve c : [a,b] — R? has a weak tangent at t if the unit

vector ”z(Hh)*c(t)” has a limit when A — 0. Prove that the cuspidal cubic c(t) = (t3,?),

(t+h)—c(t)
t € R, has a weak tangent at the origin but it is not regular there. Make a sketch.

11. Consider a curve given by the polar equation r = f(0), 6 € [a,b]. We can parametrize
the curve by

c(t) = (f(t) cost, f(t)sint),t € [a,b].

(a). Find a formula for the slope of the tangent line of the curve at the point with polar
coordinates (f(t),t).

(b). Calculate the slope of the tangent lines to the spiral of Archimedes r =6, 0 > 0, at
the point with 6 = 7. Make a sketch of the spiral and the tangent line.
12. There are two natural ways of defining limits of vector-valued functions. Let ¢y =

(7o,0) be a point in R? and c¢(t) = (z(t), y(t)) be a vector-valued function c : [a, b] — R?.

e Definition 1.

We say that limy_,;, c(t) = co if limy_, 2(t) = 2o and limyg 4, y(t) = yo.

e Definition 2.
We say that lim;_, c(t) = ¢y if for every € > 0 there exists 6 > 0 such that

le(t) = coll <€
whenever [t — to| < 0.

Prove that the two definitions are equivalent.
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2
alinte) ¢ RISy
e

and Ju(w@ﬁcg welds '\% cis 4 cacle .



ref
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e 2
L g nfe vt 6 dt
Py ymwoy,
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_ 2 - 3 T2 .2 T2 gt oT 20 dt
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o o

T ‘g “
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- e
o]
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Problem sheet 2 MAT 142, Spring 2017

1. Let c(t) = (e tcost,e tsint), t € [0,00).
(a). Prove that lim; ,,, c(t) = 0. Draw a sketch of the trace of c.

(b). Prove that lim; fot |Ic’(7)|| dr exists and justify the claim that c¢ has finite length
over [0, 00).

In the following problems 2-5, ¢ = (u,v) : [a,b] — R? is a regular parametrized curve
with continuous derivative c’.

2. For every [t1,ts] C [a,b] define

/tt2 c(t)dt = </tt2 u(t) dt, /tt2 v(t) dt) c R2.

Prove the Fundamental Theorem of Calculus for this notion of integral, i.e. prove that

o(t) — clt) Z/ch(t) dt.

t1

3. You are going to prove that the straight line between c(a) and c(b) is shorter than c.

(a). Prove that for every x € R? we have
b
(c(b) —c(a)) -x < HXH/ <" ()] dt.
(b). Take x = ¢(b) — c(a) and deduce that ||c(b) — c(a)|| < ¢(c). When does equality hold?

4. Define a vector x = (z1,72) € R? by

to to
1 :/ u(t) dt, ) :/ v(t) dt.
t1 t1
Note that we can write

Ix||* = 2, /t2 u(t) dt + o /tz v(t) dt = /tz (z1u(t) + zov(t)) di.

t1 t1 t1

Prove that [|x||? < ||x]| fttf |lc(t)|| dt. Deduce that

[ cwa] < [“ecna




5. Prove the Mean Value Inequality: there exists ¢ € [t1, {] such that

le(t2) = c(t)ll < ' (D)l (f2 = t)-

6. This is an example of a non-rectifiable curve. Define c : [0,1] — R? by

c(t) = (1,tsin (%))

if t > 0 and c(0) = 0.
(a). Show that c is continuous.

(b). Consider the arc ¢, of ¢ over the interval #1 <t < % Since c is regular with
continuous derivative away from t = 0, ¢, is rectifiable for every n > 1. Use Problem

5 to show that 4

> .
ten) 2 577

(c). Consider the length of ¢ over the interval N+r1 < t < 1 and deduce that c¢ is not
rectifiable.

7. The hyperbolic cosine and sine are the functions R — R defined by

el + et et —et
sinht =
2 ’ 2

cosht =

(a). Show that cosh?t — sinh?t = 1. Observe that cosht > 0 for all ¢ € R.
(b). Show that the derivative of cosht is sinht and the derivative of sinh¢ is cosh ¢.
(c). The catenary is the curve ¢ : R — R? defined by

c(t) = (t,cosht).

Show that the curvature of the catenary is

1
k(t) = .
(®) cosh? ¢
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$1, Convergent SLQUUL(ES
" (of read nwinbet)
D:&n\iﬁoﬂt A su(wxc[‘ﬂi's @ '{wwu&iom, /g: N—R.
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Theorem |

Evay pounded amenotonic ARMULALLL Convinged.
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Bg defunition a§ rup ¥ €>0 A NelN 4T ay> a-¢€.
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Xq € [al,b] ¥ ne¢ N, ; I ANA, ; 7y
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84, Newton's Method

EXM’ (Nwaah, 1611)
We wank 1o {u\d o oot ag e w%mm{uﬁ P(x )=

Nota M %= 2 /tdm%\ﬂ-/) Pl.x.o): -
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x3-2X-5
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7
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Problem sheet 3 MAT 142, Spring 2017

1. Consider the ellipse 2—; + Z—j = 1 and its parametrization
c(t) = (acost,bsint), te0,2n].
(a). Calculate the curvature of the ellipse.

(b). Calculate the area of the region enclosed by the ellipse using Green’s Formula.

(c). Show that

27
/ \/a2 sin?t + b2 cos? tdt > 2wV ab
0

and that equality holds if and only if a = b.

2. Let c be the parametrized curve
c(t) = ((1 4 2cost)cost, (1 + cost)sint).
Show that c(t + 27) = c(t) but c is not a simple closed curve. Draw a sketch.
3. Does there exist a simple closed curve 4 ft long and bounding an area of 2 ft2?

4. Consider the sequence {a,} defined by
1121231234

APV
Find all numbers a € R such that there exists a subsequence of {a,} converging to a.

5. The Euler number v is defined as

n—o00 2

1 1
v = lim (1+—+---+——logn>.
n

Show that ~ is well-defined. (Hint: show that the sequence a, = 1+ 1 +---+ L —logn is
decreasing.)
6. Let {a,} a bounded sequence. Define two new sequences {z,} and {y,} by

x, = inf{ay,, api1, Gpio, ...}, Yn = SUP{an, Gpi1, Gpio,--- }-

(a). Prove that {x,} is decreasing and {y,} is increasing and deduce that both sequences
have a limit. Set

lim, . a,= lim z,, lim, ,s0a, = lim y,.
n—o0 n—oo



(b). Calculate lim,,_,.a, when a, = %

(c). Prove that

lim, ., a, <lim, ,a,.

(d). Prove that {a,} is convergent if and only if lim,_,  a, = lim,, 0@, and that in this
case lim, , a, = lim,, , a, = lim,_.a,.

7. Prove that every continuous function f : [a,b] — R is uniformly continuous using the
Bolzano—-Weierstrass Theorem.
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§2. Uniform (onvergence
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Problem sheet 4 MAT 142, Spring 2017

1. Let f:[0,1] — [0,1] be an increasing continuous function. Show that there exists
xo € [0, 1] such that f(zg) = 0.

(Hint: start with any point zo € [0, 1]; if f(x0) = xo then you're done; assume then that f(zo) # zo
and consider the sequence z1 = f(x¢), z2 = f(x1),..., zn = f(xn—1) when f(z9) > z¢ and when

fxo) < x0.)

2. Fix ¢ €[0.5,1] and consider the function

(a). Prove that f.:[1,00) — [1,00).

(b). Prove that if ¢ < 1 then f. is a contraction. The theorem proved in class then guaran-
tees that f. has a unique fixed point in [1, 00). Can you find it?

(c). Suppose now that ¢ = 1. Prove that f; satisfies
u2) = i) <o —yl, for all 2,y € [1,00) with 2 £ .

(d). Using part (c) show that f; has at most one fixed point in the interval [1, 00).

(e). Show that f; has no fixed point in [1, 00).

3. (Exercise 17 in Chapter 3 of [R]) Fix @ > 1 and x¢ > /a. Define a sequence {x,} by

L ot et +oz—x721
L TS T, T T iy,

(a). Prove that 1 > x3 > x5 > ... and xg < 23 < x4 < ....

(b). Prove that {z,} converges and that lim,,_,. 2, = \/a.

— 23241

4. Let a be any number with a > 5 and consider the function f(z) -

(a). Show that f:[—1,1] — [—1,1].
(b). Show that f:[—1,1] — [—1,1] is a contraction.

(c). Show that the equation z® + 22 + 1 = ax has a unique solution in [—1,1].



5. Use Newton’s Method to approximate a zero of the function f(z) = cosz — 2* near

0. Find the best approximation within the accuracy of your calculator (that is, stop the
iteration whenever you start getting the same result over and over again).

6. For the following sequences of functions determine the pointwise limit on the interval
indicated and whether the convergence is uniform.

(a). fulx) = e‘”IQ, xr € [—1,1]
(b). fulz) =i z€R

(c). fo(z)=2"—2* x€]0,1]

(d). fulw) = /z+ L 2e0,00)

(e). fn(x):n< x+%—\/§),x€ la, 00) for some a > 0
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1. Let {f.} be a sequence of continuous functions on a closed bounded interval [a, b] and
assume that f, converges uniformly to f.

(a). Let {x,} be a sequence of points in [a,b] such that lim, ,..z, = z. Prove that

limy, o0 fu(zn) = f(2).

(b). Prove the converse to part (a): Let f be a continuous functions defined on [a, b] and let
fn be asequence of functions such that lim,, , f,.(z,) = f(x) whenever lim,,_,, ©,, = .
Then f, converges to f uniformly.

2. Suppose that f,, g : [0,00) — R are continuous functions such that fooog(x) dz exists,
|fu(z)| < g(z) for all x € [0,00) and f,, converges uniformly to a function f on [0,7] for

every T' > 0. Prove that
lim fn )dx = / flx
n— oo

3. For every function g : [0, 1] — R with continuous derivative let ¢(g) denote the length of
the parametrized curve c(t) = (t, g(t)), t € [0,1] (this is the most obvious parametrization

of the graph of g). Find a sequence of functions f,, : [0,1] — R that converge uniformly to
a function f with £(f) # lim, o 0(f).

4. Dini’s Theorem states that if {f,} is a sequence of functions f,, : I — R (where [ is an
interval in R) such that:

(i) fn is continuous for all n;

(ii) I = [a,b] is a closed bounded interval;
(iil) fo(x) < fogpi(z) for all x € I (or fo(z) > fori(z) for all x € I);
(iv)

then f,, converges uniformly to f.

fn converges pointwise to a continuous function f;

(a). Assume hypotheses (i), (ii), (iii) are satisfied. Show that the pointwise limit f(z) =
lim,, o0 fn(2) exists for all x € I. The content of the hypothesis (iv) is to assume that
this pointwise limit is a continuous function.

(b). Consider the functions

fn:[0,1] = R, gn : [0,00) = R, hyp :[0,1] = R, kn:[0,1] = R



5.

(a).
(b).

6.

(a).
(b).
(c).

defined by:

0 if0<zx<n
fo(z) =2" g(z)=¢ z—n ifn<z<n+l
1 fz>n+1

and k,, is the function whose graph is:

— the straight line segment from (0,0) to (5=, 1),

2n
— the straight line segment from (5-,1) to (+,0),

— the straight line segment from (£, 0) to (1,0).

1 if0<z<1—:
ho(z)=4¢ 0 ifl-Li<z<l
1 iter=1

Use these functions to show that all hypotheses in Dini’s Theorem are necessary. In
other words, for each of these sequences of functions decide whether hypotheses (i)—(iv)
hold, calculate the pointwise limit and decide whether the convergence is uniform.

Let {f.} be a sequence of continuous functions on the closed bounded interval [a, b].
Assume that {f,} is equicontinuous and that f, converges pointwise to f.

Show that f is continuous.

Show that f,, converges uniformly to f.

Let {f.} be a sequence of continuous functions on the closed bounded interval [a, b].
Assume that f,, converges pointwise to f and let {f,, } be a subsequence.

Prove that if f,,, converges pointwise to g then f = g.

Prove that if f,,, converges uniformly to f then f, converges uniformly to f.

Use part (b) and the Arzela-Ascoli Theorem to give a different proof of part (b) in

Problem 5.
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1. Suppose that f : R — R is a continuous function. Let f,(z) = f(nx) for z € [0, 1].
Assume that {f,} is equicontinuous. Prove that f is constant.

2. You are going to prove that the function f : [-1,1] — R defined by f(z) = |z| can be
approximated uniformly by polynomials without using Weierstrass Approximation Theorem.

(a). Given z € [0, 1], show that the sequence

1
N = 17 Yn+1 = 5 (CL‘ + 2yn - yi)

defines a decreasing sequence in [0, 1] converging to /.

(b). Deduce from part (a) that there exists polynomials P, : [—1,1] — R such that the
sequence { P, } converges pointwise to f(x) = |x|. (Hint: define P;(z) = 1 and P, (z) =
3 (2% + 2P, (z) — Py()?) for all n > 1.)

(c). Use Dini’s Theorem to show that {P,} converges uniformly to f(z) = |z| in [—1, 1].
(Hint: deduce from part (a) that P,(z) > P,4+1(z) >0 for all z € [-1,1].)

3. Prove that every continuous function on a closed bounded interval [a, b] can be approxi-
mated uniformly by piece-wise linear functions, that is, functions whose graph is a polygonal
curve.

4. Suppose that f:[0,1] — R is a continuous function such that

/Olf(x)x”dxzo

for every n € N. Prove that f(x) = 0forall x € [0,1]. (Hint: use the Weierstrass Approximation
Theorem to show that fol f?dr=0.)

5. Exercise 10 in §7.4 of [A].

6. Exercise 9 in §7.8 of [A].

Note: [A] indicates Apostol, Calculus I.
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1. Let {a,} be a sequence of real numbers and suppose that there exists zy # 0 such that
Yoo o anxy converges. Fix 0 < r < |zo|. Prove that Y~ a,z™ converges uniformly to a
continuous function f on [—r, 7.

2. Let f be the function obtained in Problem 1. Show that f is integrable on [—r,r] and

dt n+1.
/ f®) n + 1
3. Let f be the function obtained in Problem 1. Show that f is differentiable on [—r,7]

and -
/ f(t)dt = Znanx” !
0 n=1

4. Let {a,} be a sequence such that )~ a, converges. By Problem 1, > °  a,z" is
uniformly convergent on [—a, a] for every 0 < a < 1.

(i). Prove Abel’s Theorem: ) a,z™ is uniformly convergent in [0, 1]. (Hint: You can use
the following fact without proof:

’am +amy1 + -+ am-i—k’ <e - ’amxm + am+1x’m+1 + -+ afm+kxm+k‘ <e€
for every x € [0,1].)

(ii). Find a sequence {a,} such that ) > a, converges but Y~ a,z" does not converge
for x = —1.

5. You are going to prove Bernstein’s Theorem: Assume that f is a function f: [0,7] — R

such that f®)(z) > 0 for all n > 0 and x € [0,7]; then the Taylor series Y13 < (M.(O) k
converges to f(x) for every x € [0,7).

(i). Set E, = f —T,(f), where T,,(f) is the Taylor polynomial of f of degree n centered
at 0. Show that 0 < E,(x) < f(x) for all = € [0, 7].

(ii). Show that



(iii). Deduce from the formula in part (ii) that

xn+1

is a decreasing function of x € (0,r]. In particular, deduce that

E,(z) < (f)”“ E,(r).

r

(iv). Use part (i) and (iv) to deduce that

X

By (x) < f(r) (—)"H.

r

(v). Deduce from part (iv) that lim, . E,(z) = 0 for all z € [0,r).

(vi). Is the convergence of » ;2 %x’“ to f uniform on [0, a] for any a < r?
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1. [Warm-up| Assume that there exists a function f : R — R which is not always zero
and satisfies f” 4+ f = 0.

(a). Prove that f? + (f’)? is constant and deduce that either f(0) # 0 or f’(0) # 0.

(b). Prove that there exists a function s such that s” +s =0, s(0) =0 and s'(0) = 1. (We
will show later in the course that s is the unique such function.) (Hint: look for s of the
form s = af + bf’ fo constants a,b € R.)

We can now define the trigonometric functions sine and cosine by sinz = s(z) and
cosx = §'(z). Many of the properties of the trigonometric functions follow easily from the
differential equation satisfied by s.

(c). Prove that (cosz) = —sinu.

(d). Prove that sin (z + a) = sinz cos a+sin a cos z and cos (x + a) = cos x cos a—sin z sin a.
(Hint: show that f(x) = sin(z + a) and g(z) = sinx cosa + sina cos = both satisfy the IVP

y'+y=0
y(0) =sina
y'(0) = cosa

Assume that this IVP has a unique solution and deduce that f = g. Taking derivatives now
derive the identity involving cos (z + a).)

More work is required to define 7 and show that sin and cos are periodic functions of
period 2, that is, sin (z + 27) = sin (z) and cos (x 4 27) = cos (x) for all z € R.

(e). Show that cosz cannot be positive for all > 0. (Hint: you can use the following
Theorem, that you proved in the quiz at the very beginning of the course: Let f be a twice-
differentiable function f : [0,00) — R such that f(z) > 0 for all z > 0, f is decreasing and
1(0) = 0. Then there exists x, > 0 such that f”(z,) =0.)

By part (e) there exists a positive number 7 such that 7 is the smallest positive number
such that cosz = 0.

(f). Show that sin§ = 1.

(g). Show that sinz and cos x are periodic functions of period 27. (Hint: Use repeatedly part
(d), first to calculate sin 27 and cos 27 and then to calculate sin (z + 27) and cos (z + 27).)



PART I: FIRST-ORDER EQUATIONS

Reading: §§8.1-8.7 and 8.20-8.27 in [A].

2. [Exponential growth] Fix £ € R. You are going to solve the differential equation
y' = ky and study some physical phenomena modelled by this equation.

(a). Prove that y(z) = yoe*® for some constant yo € R. (Hint: Consider the quantity
y(a)e ")

(b). The decay of a radioactive substance is modelled by the differential equation A" = kA
where A(t) is the amount of substance at time ¢ and & is a constant that depends on
the radioactive substance.

i. Assuming k given, find a formula for A(¢) in terms of Ay = A(0).
ii. Exercise 1 in §8.7 on [A].
iii. Show that there exists 7 > 0 (called the half-life of the substance) such that
A(t+71) = 3A(7) for all t € R.

iv. Exercise 3 in §8.7 of [A].

(c). Newton’s Law of Cooling states that the temperature of an object decreases at a rate
proportional to the difference of its temperature and the ambient temperature.

i. Find a formula for the temperature 7'(t) of the object at time ¢ in terms of the
temperature 7y at time ¢ = 0 assuming that the ambient temperature 7, is kept
at a fixed constant. (Hint: Note that since T, is a constant 77 = (T' — T,)’.)

ii. Exercise 7 in §8.7 of [A].

3. [Linear first-order equations] A linear first-order differential equation is a differential
equation of the form

y' + )y = qlz)
where p, g are given functions. We usually try to solve the IVP
v +p@)y=aq@),  ylx)= 1. (1)
(a). Consider first the case ¢ = 0. Assume that p is a continuous function on an open
interval I such that o € I and fix a constant y, € R. Prove that the solution y of the
IVP (1) is y(z) = yo e @, where P(z) = f;o p(t) dt is the (unique) antiderivative of p
that vanishes at x. (Hint: Consider the quantity y(z) e”'®).)

(b). More in general, assume that p, ¢ are continuous functions on an open interval I that
contains zo. Show that the unique solution of the IVP (1) is

y(x) = e P@) <y0 +/ e*P(t)q(t) dt) ,

o

where P is defined in part (a). (Hint: Consider the quantity y(x)ef(®).)

2



(c). Exercises 1-12 in §8.5 of [A].

4. [Separation of variables and other tricks| There is no general formula to solve
non-linear first-order equations. However, in some special cases there exists tricks to reduce
the solution of the equation to the Fundamental Theorem of Calculus or to a linear equation.

(a). (Separation of variables, see §8.23 of [A].) Let a be a continuous function defined on
an open interval containing 1y, and ¢ a continuous function defined on an open interval
containing the point zy. Assume that the IVP

a(y)y' =q(z),  y(xo) = yo

has a unique solution y. Show that y is defined implicitly by

/y j(x) a(s) ds — / :q(t) dt.

(b). Exercises 1-11 in §8.24 of [A]. Write the solution with arbitrary initial condition y(x) =
Yo, for constants xg, o such that the hypotheses of part (a) are satisfied.

(c). The Bernoulli Equation: exercises 13-18 in §8.5 of [A].

(d). The Riccati Equation: exercises 19-20 in §8.5 of [A].

5. [Application: population growth| Exercises 13-18 in §8.7 of [A].
6. [Existence and Uniqueness of solutions to first-order differential equations]

(a). Consider the IVP
y=y', y0)=1

Find a solution y by separation of variables and show that lim, ,; y(z) = co.

(b). Consider the IVP
2
y =y, y(0)=0.

Show that y(z) =0 and y(z) = :2”—; are two distinct solutions of this IVP.

(c). Uniqueness: exercises 26 and 27 in Chapter 5 of [R] (see Review Sheet 2).
(d). Existence: exercise 25 in Chapter 7 of [R] (see Review Sheet 2).

(e). Here’s an alternative proof of Existence and Uniqueness of solutions to first-order
differential equations. The procedure of proof is called Picard Iteration. Let ¢ : R — R
be a function defined on a rectangle R = [a,b] X [o, 5] C R%. Assume that ¢ is
continuous on R and moreover there exists A > 0 such that

[¢(z,52) — d(z, 41)| < Aly2 — 11

3



7.

for all (x,v1), (z,y2) € R. Fix 2 € (a,b) and yo € («, ) consider the IVP

y, = Qb(ZE, y)7 y(xo) = Yo. (2)

We are going to prove that this IVP has a unique solution provided b — a is sufficiently
small using ideas related to the Contraction Mapping Theorem, which was our main
tool to prove the convergence of Newton’s Method.

i. Show that y is a solution of the IVP if and only if y = yo + f;; o(t,y(t)) dt.

Let C([a,b]) be the space of continuous real-valued functions on the interval [a, b].
Recall that we can define a norm on C([a, b]) by
LfII= Sup}lf(x)l-

z€la,b

Define a “function” T": C([a,b]) — C([a, b]) by

T(f) = yo + / "ot 1)) d

o

By part i we have to show that 7" has a unique fixed point.

ii. Prove that that
1T(f) = T(9)ll < A —a)|f -4l

for every f,g € C([a,b]). In particular, by considering a smaller interval we can
assume that b—a is small enough so that 7" is a contraction: there exists 0 < ¢ < 1
such that

IT(f) =Tl < ellf -9l
for every f,g € C([a,b]).
iii. Deduce that the IVP (2) has at most one solution.
iv. Consider the sequence of functions y, € C([a,b]) defined by

y1 =0, Ynt1 = T (Yn)-

Prove that {y,} is a Cauchy sequence and that y,, converges uniformly to a solution
of the IVP (2).

[Integral curves] Let y : [a,b] — R be a solution of the differential equation y' =

¢(z,y). We can consider the graph of y as a curve in R?. In fact we can think of the
differential equation as describing a family of curves, called integral curves of the differential
equation, by prescribing their slopes. If ¢ satisfies the conditions in our Existence and
Uniqueness Theorems, then for every point in R? there exists a unique integral curve of the
differential equation passing through that point.

(a).
(b).
(c)-

Exercises 1-12 in §8.22 of [A].
Exercises 1-11 in §8.26 of [A].

For the examples of part (a) try to study the orthogonal trajectories to the given family
of curves.



PART 1I: SECOND-ORDER EQUATIONS

Reading: §§8.8-8.19 in [A].

8. [Uniqueness of solutions to y” + by = 0] Fix b € R and consider the [IVP

y'+by=0
y(zo0) = Yo
?/(330) = 20

You are going to prove that this IVP has a unique solution, in two different ways.

(a). Show that the IVP (3) has a unique solution if the IVP

y'+by=0
y(0)=0
y'(0)=0

has the unique solution y = 0.
(b). The first way of proving uniqueness uses Taylor polynomials.

i. Let y be a solution to the IVP (4). Prove that

y¥(z) = (1)""y(x), Yy (@) = (-1)"0"y (2).

ii. Deduce from i. that the Taylor polynomial of y at 0 of degree 2n — 1 is 0 and

therefore y(z) = Fa,—1(x).
iii. Show that for every ¢ > 0 there exists a constant M > 0 such that

ly@ ()] < Mlol"

for all z € [—c, c]. (Hint: set M = max|_ |y(z)|, which exists since y is continuous.)

iv. By choosing n sufficiently large, show that |y(x)| < € on [—c¢, ] for every € > 0

and deduce that y = 0.
(c). This proof is more elementary but more “clever”.

i. Prove that by? + (y/)* = 0.
ii. If b > 0 deduce immediately from part i. that y = 0.

iii. Assume now that b = —k? < 0. Suppose that y(z) # 0 for all z € [, 8]. Use part
i. to prove that there exists C' € R such that either y(x) = Ce*® or y(z) = Ce™k®

for all z € [a, f].

iv. Assume that y(x,) # 0 for some x, # 0. Use the continuity of y to show that
there exists a point a with 0 < |a| < |z,| such that y(a) = 0 but y(x) # 0 on the
whole open interval joining a and x,. Use this fact and part iii. to prove that

y=0.



9. [Homogeneous linear second-order equations with constant coefficients] We
can now study existence of solutions to homogeneous linear second-order constant-coefficients
equations, that is, differential equations of the form

v +ay +by=0
for constants a,b € R.
(a). Fix b € R. Find all solutions to the equation

y' +by=0
(Hint: Treat separately the case b=0,b=%k>>0and b= —k% < 0.)
(b). Fix a,b € R and consider the equation
v +ay +by=0
i. Show that y satisfies y” +ay’ + by = 0 if and only if u(z) = e2%y(z) satisfies

v 4b — a?

1 u=20

ii. Combine parts i. and (a) to find all solutions to ¥ +ay’ + by = 0.

iii. Deduce that the IVP
y'+ay +by=0
y(wo) = Yo
y'(x0) = 20

has a unique solution.

(c). Exercises 1-16, 18, 20 in §8.14 of [A].

10. [Inhomogeneous linear second-order constant-coefficients equations]| Fix
a,b € R. For a twice-differentiable function y write L(y) = v" + ay’ + by. L is called
a differential operator.

(a). Show that L(ciy; + coy2) = c1L(y1) + caL(ys) for every pair of twice-differentiable
functions vy, y2 and constants ¢y, co. This is why we say that L is a linear differential
operator.

(b). Let R: R — R be a continuous function. Suppose that y, is a solution of the differential
equation L(y.) = R. Show that all solutions of the differential equation L(y) = R are
of the form y = y. + yn, where y;, is a solution of the homogeneous equation L(y;) = 0.

(c). By Problem 9, y, = c1y1+¢aya, where ¢q, ¢o € R and yy, y, are two solutions of L(y) = 0
such that y; /y, is not constant. The Wronskian of y; and ys is the function

W(z) = y1(2) yo () — v1(7) y2(2).
Exercises 21-23 in §8.14 of [A] establish properties of W.
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(d). Fix zp € R and define

er(z) = — / () %dt, ea(z) = / () %dt.

Set y.(z) = c1(x) y1 () + co(z) y2(x) and show that L(y.) = R. (This method to obtain
a particular solution of the equation L(y) = R is called variation of parameters.)

(e). Exercises 1-25 in §8.17 of [A]. (Hints: 1. If b = 0 then the solution is found more quickly by
applying the Fundamental Theorem of Calculus twice since v + ay’ = (v + ay)’. 2. When
R(z) is a polynomial of degree d and b # 0 then one can quickly find a particular solution
y« of the equation L(y) = R guessing that y, must be another polynomial of degree d. 3. If
e”™*R(x) is a polynomial of degree d the we can look for a particular solution of the form
Yy« = €™ x a polynomial of degree d.)

11. [Application: simple harmonic motion (Example 1 in §8.18 of [A])] Exercises
1-7 in §8.19 of [A].

12. [BVP vs. IVP] We saw above that the IVP problem for second-order linear con-
stant coefficient equations always has a unique solution. One is also interested in studying
boundary value problems (BVP) instead of IVPs: fix an interval [z;,22] C R, constants
a,b, aq, s, B, B2 € R and try to find all twice-differentiable functions ¢ such that

y'+ay +by=0
ary(z1) + By (z1) =0
a2y (x2) + Boy (z2) =0

In contrast to the IVP, in general a solution to the BVP does not exists. Do exercises 17
and 19 in §8.14 of [A] for some examples of this.

13. [Linear constant-coefficients homogeneous equations] Fix constants ay, . .., a, 1
and consider a degree—n linear constant-coefficients equation

y(n) +a, 1 y(n—l) + -4y y’ +agy = 0. (5)

In this problem you will get a glimpse of how the theory we have developed for second-order
equations generalises to higher-order equations.

(a). Suppose that a € C is a root of the polynomial
2"+ 2" a4 ag = 0. (6)
Show that y(z) = e** is a (complex-valued) solution of the differential equation (5).

(b). Write = a + ib and deduce that y(z) = €* cos (bzr) and y(x) = e sin (bx) are two
(real-valued) solutions of (5).

(c). Suppose that « is a double root of the polynomial (6). Show that y(z) = xe®® is a
second (complex-valued) solution of (5).

7



(d). Suppose that « is a root of the polynomial (6) of order r. Show that y(z) = zFe®® is
a (complex-valued) solution of (5) for all 0 < k < r.

(In this way one can always find n (real-valued) solutions yi,...,y, of (5) (why?) and in fact every
solution of the differential equation can be written as y = c1y1 + -+ + ¢n Yn-)

14. [Linear second-order equations| A homogeneous linear second-order equation is an
equation of the form
y' +alx)y'(z) + b(x)y = R(x),

where a, b, R are given continuous functions. One can prove existence and uniqueness for
the IVP (see Exercises 28-29 in Chapter 5 and 26 in Chapter 7 of [R]), but there exists no
general formula for writing the solution.

(a). In this problem we show that we can always reduce to the case
'+ g(x)y = f(x).
Unfortunately there is no general formula for the solution to such an equation.
i. Show that every linear second-order equation can be re-written in the form
(p(2)y) +q(w)y = r(z)

for continuous functions p, ¢, r with p(z) > 0 for all . (Hint: calculate the derivative
of eA(””)y and then choose the function A appropriately; this is similar to how we dealt
with linear first-order equations.)

ii. By making a change of variable s = s(x) such that §'(z) = zﬁ’ reduce the
previous equation further to an equation of the form

u" +g(s)u = f(s)
where y(z) = u(s(z)).

(b). You are going to prove a version of the Sturm Comparison Theorem: suppose that y;
and g9 are solutions to

yi +g1(x)y1 =0, Yy + g2(x) y2 = 0,

for continuous functions gi, g2 such that ga(x) > gi(z) . If @ and b are consecutive
zeroes of y; then y, must have a zero in the interval (a, b).

i. Show that ¥/ y2 — 5 y1 = (92 — 91) Y1 y2.
ii. Assume that y;(x),y2(z) > 0 for all = € (a,b) and show that

/ V(@) () — (@) () da > 0.



iii. Deduce that
(y’l(b) v2(b) — vi(a) y2(a)) - (yl(b) y4(b) — yi(a) y;(a)) ~ 0.

iv. Deduce that it is impossible that y;(a) = 0 = y;(b). (Hint: consider the sign of
y1(a) and y3(b).)

v. Similarly, prove that we cannot have y; (a)
and yo(z) < 0 for all x € (a,b), or y1(z
y1(z) < 0 and yo(z) < 0 for all z € (a,b

y1(b) if we assume that y;(z) > 0
and yo(z) > 0 for all z € (a,b), or

(c). Let y be a solution of the equation

y'+ (2 + k) y=0.

Use part (b) to show that y has infinitely many zeroes which are within T of each

2
other.
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1. For vectors x = (x,23) and y = (yi,¥2) in R? we have defined:
e The dot product: x-y = x1y; + x2ys
e The cross product or determinant: X X y = x1ys — X2y
e The norm: ||x|| = vX-x = /27 + 23
e The distance: d(x,y) = [|[x — ¥||
We showed that
o x-y = x| [ly[l cos ¢
e xxy = x| [ly]sinf
where 6 is the angle between the two vectors.
2. We defined polar coordinates
xr =rcosb, y =rsinf
e We studied polar equations r = f(#), 0 € [a, b]
e We showed that if f2 is integrable then the area of the polar region R bounded by the
polar equation r = f(6), 6 € [a, b] is

b
area(R) = %/ f2(0)do

3. We have studied regular parametrized curves c : [a, b] — R
e We have defined the tangent vector ¢/(¢) and the unit normal vector n(t) to c

e We have defined the length ¢(c) of ¢ and proved that if ¢’ is continuous then
b
o) = [ e a
e We have defined the arc length of c:

(1) = / I/ das

where ¢y € [a,b]. We said that c is parametrized by arc length if ||c/(¢)]] = 1 for all
t € la,b]



e We have defined the curvature  of c: if c is parametrized by arc length then

If ¢ is not necessarily parametrized by arc length, we found the formula

c(t) x ¢ (t)

0= lemp

e We have proved that for every differentiable function x : [a,b] — R there exists a
unique curve up to rigid motions with curvature

e We have defined simple closed curves and stated the Jordan Closed Theorem: every
such curve encloses a bounded connected region int(c) of the plane

e We have shown the Green’s Formula for area for convex simple closed curves with
period T" and with continuous derivative:

area(int(c)) = %/0 c(t) x c'(t)dt

e We have proved the Isoperimetric Inequality: for every simple closed curve with con-
tinuous ¢’ we have

: 1 5
area(int(c)) < RE(C)

Moreover, equality holds if and only if c is a circle.
4. We have studied sequences of real numbers.

e We proved that every monotonic sequence is convergent

e We defined the notion of a subsequence and proved the Bolzano—Weiestrass Theorem:
every bounded sequence has a convergent subsequence

e We proved the Cauchy Criterion: a sequence converges if and only if it is a Cauchy
sequence



