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Department of Mathematics

SUNY at Stony Brook

Welcome to Calculus II!


    Calculus is the mathematics of change. It is not a mere abstraction,
but represents how the world actually
 works. Applications are found
wherever change and continuity are
studied in a precise way, and is vital to
 most areas of
engineering and the technical sciences, but is also important in
many areas of economics,
 business, architecture, and even occasionaly
in art and music. Seemingly more remote sciences as
 anthropology or
botany use calculus and other forms of mathematics (statistics, etc) in
subsidiary
 but important ways.

Course Content   

We will study three main topics: integration (Ch 5, Ch 6), differential equations (Ch 7), and
infinite series
 (Ch 8). The ability to actually apply the
techniques of calculus is vitally important, so we will emphasize
 examples and applications.

Warning!    This is a 4 credit course, and we will move quickly through a large amount
of material. There
 is a lot of homework, but because the course is fast-paced and difficult, it
is absolutely vital to keep up with
 it.


Here is a link to the syllabus.   
    

Here is a link to the homework assignments.

Here is a link to Brian's lecture notes.


Here is a link to Test I information.

Here is a link to Test II information.


Here is a link to an Extra Credit assignment, due week of Dec 8 (more typos fixed)

Here is a link to another Extra Credit Assignment, due any time before the Final


Here is a link to the Department Notes on second order differential equations


**Brian's Review Session:  Javitz 103, at 1pm Tuesday Dec 16th

**Some Extra Office Hours this week:

 Brian will be in the MLC from 1-2 on Monday
        Brian's Extra office hours: Monday 2-4, Tuesday  11-1, Wednesday 3-5

***Final Exam Rooms:




            Brian's Lecture (Rec 06-10) Old Chem 116

            Thomas' Lecture (Rec 01-05) Harriman 137

The important stuff:


Textbook: Single Variable Calculus by James Stewart, Stony Brook Edition, 3ed


One homework assugnment will be due each week (exceptions being test weeks).
Assignments are due at the
 beginning of your second recitation of the week.


Homeworks: 20% of total grade

Exam I:         20% of total grade

Exam II:        20% of total grade

Final Exam:   40% of total grade

Instructors: (click on the name for more information)

Brian Weber, MWF 9:35am Lecture

 Jan Gutt, TuTh 2:20 Recitation

 Evan Wright, MW 11:45,3:50 Recitations

 Ye Sle Cha, TuTh 8:20 Recitation

 Michael Williams, TuTh 11:20 Recitation

Thomas Poole, MW 5:20pm Lecture

 Jiansong Chen, MW 11:45, 6:50 Recitations

 Joseph Walsh, TuTh 5:20 Recitation

 Prachi Bemalkhedkar, MF 12:50 Recitation

 Frank Palladino, MW 3:50 Recitation

 

Americans with Disabilities Act

If you have a physical, psychological, medical or learning
disability that may impact your course work, please contact
 Disability
Support Services, ECC (Educational Communications Center) Building, room
128, (631) 632-6748 or
 http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are
necessary and
 appropriate. All information and documentation is confidential.
Students who requiring assistance during emergency
 evacuation are encouraged to discuss their
needs with their professors and Disability Support Services. For procedures
and
 information, go to the following web site:
http://www.www.ehs.stonybrook.edu/fire/disabilities.asp  

http://studentaffairs.stonybrook.edu/dss/
http://www.ehs.stonybrook.edu/fire/disabilities.asp


Syllabus for Math 132, Calculus II
Fall 2008

Instructors (all email addresses are @math.sunysb.edu)

Brian Weber (Lecturer) Thomas Poole (Lecturer) Yi Zhu Joseph Walsh
brweber tpoole yzhu jwalsh

Jiansong Chen Frank Palladino Inyoung Kim Brandon Williams
jschen fpalladino inkim mbw

Course Text
Single Variable Calculus, 3ed Stony Brook University Edition, by James Stewart

Prerequisites
Official prerequisites are a grade of C or higher in one of MAT 131, MAT 141, or AMS

151, or else a level 7 or higher on the mathematics placement exam. Unofficially, what you
need is a firm knowledge of derivatives and of basic algebra.

Exams
Any necessary special formulas will be provided on the exam, and the problems will be

designed so that calculators won’t be necessary. Thus all you’ll need is your brain and a
pencil. No notes, books, cheatsheets or calculators will be allowed.

Midterm 1: Tuesday Oct 14, 8:30PM (20% of grade)
Midterm 2: Thursday Nov 6, 8:30PM (20% of grade)
Final: Thursday Dec 18, 2-4:30PM (40% of grade)

Homework (20% of grade)
One problem set will be due each week. The problems will be turned in at the begin-

ning of class of your second weekly recitation section. Exam questions will be modelled on
homework questions, so doing and understanding the homework is the best way to prepare
for the tests.

This is a 4 credit course, and as a fair warning, you will have to work hard to be suc-
cessful. If you fall seriously behind on the homework, you will not be able to keep up in
class and will not be prepared for the exams. You are encouraged to work in groups, but
you must write up your own solutions.

You must always show your work. No credit will be given for correct answers without
correct work, on either exams or homeworks. No exceptions.

Makeup policy
All of your responsibilities for this class have been announced well ahead of time, namely

in the first week of classes. Thus almost no requests for makeup homeworks or exams will
be granted. The only exceptions, assuming evidence is provided, will be for serious illness,
family emergency, or an unforeseeable catastrophe (tornado, car wreck, etc).

Grading policy
The grading will be curved. This means your letter grade will be influenced by your

performance relative to the rest of the class. An approximate curve will be made after each
exam. The final curve, by which your course grade will be determined, will be set using the
same process used for the individual exams, so the individual exam curves should be a good
measure of how well you are doing.
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Academic Integrity Each student must pursue his or her academic goals honestly and be
personally accountable for all submitted work. Representing another person’s work as your
own is always wrong. Faculty are required to report any suspected instances of academic
dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of
Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School
of Medicine are required to follow their school-specific procedures. For more comprehensive
information on academic integrity, including categories of academic dishonesty, please refer
to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/.
Course Withdrawals The academic calendar, published in the Undergraduate Class Schedule,
lists various dates that students must follow. Permission for a student to withdraw from
a course after the deadline may be granted only by the Arts and Sciences Committee on
Academic Standing and Appeals or the Engineering and Applied Sciences Committee on
Academic Standing. The same is true of withdrawals that will result in an underload. A
note from the instructor is not sufficient to secure a withdrawal from a course without regard
to deadlines and underloads.

2



Homework assignments for Math 132, Cal-
culus II Fall 2008

Material Presented
Chapter Problems

Problems Due
Week of Week of

9/1
5.3 1, 2, 4, 6, 8, 9, 12, 18, 28, 47, 49

9/8
5.4 2, 6, 7, 8, 11, 12, 13

9/8
5.5 1, 7, 8, 10, 22, 30, 41, 42, 46, 50, 64

9/15
5.6 1, 3, 4, 5, 6, 10, 16, 18, 19, 25, 26

9/15 5.7 1, 2, 3, 6, 10, 13, 14, 17, 18, 20, 22, 25, 26, 28 9/22

9/22
5.9 1, 8, 15

9/29
5.10 3, 5, 6, 8, 10, 14, 32, 41, 42, 44

9/29
6.1 1, 3, 5, 7, 8, 14, 25

10/66.2 1, 2, 3, 4, 5, 13, 34, 35
6.3 3, 4, 5, 6, 7, 9

10/6
6.4 1, 2, 4, 5, 10, 18

10/20
6.5 1, 2, 3, 6, 9, 10, 12, 14, 17, 18

10/13 6.6 1, 2, 4, 10
10/20

Exam I on 10/14 7.1 1, 4, 7, 10, 13

10/20
7.2 3, 4, 5, 6, 9, 10

10/27
7.3 1, 2, 4, 6, 8, 11, 12

10/27
7.4 2, 3, 8, 10, 13

11/10
7.5 1, 3, 8

11/3
Dept Notes 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14 11/10

Exam II on 11/6

11/10
8.1 3, 4, 10, 11, 14, 23, 24, 28, 29, 33

11/17
8.2 9, 13, 14, 19, 20, 22, 23, 55(b)

11/17
8.3 1, 3, 4, 6, 7, 14, 16, 22, 24

11/24
8.4 3, 4, 5, 6, 7, 8, 20, 21, 22

11/24 8.5 3, 4, 7, 9, 11, 12, 18, 21 12/1

12/1
8.6 4, 5, 12, 16, 22, 24

12/8
8.7 4, 5, 8, 9, 11, 12, 16, 20, 23, 24, 34, 36

12/8 Review for the Final
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Lecture notes are intended as a suppliment to the lectures, recitations, and the book.

These notes not necessarily complete and are not a substitute for attending lecture.

Lecture 1, Sec 5.4, Sep 3
Lecture 2, Sec 5.4, Sep 5

Lecture 3, Sec 5.5, Sep 8
Lecture 4, Sec 5.6,  Sep 10

Lecture 5, Sec 5.5,5.6, Sep 12

Lecture 6, Sec 5.7, Sep 15
Lecture 7, Sec 5.7, Sep 17
Lecture 8, Sec 5.7, Sep 19

Lecture 9, Sec 5.9, Sep 22
Lecture 10, Sec 5.9, Sep 24
Lecture 11, Sec 5.10, Sep 26

Lecture 12, Sec 6.1-6.2, Sep 29
Lecture 13, Sec 6.2-6.3, Oct 3


Lecture 14, Sec 6.3, Oct 6

Lecture 15, Sec 6.4, Oct 8

Lecture 16, Review, Oct 10


Lecture 17, Review, Oct 13
Lecture 18, Sec 6.5, Oct 15

Lecture 19, Sec 6.5-6.6, Oct 17

Lecture 20, Sec 7.1-7.2, Oct 20
Lecture 21, Sec 7.3, Oct 22
Lecture 22, Oct 24


Lecture 23, Sec 7.4-7.5, Oct 27

Lecture 24, Department Notes, Oct 29   



1 Lecture 1 - FTC II

Calculus is the mathematics of change. It is divided into two branches, differ-
ential calculus and integral calculus, which interact strongly with each other.

1.1 Derivatives

Derivatives measure instantaneous rates of change.

Given a function y = f(x), we can measure the discrete change in the
y-value, denoted 4y, when a discrete change, 4x, occurs in the x-value:

Average rate of change of f(x) when x changes by the amount4x =
4y

4x
.

If we make the discrete change 4x smaller and smaller, thereby measuring the
change of the function f(x) over smaller and smaller intervals, in the limit we
get the instantaneous rate of change

Instantaneous rate of change =
dy

dx
= lim
4x→0

.

Here “dx” and “dy” indicate infinitesimal, as opposed to discrete, changes in
the variables x and y 1. If y = f(x) is a function, the symbols

f ′(x)
df

dx

d

dx
(f(x))

dy

dx

all mean precisely the same thing: the derivative of f with respect to x. In
class, on tests, and in homeworks, all of these notations will be used.

You will be required to know the following basic differentiation rules:

1the term “infinitesimal” is not mathematically precise, but we shall not deal with this
in this here.
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Power Rule:
d

dx
(xn) = n xn−1

Exponential Rule:
d

dx

(
ekx
)

= k ekx

Logarithm Rule:
d

dx
(ln(x)) =

1

x

Trig rules:

d
dx

(sin(x)) = cos(x)
d

dx
(cos(x)) = − sin(x)

d
dx

(tan(x)) = sec2(x)
d

dx
(cot(x)) = − csc2(x)

d
dx

(sec(x)) = sec(x) tan(x)
d

dx
(csc(x)) = − csc(x) cot(x)

Constant multiple rule:

d

dx
(a f(x)) = a

d

dx
(f(x))

Sum/difference rule:

d

dx
(f(x)± g(x)) =

d

dx
(f(x)) ± d

dx
(g(x))

Product rule:

d

dx
(f(x)g(x)) =

d

dx
(f(x)) · g(x) + f(x) · d

dx
(g(x))

Quotient rule:

d

dx

(
f(x)

g(x)

)
=

d
dx

(f(x)) · g(x) − f(x) d
dx

(g(x))

(g(x))2

Chain Rule:
d

dx
(f(g(x))) = f ′(g(x)) · g′(x)
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1.2 Integrals

Integrals measure total accumulated change.
In terms of graphs of functions, this equates to the (signed) area under a curve.

Given a function y = f(x), one can approximate the area under its graph,
say between x = a and x = b, by breaking the graph into uniformly-spaces
rectangles of width 4x. If you use n many rectangles and xi is a point in the
ith rectangle, then the height of the rectangle should be f(xi), and

Area of the ith rectangle = height × length = f(xi) · 4x

Sum of the rectangles′ areas =
n∑

i=1

f(xi) · 4x

But using rectangles with discrete length 4x will give just an approximation.
To make the approximation better, you make 4x smaller and smaller: in
the limit, the discrete width 4x become the infinitesimal width dx, and the
discrete sum

∑n
i=1 becomes the continuous sum

∫ b

a
.

n∑
i=1

f(xi)4x becomes

∫ b

a

f(x) dx.

The symbol
∫ b

a
f(x)dx literally means “the (signed) area under the graph of

y = f(x) between x = a and x = b”. Theoretically, it is obtained by summing
up the infinitesimal areas of the infinitely many rectangles that live under the
graph.2

2Again, this is mathematically imprecise. For the purposes of this class however, we
consider this to be a minor issue.
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1.3 The Fundamental Theorem of Calculus

If y = f(x) is a function, we usually denote the derivative by

f ′(x)
df

dx
etc.

and we denote an antiderivative of f(x) by using capitals:

F (x).

Remarkably, derivatives (rates of change) and integrals (areas under graphs,
or total accumulated change) are actually related to each other. This is the
Fundamental Theorem of Calculus, version II of which we state here:

Theorem 1.1 (Fundamental Theorem of Calculus, version II) If the an-
tiderivative of f(x) is F (x), then∫ b

a

f(x) dx = F (b) − F (a).

�

Because of the FTC, it is as important to know the rules for antiderivatives
as it is for derivatives:

Power Rule for n 6= 1: f(x) = xn =⇒ F (x) = 1
n+1

xn+1

Power Rule for n = 1: f(x) = x−1 =⇒ F (x) = ln(x)

Exponential Rule: f(x) = ekx =⇒ F (x) = 1
k
ekx

Trig rules: f(x) = sin(x) =⇒ F (x) = − cos(x)

f(x) = cos(x) =⇒ F (x) = sin(x)

There is no product rule or quotient rule for integrals!
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1 Lecture 2 - FTC I

1.1 The Chain Rule

We begin with a review of old material. Everyone should be familiar with the
chain rule:

[f (g(x))]′ = f ′(g(x)) · g′(x).

It is equally important to understand the chain rule in differential notation:

substitution : u = g(x)

d

dx
(f(g(x))) =

d

dx
(f(u))

=
du

dx

d

du
(f(u)) .

Often, this version of the chain rule is written in abbreviated form d
dx

= du
dx

d
du

.

Example 1: Evaluate d
dx

√
x2 + 1.

Solution: Use the substitution u = x2 + 1 to write

d

dx

√
x2 + 1 =

d

dx

√
u

But there is a problem! The function is
√

u, with variable u, but the derivative
d
dx

is with respect to x, not u!
To rectify this, use the chain rule d

dx
= du

dx
d
du

, to get

d

dx

√
x2 + 1 =

d

dx

√
u

=
du

dx
· d

du

√
u

= 2x · 1

2
u−1/2

= x ·
(
x2 + 1

)−1/2
.
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Example 2: Evaluate d
dx

sin (x4 + x).

Solution: use u = x4 + x and the chain rule d
dx

= du
dx

d
dx

to get

d

dx
sin
(
x4 + x

)
=

d

dx
sin(u)

=
du

dx
· d

du
(sin(u))

=
d

dx

(
x4 + x

)
· d

du
(sin(u))

=
(
3x3 + 1

)
· cos(u)

=
(
3x2 + 1

)
· cos

(
x4 + x

)
.
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1.2 FTC I

The first version of the fundamental theorem of calculus states explicitly that
the derivative is the inverse of the integral

Theorem 1.1 (Fundamental Theorem of Calculus, version I)

d

dx

∫ x

a

f(u) du = f(x).

�

Example 3. Evaluate
d

dx

∫ x

−1

u4 du

in two ways: a) by directly evaluating and b) by using the fundamental theo-
rem.
a) Direct evaluation:

d

dx

(∫ x

−1

u4 du

)
=

d

dx

(
1

5
u5
∣∣∣x
−1

)
=

d

dx

(
1

5
x5 − 1

5
(−1)5

)
=

d

dx

(
1

5
x5

)
= x4

b) Fundamental theorem: there is no work involved! This problem fits the
pattern of the fundamental theorem exactly:

d

dx

∫ x

−1

u4 du = x4.

Example 4. Use the fundamental theorem to evaluate

d

dx

∫ x2

2

(u2 + 1) du

3



Solution: This problem DOES NOT directly fit the pattern of the fundamental
theorem. We have to use a substitution

v = x2

d

dx

∫ v

2

(u2 + 1) du.

Now our variable is v, but the derivative is with respect to x. Thus we use the
chain rule: d

dx
= dv

dx
d
dv

to get

d

dx

∫ v

2

(u2 + 1) du =
dv

dx
· d

dv

∫ v

2

(u2 + 1) du

= 2x ·
(
v2 + 1

)
= 2x ·

(
x4 + 1

)
= 2x5 + 2x.
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1 Lecture 3 - Substitution in Integrals

1.1 Odds and ends

Given a function f(x), its antiderivative can be denoted as either

F (x) or

∫
f(x) dx.

The antiderivative is also known as the indefinite integral.

An expression like ∫ 2

1

x3 dx

involves no uncertainty whatsoever. It has a definite value: it comes to 15/16
if you work it out. However there appears to be a variable, namely x. But
actual variables may freely take on any value, while x is constrained to move
between 1 and 2. The x in this case is called an apparent variable; it’s only
there to serve as a placeholder until the integral has been evaluated.

Example of an FTC I problem Given h(x) =
∫ 0

ex
sin3(t) dt, find h′(x).

Solution: use the substitution u = ex to get

dh

dx
= − d

dx

∫ ex

0

sin3(t) dt

= −du

dx

d

du

∫ u

0

sin3(t) dt

= −ex sin3(u)

= −ex sin3 (ex) .

1



1.2 Substitution in Integrals

• The rule of thumb is to pick the substitution u to be either 1) a function
inside a function, or 2) the denominator.

• You must convert all x’s and dx’s to u’s and du’s

• For indefinite integrals, switch back to x’s at the end

• For definite integrals, you don’t need to switch back to x’s, but you do
need to convert the limits.

Example 1 (Indefinite Integral) Find the antiderivative of f(x) =
√

2x + 1.

Solution

F (x) =

∫ √
2x + 1 dx

substitute u = 2x + 1
du

dx
= 2

1

2
du = dx

F (x) =

∫ √
u

1

2
du

=
1

2

∫
u

1
2 du

=
1

2
· 2

3
· u

3
2 + C

= 3 (2x + 1)
3
2 + C
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Example 2 (Indefinite Integral) Find the antiderivative of g(x) = x2 3
√

x3 + 2.

Solution

G(x) =

∫
x2 (x3 + 2)

1
3 dx

substitute u = x3 + 2
du

dx
= 3x2 1

3
du = x2 dx

G(x) =

∫
u

1
3

1

3
du

=
1

3
· 3

4
· u

4
3 + C

=
1

4

(
x3 + 2

) 4
3 + C.

Example 3 (Definite Integral) Find
∫ 1

0
ex

ex+1
dx.

Solution Use u = ex + 1, so that du = ex dx.∫ 2

1

ex

ex + 1
dx =

∫ e2+1

e+1

1

u
du

= ln |u|
∣∣∣e2+1

e+1
= ln(e2 + 1) − ln(e + 1)

= ln

(
e2 + 1

e + 1

)
.
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Example 4 (Definite Integral) Find
∫ π

4

0
sin(x) cos(x)
1+cos2(x)

dx.

Solution Use u = 1 + cos2(x), so that du = −2 cos(x) sin(x).

We will also have to change the limits:

• Lower limit: x = 0 implies u = 2

• Upper limit: x = π
4

implies u = 3
2

∫ π
4

0

sin(x) cos(x)

1 + cos2(x)
dx = −1

2

∫ 3
2

2

du

u

= −1

2

∫ 3
2

2

u−1 du

= −1

2
ln |u|

∣∣∣ 32
2

=

(
−1

2
ln

(
3

2

))
−
(
−1

2
ln(2)

)
= −1

2
ln

(
4

3

)
.
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1 Lecture 4 - Integration by parts

1.1 Odds and ends: the “d” operator

The notation
4x

indicates a small but finite change in the variable x. The notation

dx

indicates an infinitesimal1 change in the variable x. If f(x) is a function, then
the derivative of f w.r.t x, written

df

dx

literally indicates the infinitesimal change in f compared to the infinitesimal
change in x.

But the operator “d” actually behaves like a derivative:

given f(x) = x2

then df(x) = 2x dx.

If we divide both sides by dx, we get

df

dx
= 2x,

which is the correct derivative. The d-operator (the infinitesimal change op-
erator) is used very frequently in calculus.

1Mathematically speaking, this is imprecise. After all, what, exactly, is the mathematical
meaning of “infinitesimal”? Maybe a number that is really really really really really small??
Maybe some kind of number smaller than all positive numbers but bigger that 0?? Or is
and ‘infinitesimal’ really a number at all?? We shall sweep such questions under the rug.
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1.2 Integration by parts for Indefinite integrals

The theory: Integration by parts is, roughly speaking, the product rule for
integrals.

To develop integration by parts, we start with the product rule for deriva-
tives: given arbitrary functions v(x) and u(x):

u(x), v(x)

Take “d” of the product u(x)v(x):

d (u(x) · v(x)) = du(x) · v(x) + u(x) · dv(x) (product rule)

Now take the integral,
∫

, of both sides:∫
d (u(x) v(x)) =

∫
du(x) · v(x) +

∫
u(x) · dv(x)

rearrange :

∫
u(x) dv(x) =

∫
d (u(x) v(x)) −

∫
v(x) du(x).

The Fundamental Theorem of Calculus states that the integral of the
derivative gives the function back again: we can interpret this to mean

∫
d(f(x)) =

f(x), or in our case, that
∫

d(u v) = u v.

This gives us the Formula for Integration by Parts:∫
u dv = u · v −

∫
v du.
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Example 1 Find the antiderivative of f(x) = x sin(x).

Solution
We must evaluate ∫

x sin(x) dx.

This appears to be a product of two unlike functions, so we should use Inte-
gration by Parts:
Choose

u = x

dv = sin(x).

Then calculate

du = dx

v = − cos(x).

By the formula for integration by parts we get∫
u dv = u · v −

∫
v du∫

x sin(x) dx = −x cos(x) +

∫
cos(x) dx

= −x cos(x) + sin(x).
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1.3 Integration by Parts for Definite integrals

The formula is nearly the same:∫ b

a

u dv = u · v
∣∣∣b
a
−
∫ b

a

v du.

Example 2 Evaluate
∫ 2

1
x ex dx.

Solution
This is a product of unlike functions, so we should use integration by parts.
Choose

u = x

dv = ex dx.

The calculate

du = dx

v = ex

Thus we get ∫
u dv = u · v −

∫
v du∫ 2

1

x ex dx = x ex
∣∣∣2
1
−
∫ 2

1

ex dx

= x ex
∣∣∣2
1
−
∫ 2

1

ex dx

= x ex
∣∣∣2
1
− ex

∣∣∣2
1

= 2 · e2 − e1 − e2 + e1

= e2.
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1 Lecture 5 - Examples of Integration by parts

and substitution

Many techniques for integration exist, some harder than others.

When figuring out which techniques to use against a particular problem, you
usually try the simplest technique first, and try harder and harder techniques
if they seem necessary.

For example, substitution is easier that integration by parts, so you should
usually try substitution first. If substitution doesn’t work, consider using
integration by parts.

Example 1 Find
∫

v
√

1 + v2 dv.

Solution
There is a product inside the integral, so integration-by-parts is tempting.
However, you should try a substitution first, just because it is easier:
Use u = 1 + v2, du = 2vdv to get∫

v
√

1 + v2 dv =

∫
v
(
1 + v2

) 1
2 dv

=
1

2

∫
u

1
2 du

=
1

2
· 1

−1
2

· u−
1
2 + C

= −
(
1 + v2

)− 1
2 + C

Example 2 Find
∫

y5 ln(y) dy.

Solution
Substitution will not work. For integration by parts, let u be something that
gets simpler when you differentiation it. Thus we choose

u = ln(y)

dv = y5 dy

1



and we calculate

du = y−1 dy

v =
1

6
y6

To get ∫
u dv = u v −

∫
v du∫

ln(y) y5 dy =
1

6
y6 ln(y) − 1

6

∫
y6 y−1 dy

=
1

6
y6 ln(y) − 1

6

∫
y5 dy

=
1

6
y6 ln(y) − 1

36
y6 + C.

2



Example 3 Find
∫

x2 e−x dx.

Solution
This is another integration by parts problem. The function e−x does not get
simpler when you differentiate, however, the function x2 does, so we should let

u = x2

dv = e−x dx

and compute

du = 2x dx

v = −e−x.

Thus ∫
u dv = u v −

∫
v du∫

x2 e−x dx = −x2 e−x + 2

∫
x e−x dx

Despite using integration by parts, we still have a difficult integral to evaluate.
We have to use integration by parts again: choose

u = x

dv = e−x dx

and compute

du = dx

v = −e−x.

Thus ∫
x2 e−x dx = −x2 e−x + 2

∫
x e−x dx

= −x2 e−x + 2

(
−x e−x +

∫
e−x dx

)
= −x2 e−x − 2x e−x − 2e−x + C

3



Example 4 Find
∫

r2
√

1 + r3 dr.

Solution This is a substitution:

u = 1 + r3 du = 3r2dr∫
r2
(
1 + r3

) 1
2 dr =

1

3

∫
u

1
2 du

=
1

3
· 1

−1
2

· u−
1
2

= −2

3
·
(
1 + r3

)− 1
2 .
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Example 4 Find
∫

r5
√

1 + r3 dr.

Solution We use integration by parts: select

u = r3

dv = r2
√

1 + r3.

and compute

du = 4r2

v = −2

3
·
(
1 + r3

)− 1
2 .

Thus ∫
u dv = uv −

∫
v du∫

r5
(
1 + r3

) 1
2 dr = −2

3
r3
(
1 + r3

)− 1
2 +

2

3

∫
r2
(
1 + r3

)− 1
2 dr.

The last integral on the right is still very difficult! But we can use the substi-
tution

u = 1 + r3 du = 3r2 dr

to get ∫
r5
(
1 + r3

) 1
2 dr = −2

3
r3
(
1 + r3

)− 1
2 +

2

3

(
1

3

∫
u−

1
2 du

)
= −2

3
r3
(
1 + r3

)− 1
2 +

4

27
u−

3
2

= −2

3
r3
(
1 + r3

)− 1
2 +

4

27

(
1 + r3

)− 3
2 + C

5



1 Lecture 6 - More Integration Techniques

In total, we will study six integration techniques:

• Substitution

• Integration by parts

• Trigonometric integration (integrating powers of sin and cos

• Trigonometric substitution (substituting a trig function into an integral
that didn’t ave trig functions to begin with)

• Partial fraction expansion

• Long division

We have already studied substitution and integration by parts. In this lecture
we study trigonometric integration and trigonometric substitution.

Something many of you have noticed is that integration is hard, much
harder than differentiation, and the techniques needed to evaluate integrals
are commensurately harder.

Even still, many relatively simple integrals just cannot be evaluated, no
matter what techniques are used: for instance

∫ √
x3 + 1 dx or

∫
ex2

dx can
not be explicitly evaluated.

1



1.1 Trigonometric integration

Here we study integrals of the type∫
sinm(x) cosn(x) dx.

1.1.1 Case where either m or n (or both) is an odd number

In this case, one uses the identity

sin2(x) + cos2(x) = 1

to reduce to the case where there is either a single cosine or else a single sine.
Here are some examples:

Example 1 Evaluate
∫

sin3(x) dx

Solution
Use sin2(x) = 1− cos2(x) to get∫

sin3(x) dx =

∫
sin2(x) sin(x) dx

=

∫
(1− cos2(x)) sin(x) dx

Then use the substitution u = cos(x), du = − sin(x) dx to get∫
sin3(x) dx =

∫
(1− cos2(x)) sin(x) dx

= −
∫

(1− u2) du

= −u +
1

3
u3 + C

= − cos(x) +
1

3
cos3(x) + C.

2



Example 2 Evaluate
∫

cos2(x) sin5(x) dx.

Solution Since the power on the sin function is odd, we can reduce to the case
where there is one single sin function, and then use a substitution:∫

cos2(x) sin5(x) dx =

∫
cos2(x)

(
sin2(x)

)2
sin(x) dx

=

∫
cos2(x)

(
1− cos2(x)

)2
sin(x) dx

= −
∫
u2(1− u2)2 du u = cos(x) du = − sin(x)

= −
∫ (

u2 − 2u4 + u6
)
du

= −1

3
u3 +

2

5
u5 − 1

6
u6 + C

= −1

3
cos3(x) +

2

5
cos5(x) − 1

6
cos6(x) + C.

Example 3 Evaluate
∫

cos3(x) sin5 dx.

Solution Here both powers are odd, so we can decide whether we want to get
rid of all but a single cos or all but a single sin. Let’s go with getting rid of
the cosines:∫

cos3(x) sin5(x) dx =

∫ (
1− sin2(x)

)
cos(x) sin5(x) dx

=

∫
(1− u2)u5 du u = sin(x) du = cos(x) dx

=

∫
(u5 − u7) du

=
1

6
u6 − 1

8
u8 + C

=
1

6
sin6(x) − 1

8
sin8(x) + C.

3



1.1.2 Case where both powers are even

Here we study what can be done with, for example,
∫

sin4(x) dx or
∫

cos2(x) sin6(x) dx.

One must use one of two reduction formulae:∫
sinn(x) dx = − 1

n
sinn−1(x) cos(x) +

n− 1

n

∫
sinn−2(x) dx∫

cosn(x) dx =
1

n
cosn−1(x) sin(x) +

n− 1

n

∫
cosn−2(x) dx.

Example 4 Evaluate
∫

sin2(x) dx.

Solution Use the reduction formula for sin to get∫
sin2(x) dx = −1

2
sin(x) cos(x) +

1

2

∫
1 dx

= −1

2
sin(x) cos(x) +

1

2
x + C.

This can also be solved, for example, using a half-angle formula for sin.

Example 5 Evaluate
∫

sin4(x) dx.

Solution We have to use the reduction formula twice:∫
sin4(x) dx = −1

4
sin3(x) cos(x) +

3

4

∫
sin2(x) dx

= −1

4
sin3 cos(x) +

3

4

(
−1

2
cos(x) sin(x) +

1

2

∫
1 dx

)
= −1

4
sin3 cos(x) − 3

8
sin(x) cos(x) +

3

8
x + C
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Example 6 Evaluate
∫

cos4(x) sin2(x) dx.

Solution First use sin2(x) = 1− cos2(x) to convert entirely to cosines:∫
cos4(x) sin2(x) dx =

∫
cos4(x)

(
1− cos2(x)

)
dx

=

∫
cos4(x) dx −

∫
cos6(x) dx.

Now we have two problems: evaluate
∫

cos4(x) dx and evaluate
∫

cos6(x) dx.
First things first: to evaluate

∫
cos4(x) dx, use the cosine reduction formula

twice:∫
cos4(x) dx =

1

4
cos3(x) sin(x) +

3

4

∫
cos2(x) dx

=
1

4
cos3(x) sin(x) +

3

4

(
1

2
cos(x) sin(x) +

1

2

∫
1 dx

)
+ C

=
1

4
cos3(x) sin(x) +

3

8
cos(x) sin(x) +

3

8
x + C.

Now we evaluate
∫

cos6(x) dx by using using the reduction formula three times:∫
cos6(x) dx =

1

6
cos5(x) sin(x) +

5

6

∫
cos4(x) dx

=
1

6
cos5(x) sin(x) +

5

6

(
1

4
cos3(x) sin(x) +

3

4

∫
cos2(x) dx

)
=

1

6
cos5(x) sin(x) +

5

24
cos3(x) sin(x) +

15

24

∫
cos2(x) dx

=
1

6
cos5(x) sin(x) +

5

24
cos3(x) sin(x) +

15

24

(
1

2
cos(x) sin(x) +

1

2

∫
1 dx

)
=

1

6
cos5(x) sin(x) +

5

24
cos3(x) sin(x) +

15

48
cos(x) sin(x) +

15

48
x + C.

Altogether, we get∫
cos4(x) sin2(x) dx =

∫
cos4(x) dx −

∫
cos6(x) dx

=
1

4
cos3(x) sin(x) +

3

8
cos(x) sin(x) +

3

8
x

+
1

6
cos5(x) sin(x) +

5

24
cos3(x) sin(x) +

15

48
cos(x) sin(x) +

15

48
x + C.

=
1

6
cos5(x) sin(x) +

11

24
cos3(x) sin(x) +

33

48
cos(x) sin(x) +

33

48
x + C.
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1.2 Trigonometric substitution

One way of writing the main trigonometric identity is

1 − sin2(θ) = cos2(θ).

Some problems do not have trig functions, but have some pattern resembling
the main trig identity. In these problems, we can substitute a trig function
into the integral, and then use the trig identity to simplify the problem.

Example 7 Evaluate
∫

1√
1−x2 dx.

Solution The 1−x2 resembles the trig identity 1−sin2(θ) = cos2(θ). Therefore
use the substitution x = sin(θ), dx = cos(θ) dθ to get∫

1√
1− x2

dx =

∫
1√

1− sin2(θ)
cos(θ) dθ

=

∫
1√

cos2(θ)
cos(θ) dθ

=

∫
dθ

= θ + C

= sin−1(θ) + C.

Example 8 Evaluate
∫

x
1+x2 dx.

Solution We have to use the trig identity 1 + tan2(θ) = sec2(θ). Substitute
x = tan(θ), dx = sec2(θ) to get∫

x

1 + x2
dx =

∫
tan(θ)

1 + tan2(θ)
sec2(θ) dθ

=

∫
tan(θ)

sec2(θ)
sec2(θ) dθ

=

∫
tan(θ) dθ

= ln | cos(θ)| + C

= ln
∣∣ cos

(
tan−1(x)

) ∣∣ + C.

6



1 Lecture 7 - More Integration Techniques:

Trigonometric substitution

1.1 Odds & Ends: Derivation of the reduction formulae

The two reduction formulae for indefinite integrals are∫
sinn(x) dx = − 1

n
sinn−1(x) cos(x) +

n− 1

n

∫
sinn−2(x) dx∫

cosn(x) dx =
1

n
cosn−1(x) sin(x) +

n− 1

n

∫
cosn−2(x) dx.

The two reduction formulae for definite integrals are∫ b

a

sinn(x) dx = − 1

n
sinn−1(x) cos(x)

∣∣∣b
a

+
n− 1

n

∫ b

a

sinn−2(x) dx∫ b

a

cosn(x) dx =
1

n
cosn−1(x) sin(x)

∣∣∣b
a

+
n− 1

n

∫ b

a

cosn−2(x) dx.

We show how to derive these. This is not knowledge you need for the test,
but it is good to see how it is done.

1.1.1 Derivation of the sin reduction formula

We use a clever integration by parts argument:∫
sinn(x) dx =

∫
sinn−1(x) sin(x) dx

useu = sinn−1(x) du = (n− 1) sinn−2(x) cos(x) dx

dv = sin(x) dx v = − cos(x) dx∫
sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) cos2(x) dx.

Now integration by parts is supposed to make things simpler, but the expres-
sion on the right does not look simpler. However, we can use some algebra to

1



manipulate the right side of the equation. Use cos2(x) = 1 − sin2(x) to get
rid of the cos on the right:∫

sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x)

(
1 − sin2(x)

)
dx∫

sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx − (n− 1)

∫
sinn(x) dx.

On both the left side and the right side, we have a “
∫

sinn(x) dx” expression,
so we can move both of them to the left side, then simplify:

(n− 1)

∫
sinn(x) dx −

∫
sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx

n

∫
sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx.

Now divide both sides by n to get∫
sinn(x) dx = − 1

n
sinn−1(x) cos(x) +

n− 1

n

∫
sinn−2(x) dx.

Thus, after our algebra tricks, the integral on the right is indeed simpler than
the integral on the left, which is the integral we started with. We have arrived
at the reduction formula for sin.

1.1.2 Derivation of the cos reduction formula

We use the same procedure we used for sin. First use integration by parts:∫
cosn(x) dx =

∫
cosn−1(x) cos(x) dx

useu = cosn−1(x) du = −(n− 1) cosn−2(x) sin(x) dx

dv = cos(x) dx v = sin(x) dx∫
sinn(x) dx = cosn−1(x) sin(x) + (n− 1)

∫
cosn−2(x) sin2(x) dx.

Then get rid of the “sin2(x)” on the right by using sin2(x) = 1− cos2(x):∫
cosn(x) dx = cosn−1(x) sin(x) + (n− 1)

∫
cosn−2(x)

(
1 − cos2(x)

)
dx∫

cosn(x) dx = cosn−1(x) sin(x) + (n− 1)

∫
cosn−2(x) − (n− 1)

∫
cosn(x) dx.

2



Then add (n− 1)
∫

cosn(x) dx to both sides to get

n

∫
cosn(x) dx = cosn−1(x) sin(x) + (n− 1)

∫
cosn−2(x)∫

cosn(x) dx =
1

n
cosn−1(x) sin(x) +

n− 1

n

∫
cosn−2(x).

Done!

3



1.2 Trigonometric substitution

Guidelines for trigonometric substitution:

If you see Consider substituting

a2 − x2 x = a cos(θ) or x = a sin(θ)

a2 + x2 x = a tan(θ) or x = a cot(θ)

x2 − a2 x = a sec(θ) or x = a csc(θ)

Let’s do some examples.

Example 1 Evaluate
∫ √3

1
1√

4−x2 dx

Solution Use x = 2 cos(θ), dx = −2 sin(θ) dθ to get∫ √3

1

1√
4− x2

dx =

∫ π/6

π/3

−2 sin(θ)√
4− 4 cos2(θ)

dθ

=

∫ π/6

π/3

−2 sin(θ)√
4 sin2(θ)

dθ

=

∫ π/6

π/3

−2 sin(θ)

2 sin(θ)
dθ

= −
∫ π/6

π/3

dθ

= −θ
∣∣∣π/6
π/3

= −π
6

+
π

3
=

π

6
.

4



Example 2 Evaluate
∫ 2
√

3

3
1

x
√
x2−9

dx

Solution Use x = 3 sec(θ), dx = 3 sec(θ) tan(θ) dθ to get∫ 2
√

3

3

1

x
√
x2 − 9

dx =

∫ π
6

0

3 sec(θ) tan(θ)

3 sec(θ)
√

9 sec2(θ) − 9
dθ

=

∫ π
6

0

3 sec(θ) tan(θ)

3 sec(θ)
√

9 tan2(θ)
dθ

=
1

3

∫ π
6

0

dθ

=
1

3
θ
∣∣∣π

6

0
=

π

18
.

Example 3(a) Evaluate
∫ 4
√

3

4
x

x2+16
dx

Solution Use x = 4 tan(θ), dx = 4 sec2(θ) dθ to get∫ 4
√

3

4

x√
x2 + 16

dx =

∫ π/3

π/4

16 tan(θ) sec2(θ)

16 tan2(θ) + 16
dθ

=

∫ π/3

π/4

16 tan(θ) sec2(θ)

16 sec2(θ)
dθ

=

∫ π/3

π/4

tan(θ) dθ

= − ln
∣∣ cos(θ)

∣∣∣∣∣π/3
π/4

= − ln

(
1

2

)
+ ln

(
1√
2

)
= − ln

(
1√
2

)
=

1

2
ln(2).
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Example 3(b) Evaluate
∫ 4
√

3

4
x

x2+16
dx

Solution This problem is identical to the problem from the previous example.
But this time, we will use the substitution u = x2 + 16, du = 2x dx to get∫ 4

√
3

4

x

x2 + 16
dx =

1

2

∫ 64

32

1

u
du

=
1

2
ln |u|

∣∣∣64

32

=
1

2
ln(64) − 1

2
ln(32)

=
1

2
ln(2).

This is a good time to recall the rules of logarithms:

ln(x) + ln(y) = ln(xy)

ln(x) − ln(y) = ln

(
x

y

)
a ln(x) = ln(xa)
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1 Lecture 8 - Partial Fractions, Long Division

A rational expression is a quotient of polynomials, i.e. has the form

an xn + an−1 xn−1 + . . . + a1x + a0

bm xm + bm−1 xm−1 + . . . + b1x + b0

.

At first sight, rational expressions are difficult to integrate. However, the
algebraic techniques of partial fraction expansion and long division can be used
to make these complex expressions simpler.

1.1 Partial fraction expansion

Word of Warning: Our method here applies when the denominator has linear,
nonrepeated factors only. This will be sufficient for our Calc II class, but some
of you will see more sophisticated methods in other classes.

Partial fractionsworks when the largest power of the numerator is smaller
than the largest power of the denominator. Here are the instructions. Start
with a rational expression:

an xn + an−1 xn−1 + . . . + a1x + a0

bm xm + bm−1 xm−1 + . . . + b1x + b0

,

First, completely factor the bottom polynomial:

an xn + an−1 xn−1 + . . . + a1x + a0

bm (x− cm) (x− cm−1) . . . (x− c1) (c− c0)
.

Second, break up the fraction so that the factors of the bottom become the
denominators of individual fractions, with (as of yet) unknown constants in
the numerators:

Am

x− cm

+
Am−1

x− cm−1

+ . . . +
A1

x− c1

+
A0

x− c0

.

Third, figure out what the constants Am, . . . , A0 are.

1



Example 1 Use partial fraction expansion to simplify x
x2+5x+6

Solution We simply follow the instructions laid out above:
First, factor the bottom:

x

x2 + 5x + 6
=

x

(x + 3)(x + 2)

Second, break up the fraction

x

x2 + 5x + 6
=

A1

x + 3
+

A0

x + 2
.

Third, figure out what A1 and A0 are:

x

x2 + 5x + 6
=

A1

x + 3
+

A0

x + 2

=
A1(x + 2) + A0(x + 3)

(x + 3)(x + 2)

=
(A1 + A0)x + 2A1 + 3A0

(x + 3)(x + 2)
.

Thus x = (A1 + A0)x + 2A1 + 3A0, so that A1 + A0 = 1 and 2A1 + 3A0 = 0.
We can solve these two equations, to get A1 = 3, A0 = −2. Thus finally

x

x2 + 5x + 6
=

3

x + 3
− 2

x + 2

2



Example 2 Evaluate ∫
2x− 1

x2 − 7x + 12
dx

Solution The fraction is too tough to evaluate, so we have to use partial fraction
expansion to simplify it.

2x− 1

x2 − 7x + 12
=

2x− 1

(x− 4)(x− 3)

=
A1

x− 4
+

A0

x− 3

=
(A1 + A0)x − 3A1 − 4A0

(x− 4)(x− 3)
.

Thus A1 + A0 = 2 and −3A1 − 4A0 = −1. We can solve this to get A1 = 7,
A0 = −5. Therefore

2x− 1

x2 − 7x + 12
=

7

x− 4
− 5

x− 3
.

Now we can solve our calculus problem:∫
2x− 1

x2 − 7x + 12
dx =

∫
7

x− 4
dx −

∫
5

x− 3
dx

= 7 ln |x− 4| − 5 ln |x− 3|.

3



1.2 Long Division

Long division (or synthetic division) can be used when the highest power on
top is equal to or larger than the highest power on bottom.

Example 3 Evaluate ∫
x2 − 1

x− 2
dx

Solution The fraction is too tough to evaluate directly. Since the top power is
bigger, we have to use long division. Using the long division process (which
we discussed in class), we get

x2 − 1

x− 2
= x + 2 +

3

x− 2
.

Note: you can also use synthetic division to arrive at this conclusion. Now we
can solve our calculus problem:∫

x2 − 1

x− 2
dx =

∫ (
x + 2 +

3

x− 2

)
dx

=
1

2
x2 + 2x + 3 ln |x− 2| + C.
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1 Lecture 9 - Methods of approximation

Integration lets us find (signed) areas underneath graphs. Some integrals can-
not be evaluated directly however, for instance∫ 2

1

e−x2

dx or

∫ 10

3

√
1 + x3 dx.

Nevertheless, the graphs of y = e−x2
or y =

√
1 + x3 have graphs, under

which lie finite areas. We sometimes may not be able to find the area by
evaluating the integral, but we can use one of several approximation methods
to approximate the area.

1.1 Ln, The Right-hand rule with n intervals

We find an approximation of the integral of f(x) from a to b.

Divide the interval [a, b] into n many subintervals, each having length

4x =
b− a

n
.

The endpoints of the subintervals are

x0 = a x1 = a + 4x . . . xn = a + n4x

xi = a + i4x.

For example, the first subinterval is [x0, x1], the second subinterval is [x1, x2],
and the ith subinterval is [xi−1, xi]. We use the right endpoint of the ith interval
to construct a rectangle. The rectangle’s height is f(xi) and width is 4x.

area of the ith rectangle = f(xi)4x

sum of the areas of all n many rectangles =
n∑

i=1

f(xi)4x.

1



1.2 Rn, The Right-hand rule with n intervals

Again, the length of the intervals 4x and the endpoints of the intervals are
given by

4x =
b− a

n
xi = a + i4x.

For example, the first subinterval is [x0, x1], the second subinterval is [x1, x2],
and the ith subinterval is [xi−1, xi]. We use the left endpoint of the ith interval
to construct a rectangle. The rectangle’s height is f(xi−1) and width is 4x.

area of the ith rectangle = f(xi−1)4x

sum of the areas of all n rectangles =
n∑

i=1

f(xi−1)4x.

1.3 Mn, The Midpoint rule with n intervals

Again, the length of the intervals 4x and the endpoints of the intervals are
given by

4x =
b− a

n
xi = a + i4x.

For example, the first subinterval is [x0, x1], the second subinterval is [x1, x2],
and the ith subinterval is [xi−1, xi]. We use the midpoint of the ith interval to
construct a rectangle. The rectangle’s height is f

(xi−1+xi

2

)
and width is 4x.

area of the ith rectangle = f

(
xi−1 + xi

2

)
4x

sum of the areas of all n rectangles =
n∑

i=1

f

(
xi−1 + xi

2

)
4x.

2



1.4 Tn, The Trapezoidal rule with n intervals

This time we use trapezoids, not rectangles, to approximate the area under
the graph. Again, the length of the intervals 4x and the endpoints of the
intervals are given by

4x =
b− a

n
xi = a + i4x.

But this time, the intervals are used to construct trapezoids, not rectangles.
Recall that the area of a trapezoid is A = 1

2
h (b1 + b2). With the width of the

ith trapezoid being 4x and the two bases being f(xi−1) and f(xi), we have

area of the ith trapezoid =
1

2
4x (f(xi−1) + f(xi))

sum of the areas of all n trapezoids

=
1

2
4x (f(x0) + 2f(x1) + 2f(x2) + . . . + 2f(xn−1) + f(xn)) .

3



1 Lecture 10 - Simpson’s rule and examples

1.1 Sn, Simpson’s rule with n intervals

Simpson’s rule uses small pieces of parabolas (that is, graphs of the kind
y = ax2 + bx + c) to approximate the graphs. One can easily figure out
the equation of a parabola passing through three points, say (xi−1, f(xi−1)),
(xi, f(xi)), and (xi+1, f(xi+1)). and one can easily figure out a general formula
for the area under a small piece of a parabola. In the end, we get

4x =
b− a

n
xi = a + i4x

and the total approximate area under the curve is

approximate area under the graph

=
1

3
4x (f(x0) + 4f(x1) + 2f(x2) + . . . + 2f(xn−2) + 4f(xn−1) + f(xn)) .

1.2 Examples of uses of approximation techniques

Example 1 Approximate the integral
∫ 3

1
x2 dx using L4, R4, M4, T4, and S4.

Solution
First off, in all cases we have n = 4, so we can use the formulas to find

4x =
3− 1

4
=

1

2

x0 = 1 x1 =
3

2
x2 = 2 x3 =

5

2
x4 = 3.

1



Then

L4 =
4∑

i=1

f(xi−1)4x

= f(x0)4x + f(x1)4x + f(x2)4x + f(x3)4x

= (1)2 · 1

2
+

(
3

2

)2

· 1

2
+ (2)2 · 1

2
+

(
5

2

)2

· 1

2

=
27

4
= 6.75.

R4 =
4∑

i=1

f(xi)4x

= f(x1)4x + f(x2)4x + f(x3)4x + f(x4)4x

=

(
3

2

)2

· 1

2
+ (2)2 · 1

2
+

(
5

2

)2

· 1

2
+ (3)2 · 1

2

=
43

4
= 10.75.

M4 =
4∑

i=1

f

(
xi−1 + xi

2

)
4x

= f

(
x0 + x1

2

)
4x + f

(
x1 + x2

2

)
4x + f

(
x2 + x3

2

)
4x + f

(
x3 + x4

2

)
4x

= f

(
5

4

)
4x + f

(
7

4

)
4x + f

(
9

4

)
4x + f

(
11

4

)
4x

=

(
5

4

)2

· 1

2
+

(
7

4

)2

· 1

2
+

(
9

4

)2

· 1

2
+

(
11

4

)2

· 1

2

=
69

8
= 8.675.

2



T4 =
4x

2
(f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4))

=
1

4

(
f(1) + 2f

(
3

2

)
+ 2f(2) + 2f

(
5

2

)
+ f(3)

)
=

1

4

(
(1)2 + 2 ·

(
3

2

)2

+ 2 · (2)2 + 2 ·
(

5

2

)2

+ (3)2

)
=

35

4
= 8.75.

S4 =
4x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4))

=
1

6

(
f(1) + 4f

(
3

2

)
+ 2f(2) + 4f

(
5

2

)
+ f(3)

)
=

1

6

(
(1)2 + 4

(
3

2

)2

+ 2(2)2 + 4

(
5

4

)2

+ (3)2

)
=

26

3
= 8.6̄.

True value of the integral:∫ 3

1

x2dx =
1

3
x3
∣∣3
1

= 9− 1

3
=

26

3
= 8.6̄.

Note that Simpson’s rule is not only the best approximation, in this case it is
dead on.

3



1 Lecture 11 - Improper Integrals

An integral
∫ x1

x0
f(x) dx is considered ‘improper’ if

1) f(x) is ‘singular,’ meaning there is an infinite discontinuity, somewhere
in the closed interval [x0, x1]

2) Either x0 = −∞ or x1 =∞ or both.

1.1 First type: f(x) is singular somewhere

You cannot integrate right up to, or across, an infinite discontinuity. You
must use limits to approach any discontinuities.

If f(s) is singular, we have to set up the integral as∫ x1

x0

f(x) dx = lim
a→s+

∫ t

a

f(x) dx.

If f(t) is singular, we have to set up the integral as∫ x1

x0

f(x) dx = lim
a→t−

∫ a

s

f(x) dx.

If f(m) is singular for some m between x0 and x1, we have to set up the
integral as∫ x1

x0

f(x) dx =

∫ m

x0

f(x) dx +

∫ x1

m

f(x) dx

= lim
a→m−

∫ a

x0

f(x) dx + lim
b→m+

∫ x1

b

f(x) dx.

1.2 Second type: and infinity in the limits of integration

If x1 =∞, set up the integral∫ ∞

x0

f(x) dx = lim
a→∞

∫ a

x0

f(x) dx

1



If x0 = −∞, set up the integral∫ x1

∞
f(x) dx = lim

a→−∞

∫ x1

a

f(x) dx

If both x0 = −∞ and x1 =∞, set up the integral∫ ∞

−∞
f(x) dx =

∫ 0

−∞
f(x) dx +

∫ ∞

0

f(x) dx

= lim
a→−∞

∫ 0

a

f(x) dx + lim
b→∞

∫ b

0

f(x) dx.

2



1.3 The comparison test

Sometimes it will not be possible to evaluate an integral directly, for example∫ ∞

1

1√
1 + x3

dx.

Nevertheless, it is often possible to determine of the integral is finite or not,
using the comparison test.

Consider an improper integral ∫ b

a

f(x) dx.

(ie, possibly a = −∞, b =∞, or f(x) has a singularity somewhere). The first
step is to choose a comparison function g(x).

To prove that the integral
∫ b

a
f(x)dx converges, you must

• Prove that the integral of the comparison function converges, namely
that

∫ b

a
g(x)dx is finite

• Prove that the function is absolutely smaller than the comparison func-
tion, namely that |f(x)| ≤ g(x).

To prove that the integral
∫ b

a
f(x)dx diverges, you must

• Prove that the integral of the comparison function diverges, namely that∫ b

a
g(x)dx is infinite

• Prove that the function is bigger than the comparison function, namely
that f(x) ≥ g(x).

Choosing an appropriate comparison function is largely a matter of intu-
ition. After you’ve done a few examples, you can usually tell pretty well what
the comparison function should be. Basically the idea is to extract the key
features of the original function.

3



Example 1 Is
∫∞

1
1√

1+x3 dx finite or infinite?

Solution It is not possible to evaluate the integral directly, but we can use the
comparison test.

Our function is f(x) = 1√
1+x3 . First we try to pick a comparison function.

Since we are integrating up to infinity, and since 1 + x3 ≈ x3 as x gets big, we
should let

g(x) =
1√
x3

=
1

x3/2

be our comparison function. Since
∫∞

1
g(x) dx is finite (by the p-test), we

guess that the original integral is also finite. Our chain of inequalities is

f(x) =
1√

1 + x3
<

1√
x3

=
1

x3/2
= g(x).

Thus f(x) < g(x), so it follows that
∫∞

1
f(x)dx <

∫∞
1

g(x)dx <∞.

Example 2 Is
∫∞

3
1

4√x4−1
dx finite or infinite?

Solution Again, we cannot evaluate directly. Since we are integrating up to
∞, and since x4 − 1 ≈ x4 when x is very big, we should let

g(x) =
1

4
√

x4
=

1

x

be our comparison function. We know, by the p-test, that
∫∞

3
g(x)dx = ∞.

Now we try to compare f(x) to g(x) by using the chain of inequalities

f(x) =
1

4
√

x4 − 1
>

1
4
√

x4
=

1

x
= g(x).

Therefore
∫∞

3
f(x) dx >

∫∞
3

g(x) dx = ∞, so therefore the original integral
diverges.

4



1 Lecture 12 - Areas between graphs, and vol-

umes of rotation

1.1 Areas between graphs

The area under the graph of f(x), between x = a and x = b is∫ b

a

f(x) dx.

Now consider two functions f(x) and g(x) which intersect at x = x0 and
x = x1. The area under f(x) between x0 and x1 is

∫ x1

x0
f(x) dx, and the area

under g(x) between x0 and x1 is
∫ x1

x0
g(x) dx. To get the area between the

graphs, you subtract:∫ x1

x0

(f(x) − g(x)) dx or

∫ x1

x0

(g(x) − f(x)) dx,

depending on which one has the upper graph and which one has the lower
graph.

Example 1 Find the area bounded between the graphs of f(x) = 3x + 4 and
g(x) = x2.

Solution First we find the points of intersection by setting the functions equal
to each other:

f(x) = g(x)

3x + 4 = x2

0 = x2 − 3x − 4

0 = (x− 4)(x+ 1).

Thus the points of intersection are x = −1 and x = 4. It can easily be seen
from the graphs that f(x) = 3x− 4 is the upper function. Thus the bounded

1



area is
4

inf
−1

(
3x + 4 − x2

)
dx =

3

2
x2 + 4x − 1

3
x3
∣∣∣4
−1

=

(
3

2
· 16 + 4 · 4 − 1

3
· 64

)
−
(

3

2
− 4 +

1

3

)
= 44 − 3

2
− 65

3
=

125

6
.

1.2 Solids of rotation: Shells

The volume of a shell of radius R height h and thickness dx is

dV = 2π Rhdx.

Example 2 Find the area of the solid obtained by rotating about the y-axis
the region bounded by f(x) = −x2 + 5x− 6 and the x-axis.

Solution The graph of f(x) = −x2 + 5x − 6 = (3 − x)(x − 2) is a downward
opening parabola that intersects the x-axis at x = 2 and x = 3. At each value
of x lies a test-rectangle of height f(x) and width dx. This rectangle, when
rotated about the y-axis, produces a shell of radius x, height f(x), and width
dx. Thus each shell has volume

dV = 2π f(x)x dx.

Summing up the infinitesimal volumes, we get

V =

∫ 3

2

dV

=

∫ 3

2

2π
(
−x2 + 5x − 6

)
x dx

= 2π

∫ 3

2

(
−x3 + 5x2 − 6x

)
dx

= 2π

(
−1

4
x4 +

5

3
x3 − 3x2

) ∣∣∣3
2

=
π

12
.
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1 Lecture 13 - Volumes of rotation, slicing,

and arclength

1.1 Volumes of Rotation - Disks and Washers

Volume of a shells:
dV = 2π Rhdx

where R is the radius, h is the height, and dx is the thickness of the shell.

Volume of a disks:
dV = π R2 dx

where R is the disk’s radius and dx is its thickness.

Volume of a washer:
dV = π

(
R2 − r2

)
dx

where R is the outer radius, r is the inner radius, and dx is the thickness.

Example 1 Find the volume of the solid formed by rotating the region between
the graph of y = 1− x2 and y = 0 about the x-axis.

Solution If you were finding the area of bounded by these graphs, a test rect-
angle would have height f(x) = 1−x2 and width dx. Rotating a test rectangle
gives a disk of radius 1− x2 and thickness dx. Thus a given disk has volume
dV = π (1− x2)

2
dx. Adding up all the volumes gives

V =

∫
dV

=

∫ 1

−1

π
(
1− x2

)2
dx

= π

∫ 1

−1

(
1− 2x2 + x4

)
dx

= π

(
x− 2

3
x3 +

1

5
x5

) ∣∣∣1
−1

= π
16

15
.

1



Example 2 Find the volume of the solid formed by rotating the region between
the graphs of f(x) = 4− x2 and g(x) = 6− 3x around the x-axis.

Solution In the bounded region, f(x) is the top graph and g(x) is the bottom
graph. The points of intersection are found by setting f(x) = g(x) and solving:

4− x2 = 6− 3x

0 = 2 − 3x + x2

0 = (2− x)(1− x)

so the points of intersection are x = 1 and x = 2.

If you were to find area between the graphs, your test rectangle would have
height f(x)− g(x) and width dx. Rotating about the x-axis, you get a washer
with outer radius f(x), inner radius g(x), and thickness dx. Thus the volume
of a given washer is

dV = π
(
f(x)2 − g(x)2

)
dx

= π
(
(4− x2)2 − (6− 3x)2

)
dx

= π
(
−20 + 36x− 17x2 + x4

)
dx

Thus the total volume is

V =

∫
dV

=

∫ 2

1

π
(
−20 + 36x− 17x2 + x4

)
dx

= π

(
−20x + 18x2 − 17

3
x3 +

1

5
x5

) ∣∣∣2
1

= π
812

35
.

2



Example 3 Find the volume of the solid formed by rotating the region between
the graphs of f(x) = x2 and g(x) = −x+ 2 around the line y = 4.

Solution This time g(x) is the top graph and f(x) is the bottom graph. The
points of intersection are found by setting f(x) = g(x) and solving:

x2 = −x+ 2

x2 + x − 2 = 0

(x+ 2)(x− 1) = 0

so the points of intersection are x = −2 and x = 1.

If you were to find area between the graphs, your test rectangle would have
height g(x) − f(x) and width dx. Rotating about the line y = 4, you get a
washer with outer radius 4 − f(x), inner radius 4 − g(x), and thickness dx.
Thus the volume of a given washer is

dV = π
(
(4− f(x))2 − (4− g(x))2

)
dx

= π
(
(4− x2)2 − (2 + x)2

)
dx

= π
(
12 + 4x− 7x2 + x4

)
dx

Thus the total volume is

V =

∫
dV

=

∫ 1

−2

π
(
12 + 4x− 7x2 + x4

)
dx

= π

(
12x+ 2x2 − 7

3
x3 +

1

5
x5

) ∣∣∣1
−2

= π
78

5
.

3



1.2 Slicing

Not every 3-dimensional shape is a solid of revolution.

Example 4 Consider the region between the graph of y =
√

1− x2 and the
x-axis. A solid is formed by letting each vertical segment be the base of an
equilateral triangle. Find the volume of the solid.

Solution A test rectangle would have height f(x) =
√

1− x2 and width dx.
But each test rectangle forms the base of a very thin triangular prism. The
formula of the area of an equilateral triangle of sidelength s is A =

√
3

4
s2. The

formula for the volume of a prism is V = (FaceArea) ·(thickness). Thus each
thin prism has side-length

√
1− x2, thickness dx, and volume

dV = (FaceArea) · (thickness)

=

√
3

4

(√
1 − x2

)2

dx

=

√
3

4

(
1 − 2x2 x4

)
dx

Thus the volume of the solid is

V =

∫
dV

=

∫ 1

−1

√
3

4

(
1 − 2x2 + x4

)
dx

=

√
3

4

(
x − 2

3
x3 +

1

5
x4

) ∣∣∣1
−1

=
4
√

3

15
.
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1.3 Arclength

The problem is to determine the length of a curve, not the area under the
curve. As always, we look at the problem on the infinitesimal level first, where
the Pythagorean Theorem indicates proves that the infinitesimal length of arc
dl (called the arclength element) is related to the infinitesimal changes in the
x- and y-coordinate values, dx and dy, by

dl =
√

(dx)2 + (dy)2.

If the curve in question is given by the graph of a function, y = f(x), then we
can manipulate this

dl =

√(
1 +

(dy)2

(dx)2

)
(dx)2

=

√
1 +

(
dy

dx

)2√
(dx)2

=

√
1 +

(
dy

dx

)2

dx.

Example 5 Find the length of the curve given by the graph of y = 1
2
x2 for

−1 < x < 1.

Solution We compute the arclength element

dl =

√
1 +

(
dy

dx

)
dx

=
√

1 + x2 dx,

then integrate

Arclength =

∫
dl

=

∫ 1

−1

√
1 + x2 dx.

5



A trigonometric substitution is require: use x = tan θ, dx = sec2 θ dθ to get

Arclength =

∫ 1

−1

√
1 + x2 dx

=

∫ π/4

−π/4

√
1 + tan2 θ sec2 θ dθ

=

∫ π/4

−π/4

√
sec2 θ sec2 θ dθ

=

∫ π/4

−π/4
sec3 θ dθ.

Now we use the reduction formula for the sec function to get

Arclength =

∫ π/4

−π/4
sec3 θ dθ

=
1

2
tan θ sec θ

∣∣∣π/4
−π/4

+
1

2

∫ π/4

−π/4
sec θ dθ

=
1

2
tan θ sec θ

∣∣∣π/4
−π/4

+
1

2
ln (sec θ + tan θ)

π/4
−π/4

=
√

2 +
1

2
ln

(√
2 + 1√
2− 1

)
.
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1 Lecture 18 - Applications to Work

The principle behind the applications here is that if you can solve the in-
finitesimal problem, then the large-scale problem can be solved by integrating.

If a particle moves in a straight path for a distance of s under the influence
of the constant force F directed either with or directly against the motion, the
work done by that force is

W = F s.

Of course force is often nonconstant and motion is rarely in a straight line, so
this formula has limited applicability. But even if the force is nonconstant, it
will still be approximately constant on small enough length scales, so that the
formula still holds on the infinitesimal scale:

dW = F ds.

Example 1 A particle moves along the x-axis from x = 0 to x = 1 under the
influence of the force F = (1 + x2)−1. Find the work done by this force.

Solution The displacement variable is x (not s) so we use the formula dW =
F dx = dx

1+x2 . Then

W =

∫
dW

=

∫ 1

0

dx

1 + x2

=

∫ π/4

0

sec2 θ

1 + tan2 θ
dθ

=

∫ π/4

0

dθ =
π

4
.

1



Example 2 (problem 7 from section 6.5) Suppose 2J of work is needed to stretch
a spring from its natural length of 30cm to a length of 42cm. Then (a) How
much work is needed to stretch it from 30cm to 40cm and (b) how far beyond
its natural length will a force of 30 N keep the spring stretched?

Solution The one thing we know about springs is Hooke’s law: F = kx where
x is the distance the spring is stretched from its natural length, and k is the
(usually unknown) spring constant. The spring’s natural length is 30 cm, so
it is stretched 12 cm from the natural length, we can use

W =

∫
dW =

∫
Fdx

2 J =

∫ .12m

0

k x dx

=
k

2
x2
∣∣∣.12m

0

=
k

2
.0144m2

k =
4Nm

.0144m2
=

100

9
N/m

(recall 1 J = 1N ·m). There is one and only one piece of information that
characterizes an ideal spring: its spring constant. Knowing the spring constant
allows us to find out any other information we need. The solution to part (a)
is

W =

∫
dW =

∫ .1

0

F dx

=

∫ .1

0

100

9
x dx

=
50

9
x2
∣∣∣.1
0

=
1

18

The solution to part (b) is even simpler: given that the force is 30 N, we get

F = k x

30 =
100

9
x

x =
27

10

2



Example 3 (problem 11 from section 6.5) A cable weighing 2 lbs/ft is used to
lift 800 lbs of coal up a mineshaft 500 ft deep. find out how much work is
done.

Solution We divide into two parts: the work needed to lift the coal and the
work needed to lift the cable. The work lifting the coal is easy: it weighs 800
lbs and is lifted 500 ft, so

W = F s

= 800 · 500

= 400000.

Finding the work done lifting the cable is a little harder. Let x be the height
from the shaft’s bottom. A piece of cable, at initial position x and of length
dx, must be lifted 500 − x feet. The force on the piece of cable due to gravity
is dF = 2 · dx, so the work done to lift it is dW = 2dx · (500 − x). Thus

W =

∫
dW

=

∫ 500

0

2(500 − x) dx

= 2(500x− 1

2
x2)
∣∣∣500

0

= 250000.

Thus the total work done is

Wtot = Wcoal + Wcable

= 650000.
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1 Lecture 19 - Applications to work and fi-

nance

1.1 Pumping Water out of tanks

Knowing the geometry of a tank and the amount of fluid it holds, one can
determine how much work is required to pump the fluid out. One considers
thin ‘slabs’ of water of constant gravitational potential, and of thickness dx.
To find the work required to lift that ‘slab’ out of the tank, you must calcu-
late its weight (force due to gravity) and the distance it is lifted against the
gravitational pull.

Example 1 A tank has semicircular cross section of radius 4m, and length of
8m. If the tank is filled with water up to a depth of 4m, determine the work
needed to pump the water out.

Solution Let x measure the height above the tank’s bottom. Consider a ‘slab’
of water, at height x, of thickness dx. Using basic geometry, you can calculate
the width of the slab to be 2

√
8x− x2. Its legth is obviously 8. Thus the slab’s

volume is

dV = 16
√

8x− x2 dx.

The density of water is 1000kg/m3, and weight (force due to gravity) obeys
F = mg with g = 9.8m/s2, so we get

Infinitesimal wieght = 156800
√

8x − x2 dx.

The slab must be lifted 4− x meters, so the work done to the slab is

dW = F · s
= 156800

√
8x − x2 dx · (4 − x).

1



Thus the total work is

W =

∫
dW

= 156800

∫ 4

0

(4− x)
√

8x − x2 dx

= 88400

∫ 16

0

u
1
2 du

= 88400
2

3
u3/2

∣∣∣16

0

=
10135200

3
.

1.2 Applications to Finance

If you sell exactly X many items, you must charge P dollars. If you charge
any more, you will sell fewer items. If you charge less, you will sell more. We
call P = P (X) the demand function. In addition we have the cost function
C = C(X) giving the total cost of producing X units, the revenue function
R = R(X) giving the total revenue obtained by selling X units (obviously
R(X) = X · P (X)), and the profit function T (X) = R(X)− C(X).

The marginal cost is the derivative of the cost function C ′(X), and likewise
for the other quantities: marginal revenue is R′(x), marginal profit is T ′(X).

The consumer surplus is the total amount of value your customers receive
from doing business with you. Namely, if you charge 1 dollar for something
that a consumer was willing to pay 2.50 for, the consumer receives a value of
1.50.

Example 2 The demand function for your product is P = 8
1+x2 . Suppose you

sell 10 units. What is the consumer surplus?

Solution To sell 10 units the price you charge is P = 8
101

, just under 8 cents.
The consumer surplus is the total amount of value received by the consumer:
the integrate of the price consumers would have paid (ie, what it is worth to

2



them), minus the price they actually paid.

consumer surplus =

∫ 10

0

(
8

1 + x2
− 8

101

)
dx

= 8

∫ 10

0

1

1 + x2
dx − 800

101

= 8 tan−1(x)
∣∣∣10

0
− 800

101
≈ 3.58

So consumers netted a grand total of $3.58 of value.

3



1 Lecture 20 - Basic concepts of differential

equations

A differential equation is an equation relating a function to one or more of its
derivatives.

The first main example is Newton’s Law of Cooling. If a body of temperature
T is immersed in surroundings of constant temperature TAMB, Newton says
the rate of change in the body’s temperature is proportional to the difference
between the body’s temperature and the ambient temperature. That is

dT

dt
= −k (T − TAMB) ,

which is a first-order differential equation.

The second main example is Hooke’s Law, which gives the force exerted by
an ideal spring as F = −kx, where k is the spring constant and x is the dis-
placement from the natural length. Combine this with Newton’s Second Law
F = md2x

dt2
, and we have the following equation for a mass-spring problem:

m
d2x

dt2
= −k x

which is a second-order differential equation.

Example 1 Show that x(t) = A cos(
√

2t) + B sin(
√

2t) solves the differential

equation d2x
dt2

= −2x.

Solution We compute

d

dt

d

dt
x(t) =

d

dt

(
−
√

2A sin(
√

2t) +
√

2B cos(
√

2t)
)

= −2A cos(
√

2t) − 2B sin(
√

2t)

= −2x.

1



Example 2 Show that y(t) = 1√
−2t+C

solves the differential equation dy
dt

= y3.

Solution We compute

dy

dt
=

d

dt
(−2t + C)−

1
2

= −1

2
(−2t + C)−

3
2 · (−2)

= (−2t + C)−
3
2

= y3.

Example 3 Find the solution to dy
dt

= y3 given that y(0) = 1
2
.

Solution We know that y(t) = (−2t + C)−
1
2 solves the differential equation,

but we still have the unknown constant C to deal with. To find the value of
C we use the initial condition

y(0) = (−2(0) + C)−
1
2

1

2
=

1√
C

C = 4.

Thus the solution is

y(t) =
1√

4 − 2t
.

2



1 Lecture 21 - Separable differential equations

Any first order differential equation can be written in the form

dy

dx
= F (x, y).

If F has the special form F (x, y) = f(x)g(y), the equation

dy

dx
= f(x)g(y)

is called a separable first order differential equation. To solve: get all y’s and
dy’s on one side, and all x’s and dx’s on the other. Then integrate.

dy

dx
= f(x) · g(y)

1

g(y)
dy = f(x) dx∫
1

g(y)
dy =

∫
f(x) dx.

Example 1 Find the general solution to y′ = y3 cos(x).

Solution

dy

dx
= y3 cos(x)

y−3 dy = cos(x) dx∫
y−3 dy =

∫
cos(x) dx

−1

2
y−2 = sin(x) + C

y−2 = −2 sin(x) + C

y = (−2 sin(x) + C1)
− 1

2 .

1



Example 2 Find the particular solution: du
dt

= 2 + 2u + t + tu, u(1) = 2.

Solution

du

dt
= 2 + 2u + t + tu

du

dt
= (1 + u) (2 + t)

1

(1 + u)
du = (2 + t) dt∫

1

(1 + u)
du =

∫
(2 + t) dt

ln
∣∣1 + u

∣∣ = 2t +
1

2
t2 + C.

This gives u as an implicit function of t. To get the explicit solution we have
to do more work:

ln
∣∣1 + u

∣∣ = 2t +
1

2
t2 + C

eln

∣∣1+u

∣∣
= e2t + 1

2
t2 + C∣∣1 + u

∣∣ = eC e2t + 1
2
t2

1 + u = ±eC e2t + 1
2
t2

u = −1± eC e2t + 1
2
t2

u = −1 + C1 e2t + 1
2
t2 .

Now we use the initial condition to determine the constant:

2 = −1 + C1 e2+ 1
2

C1 = 3 e−5/2.

Thus the particular solution is

u(t) = −1 + 3 e−
5
2

+2t + 1
2
t2 .

2



1 Lecture 22 - Euler’s method and Center of

Area

1.1 Euler’s method

A first order differential equation has the form

dx

dt
= F (x, t).

We have seen that if F (x, t) separates, meaning F (x, t) = f(x) g(t), we can
solve. However, it is often not possible to solve this DE explicitly.

Euler’s method is a means of approximating the solution. First pick a discrete
time step, δt. We can approximate δx, the change in the variable x, using the
DE:

δx

δt
≈ F (x, t)

δx ≈ δt · F (x, t).

Thus, given some initial condition (x0, t0), and choosing a discrete time step
δt, we can approximate the value of x at time t0 + δt:

Initial x0

after time δt x1 = x0 + δx

= x0 + F (x0, t0).

After another interval of δt, the value of x has changed by δx = δt · F (x1, t1),
and so on. Thus if xi indicates the value of x after i many steps, we use

xi+1 = xi + δx

= xi + 4t · F (xi, ti)

to find the value of x after i+ 1 many steps (obviously ti = t0 + i · δt).

1



1.2 Center of Area

Let A be some region of the plane. Points in the plane are described by
coordinates (x, y). The center of the region A is determined by finding the
average of the x- and y-values over the points of the region A.

xave =
1

Area(A)

∫
A

x dA

yave =
1

Area(A)

∫
A

y dA.

Example 1 Consider the region bounded by y = 1 − x2, x > 0, and y > 0.
Find the center of area.

Solution We use the formulas above. First we find the area: the area element
(ie, a test rectangle) is dA = (1− x2)dx, so we get

Area(A) =

∫
A

dA

=

∫ 1

0

(1− x2)dx =
2

3
.

To find the average of the x-coordinate, we use the same area element dA =
(1− x2)dx to get

xave =
1

Area(A)

∫
A

x dA

=
3

2

∫ 1

0

x (1− x2) dx

=
3

2

(
1

2
− 1

4

)
=

3

8

To find the average of the y-coordinate we use the area element dA =
√

1− y dy

2



to get

yave =
1

Area(A)

∫
A

y dA

=
3

2

∫ 1

0

y
√

1− y dy

=
3

2

(
2

3
− 2

5

)
=

2

5

Thus the center of area is

(xave, yave) =

(
3

8
,

2

5

)
.

3



Test I Information


Here is a list of what you have to know: Test I guidelines.

Brian's Review session will be the Math Tower, room P-131, 6-8pm on Monday

Test I room assignments:

Brian's lecture (recitations 6-10)        Old Engineering room 145, at 8:30p on Tuesday

Thomas' lecture (reciations 1-5)         Old Engineering room 143, at 8:30p on Tuesday

Test I material: 

Everything in sections 5.3 through 6.2 (excepting 5.8, which we didn't do).

http://www.math.stonybrook.edu/~brweber/132f08/CourseFiles/Test%20I%20guidelines.pdf


Test II Information
Test I room assignments:

Brian's lecture (recitations 6-10)       
Old Engineering room 145, at 8:30p on Thursday November 6

Thomas' lecture (reciations 1-5)       
 Old Engineering room 143, at 8:30p on Thursday November 6

Test I material: 

Everything in sections 6.3 through 7.3.



Extra Credit/Review Problems

Instructions
Your best 4 problems will be counted.

A full 30 points counts as one homework assignment.

No credit will be given for answers without justification.

Compute the definite integral (1 pt each).

1)
∫

x
√

x2 + 1 dx

Ans: 1
3
(x2 + 1)

3
2 + C

2)
∫

cos2(t) sin(t) dt

Ans: −1
3

cos3(t) + C

3)
∫

y2 +1
y3 +3y

dy

4)
∫ b− cos(b) sin(b)√

b2 +cos2(b)
db

1



Simplify (2 pts each)

5) ei
π
2 + e−i

π
2

Ans: 0

6)
√

2 ei
π
4

Ans: 1 + i

7) ei
3π
4

8) ei
π
4 − e−i

π
4

2



Simplify (3 pts each)

9) e1 + iπ

Ans: −e

10) e2t+ iπ
4 t

Ans: e2t (cos (πt/4) + i sin (tπ/4))

11) e2 + iπ/2

12) e−x+ i x π/8

3



Find the general solution (4 points each)

13) y′′ + 7y′ + 12y = 0

Ans: y(t) = c1 e
−4t + c2 e

−3t

14) y′′ − 5y′ + 4y = 0

15) d2y
dt2 + 2dydt + 10y = 0

16) d2y
dx2 + 5 dydx + 6y = 0

4



Find the solution (5 points each)

17) y′′ + 6y′ + 10y = 0

Ans: y(t) = C1 e
−3t cos(t) + C2 e

−3t sin(t)

18) x′′ − 2x′ + 2x = 0

19) d2s
dt2 − 8dsdt + 20s = 0

20) y′′ + 3y′ + 7y = 0

5



Work the problem (10 points each)

21) Find the length of the path

x = cos2(t) + sin4(t)

y =
4
√

2
3

sin3(t)

for 0 ≤ t ≤ π/4.

22) A large spring or natural length 5m is mounted to the floor. Two blocks of equal mass
are placed on the spring. The spring contracts by 1.5m after the first block is placed
on the spring. When the second mass is placed on the spring, the work done to the
spring is 9

4J . Find the mass of either one of the blocks.

6



Extra Credit/Review Problems II

Instructions
Your best 4 problems will be counted.

A full 30 points counts as one homework assignment.

No credit will be given for answers without justification.

Evaluate (3 points each).

1)
∫ √3

1
x−4
√

x2 + 1 dx

Ans: 8
3

(
1

2
√

2
− 1

3
√

3

)

2)
∫ 1

0
x2 (1 + x2)

− 5
2 dx

Ans:
√

2
12

3)
∫ 1

0
(1 + x2)

− 3
2 dx

4)
∫ √3

1
x4 (1 + x2)

− 7
2 dx

1



Evaluate (3 points each)

5)
∫ ee

e
1

x ln(x) dx

Ans: 1

6)
∫ eee

ee
1

x ln(x) ln(ln(x)) dx

Ans: 1

7)
∫ ee2

ee
1

x ln(x) (ln(ln(x)))2
dx

8)
∫ ee3

ee

(ln(ln(x)))2

x ln(x) dx

2



Let Γ(x) be the function of x defined by

Γ(x) =
∫ 1

0

sx e−s ds.

9) (3 pts) Evaluate Γ(1)

Ans: 1

10) (3 pts) Evaluate Γ(2)

Ans: 2

11) (5 pts) Evaluate Γ(3)

12) (5 pts) Evaluate Γ(4)

3



13) (10 pts) Find the Taylor series centered at x = −1 for f(x) = (2 − x)−2, and
determine the radius of convergence.

14) (10 pts) Find the Taylor series centered at x = 1 for f(x) = x2 ln(x), and determine
the radius of convergence.
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Notes on Second Order Linear Differential
Equations

Stony Brook University Mathematics Department

1. The general second order homogeneous linear differential equation with constant co-
efficients looks like

Ay′′ + By′ + Cy = 0,

where y is an unknown function of the variable x, and A, B, and C are constants. If A = 0
this becomes a first order linear equation, which we already know how to solve. So we
will consider the case A 6= 0. We can divide through by A and obtain the equivalent
equation

y′′ + by′ + cy = 0

where b = B/A and c = C/A.
“Linear with constant coefficients” means that each term in the equation is a constant

times y or a derivative of y. “Homogeneous” excludes equations like y′′+ by′+ cy = f (x)
which can be solved, in certain important cases, by an extension of the methods we will
study here.

2. In order to solve this equation, we guess that there is a solution of the form

y = eλx,

where λ is an unknown constant. Why? Because it works!
We substitute y = eλx in our equation. This gives

λ2eλx + bλeλx + ceλx = 0.

Since eλx is never zero, we can divide through and get the equation

λ2 + bλ + c = 0.

Whenever λ is a solution of this equation, y = eλx will automatically be a solution of our
original differential equation, and if λ is not a solution, then y = eλx cannot solve the
differential equation. So the substitution y = eλx transforms the differential equation into
an algebraic equation!



2 SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

Example 1. Consider the differential equation

y′′ − y = 0.

Plugging in y = eλx give us the associated equation

λ2 − 1 = 0,

which factors as
(λ + 1)(λ− 1) = 0;

this equation has λ = 1 and λ = −1 as solutions. Both y = ex and y = e−x are solutions
to the differential equation y′′ − y = 0. (You should check this for yourself!)

Example 2. For the differential equation

y′′ + y′ − 2y = 0,

we look for the roots of the associated algebraic equation

λ2 + λ− 2 = 0.

Since this factors as (λ − 1)(λ + 2) = 0, we get both y = ex and y = e−2x as solutions to
the differential equation. Again, you should check that these are solutions.

3. For the general equation of the form

y′′ + by′ + cy = 0,

we need to find the roots of λ2 + bλ + c = 0, which we can do using the quadratic formula
to get

λ =
−b±

√
b2 − 4c

2
.

If the discriminant b2 − 4c is positive, then there are two solutions, one for the plus sign
and one for the minus.

This is what we saw in the two examples above.

Now here is a useful fact about linear differential equations: if y1 and y2 are solutions
of the homogeneous differential equation y′′ + by′ + cy = 0, then so is the linear combi-
nation py1 + qy2 for any numbers p and q. This fact is easy to check (just plug py1 + qy2
into the equation and regroup terms; note that the coefficients b and c do not need to
be constant for this to work. This means that for the differential equation in Example 1

(y′′ − y = 0), any function of the form

pex + qe−x where p and q are any constants
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is a solution. Indeed, while we can’t justify it here, all solutions are of this form. Similarly,
in Example 2, the general solution of

y′′ + y′ − 2y = 0

is
y = pex + qe−2x, where p and q are constants.

4. If the discriminant b2 − 4c is negative, then the equation λ2 + bλ + c = 0 has no so-
lutions, unless we enlarge the number field to include i =

√
−1, i.e. unless we work

with complex numbers. If b2 − 4c < 0, then since we can write any positive number
as a square k2, we let k2 = −(b2 − 4c). Then ik will be a square root of b2 − 4c, since
(ik)2 = i2k2 = (−1)k2 = −k2 = b2 − 4c. The solutions of the associated algebraic equa-
tion are then

λ1 =
−b + ik

2
, λ2 =

−b− ik
2

.

Example 3. If we start with the differential equation y′′ + y = 0 (so b = 0 and c = 1) the
discriminant is b2 − 4c = −4, so 2i is a square root of the discriminant and the solutions
of the associated algebraic equation are λ1 = i and λ2 = −i.

Example 4. If the differential equation is y′′ + 2y′ + 2y = 0 (so b = 2 and c = 2 and
b2 − 4c = 4− 8 = −4). In this case the solutions of the associated algebraic equation are
λ = (−2± 2i)/2, i.e. λ1 = −1 + i and λ2 = −1− i.

5. Going from the solutions of the associated algebraic equation to the solutions of the
differential equation involves interpreting eλx as a function of x when λ is a complex
number. Suppose λ has real part a and imaginary part ib, so that λ = a + ib with a and b
real numbers. Then

eλx = e(a+ib)x = eaxeibx

assuming for the moment that complex numbers can be exponentiated so as to satisfy the
law of exponents. The factor eax does not cause a problem, but what is eibx? Everything
will work out if we take

eibx = cos(bx) + i sin(bx),

and we will see later that this formula is a necessary consequence of the elementary prop-
erties of the exponential, sine and cosine functions.

6. Let us try this formula with our examples.

Example 3. For y′′ + y = 0 we found λ1 = i and λ2 = −i, so the solutions are y1 = eix

and y2 = e−ix. The formula gives us y1 = cos x + i sin x and y2 = cos x− i sin x.

Our earlier observation that if y1 and y2 are solutions of the linear differential equa-
tion, then so is the combination py1 + qy2 for any numbers p and q holds even if p and q
are complex constants.



4 SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

Using this fact with the solutions from our example, we notice that 1
2(y1 + y2) = cos x

and 1
2i (y1 − y2) = sin x are both solutions. When we are given a problem with real

coefficients it is customary, and always possible, to exhibit real solutions. Using the fact
about linear combinations again, we can say that y = p cos x + q sin x is a solution for any
p and q. This is the general solution. (It is also correct to call y = peix + qe−ix the general
solution; which one you use depends on the context.)

Example 4. y′′ + 2y′ + 2y = 0. We found λ1 = −1 + i and λ2 = −1− i. Using the formula
we have

y1 = eλ1x = e(−1+i)x = e−xeix = e−x(cos x + i sin x),

y2 = eλ2x = e(−1−i)x = e−xe−ix = e−x(cos x− i sin x).

Exactly as before we can take 1
2(y1 + y2) and 1

2i (y1 − y2) to get the real solutions e−x cos x
and e−x sin x. (Check that these functions both satisfy the differential equation!) The
general solution will be y = pe−x cos x + qe−x sin x.

7. Repeated roots. Suppose the discriminant is zero: b2 − 4c = 0. Then the “characteristic
equation” λ2 + bλ + c = 0 has one root. In this case both eλx and xeλx are solutions of the
differential equation.

Example 5. Consider the equation y′′ + 4y′ + 4y = 0. Here b = c = 4. The discriminant
is b2 − 4c = 42 − 4× 4 = 0. The only root is λ = −2. Check that both e−2x and xe−2x are
solutions. The general solution is then y = pe−2x + qxe−2x.

8. Initial Conditions. For a first-order differential equation the undetermined constant
can be adjusted to make the solution satisfy the initial condition y(0) = y0; in the same
way the p and the q in the general solution of a second order differential equation can be
adjusted to satisfy initial conditions. Now there are two: we can specify both the value
and the first derivative of the solution for some “initial” value of x.

Example 5. Suppose that for the differential equation of Example 2, y′′ + y′ − 2y = 0, we
want a solution with y(0) = 1 and y′(0) = −1. The general solution is y = pex + qe−2x,
since the two roots of the characteristic equation are 1 and −2. The method is to write
down what the initial conditions mean in terms of the general solution, and then to solve
for p and q. In this case we have

1 = y(0) = pe0 + qe−2×0 = p + q

−1 = y′(0) = pe0− 2qe−2×0 = p− 2q.

This leads to the set of linear equations p + q = 1, p− 2q = −1 with solution q = 2/3, p =
1/3. You should check that the solution

y =
1
3

ex +
2
3

e−2x
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satisfies the initial conditions.

Example 6. For the differential equation of Example 4, y′′ + 2y′ + 2y = 0, we found
the general solution y = pe−x cos x + qe−x sin x. To find a solution satisfying the initial
conditions y(0) = −2 and y′(0) = 1 we proceed as in the last example:

−2 = y(0) = pe−0 cos 0 + qe−0 sin 0 = p

1 = y′(0) = −pe−0 cos 0− pe−0 sin 0− qe−0 sin 0 + qe−0 cos 0 = −p + q.

So p = −2 and q = −1. Again check that the solution

y = −2e−x cos x− e−x sin x

satisfies the initial conditions.



6 SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

Problems cribbed from Salas-Hille-Etgen, page 1133

In exercises 1-10, find the general solution. Give the real form.

1. y′′ − 13y′ + 42y = 0.

2. y′′ + 7y′ + 3y = 0.

3. y′′ − 3y′ + 8y = 0.

4. y′′ − 12y = 0.

5. y′′ + 12y = 0.

6. y′′ − 3y′ + 9
4 y = 0.

7. 2y′′ + 3y′ = 0.

8. y′′ − y′ − 30y = 0.

9. y′′ − 4y′ + 4y = 0.

10. 5y′′ − 2y′ + y = 0.

In exercises 11-16, solve the given initial-value problem.

11. y′′ − 5y′ + 6y = 0, y(0) = 1, y′(0) = 1

12. y′′ + 2y′ + y = 0, y(2) = 1, y′(2) = 2

13. y′′ + 1
4 y = 0, y(π) = 1, y′(π) = −1

14. y′′ − 2y′ + 2y = 0, y(0) = −1, y′(0) = −1

15. y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1

16. y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2
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Class:     R07    -    Chemistry 128    -    MW 11:45pm-12:40pm

           
    R09    -    Physics
P117     -     MW 3:50pm-4:45pm


Office: S-240C (in the lowest level of the math tower)


Office Phone: 


Office Hours: 
   Mon 12:50-1:50 in the MLC

           
           
    Tues 11:30-12:30 in S240C

           
           
    Wed 12:40-1:50 in the MLC


Email: evanpw (at math dot sunysb dot edu)

Webpage: math.stonybrook.edu/~evanpw/

http://math.stonybrook.edu/%7Eevanpw/


Ye Sle Cha
TuTh Recitation


Class:     R08    -    Library N4006    -    TuTh  8:20am-9:40am


Office: 4-118 Math Tower


Office Phone: 


Office Hours: 
Mon 5:00-6:00

           
             Mon
6:00-8:00 in the MLC


Email: ycha (at math dot sunysb dot edu)



Brandon Williams
TuTh Recitation


Class:     R10    -    SB Union 231    -    TuTh 11:20am-12:40pm


Office: 2-105 Math Tower


Office Phone: 


Office Hours: 
  Wed 11:00a-1:00p

           
              
Wed 10:00a-11:00a in the MLC


Email:  mbw (at math dot sunysb dot edu)

Webpage: math.sunysb.edu/~mbw

http://www.math.sunysb.edu/%7Embw/


Thomas Poole
MW Lecturer


Class:     Lec 1    -    Old Chem 116    -    MW 5:20pm-6:45pm


Office: Math Tower 2-120


Office Phone: 


Office Hours: 
Mon 4:00-5:00 and Wed 4:00-5:00

           
             Mon
12:50-1:50 in the MLC


Email: tpoole (at math dot sunysb dot edu)



Jiansong Chen
MW Recitation


Class:     R01    -    Physics P112    -    MW 6:50pm-7:45pm

                R03   -    Physics P115    -    MW  11:45am-12:40pm


Office: Math Tower 2-106


Office Phone: 


Office Hours: 
Mon 1:30-2:30

           
           
 Mon 4:50-6:50 in the MLC


Email: jschen (at math dot sunysb dot edu)



Joseph Walsh
TuTh Recitation


Class:     R02    -    Physics P122    -    TuTh 5:20pm-6:40pm


Office: Math Tower 2-105


Office Phone: 


Office Hours: 
Mon 7:00-8:00

           
             Wed
7:00-8:00

           
             Mon
6:00-7:00 in the MLC


Email: jwalsh (at math dot sunysb dot edu)



Prachi Bemalkhedkar
MF Recitation


Class:     R04    -    Lgt Engr Lab 152    -    MF 12:50pm-1:45pm


Office: Light Engineering Building


Office Phone: 


Office Hours: 
   Mon 3:00-5:00 in the MLC

           
           
    Wed 3:00-5:00 in the MLC


Email: pbemalkh (at ic dot sunysb dot edu)



Frank Palladino
MW Recitation


Class:     R05    -    SB Union 231    -    MW 3:50pm-4:45pm


Office: Math Tower 2-112


Office Phone: 


Office Hours: 
   Mon 2:00-3:00

           
           
    Mon 1:00-2:00 in the MLC

            
              
Wed 1:00-2:00 in the MLC


Email: fpalladino (at math dot sunysb dot edu)




