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§1. TATE’S LINEAR ALGEBRA

1.1 Crossed modules and central extensions of Lie algebras. We will need
Lie and associative algebra versions of crossed modules:

1.1.1 Definition. (i) Let L be a Lie algebra. An L-crossed module is an L-module

L# together with a morphism L# Ny 5 of L-modules. For ¢ € L we will denote
the action of L on L¥ as [(,-]; so one has O[¢, 0] = [¢, 0], £ € L¥.

(ii) Let R be an associative algebra. An R-crossed module is an R-bimodule R*
together with a morphism rR*¥ %R of R-bimodules. [J

We have canonical pairings {, } : Sym?L# — L, (, ) : R* ®g R* — R¥ defined
by formulas {m1,ma} := [Om1, ma]+[0ma, m1], (s1,s2) := (0s1)s2—51(0s2). These
are morphisms of L-modules and R-bimodules respectively; one has 9{,} = 0,
a(,) =0.

Crossed modules in both versions form categories in an obvious manner. For
example, if Ry LRQ is a morphism of associative algebras and Rf& are R;-crossed
modules, then an f-morphism of crossed modules is an f-morphism f# : Ry — Ry
of bimodules such that 0f# = fd. If R is an associative algebra, then R, considered
as Lie algebra with commutator ab — ba, will be denoted R¥*. If R” is an R-

crossed module, then it has also an RF*°-crossed module structure R#L* with
[r,7] = 77 — 7. One has {s1,52} = (s1, 82) + (52, 51) for s; € R = R* = R#Lie

Below “DG algebra” means “differential graded algebra”; so “Lie DG algebra”
is the same as differential graded Lie superalgebra.

1.1.2 Lemma. (i) Let L (resp. R) be a Lie (resp. associative) DG algebra such
that L' =0 (R* = 0) fori > 0. Then L1410 (resp. R‘lLRO) is a Lie (resp.
associative) algebra crossed module. For mi,ms € L1 (resp. si1,82 € R_l) one
has {mi,ma} = d[my,ma] (resp. (s1,S2) = d(s152)).

(ii) Conversely, let #* 2L (resp. R#LR) be a crossed module, and i : N C
L# (resp. i : T C R¥) be an L-submodule (resp. R-sub-bimodule) such that

{L#,L#} C N C kerd (resp. (R* R*) C T C kerd). Then N—>L#-5L (resp.

T R# i>R) is a dg Lie (resp. associative) dg algebra placed in degrees —2,—1,0.
]

In other words, the lemma claims that DG algebras zero off degrees —2,—1,0
and acyclic off degrees —1,0 are in 1-1 correspondence with pairs (L7 i>L; N),

where L# -5 L is a crossed module and N C L# is a submodule as in (ii) above.
For example, one may take N = image of {,} (or image of (,) in the associative
algebra version); we will say that the corresponding DG algebra is defined by our
crossed module.

1.1.3 The simplest example of a Lie algebra crossed module is a central extension
L — L of a Lie algebra L (the bracket on L factors through an L-action); note
that here {,} vanishes. Conversely, let L be a DG Lie algebra. Then L~!/dL~2,
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equipped with the bracket [¢y, £5] := [dly, {2]%~ 1s a Lie algebra andd: L™'/dL=2 —
L is a morphism of Lie algebras such that (H~! — L™1/dL=2 — d(L™')) is a cen-
tral extension of dL~' by H~'. Hence if L# 9. is an L-crossed module such that
0 is surjective, then ker /{L#, L#} — L# /{L¥ L#} — L is a central extension of
L. If tr : ker 9/{L#, L#} — C is any linear functional, then it defines, by push-out,
a central C-extension L7 of L.

1.1.4 The following example of a crossed module will be used below. Let L be a
Lie algebra, and let Ly, L_ C L be ideals. Then we have an L-crossed module
Li®L_ lL, O(ly,0_) =Ly +{_. We have isomorphism i : Ly N L_ — ker0,
i(l) = (¢,—¢) € Ly ® L_. Or we may take an associative algebra R equipped
with 2-sided ideals Ry, R_, and get an R-crossed module Ry & R_ -%,R. Note
that {,} vanishes on L; and L_ (and (,) vanishes on R, and R_) and one has
{0} = i([l— 44]), (ryyr—) = —i(ryr—), (r—,r4) = i(r—ry). }

If Ly +L_ = L, then we get a central extension Ly NL_/[Ly, L_] L — Lof
L, where L =L, &L_ -/i([L+, L-]). This central extension is equipped with obvious
splittings s4 : L4+ — L such that st (L) are ideals in L it is easy to see that Lis
universal among all central extensions of L equipped with such splittings. Note also
that the embedding s, : L_ < L yields an isomorphism L, /[L, L_] — L/s_(L_)
and we have the Cartesian square

L — L/s (L) « Ly/[Ly,L ]
% — L/lL_ « Li/LiNL_

and the same for + interchanged.
1.1.5 Now let tr : Ly N L_/[Ly, L] — C be any linear functional. According to
1.1.3 it defines a central C-extension Ltr of L. One has the splittings sy : L, — Lt,n,

_:L_ — L, such that st (Ly) are ideals and (s — s— ‘L+mL, = tr. Clearly Ly,
is the unique extension equipped with this data.

1.1.6 The above constructions are functorial with respect to (L, Ly ). Hence if L', C
L are other ideals such that Ly C L/, then we get a canonical morphism L— 1L
between the corresponding central extensions of L. If tr: Ly NL_/[Ly,L_] — C
extends to tr : L', N L"_/[L' ,L"] — C, then Ly, = L,,.. In particular, assume
that ¢tr : Ly N L_/[Ly,L_] — C extends to tr: L_/[L_,L_] — C. Then we may
take L', = L,L” = L_ to get the same extension Ztr, hence we get the splitting
5y : L — Ly that extends our old sy : Ly — L. Explicitly, Sy(ly +102) =
sy(ly) +s_ (L) +trl_; clearly 5y —s_ = tr : L_ — C. In the same way, an
extension of tr : Ly N L_ — C to Ly determines the splitting s_ : L — Ly, that
extends the old s_ : L_ — Ztr. If we have the trace functional on the whole L, i.e.
tr:L/[L,L] - C, thens; —s_=tr:L — C.

1.1.7 We will often use the following notation. If g is a Lie algebra, V is a vector
space, and 0 — V — g — g — 0 is a central V-extension of g, then for any ¢ € C
we will denote by g. a V-extension of g which is the c-multiple of g. So we have
a canonical morphism g — g. of central extensions of g that restricted to V’s is

multiplication by ¢. For example, in situation 1.1.3 one has (LZéﬁ )e Lﬁr



1.2 Tate’s vector spaces. For subspaces Vp, V1 of a vector space V' we will write
Vo < Vp if Vi /Vo N'Vy is of finite dimension, and Vg ~ Vi (V; are commensurable)
if Vo < Vp and V7 < V4. Clearly < is partial order on a set of commensurability
classes of subspaces.

1.2.1 A Tate’s topological vector space (or, simply, Tate’s space) V is a linearly
topologized complete separated vector space V' that admits a basis {V,} of neigh-
bourhoods of 0 with V,, mutually commensurable. Equivalently, V' is the projective
limit of a family of epimorphisms of usual vector spaces with finite dimensional
kernels: V' = lmV/V,.

«

Let L C V be a vector subspace. We will say that L is bounded if for any open
U C V one has L < U, and L is discrete if for some open U one has U N L = 0.
Clearly simultaneously bounded and discrete subspaces are just finite dimensional
ones.

A lattice V,. C V is a bounded open subspace; equivalently, this is a maximal
(with respect to <) bounded closed subspace. The lattices form a maximal basis
of neighbourhoods of 0 that consists of mutually commensurable subspaces.

A colattice V_ C V is a maximal discrete subspace. Equivalently, this means
that for (any) lattice V} one has V; NV_ ~ 0, V4 + V_ ~ V (or for some lattice
V. one has V. @ V_ V).

Tate’s vector spaces form an additive category 7V with kernels and cokernels.
The category 7V is self-dual: Namely, for a Tate’s space V' its dual V* is Hom(V, C)
with open subspaces in V* equal to orthogonal complements to bounded subspaces
in V. This V* is a Tate’s space, and V** = V. Note that V; +— Vj is 1-1
correspondence between lattices in V' and V*; and the same for colattices.

1.2.2 Let V be a Tate’s vector space. One has a canonical Z-torsor Dimy together
with a map dim : { Set of all lattices in V'} — Dimy such that for a pair V1, Vs of
lattices one has dimVy; —dimV,ig := dim(Vy1/Vi1 N Vi) —dim(Vig/Vi1NVig) €
Z. One has a natural map codim : { Set of all colattices in V'} — Dimy defined by
formula codimV_ = dimVy + dim(V/Vy + V_) — dim(VL N'V_), where Vy is any
lattice. The Z-torsor Dimy ~ coincides with the opposite torsor to Dimy : one has
dime = —dimV,. The group Aut V acts on Dimy; if V is neither bounded nor
discrete, then the action is non-trivial.

1.2.3 Let Vi1, V5 be Tate’s vector spaces. We will say that a linear operator f €
Hom(Vy, Vs) is bounded if I'mf is bounded, is discrete if ker f is open, and is finite
if Imf is finite dimensional. Denote by Hom,, Hom_ and Homyg respectively
the corresponding spaces of operators; put Homg := Homy N Hom_. Clearly
Homy + Hom_ = Hom, Homs (where 7 = +,—,0,00) is a 2-sided ideal in Hom

(i.e., if for V1£>V2£>V3 either fi or fy is in Home, then f5f; is in Homs»), and
Hom_Homy C Homg.

Remark. Let TV, TV_ C TV be full subcategories of bounded, resp. discrete,
spaces. Then 7V_ coincides with the category of usual vector spaces, and * iden-
tifies 7V with the dual category 7V?; in particular these are abelian categories.
Consider the quotient categories 7V/+,7TV/—,TV /0, whose objects are Tate’s vec-
tor spaces, and Hom’s are the corresponding quotients Hom/+ := Hom/Homy, Hom/0 :=
Hom/Homyg (clearly TV /+ are just the quotient categories 7V /7 V. ). These quo-
tient categories are abelian. In fact, the projection 7V/0 — TV/ + @7TV— is
an equivalence of categories, and embeddings 7V, — 7V composed with projec-



4

tions define equivalences 7V, /Vect — TV/—,TV_/Vect — TV /+ (here Vect =
TV, NTV_ is the category of finite dimensional vector spaces).

1.2.4 For V € TV consider the algebra EndV equipped with 2-sided ideals Endy D
Endy D Endgyy. We will write gf = gfV for EndV"'* = EndV considered as Lie
algebra. Since End3 C Endgg, we have a canonical trace functional tr : gfp — C
which vanishes on [gl;, gl_]

According to 1.1.4, we get an End-crossed module End, & End_ — End. By
1.1.5, tr defines a central C-extension g~£ — gl of gf, together with canonical Lie
algebra splittings s4 : gf4+ — g:vﬁ such that s, —s_ = tr on gfy.

1.2.5 Let T' C V be a Tate’s subspace (= a closed subspace with induced Tate struc-

ture), and V/T be the quotient. Denote by Pr < glV the parabolic subalgebra of
endomorphisms that preserve T'; let m = (w7, 7wy /7) : Pr — gfT x g¢V/T be the ob-

vious projection. Let g¢T x gfV/T be a central C-extension of g¢T" x gfV /T which
is the Baer sum of g¢T and g¢V/T}; one has g¢T x gfV/T = gtT x glV/T/{(a1,as) €
C x C: aj; +ay = 0}. Clearly g¢T x g¢V/T coincides with the C-extension con-
structed by the recipe of 1.1.4, 1.1.5 using the ideals g¢ . T x gl V/T, g¢_T'xgl_V/T
and the trace functional tr = trr + try,r.

Let Pp = i* gV be the C-extension of Pr induced by gfV. Since Pr = Pr4 +
Pr_, where Pry = PrNgl.V, this C-extension coincides with the one constructed
by means of ideals Pr4 and the trace functional trv| Py Note that w(Pry) =

gl T x gl V)T and try ‘PT = trom. By 1.1.6 this defines a canonical morphism 7 :

Pr — gET/x\ng/ T of C-extensions that lifts w. In other words, Pris canonically
isomorphic to the Baer sum of C-extensions induced by projections 7, my /7 from
olT, glV/T.

Let us consider an important particular case of this situation. Assume that
T = V, is a lattice. Then we have a canonical splitting s; : géV, = gl Vy —
QNEVJF, S_ o glV/Vy = gl V)V, — EEV/V_F, hence a canonical splitting sy, =
symy, +s_myyy, - Py — QNEV. Note that sy, actually depends on V: if V| is
another lattice, then sy, —sy: : Py, NPy — C is given by formula (s, —sVJfr)(a) =
trv, yviavy (@) = trvy veave (@),

Similarly, if 7" = V_ is a colattice, then we have the splittings s_ : gfV_ =
gl_V_ — glV_, Sy glV/V_ = gl V/V_ — g~€V/V_, hence the splitting sy =
s_my_+symyyv. Pyl — gﬁv. On Py_NPy, thedifference sy, —sy_ : Py_NPy, —
C is given by formula

(sv, —sv.)(a) =trv_nv, (a) — trv,v_4v, (a).

The following subsection 1.3 could be omitted on first reading.

1.3 Elliptic complexes. Let (V',d) be a finite complex of Tate’s vector spaces.

We will call it elliptic, if for some (or any) subcomplex (V,,d) C (V',d) formed by

lattices in V" both V and V" /V. have finite dimensional cohomology spaces.
Clearly, elliptic complexes have finite dimensional cohomology.

Remark. V' is elliptic iff its image in the abelian category 7V/0 (see 3.2.2) is
acyclic.
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1.3.1 Let (U",d),(V",d) be elliptic complexes. Then Hom = Hom(U,V") :=
[T Hom(U?, V*?) carries a bunch of subspaces. First, one has the subspaces Hom.. :=
[T Hom+(U?, V), Homg, Homgg that have nothing to do with differential. We may
enlarge those spaces as follows. Put Hom% := {f € Hom : [f,d] € Hom+ (U ,V'*1)}, Homg :=
Homd N Hom?, Hom, := {f € Hom : [f,d] = 0} (= usual morphisms of com-
plexes). Clearly Homy C H omi,H omg C Homg, and all H om‘?i are compatible
with + decomposition: one has Hom¢ = (Hom% N Hom) + (Hom4 N Hom_).

The following easy technical lemma is quite useful. Assume that we picked
subcomplexes UJlr' cU,.cU, V] cVycCV formed by lattices. Put P := {f €
Hom(U', V")« f(UY) € Vi, f(UL) € Va}, Pra = {f € P: [f.d)(U) € VY,
P_,;:= {f eP: [f, d](U+) = O},Pod =PaNP_y,.

1.3.2 Lemma. One has Homdi = Pyq+ Homgg, Homg = Pyg + Homyp.

Proof. Consider, e.g., the case of Hom%. One has Hom$ = (PN Hom<) 4+ Homy.
An element f €e PN H omi induces the linear map f: U/ U, — V' /V, such that
a = [f,d] is of finite rank. One may find g of finite rank such that [g,d] = a. Lift
g to an element g € PN Homg; then f — g € Py4, and we are done. [

Now let us define the traces. Consider a single elliptic complex (V",d). We have a
bunch of Lie subalgebras in gf = g¢/V" = IIg¢V*. Pick subcomplexes er' cvycw
formed by lattices; we get the corresponding parabolic subalgebra P C gf and
its standard subalgebras. Define the trace functional tr: Ppq — C by formula
trf = S(=1)"(trgi(vv,) + ter/Vf + tTHi(Vi))' In particular, if V/V, and V|
are acyclic, then tr = E(—l)’trvi Vi The algebra gfyg also carries the trace
tr = B(—=1)"ry:. Clearly on Pyy N gloo these traces coincide, so, by 1.3.2, they
define tr : gfd — C.

1.3.3 Lemma. The trace functional tr : gtd — C does not depend on the choice
of VJ'F,V_;_' and vanishes on [gfd, g¢d]. O

Let ;;@ be the central extension of gf by C which is the alternating Baer sum
of g~€Vi. Equivalently, to get g~€ take the ideals gl C gf and the trace functional
tr = X(—1)%ry: on gy, and apply constructions 1.1.4, 1.1.5. We have canonical
splittings s4 : gly — g@

1.3.4 Lemma. These splittings extend to canonical splittings s+ : gfd — g~€; one
has s, —s_ =tr: gld — C.

~d ~
Proof. Consider, say, the case of s . Let gf, be gl restricted to gﬁi. Note that

~d
gl? =gl + (gf— Ngld), so gl comes from constructions 1.1.4, 1.1.5 applied to
gﬂi, its ideals g and gf_ N gﬁi and the trace functional tr. We may even replace
gl_nN géi by the larger ideal g¢g and, since tr extends to gf¢ by 1.3.3, according to
1.1.6 we get the desired section s : gfi — gf. One treats s_ in a similar way; the
formula s — s_ = tr results from 1.1.6. [

1.4 Clifford modules. Let W be a Tate’s space, and let ( , ) be a non-degenerate
symmetric form on W (which is the same as symmetric isomorphism W — W*).

1.4.1 For a lattice W C W let Wi be the orthogonal complement with respect
to (1, ). This is also a lattice, and the parity of dimWi — dimWy € Z does not
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depend on W, (and depends on (W, ( , )) only). We will say that W is even or
odd dimensional if dimWi — dimW is even or odd, respectively.

1.4.2 A Clifford module M is a module over Clifford algebra Clif f(W,(, )) such
that W acts on M in a continuous way (in the discrete topology of M). This means
that for any m € M there is a lattice W, such that W,.m = 0. Denote by C My,
the category of Clifford modules.

Let Wy C W be a lattice such that (, )[w, = 0. Then the finite-dimensional
vector space Wi /W, carries an induced non-degenerate form. If M is a Clifford
module, then MW+ := {m € M : Wym = 0} is a Wi-invariant subspace of M,
hence a Clif f(W /W4, (, ))-module.

1.4.3 Lemma. The functor CMy — CMWi/Ww M — MY+, is an equiva-
lence of categories. The inverse functor is given by formula N — Clif f(W) (X)C“ff(wi)]\f.
O

In particular, we see that C My is a semisimple category. There is 1 irreducible
object if W is even-dimensional, and 2 such if W is odd-dimensional.
Denote by C/W the completion lim Clif f(W)/Clif f(W)- W, where W, runs

the set of all lattices in W. It is easy to see that the multiplication extends to this
completion by continuity, so C/W is an associative algebra. Clearly, it acts on any
Clifford module.

144 Let Ly C W be a maximal (, )-isotropic lattice (so either L+ = L, or
dimLi /L4 = 1 depending on parity of dimension of W). If L’ is another such
lattice, put A(Ly : L) := det(Ly/Ly N L’ ). One has a canonical embedding
i MLy @ L) — CIW/CIW - L', given by the formula vy A - - A v,
U1 -+ U, mod CYW - L', . Here {v;} is a basis of Ly /L N L ,v; are any liftings of
v; to elements of L. For a Clifford module M one has a canonical isomorphism
MLy L) ® ML — M+ v @m — i(v)m.

Now let L_ C L be a maximal isotropic colattice (so codimL_ = dimL, in
case dimW is even, or codimL_ = dimL; + 1 if dimW is odd). Put A\(Ly,L_) =
det(LyNL_). For a Clifford module M put My := M/L_M. One has a canonical
isomorphism A(L4,L_) ® M, — M*"+, defined by formula v ® m — vm, where
v € MLy, L) C Cliff(W), m € M _, and m € My , and m € M is any
element such that m mod L_M = m and vim € MY+, If M is irreducible, then
dimM"'+ = dimM;_ =1, and we may rewrite the above isomorphisms as

ALy : L) = MY+ /MY MLy, L) = MY /My, .

1.4.5 The algebra C¢W carries a natural Z/2-grading such that T lies in the degree

1 component. Denote by CM%&Q the corresponding category of Z/2-graded Clifford
modules. This is a semisimple category. If dimW is odd, then it has a single
irreducible object; if dimW is even, then there are two irreducible objects that
differ by a shift of Z/2-grading.

If dimW is even, then each M € C Myy carries a natural Z/2-grading defined up
to a shift. Precisely, consider the set of all maximal isotropic lattices. This breaks
into two components: lattices L, L/, lie in the same component iff dimL, /Ly N
L' is even. Denote the two element set of these components by Z/2,,; we will
consider it as Z/2-torsor. Then any M € CM,, carries a canonical Z/2,,-grading
determined by the property that ML+ C M* for L, € a € Z/2,,.
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1.4.6 Let C¢**W denote the Clifford algebra considered as Lie (super)algebra (with
the above Z/2-grading; the (super)commutator is defined by the usual formula
[a,b] = ab — (—1)ba for a € ClEW* b € ClL®WP). Denote by aW the
normalizer of W C C¢L€W? in C¢F°W. This is a Lie subalgebra of C¢XW. As
a vector space aWW is the completion in CUW of the subspace of all degree < 2
polynomials of elements of W. One has aW! = W. The Lie algebra, OW := aW?®
is called the spinor algebra of W. The subspace C C C¢W coincides with center
of aW. One has a canonical isomorphism alW/C = OW x W. Here OW is the
orthogonal Lie algebra of all ( , )-skew symmetric elements in g¢WW; the projection
T OW — OAV/V/(C = OW is given by the adjoint action on W = aWW!.

The Lie superalgebra alWW acts on any M" € C’/\/lzv;é2 in an obvious manner. If
M- is irreducible, this action identifies aW with the normalizer of W in the Lie
superalgebra EndcM . Similarly, OW acts on any M € C My, and, in case M is
irreducible, OW coincides with the normalizer of W in EndcM.

1.4.7 Here is another construction of OW. For a € g/W denote by ta € gfW the
adjoint operator with respect to ( , ); for a € gf_W one has ‘a € g¢, W. Consider
now the ideal gf_ W C gfW as an OW-module with respect to Ad-action. Then

gl_ W together with the surjective morphism gf_ W 9, OW, a+—— a—ta,is an
OW -crossed module. The pairing {,} : g W x gl_ W — kerd (see 1.1.1) is given
by formula {a1,as} = a1, as] + [az,a1]. Clearly ker @ C gloW. The usual trace
tr(1.2.4) vanishes on {kerd,kerd}; put o tr = 1/2tr. By 1.1.3 we get a central

C-extension OW = (g0_W), ¢ of OW.

We define a canonical isomorphism « : ow / = OW of central C-extensions
of OW as follows. One has a canonical identification W @ W ~ glooW, w1 ® ws
corresponds to a linear operator w —— (wg,w)w;. This isomorphism extends by
continuity to the isomorphism of completions lim W& (W /W, ) ~ g¢/_W. Hence the

W

map glopgW =W W — Clif f(W,(,)), a1 ® az — ajas, extends by continuity to
the map o : g_W — C¢W. Clearly o maps g/_W to aW? = OW . For ai,as €
gl_W,w € W one has [a*(a),w] = 9(a)(w), [a¥(a1),a™(az)] = a¥([0a1,as)).
For b € kerd N glooW one has b = 1/2(b + 'b) = X(w; ® w + w) ® w;), hence
a? (b) = L(w;, w!) = o tr b; by continuity this holds for any b € ker . This implies
that o yields a map a : gf_W/ker tr = ow - ow , which is the desired
isomorphism of C-extensions of OW.

1.4.8 Let L, C W be a maximal isotropic lattice; denote by Pr, O C OW the
“parabolic” subalgebra of operators that preserve L. One has a canonical Lie
algebra splitting s, : P, O — OW defined by formula sy, . (a) = a*(b), where
b € gf_W is any operator such that 9(b) = a,b(Ly) = 0,(a — b)(W) C L,. For
any Clifford module M one has sp, (a)(M*+) = 0 (and s, (a) is a unique lifting
of a to OW with this property).

Similarly, let L_ C W be a maximal isotropic colattice. The corresponding
parabolic subalgebra P;,_ O C OW also has a canonical Lie algebra splitting sy,_ :
PO — OW defined by formula s;,_ (a) = a™(b), where b € gf_W is an operator
such that (b)) = a, bl = a|r_,b(W) C L_. For a Clifford module one has
sp_(a)(Mp_)=0 (ie., sy_(a)(M) C L_M).

According to 1.4.4 fora € P, ONPy_O one has (s;,_ —sr, )(a) =trp_nr, (a) €
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CcOow. If L' is another maximal isotropic lattice, then for a € P, ON PL;O
one has (s, —sr,)(a) =trp, /o, nr, (a).

1.4.9 Let V' be any Tate’s vector space. Then W := V@ V™*, equipped with the form
((v,0*), (v/,0*)) 1= v* (') + v* (v), is an even-dimensional space. For any lattice
Vi C V and a colattice V_ C V a lattice L(Vy) = V4 @ V5 C W and a colattice
L(V_) = V_@® VL C W are maximal isotropic ones; clearly one has a canonical
isomorphisms

AML(V4) : L(VY)) = det(Vy /Ve N V) /det(VE/ Ve N V)
AL(VL), L(V_)) = det(Ve N V_)/ det(V/Vy + V).

The algebra C{W gets a natural Z-grading such that the subspaces V,V* (C
W C C¢W) lie in degrees 1, -1, respectively. Any Clifford module M has a canonical
Dimy-grading such that ML) lies in degree dimV,,.

The embeddlng i:glV — OW, £ — (d(—"4), lifts canonically to a morphism of
C-extensions i : gEV — OW constructed as follows. For {4 € gl V choose a lat-
tice V. O I'mfly. Theni(€y) € Pry, O. Put iy () = spvy)i(ly) € OW; by 1.4.8
this element is independent of a choice of V.. Similarly, for /_ € gf_V choose a lat-
tice V. C Ker /_; then i({_) € PL(V“O, and i_ (0-) = SL(V/)i(ﬁ ) € ow depends
on /_ only. For ¢y € glyV one has (Z', — i+)(€0) tTL(V+)/L(V+)ﬂL(V/)(Z£0) = trly
by 1.4.8. According to 1 2.3 we get a canonical morphlsm i gE WV — OW of
C-extensions such that isy = iv : glV — OW (here g¢_,V = (glV)_1, see
1.1.7).

The action of g~€V on M preserves the Dimy-grading. If M is irreducible, then
it is natural to denote the gf/_,V-module M%, a € DimV, as AV (“semi-infinite
wedge power”). Note that A®V (as well as M itself) is defined up to tensorization
with 1-dimensional C-vector space.

1.4.10 We will need a version “with formal parameter” of the above constructions.
Namely, let O = C][q]] be our base ring. Consider a flat complete O-module V' (so
IEnV/ q"V). A Tate structure on V is given by Tate’s C-vector space structure on

each V/¢q"V such that each short exact sequence 0 — V/¢™V < V/¢™t"V —
V/q"V — 0 is strongly compatible with the Tate structures (i.e., V/¢™V is a Tate’s
subspace of V/¢™ ™"V and V/q"V is the quotient space). A lattice Vy C V is an
O-submodule such that V/V,y is O-flat, V, = liin%r /q"Vy and V. /q"V, is a lattice

in V/q"V for each n. One defines a colattice V_ C V in a similar way. For a Tate O-
module V one defines its dual V* in an obvious way; one has V* /¢"V* = (V/q"V)*,
V¥ =V.

Let W be Tate’s O-module and (,) : W xW — O be a non-degenerate symmetric
form (i.e., a symmetric isomorphism W — W*). Let Clif f(W) be the Clifford O-
algebra of (,). A Clifford module M is a Clif f(W)-module such that M is flat as
O-module, M = IEnM /q" M, and W/q"W acts on each M/q"M in a continuous

way (in discrete topology of M/q"M). Such M carries the action of completed
Clifford algebra

COW =lim lim Cliff(W W) /q"Clif f(W) + Clif f(W)W ™)

n W(")
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(where WJ(r") is a lattice in W/q"W). Clearly My;= M/qM is Clifford mod-

ule for (Wo, (,)o) := (W/qW,(,)modq); if M’ is another Clifford module, then

Hom(M, M') is a flat O-module and Hom (M, M")/qHom(M, M) = Hom(My, M}).
In particular, if (Wo, (,)) is even-dimensional, then there exists a Clifford module

M, unique up to isomorphism, such that M is irreducible; one has EndM = O.

All the facts 1.4.3-1.4.9 have an obvious C[[g]]-version.
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§2. TATE’S RESIDUES AND VIRASORO-TYPE EXTENSIONS

2.1 Tate’s construction of the local extension. Let F' be a 1-dimensional
local field, and O C F be the corresponding local ring. A choice of uniformization
parameter ¢t € Op identifies Op with C[[t]], and F with C((¢)). Let E be an F-
vector space of dimension n < oo. Denote by DFE the algebra of F-differential
operators acting on E. A choice of a basis of E identifies DF with the algebra of
matrix differential operators a0y + -+ + a10; + ag, a; € Mat,(F).

2.1.1 The space F, considered as C-vector space, is actually a Tate’s vector space
in a canonical way. A basis of neighbourhoods of 0 is formed by Og-submodules
of E that generate F as F-module. We will denote by EndE,glLE, etc., the
corresponding algebras of endomorphisms of F/, considered as Tate’s C-vector space.

Clearly DE C EndE. We may restrict the central extension gNKE of glE to
DE to get a central extension 0 — C — DE — DEL® — 0 of the Lie algebra
DELie.

It is easy to compute a 2-cocycle of this extension explicitly. Namely, let us
choose a parameter ¢t € Op and an F-basis {v;} in E. Put E; = ZOFU“ E_ =

()

Zt‘lC[t_l]viz this is a lattice and a colattice in £ and £ = EL @& E_. For

¢ € glE define the operator ¢ € gl E by formula {y|g, = l|g, . li|g = 0.
Clearly this map g/F — gl FE, ¢ — /(. lifts the canonical projection g/FE —
glE/gl_FE = gl E/gloE. Hence by 1.1.4 it defines a section o : glE — gNKE; the
corresponding 2-cocycle is given by formula ¢,y — «a(ly,02) = [0(f1),0({3)] —

o([6r,62]) = tr([ay, Lay] — [tr,La)4). Take now €4 = Ata2% £, = At % where
A A" € Mat,(C), a,d’ € Z,b,l € Z>o. Clearly a(lq,03) =0ifa—b#V —d.
Assume that a — b = b — a; since a is skew-symmetric we may assume that

n =a—>b > 0. Then one has

by, bs) = —Tr(AA) nf (;) (Z ) ”)

=0

2.1.2 Let AE C DE be a Lie subalgebra that consists of operators of order < 1
with scalar symbol (i.e., the operators of type ag + a10;,a0 € EndpE a1 € F).
Denote by 7 the Lie algebra of vector fields on F'. One has a canonical short exact
sequence of Lie algebras 0 — EndpEY*® — AE 25 Tp — 0, o(ag + a10;) = a10;.
Let AE be the C-extension of AFE induced from DE. The above formulas reduce
to the following ones:

a2

a(At?, BtY) = b6 tr AB, a(At*, t"+19,) = “‘2 570 A, a(t"t1a,, t+18,) = %(a?’—a)agb.

This is the Kac-Moody-Virasoro cocycle.

2.1.3 Consider the case E = F. One has an obvious embedding 7z C AF which
defines the C-extension T of T3 with cocycle ay i, (t4110,, t110,) = %(a3 —a)é; b,
This 7 is called (a local) Virasoro algebra. For any ¢ € C consider the C-extension
T; Fe (see 1.1.7). Since 7f is perfect, ’ZN'FC has no automorphisms. One knows that

any central C-extension of Ty is isomorphic (canonically) to a unique 7z, (one has
H?(Tp,C) ~ C).
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2.1.4 Now consider for J € Z a 1-dimensional F-vector space w?j of j-differentials
(the elements of w® 77 are tensors fdt®7, f € F). The Lie algebra T acts canonically
on w Fj by Lie derivatives, i.e., we have a canonical embedding 7Tp — Aw Fj Denote

by T(j ) the corresponding C-extensions of 7z induced from Aw F . The explicit
formula for this action is @0 (fdt®7) = (pd(f) + jfO:())dt®?, i.e., with respect
to the basis dt®7 a field 2719, acts as 219, + j(a + 1)t*. The formulas 2.1.2

immediately show that a 2-cocycle for TISJ ) coincides with (652 —65+1)ay;,.. Hence
T(]) coincides with TF(6J2_6]+1)

2.2 A geometric construction of a global extension. Let us describe the
above extensions in geometric language.

2.2.1 Let C be a smooth algebraic curve (not necessary compact). Denote by w =
QL the sheaf of 1-forms, and by H = H}p = QL /dO¢ the de Rham cohomology
sheaf (in the Zariski topology of C'). For a vector bundle E on C'let D = DFE denote
the sheaf of differential operators on F, and E° := wE™*. Then F is a left D-module,

E° is a right D-module (so one has a canonical anti-isomorphism ¢ : DE — DE°,

see, e.g., [B]), and the pairing E°® F SO w quotients to the pairing E° ® E—H.

DE
Let A : C — C x C be the diagonal; we will identify the sheaves on C' with

ones on C' x C supported on the image of A. Consider the sheaf F X E° :=
piE @ p3E® on C x C. Recall that one has a canonical isomorphism ¢ : £ X
EO(OOA)/E X EO = D. EXphCitly, for a “kernel” k(tl,tg) = €(t1>60(t2)f(t1,t2),
ec€ E,e® € EY f(t1,t2) € Ocxc(o0A), the corresponding differential operator 6(k)
acts on sections of E according to formula (5(k)€)(t1) = Rest,—, (k(t1,t2)l(t2)) =
e(t1)Resi,—1, f(t1,12)((t2)((t2)). Here £ € E, (e%(t2)(t2)) € w, (k(t1,t2)l(t2)) €
EXw(ocoA); we take the residue along the to variable. The rlght action of §(k ) on
sections of E is given by formula (md(k))(t2) = Ress,—¢, f(x,t2){(m(t1)e(ty)))el (t2).

2.2.2 Put PE, := lim_E & E%(n + 1)A)/E K E°(—iA), PE = UPE,, so we

have an isomorphism § " PE/PE_i — DE. Clearly PE is a DE-bimodule (the
left and right actions are the obvious actions along the first, resp. the second
variable), and § is a morphism of bimodules, i.e., PE is a D FE-crossed module (see
1.1). Let t : PE — PE" be minus the isomorphism “transposition of coordinates”
(here minus comes since E, E° have “odd” nature). Then for k € PE one has
t5(k) = 6(*k), and ! is an “anti-isomorphism” between crossed modules.

The pairing () : PEQQPE — PE_; from 1.1, (ky, k) = 6(k1)kz — k16(kz), is

DE
given by formula

<k1]€2>(t1,t2) = (Resz:tl + R6822t2)<k1(t1,Z)kg(z,tg» :/ <k1(t1,z)k2(z,t2)>.

t1.,to

Here (ki1(t1, 2)k2(z,t2)) is the 1-form of variable z (with values in By, ® EJ) ), and
Vtr,t, 18 @ loop round z = t; and z = t5. The corresponding Lie algebra pairing
{}:8?PE — PE_q is {k1,ka} := (k1,ka) + (k2,k1). Let tr : PE_; — w be the
composition PE_; — PE_1/PE_3 = E® E° — w. We have

tr{k:l, k‘g} == (Re.91 - R682)<k§1(t1,tg)kig(tg,tl».
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Here ko(t2,t1) = 'ky € PEC is ky with coodinates transposed, (k1 (t1,t2)ka(t2,t1))
is a 2-form with poles along the diagonal and Resy, Ress : Q% »(00A) — we are
residues around the diagonal along the first and second coordinates, respectively.
Clearly, Res; — Resy vanishes on Q2. ~(A) and has image in exact forms. In fact,
there is a canonical map Res : Q% ~(00A)/Q%, ~(A) — Oc¢ such that dRes =

Res; — Ress (see [B Sch] (2.11)). An explicit formula for Res is

Res(f(ty,ta)(ty — to) ™" hdty Adty) =il > 0p O, f(tr,ta)|, . -
at+b=1—1

Here f(t1,t2) € Ocxc. Hence one has tr{ki, k} = dhz?<k1,tk2>. Note that the
symmetric pairing PE @ PE — Oc¢, ki,ks — {k1,ko}~ := Res{k1, ko) vanishes
on Z PE, ® PEy; in particular, it induces the pairing on PE;/PE_,.

a+b=—1

According to 1.1.2, 1.1.3 we get a central extension DE of the Lie algebra D EL%
by H defined by a following commutative diagram:

0 — PE., — PE > DE — 0

P

I
0 — H - DE — ©DELe _, .

2.2.3 Denote by AE C DE¥* the Lie subalgebra of differential operators of order
< 1 with scalar symbol. In other words, AF is the Lie algebra of infinitesimal
symmetries of (C, E): the elements of AE are pairs (7,7), where 7 € P¢ is a vector
field, and 7 is an action of 7 on F (so 7 is an order 1 differential operator with
symbol equal to 7).

The constructions of 2.2.2 give rise to a differential graded Lie algebra AFE defined
as follows. One has A°E = AE, A~'E is pre-image of AE C DE by the projection
PE/kertr 2., Dg (so we have short exact sequence 0 — w — A™LE 2 AE — 0),
and finally A=2F = O¢; all the other components of A E are zero ones. The
differential d : A72E = O¢c — w C A7'E is the de Rham differential, and A~'F —
AE is 6. The bracket components [ |9 : A'E x AJE — A7 E are the following.
[ ]9 is the usual bracket [ ]°~! comes from D¥*-action on PE, [ ]%72 is the
action of AE on O¢ via 0 : AE — T¢, and [ ]7'71is {, }™ defined above.
So A'E contains de Rham complex Q[2] as an ideal, A E/Q,[2] is acyclic and
the central extension AE = A"'E/dA2E of AE by H (see 1.13) coincides with
restriction of DE to AE C DELie,

2.2.4 Consider the case E = O¢. An obvious embedding Po — AO¢ defines the
central H-extension P called a global Virasoro algebra. As in 2.1.3 for ¢ € C we
will denote by 7500 the H-extension of Ps which is c-multiple of ﬁc. Since P is
perfect (see 2.5 below), the extensions Pe. have no automorphisms.

2.2.5 Consider for j € Z the sheaf w®J. The natural action of Po on w®/ by Lie
derivatives defines a canonical embedding of Lie algebras Po — Aw®?. Denote
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by Pg ) the induced H-extension Aw ]|
consider elements of 758 ) as expressions
S0 [ ) o)

(f.9) (tg —t1)2 ty — 1

Po Given a local coordinate t, one may

+g(t) | dty ey

where f,g € Oc¢, modulo the ones of type ¢(g,9,r)- The map ﬁc = 73(00) — 75(0”
defined by formula @E(}?g) — 3082(63.276]. +1)9) is a morphism of Lie algebras, and
does not depend on a choice of alocal coordinate t. Hence it defines a canonical iso-
morphism Pesj2—6j+1) = Pg ) of H-extensions of C (see [B Sch]). Unfortunately,
we do not know any “coordinate-free” explanation of this isomorphism.

2.3 Compatibility with Tate’s construction. Let x € C be a point. We may
consider the constructions of 2.2 locally at z. Namely, let O2 be the completed
local ring of C at =, (’)(Az ») be the completed local ring of C'x C' at (x,x), Fr D O

the local field at z, so if ¢ is a parameter at = then (’)@c ) = Cl[t1,t2]]. Denote by
R the localization of (’)(ALI) with respect to t7 ', 5!, (1 —t2) 7L Put wiy) == F, ®0
w, E(x) =F,Q0F, D(z) = DE(:E) =F,®0 DE(:E),’P(I;) = 'PE(w) =E®o R®o E°:
these are local versions of the objects in 2.2. We can manage all the constructions
of 2.2 purely locally. In particular we get the central extension D, of D(L;)e by

Hi) = w(o)/dFs 2
2.3.1 By 2.1, E(,) is a Tate’s vector space, and we have the embedding i, : D,y —

EndE(. For k = k(t1,t2) € Py let k_,ky € EndE(,) be the linear operator
defined by formulas

[k—(e)](t) = —Rest,=o(k(t, t2)e(t2)), [k (e)](t) = (Resi,=t, +Rest,=0) (k(t; t2)e(ta)).
Here e(t) € E(y,(k(t,t2)e(t2)) € F ® R ® w, and the residues are taken along
the second variable. According to 2.2.1 one has i,6(k) = k_ + k4. Denote by
i\ Plyy — EndE(,) the maps it (k) = ky.
2.3.2 Lemma. (i) For k € P(,y one has k+ € End+E(y.

(ii) The commutative diagram

i#—(i# i )

Pwy — — " EndyEq)®End_E,

F
D ta, End B,
is an iz-morphism of crossed modules (see 1.1).
(iti) For k € ker§ C Py one has Resytr(k) = trif (k)(= trky = —trk_).
(iv) Let us identify E?w) with Ef,y via the pairing (1, ) : E X E° — C, (e,e) =
Res(e, e%); this gives the anti-isomorphism t : EndE(,) — EndE?I). Then the
diagram

,L'#

PEu) — EndiEq
tlz tlz

0 - 0
PE(w) — End_E(x)
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commutes.

Proof. Assume for simplicity of notation that E' = Oc¢, so E(,) = F,. The state-
ment k_ € End_F, from (i) is clear, since k_ vanishes on the lattice tYO) C F,
for N equal to the order of pole of k(t1,t2) at divisor ¢t = 0. Now the fact that
ki € Endy F, will follow from (iv). The statements (ii), (iii) are obvious. To prove
(iv) let us compute the residues integrating the forms along cycles. Let v4(t) be
the following loops in the to-complex plane t; = t:

Then for any function f € F, one has [k+(f)](t) = 5= e () E(t,ta) f(t2).

21

Denote by U a small neighbourhood of zero in C x C with coordinate cross and
diagonal removed. One has the following 2-dimensional cycles C'y in U. Fix a small
real numbers 0 < € < r < 1. Then C; = {(z1,22) € Cx C: |z1| = ¢, |22] = 1},
C_ = {(z1,22) € Cx C: |z1| = r,|22] = €}; the orientation of C is a standard
orientation of S* x S', and the one of C_ is minus the standard orientation.

The above formula for the action of k+ implies that for a 1-form g € F? = W(z)
one has (g,k+(f)) = fCi g(t1)k(t1,t2) f(t2). Since the transposition of coordinates

identifies C'y with C_, this implies that (g, k+(f)) = ((*k)-(9), ). O

2.3.3 Now the morphism i# 2.3.2(ii) of crossed modules together with compatlbll—
ity 2.3.2(iii) defines the morphism of the corresponding C-extensions i, : D(m) —
gﬁE(w), ig(k) = 54 (ky)+s_(k_), or, equivalently, the isomorphism of C-extensions
lND(x) — ﬁ(x) (see 2.1.1).

2.3.4 Assume now that our curve C is compact. Let X = {z;} C C be a finite
non empty set of points, and E be a vector bundle on U = C'\ X. Put E(x) =

IE ), D(xy = UD(,,). Denote by 5(;(), a C-extension of D(L;(e) which is the Baer
sum of C-extensions D(,,, so D(X) = H’D(Iz)/{(az) € CX : Y a; = 0}. Clearly
D( x) coincides with the C-extension DE( x) induced from gKE( x) via the embedding
D(X) — HETLd E(m) — FEnd E(X)

Put Dy := H°(U,DEy) and consider the central extension 0 — H},R(U) —
DU — Dy — 0 constructed in 2.2.2. One has the ”localization around z;” maps
Dy — HD(%),DU — HD(I The composition Dy — HD(Z )y — D(X) vanishes

on HhHx(U) (since g Res;, = 0). Hence it defines a canonical morphism sx :

D — ﬁ(x) that lifts the embedding Dy« D(x).

This morphism could be constructed by pure linear algebra means. Namely,
consider the colattice Ey = H°(U, E) C E(x). Clearly DLie ¢ Pg, C 9lE x),
hence we have the splitting sg,|p,, : Dlie ISE(X) = 25(X) (see 1.2.5).
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2.3.5 Lemma. This splitting coincides with the above sx .

Proof. Let & € Dy be a differential operator. Choose a section k € H°(U x
U, ER E"(c0A)) such that (k) = 0. Denote by k_ = (k') € Hom(Ex), Ey) the
morphism given by formula k_(e,,) = Lk¥ (ey,), k¥ (es,) = —Resy, (k- e5,) € Ey.
Here e,, € E,,,{(k-e;,) € HY(U x SpecF,,, E K w(coA)) is a section obtained
by convolution of k and e,, (where e,, is considered as a section of Oy X E,,)
independent of first variable), and Res,, is residue along the second variable at z;.
Clearly k_ is a morphism of Tate spaces (here Ey is a discrete space).

Let j = (js;,) : Eu — E(x) be the embedding. The residue formula implies
that for e € Ey one has k_(j(e)) = d(e). Hence jok_ € Pg, C glEx), one has
jok_e€gl_Eixy, 0—jok_ € gliEx), and, according to 1.2.5, s, (0) coincides
with s_(jok_)+s4(0—jok_).

Now consider j o k_ as a matrix (jok_)7: € Hom(E(y,), E(y;)). Let jo ka9 —
Y(jok_)3 € End E(x) be the diagonal part of jok_. According to 2.3.2, one has
sx(8) = s_(jok™ )45, (8—jok?9). Hence sx(d)—sg, () = tr(jok_ —jok™).
This is a trace of a matrix in glo F(x) with zero diagonal component which is zero,
qed. O

2.3.6 We will often use the morphism sx for appropriate subalgebras of Dj, say,
for AEy.

2.4 Spinors and theta-characteristics. Let W be a vector bundle on our curve
C equipped with a symmetric non-degenerate pairing (, ): W x W — w.

2.4.1 One may consider ( , ) as an isomorphism W =~ WY hence we have the
involution * : DW — DW such that '(0102) = '02'01, and ! acts on degree n
symbols as multiplication by (—1)™. Denote by ODW the anti-invariants of *; this
is a Lie subalgebra of DWW L,

The isomorphism W ~ W also defines an involution ! : PW — PW (see 2.2.2)
such that !5 = §¢. Let OPW be the anti-invariants of ¢ in PW; put of = 5|OPW.
The action of DW on PW defines the ODW -action on OPW, and 0d : OPW —
ODW is an ODW -crossed module. The trace otr which is —% of the composition

kerod — W @ WO ) w — H defines by 1.1.3, a canonical central H-extension

ODW of ODW. In ODW we have a Lie subalgebra OAW = AW N ODW of
infinitesimal symmetries of (C, W, (', )): this is an extension of P¢ by an orthogonal

Lie algebra OW C End W. Denote by OAW the central extension @ﬁ/‘ko.

Note that if rkW = 1, i.e., if W = w®'/2 is a theta-characteristic, then Ow®/2 = 0,
hence O Aw®'/2 = T, The formula from 2.2.5 applied to j = 1 /2 gives a canonical

—_——

isomorphism OAw!/2 = ’Z~'C_1/2.

2.4.2 If E is any vector bundle, and W = E @ EY with obvious ( , ), then the Lie
algebras embedding j : DE — ODW, d — (0, —'0), lifts to a morphism of crossed
modules j# : PE — OPW, k +—— (k, —'k). For k € ker § one has otr(j#k) = —trk.
So we get a canonical morphism 3 : DE_; — ODW of H-extensions (see 1.1.7 for
-1 index).

2.4.3 Let us consider a local version of the above construction. Now our curve is
a punctured disc SpecFy, so one has the identification Res, : H(F;) — C. The
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Tate C-vector space W, carries a non-degenerate symmetric form (, ), defined
by formula (wi,wz)e = Resy(w1,ws2). The action of DW(,y on W,) gives the
embedding oix : ODW ;) < OW(,,. It lifts to an oi,-morphism oiff OPWpy —
gl_W 4 of crossed modules (for the latter crossed module see 1.4.7), 0i# (k) = k_,
according to 2.3.2 (i),(ii),(iv). For k € kerd one has otr(k) = jtrk_ = otr(k_)
by 2.3.2 (iii), 1.4. 7 Hence 0i# defines a canonical morphism of C-extensions oig :

ODW(CE) — OW(I)

2.4.4 Assume we are in a situation 2.3.4, i.e., we have a compact curve C, a finite
set of points X C C, and our bundle (W,(, )) on U = C'\ X. We get a Tate

vector space W(X) = HW(JC) with the form (, )x) = >2(, )(z,)» & central C-

extension ODW(X) C (’)W(X) of ODW(xy = [[ODW(,,) € OW(x). Just as in
2.3.4 a localization at X morphism ODWy = H(U,ODW) — ODWx, lifts

canonically to a morphism sx : ODWy — (’)Y/)W(/X); as in 2.3.5 this sx coincides

with the lifting sy, from 1.4.8. Certainly sx extends in an obvious manner

’ODW
to a morphism of Lie sugeralgebras ODWy x Wy — aW(x (here Wy has odd

degree, for aW(x, see 1.4.6).

2.4.5 By Serre’s duality Wy is a maximal isotropic colattice in Wx).

2.5 Simplicity of Lie algebra of vector fields. The following lemma will be of
use:

2.5.1 Lemma. Let C be a smooth curve. Then the Lie algebra T = H°(C,7¢) of
vector fields on C' is simple.

Proof. The case of compact C' is clear, so we will assume that C' is affine. Let
I C T be a non-zero ideal; we have to show that I = T. Let 7 € I be a non-zero
vector field. Note that if g € O(C) is a function such that g7 € I and f € O(C)
is any function, then 7(f)gr = 3 ([g97, f7] + [7, fg7]) € I. Let A, C O(C) be the
subalgebra of functions generated by all functions 7(f), f € O(C). The previous
remark implies (by induction) that A,7 C I. One may describe A, explicitly,
namely A, consists precisely of those f € O(C) that take equal values at zeros of
7 and ord,(f — f(z)) > ord,(r) for any x € C; this condition is non empty only
for © = zero of 7. (To see this, consider the morphism 7 : C — C’ = SpecA,.
Clearly A, is a curve. An easy local analysis at points at oo of C shows that 7
is finite. If =,y € C,z # y, are not zeros of 7, then a finite jet at x,y of the
functions 7(f), f € O(C), could be arbitrary ones, hence 7 is isomorphism on the
complement of zeros of 7. An easy local analysis at zeros of 7 finishes the proof).
In particular, any function that vanishes at zeros of 7 with large order of zero lies
in A,. Hence I contains any vector field that vanishes at zeros of 7 with sufficiently
large order of zero (namely, twice that of 7). A trivial local analysis at zeros of T
(take brackets of elements of I with vector fields non-vanishing at zeros of 7) shows
that I=T. O

2.5.2 Corollary. If C is an affine curve, then T has no non-trivial finite dimen-
stonal representations. [
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§3. LOCALIZATION OF REPRESENTATIONS
3.1 Harish-Chandra modules. Recall some definitions.

3.1.1 Let K be a pro-algebraic group. A K-module M is a comodule over the co-
algebra O(K). Equivalently, M is a vector space with an algebraic K (C)-action.
Here “algebraic” means that M is a union of finite dimensional K(C)-invariant
subspaces M, such that K(C) acts on M, via an algebraic action of a factor group
K /K, of finite type. Any K-module is a Lie K-module in a natural way.

3.1.2 A Harish-Chandra pair (g, K) consists of a Lie algebra g and a pro-algebraic
group K together with an “adjoint” action Ad of K(C) on g and a Lie algebra
embedding i : LieK — g that satisfy the compatibilities:
(i) The embedding ¢ commutes with adjoint actions of K.
(ii) The action Ad is “pro-algebraic”: for any normal subgroup K’ C K such that
K/K' has finite type the action of K(C) on g/i(LieK’) is algebraic.
(iii) The ad o i-action of Lie K on g coincides with the differential of the Ad-action.

3.1.3 Let (g, K) be a Harish-Chandra pair. A (g, K)-module, or a Harish-Chandra
module, is a C-vector space equipped with g- and K-module structures such that
(i) For k € K,h € g,m € M one has Ady(h)m = khk='(m).
(ii) The two Lie K-actions on M (the one that comes from g-action via i, and the
differential of K-action) coincide.
We denote by (g, K)-mod the category of (g, K)-modules.

3.1.4 Let T be any K-torsor. Denote (g, K)r = (gr, K1) the T-twist of (g, K)
with respect to adjoint action; this is a Harish-Chandra pair. If M is a (g, K)-
module, then the T-twist M is a (g7, K )-module, and M —— M7y is equivalence
of categories (g, K')-mod — (gr, K7)-mod.

3.1.5 The following version of the above definitions is quite convenient.

A pro-algebraic groupoid V is a groupoid such that for any object X the group
AutX carries a pro-algebraic structure and for any f : X — Y the map Ady :
AutY — AutX preserves the pro-algebraic structures (the objects of V form a
usual set with no algebraic structure). A V-module is a functor M : V — Vectc
such that for any X € V the AutX-action on My is algebraic.

A Harish-Chandra groupoid (g, V) is a pro-algebraic groupoid V together with a
functor X — (gx, Kx) from V to the category of Harish-Chandra pairs equipped
with a canonical identification of “group part” Kx of the functor with AutX; we
assume that for g € AutX = Kx the “functorial” action of g on gx coincides with
the Ad-action from 3.1.3.

One defines a representation of our Harish-Chandra groupoid (or simply a (g, V)-
module) in the obvious manner. For any X € V one has a canonical “fiber”
functor (g,V)-mod — (gx,Kx)-mod, M —— My. If V is connected, this func-
tor is an equivalence of categories. Note that if T is a Kx-torsor, and Xp € V
is T-twist of X (i.e., X is an object of V equipped with isomorphism of Kx-
torsors 7' — Hom(X, X7), then one has a canonical isomorphism (gx,, Kx,) =

(9x,Kx)r, Mx, = (Mx)r (see 3.1.4).

3.1.6 We will need to consider the above objects depending on parameters.

Let S be a scheme, and K be a pro-algebraic group. A K-torsor on S is a
projective limit of K/K’-torsors in the étale topology of S; here K’ C K is any
normal subgroup such that K/K’ has finite type.
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Let V be a pro-algebraic groupoid. An S-object Ys of V is a rule that assigns
to each object X € V on AutX-torsor Ys(X) = Hom(X,Ys) on S together with
canonical identifications of AutX-torsors Ys(X) = Ys(X') gom(x,x/) (= the twist
of Yg(X’) by AutX’-torsor Hom(X, X)) for each X, X’ € V; these identifications
should satisfy an obvious compatibility condition for three objects X, X', X" € V.
In other words, Yy is a functor from V to schemes over S such that the AutX-action
defines on Ys(X) the structure of AutX-torsor, and for any connected component
S’ of S the objects X for which Yg/(X) = Yg(X)g is non-empty are isomorphic. If
M is a V-module, then an S-object Yg of V defines a locally free Og-module My
on S. If Yg(X) for X € V is non-empty then My, coincides with Yg(X)-twist of
Mx ® Og.

Let now (g,V) be a Harish-Chandra groupoid, and Ys be an S-object of V
(considered as pro-algebraic groupoid). We get a sheaf gy, of Og-Lie algebras;
gy, is a projective limit of locally free Og-modules. For any (g,V)-module M the
Og-module My, is a gy,-module.

3.2 Lie algebroids. Let S be a scheme.

3.2.1 A Lie algebroid on S (which is an infinitesimal version of Lie groupoid) is a
sheaf A of Lie algebras on S together with an Og-module structure on A and an
Og-linear map o : A — 7Tg such that o is a morphism of Lie algebras, and the
formula [a, fb] = o(a)(f)b+ f[a,b] holds for a,b € A, f € Og. Clearly Ay = kero
is a sheaf of Og-Lie algebras. In the case when S is smooth we will say that A is
transitive if o is surjective.

The Lie algebroids form a category Lie(S) with final object 7g. This category
has products: for A, B € Lie(S) we have A x B = A X7 B in the obvious notations.
The categories Lie(S) form a fibered category over the category of schemes. For a
morphism f : 5" — S of schemes and A € Lie(S) the inverse image f*A € Lie(S’)
is defined by the formula f*A = Tg x f*(A). Here f*(A), f*(7s) are inverse images
in the categories of O-modules, and the fibered product is f*(7g) taken with respect

to projections Zg Y, f*(Ts)&) f(A).

3.2.2 Let A be a Lie algebroid. An A-module is a sheaf F of A-modules on S
together with an Og-module structure such that for a € A, f € Og, m € F one
has a(fm) = o(a)(f)m + f(am). We will also call such a structure an action
of A on Og-module F. If A, B are Lie algebroids, F is an A-module, G is a B-
module, then F ®o, G is A x B-module: for (a,b) € Ax B, m € F,n € G one has
(a,b)(m®@n) = (am)@n+m®e (bn).

3.2.3 Let A be a Lie algebroid, and g an Og-Lie algebra equipped with an A-
action. An A-morphism ¢ : Ay — ¢ is a morphism of Og-Lie algebras that
commutes with A-action (here the A-action on A is adjoint one). Note that
if ¢ : A — B is a morphism of Lie algebroids, then A acts on B by ad o ¢,
and @) : Aq) — B is an A-morphism. Conversely, for an A-morphism 1 :
Ay — g let Ay be the quotient of the semi-direct product A x g by the ideal
Ay = Ax g,a — (a,—9(a)). Then Ay is a Lie algebroid, Ay, = g, and we
have a canonical morphism ¢ : A — A, with ) = old . These constructions
are mutually inverse: if g = Byg), ¢ : A — B is a morphism of Lie algebroids, and
Y = (o), then we have a canonical morphism i : Ay — B which is an isomorphism
if A is transitive.
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3.2.4 Let A be a Lie algebroid. A central extension of A by Og is a Lie algebroid
A together with a surjective morphism 7 : A — A and a central element 1 € ker 7
such that the map Os — kerm, f+—— f -1, is isomorphism. Note that the adjoint

action of A on fT(O) quotients to an A-action. We will call a central extension £ of
75 by Os an invertible Lie algebroid (so L) = Os).

3.2.5 Remarks. (i) Let B be any Lie algebroid, and let ¢r : By — Og be a B-
morphism (we will call such ¢r a trace on B). If B is transitive, then By, is an
invertible algebroid.

(ii) Let A =5 A be a central extension of A by Og, and v : Ay — A be an
O-linear section of 7 such that v commutes with adjoint action of .A. Then (A))

is ideal in A, and A/ v(A(p)) is invertible algebroid.

3.2.6 The invertible Lie algebroids form a category PLie(S) which is a Picard
category, and, more generally, a “C-vector space” in categories. This means that
for a,8,€ C, A, B € PLie(S) we may form the linear combination C' = a4 +
BB € PLie(S): by definition C' = (A x B)yy, 5, where tro g(f,g) = af + fg. For
A € PLie(S) we have AutA = QL*: for a closed 1 form w the corresponding
automorphism of A is a — a + (wo(a)) - 1. The trivial invertible algebroid is
Tso = Ts x Og (where O : Tgp) = 0 — Og is the trivial trace map). The
locally trivial invertible Lie algebroids form a full C-linear subcategory canonically
equivalent to the one of Q'“-torsors.

3.2.7 For A € PLie(S) define Dy to be the sheaf of associative C-algebras on
S together with a morphism of C Lie algebras i : A — Dy such that i}os is
a morphism of associative algebras (in particular, i(1) is 1 in D4) and one has
i(f)i(a) =i(fa) for f € Og, a € A, and universal with respect to these data. For
example, if A is trivial, then D4 is the usual algebra of differential operators on
S. For arbitrary A this is a twisted differential operators ring, see, e.g. Appendix
to [BK] for details. Clearly a D 4-module F is the same as an A-module such that
1 € A acts on F as the identity operator. Since D4 carries an obvious filtration
with grD4 = Sym7g, for a coherent D 4-module F we have its singular support
SSF which is a closed conical subset in the cotangent bundle of S. A D 4-module
F is called lisse if SSF = (0): this condition is equivalent to the fact that F is a
vector bundle (as Og-module).

3.2.8 The standard example of a Lie algebroid is the current (or Atiyah) algebra
A(E) of a vector bundle E. This is the Lie algebra of infinitesimal symmetries of
E. The sections of A(F) are pairs (o(7),7), where o(7) € Tg and 7 is an action
of o(7) on E, or, equivalently, a first order differential operator on E with symbol
o(7) -idg. Clearly A(FE) is transitive and A(E)y = gf(E). If L is a line bundle,
then A(L) is invertible algebroid; one has A(L; ® L) = A(L1) + A(Ls), ie., A:
Pic(S) — PLie(S) is a morphism of Picard categories. The ring D 4z coincides
with the algebra Dy of differential operators on L. If E is any vector bundle,
then tr: gf(E) — Og is a trace on A(FE), and A(FE)i; = A(det E): this canonical
isomorphism comes from a natural action of A(FE) on det E given explicitly by the
Leibnitz rule a(ey A ... Aep) =aeg Aea A...Nep+---+er A...Aaey,.

3.3 Localization of (g, K)-modules. Below we will explain the general pattern
how to transform representations to D-modules. We will start with some notations.
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3.3.1 Let (g,V) be a Harish-Chandra groupoid. We will say that it is centered if
for any X € V there is a fixed central element 1 € gx, 1 ¢ LieAutX, that depends
on X in a natural way. Put gx = g /C1, so gx is a central C-extension of gx.

Our (g,V) defines several Harish-Chandra groupoids with the same underlying
proalgebraic groupoid V. Namely, we have the groupoid (g,)) that corresponds
to gx; for any ¢ € C we have the centered groupoid (g.,V) with g.x equal to
c-multiple of the central extension gx of gx. Denote by (g,)).-mod the category
of (g, V)-modules on which 1 € C C g, acts as identity.

3.3.2 Let S be a smooth scheme, K be a proalgebraic group and Ys be a K-torsor
over S. Denote by AYg the Lie algebroid of infinitesimal symmetries of (S, Ys).
Its sections are pairs (7, 7y, ), where 7 € 7y, and 7y, is a lifting of 7 to Yg that
commutes with K-action. Clearly AYg) = LieKy, (= Ys-twist of Lie K ®0s
with respect to the adjoint action of K); AYg is a transitive groupoid. If (g, K) is
a Harish-Chandra pair, then we have the Og-Lie algebra gy, (= Ys-twist of g0
with respect to the adjoint action). The Lie algebroid AYs acts on gy, in an obvious
manner, and the canonical embedding i : AYg) = LieKy; — gyg is an AYs-
morphism. According to 3.2.3 we get the transitive Lie algebroid Agy, = AYs;
with Agy, ) = gys. If M is a (g, K)-module, then My, (= Ys-twist of M ® Og)
is an Agy,-module.

Now let (g,V) be a Harish-Chandra groupoid, and let Ys be an S-object of V.
The above construction defines a transitive Lie algebroid Agy, on S with Agy, ) =
gys. If M is a (g,V)-module, then My, is an Agy,-module in a natural way. Note
that if (g, V) is a centered groupoid, then Agy, is a central Og-extension of Agy,.

3.3.3 Definition. Let S be a smooth scheme and (g,V) be a centered Harish-
Chandra groupoid. An S-localization data v for (g,V) is a collection (Ys, N, @, §(0))
where

(i) Ys is an S-object of V.

(ii) N s a transitive Lie algebroid on S.

(iii) ¢ : N — Agy, is a morphism of Lie algebroids.

(iv) @) = Ny — 8vs is a lifting of v such that for n € N,m € Ny one has

B0y () = [p(n). (0 (m). 0

3.3.4 A localization data 1 defines an invertible Lie algebroid A, on § as follows.
Consider a fiber product Agy; N = Agy, Xagy, N: this is a central Og-extension
of N. This central extension splits over N(g) by means of the section s : Ny —
Agys Ny, s(m) = (9y(m),m). Put Ay := Agy,N/s(Ny). Let Dy = Dy, be
the corresponding algebra of twisted differential operators.

3.3.5 Let M € (g,V);-mod be a Harish-Chandra module such that 1 acts as id ;.
Then My, is an Agy, N-module (via the projection Agy, N — Agy,), and Ay, M =
My /s(N(oy) My is Ay-module on which 1 € Ay acts as identity. Hence Ay M is a
Dy-module. Clearly Ay, : (g,V);-mod — Dy-mod is a right exact functor; we call
it the S-localization functor that corresponds to 1. Note that for a point s € S we
have a Lie algebra map N, — @ys (Where Ng), = N(o)/msN(o)), hence the fiber
Ay (M)/msAy (M) coincides with coinvariants My, /NgysMys.

3.3.6 The above constructions are functorial with respect to morphisms of local-
ization data. Precisely, let (g’,)V’) be another centered Harish-Chandra groupoid,
and 7 : (g,V) — (g/,V’) is a morphism of centered groupoids. One defines an
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r-morphism of S-localization data r# : 1) — ¢/ in an obvious manner. Such r#
defines the isomorphisms rﬁ Ay — Ay, 1 Dy — Dy, For M € (g,V):-
mod, M € (g’,V’);-mod and an r-morphism ¢ : M — M’ we have rﬁ—morphism
One has also functoriality with respect to base change. If f : 8" — S is a mor-
phism of smooth schemes, and 1) is an S-localization data for (g, V), then one gets
an S’-localization data f*v for (g,V). One has As«y = f* Ay, and for M € (g, V)1~
mod one has a natural isomorphism f*Ay (M) = A ey, (M) of D ¢-y-modules.

3.3.7 An S-localization data v for (g,V) defines in an obvious way for each ¢ € C
an S-localization data 1. for (g.,V). One has Ay = cAy (see 3.2.6).

3.4 Localization along moduli of curves. This section collects some basic
examples of the above localization constructions.

3.4.1 Let us describe a centered Harish-Chandra groupoid (%, V) called the Vira-
soro groupoid. The underlying connected proalgebraic groupoid V is the groupoid
of one-dimensional local fields with residue field equal C (the morphisms are iso-
morphisms of the local fields). Precisely, let F' € V be a local field, Op C F the
corresponding local ring, and mp C Op the maximal ideal. A choice of uniformizing
parameter ¢ identifies F' with C((¢)) and O with C[[t]]. The group AutF = AutOp
is the projective limit of groups AutOp/m% = AutF/Aut, F'. These groups are ob-
viously algebraic groups, our AutF' is a proalgebraic group, and V is a proalgebraic
groupoid. Note that AutF/Aut F = C*, and Aut;F/Aut;11F is isomorphic to C
for 4 > 1; in particular AutiF is the pro-unipotent radical of AutF. Explicitly,
AutC((t)) coincides with the group of power series ait + ast? + --- ,a; # 0, with
multiplication law equal to composition of series.

Now for F' € V let Tr be the Lie algebra of vector fields on F' and ’jv'F be the
Virasoro C-extension of 7p defined in 2.1.3. The Lie algebra 7p carries a canonical
filtration 7;r; for F = C((¢)) one has T;r = t**1C[[t]]0;. The subalgebra 7_p
preserves the lattice Op C F', hence we have a canonical splitting sp, : 7_1p — T, F.
Clearly LieAutF = Typ, and the embedding sp, : LieAutF — Tr together with
the natural AutF-action on 7x define the Harish-Chandra pair (7p, AutF). This
defines our centered Virasoro groupoid (’i V).

3.4.2 Let S be a scheme. It is easy to see that an S-object Yg of V is the same as
a “family of formal discs” over S or, equivalently, a formal Og-algebra Oy locally
isomorphic to Og|[[t]]. The corresponding Lie algebroid AYs consists of pairs (7, Ty, )
where 7 € Tg and 1y, € DerOy, is a T-derivation of Oy,.

3.4.3 Now let 7 : Cs — S be a family of smooth projective curves and a : S — Cg
be a section of 7. These define an S-localization data 1 = 1(Cs,a) for (T,V)
as follows. Our Yg is the formal completion of Cs along a(S), and N is the Lie
algebroid of pairs (7,7y) where 7 € Tg and 7y is a lifting of 7 to U = Cg \ a(9).
Clearly A7y, is the Lie algebroid of pairs (7, 7yy, ), where 7 € Tg and 7y, ,, is
a lifting of 7 to a meromorphic vector field on Yg with possible pole at a(S). Our
¢ : N — ATy, is just the restriction of a vector field 77 on Ys \ {a} = punctured
neighbourhood of a. Now the lifting @) : Ny = 7 Ty/s — ’f’ys is the restriction

to Tyys C Dyys of the morphism s, : m.Dy s — Dy, (here D = Do, ) defined
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in 2.3.4 (more precisely, in 2.3.4 we considered the case of a single curve, S =
point; the generalization to families is immediate). These (Ys, N, ¢, $(g)) is our
localization data 1(Cg,a). According to 3.3.4, 3.3.5, 3.3.7 for any ¢ € C we have

the localization functor Ay (cg q) : (’i V)e-mod — Dy, (¢g,q)-mod.

3.4.4 Here is an explicit description of Ay cg.q) and Ay cg,q)- Choose (locally on
S) a formal parameter t at a, so Oy, = Og|[t]]. Consider the space B of triples
(1,70,7(), where 7 € Tg, 7y is a lifting of 7 to U, and 7} : § — i{c((t)) is a
lifting of a vertical component of 77, 7 = 1¢(¢)0; : S — T¢(+)). This B is a Lie
algebroid on S in an obvious manner. We have a canonical morphism 77,5 — Bjq),
vi— (0,1,54(v)), see 2.3.4. One has Ay (cg,q) = B/Ty/s. Now let M be a (T,V)e-
module. One has Myy = Mg()) ® Os. The algebroid B acts on Myg by formula
(7’, TU 77(1})(m®f) = m®r(f)+7~';}(m®f) One has Aiﬁ(cs,a)(M) = MYS /TU/SMYS'

3.4.5 Variant. For any non empty finite set A we may consider the centered
groupoid (74, V4). Here V4 is the A-th power of V and T{F } is the Baer sum of

C-extension Tp,, a € A (so T{F y is a C-extension of HTFa . Afamily r: Cg — S

acA
of curves together with a disjoint set A of sections (where “disjoint” means that

for a; # a; € A and any s € S one has a;(s) # aj(s) € Cg) defines an S-
localization data ¢(Cyg, A) for (T4, V4) in a way similar to 3.4.2. For example, the
corresponding Lie algebroid N consists of pairs (7, 7y ), where 7 € Tg and 7p is a
lifting of 7 to U = Cg \ Hai(S)

acA

8.4.6 Remark. Let B C A be a non-empty subset. The groupoids (’f’ B yB ) and

(T4, V4) are related by an obvious correspondence (TB,VB) ZE (TAB pA) 14, (TA Ay,

where T{FB; = {Fb}b L X H T 1p, — {F } Any family of curves 7 : Cg — S
acA\B

and a set A of disjoint sections defines an S-localization data ¥ (Cg, A, B) for

(T4%B,V4) in an obvious manner together with corresponding morphisms 1(Cy, B)

7'('# 1

< (Co, A, B) - (Cg,A). These define the corresponding isomorphisms
Dy, (¢s,8) = Due(s,4,8) =7 Dis(cs,a)- For Mp € (TP, VF)-mod, Ma € (T4, V4)-
mod a morphism f : Mp — My is, by definition, an ¢ 4-morphism from Mg, consid-
ered as (TP, V4)-module via g, to Ma. Since Ay (cq,5yMp = Ay, (cs,4,8)MB,
such an f defines a morphisrn A(f) © Ay, cs,ByMB — Ay, (c5,a)Ma. For ex-

ample, if My = IndTA »(Mp) and f is the canonical embedding, then A(f) is
isomorphism.

Note that the above canonical identification Dy, (cg,4) = Dy, (cg,p) for B C A
actually provides a canonical algebra Dy (cg) that depends on Cs only together
with canonical isomorphisms Dy, (cg) = Dy, (cg,a) for any set A of disjoint sec-
tions. To construct D (cy) We may assume, working locally in étale topology of
S, that Cs has many sections. To construct D, (o) it suffices to define for any
two sets A, A’ of disjoint sections a canonical isomorphism Dy, (cg 4) = Dy, (s, A7)
Choose a non-empty set B of sections such that both A LI B, A’ LI B are sets of
disjoint sections. Our isomorphism is Dy, (cg,4) = Dy, (cs,auB) = Dy (cs,B) =
Dy (cs,a1uB) = Dy (cs,47)- One verifies easily that this does not depends on the
choice of B. We will compute Dy, (cy) explicitly in 3.5.6.
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3.4.7 Variant. Often the Virasoro modules are integrable only with respect to the
subgroup Aut; F' (see 3.4.1). To localize them one needs to consider the groupoid
(T, V). The objects of V; are pairs (F,v), where F is a local field and v € mp/m2,
v # 0, is a 1-jet of a parameter. One has Aut(F,v) = Aut; F. The Lie algebra ’j’(F’y)

is Tp. If 7 Cg — S'is a family of curves, a : S — Cjg a section, and v € a*QéS/S a

1-jet of parameters at a, then we get an S-localization data 1 (Csg, a,v) for (7, Vi).
We may also consider many points, as in 3.4.5.

We have a “forgetting of »” morphism 7 : (’i Vi) — (7, V) and a corresponding
r-morphism of localization data ¢.(Cs,a,v) — ¥.(Cs,a). This defines a canonical
isomorphism rp : Dy, (cgs,av) < Dy, (Cs,a) and for any M € (7,V).-mod the rp-
isomorphism a7 @ Ay (cg,a,)M = Dy (cg,a)M.-

3.4.7.1 Let C be a fixed curve, a € C, and v a 1-jet of parameter at a. Consider a
constant C*-family Cc- = C' x C* with constant point a, and put vV (u) = uv for
u € C*. We get the corresponding C*-localization data 1) = ¢(Cc+, a,v"). One has
Dy = Dy(cen,apv)y = Dy(Cer,a) = Dc+ — the usual ring of differential operators.
In particular, we have \dx € Dy, . Let us compute the action of ud, on Ay (M)
for M € (7,V1).mod. Choose a parameter t, at a on C such that dt(a) = v.
Then tq, = ut is a C*-family of parameters which identifies our Oy,.. with Oc-[[t]].
We have My.. = Mc()) ® Oc~, and Ay (M) is a quotient of My,.. For m €
M)y denote by m its image in Ay, (M). Put Lo = scp(t0;) € ffc((t)). One has
u0y (M) = Lom. In particular, if M is a higher weight module (see 7.3.1), then
Ay M is smooth along C* with monodromy equal to the action of T' = exp(2miLg)
(see 7.3.2).

3.4.8 Now consider the case “vector symmetries”. Our “Virasoro-Kac-Moody” cen-
tered Harish-Chandra groupoid (.Z, VV) defined as follows. The objects of VV are
pairs (F, Ep) where F is a local field, and Fp is a free Op-module of finite rank;
we put Er = F ® E». The morphisms are defined in an obvious manner. Clearly
Aut(F, Ep) is extension of Aut F' by GL(Ep) = Autep, (Ep); this is a proalgebraic

group. We put A(F, Ep) = AEp, see 2.1.2. The canonical embedding sg,: Lie
Aut (F,Ep) — AEp defines the Harish-Chandra pair (AEg, Aut(F, Ep)). This
defines our centered groupoid (K, V).

Let S be a scheme. An S-object of VV is a pair (Ys, Ey,), where Yg is an
S-object of V (see 3.4.2) and Ey, is a locally free Oy -module of finite rank.

Assume that S is smooth. Let m : Cs — S be a famly of smooth projective
curves, a : S — Cg a section, and let E be a vector bundle on Cg. These define an
S-localization data ¢ (Cg, E,a). Namely, the corresponding S-object of VV is the
completion of Cg, F along a. The Lie algebroid N consists of triples (7, 7y, 7g, ),
where 7 € Tg, 1y is a lifting of 7 to U = Cs \ a(S), and 75, is an action of 7g, on
Ey. The morphisms ¢, ¢(q), appear precisely as in 3.4.3 from 2.3.4.

As above, this localization data gives rise to a localization functor. The versions
3.4.5-3.4.7 are immediate.

3.4.9 Let us consider now the spinor or “fermionic” version. The corresponding
centered Harish-Chandra groupoid (OA, OV) is defined as follows. Its objects are
triples Q@ = (F,We, (', )), where F' is a local field, W is a free Op-module of finite
rank, and ( , ): Wp x Wo — wo, is a symmetric bilinear form with values in
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1-forms of Op. We assume that ( , ) is maximally non-degenerate, i.e., the cokernel
of the corresponding map Wo — W@ = Homo,. (Wo,wo,) is either trivial (such
@ is called even) or a 1-dimensional C-vector space (such @ is called odd). The
morphisms in OV are the obvious ones. For () as above, put Wr = F ® Wp;
our ( , ) extends to non-degenerate form ( , ) : Wp x Wr — wp. Note that our
condition means that Wy is a maximal isotropic lattice in Wr. We may consider
W as a Tate’s C-vector space with form (, )e = Res(, ) (see 2.4.3); then Wy is
also a maximal isotropic (, )e-lattice so @ is even iff Wr is even-dimensional, see

1.4.1. We put OA(Q) = OAW  (see 2.4.1). The Lie algebra Lie Aut Q C OAWF
preserves Wo, hence we have a canonical embedding sy, : Lie Aut Q) — @74(@)
This defines the Harish-Chandra pair ((/974(62), Aut @), and we get the groupoid
(OA, 0V).

Remark. Clearly @ is even (resp. odd) iff (Wpg,(, )e) is even (resp. odd) dimen-
sional, see 1.4.1. The two objects of () are isomorphic iff the W’s have the same
rank and parity.

Now let S be a smooth scheme. Let 7 : C's — S be a family of smooth projective
curves, a : S — Cg asection, W a vector bundle on Cs, and (, ) : WxW — wey/s
a symmetric bilinear pairing. Assume that the cokernel of the corresponding map
W — W% = Hom(W, Weg/g) is either trivial or supported on a(S) and is an Og-
module of rank 1. This collection (Cg,a, W, (, )) defines an S-localization data
1 for (5:4, OV) in a way similar to 3.4.3, 3.4.8. Namely, the formal completion
of W along a defines an S-object of OV. The Lie algebroid N consists of triples
(1,70, Twy ), where T € Tg, 7y € Ty is a lifting of 7 to U = Cg \ a(S), and Ty, is
an action of 7y on Wy that preserves (, ). The corresponding map ¢ is obvious,
and @ (o) comes from 2.4.4.

One has immediate variants of this construction for the case of several points
and points with 1-jet of a parameter (see 3.4.6, 3.4.7).

3.4.10 Note that we have a canonical morphism r : (A, VV) — (OA, OV) of
centered Harish-Chandra groupoids. It assigns to (F, Ep) € VV the triple (F, Ep ®
E%, (,)) where () is the obvious pairing. The morphism AEp — (TJ\JZl(EF ® E%)
was defined in 2.4.2. Now for a scheme S and a collection (Cg,a, E) from 3.4.8
we have (Cg,a,E @® E° (, )) from 3.4.9. We have an obvious r-morphism of
corresponding localization data 7% : 1.(Cs,a, E) — ¥_.(Cs,a, E® E° (, )) (see
2.4), hence the isomorphism rp : Dy.(cs,a,B) = Dy.(Cs,a,EQE( , ))-

3.5 Fermions and determinant bundles. In this section the rings of twisted
differential operators D, that appeared in 3.4 will be canonically identified with
the rings Dy, for some natural line bundles L (see 3.2.8). Equivalently, we will
construct a Dy-module L which is a line bundle (as O-module). This will be done
by means of Clifford modules.

3.5.1 Let us start with the situation in 3.4.9. For Q = (F,Wp, (, )) € OV denote
by Mg the Clifford module (for Clifford algebra C¢(Q) = C¢ (Wp.(, )s), see 1.4)
generated by a single fixed vector v with the only relation Wpv = 0. If @ is even,
then Mg is irreducible; if @ is odd, then Mg is the sum of two non-isomorphic
irreducible modules. Note that M, carries a canonical Aut Q-action (the only one)
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that leaves v invariant. By 2.4.3 Mg is an OAWp = (/’)T4Q—module. Clearly these
actions are compatible, hence Mg is an (5:469, Aut @)-module. This way we get
the ((7)71, OV)-module M.

Let S be a smooth scheme, and (Cg,a, W, ( , )) the geometric data from 3.4.9
that defines the corresponding S-localization data i for (OV, 574) Let Qs =
(F's,Wop,(, )) be the corresponding S-object of OV (= the completion of our

data along a), and Mg, be the corresponding Og-module with (/974QS- action.
Certainly, Mq, is a Clifford module for the Og-Clifford algebra Cl(Wgg,( , )e)
generated by the section v with the only relation Wo, v = 0. Note that 7. Wy =

Ty (W}U) is an S-family of maximal isotropic colattices in Wg, (see 2.4.5). Put
Ly = Mg, /mWyMgs. This is a line bundle on S if Qg is even (which means
that (, ) : W x W — W, g is non-degenerate). If Qg is odd, then Ly is a two-
dimensional vector bundle which splits canonically as a sum of two line bundles on
the 2-sheeted covering of S that corresponds to a choice of v € WéFS / Wo,, with

(:7)e = 1.
3.5.2 Lemma. L, is naturally a Dy-module: it is a D,-module quotient of Ay M

Proof. Consider the action of Lie algebroid Aa//éleN (see 3.3.4) on Mg,. Since
for (a,n) € AOAQ,N = AOAq, , . mOAWy and w € m, Wy one has
AOAg

[(a,n),w] = n(w) (as operators on M ), we see that this action ”quotients down”
to Ly. It remains to show that L, is actually an Ay-module. We need to prove

that the Ogs-Lie subalgebra s(N(y)) € AOAgsN acts trivially on L. Note that
5(N(y) = 1 OAWYy g acts on Ly, Og-linearly, hence it suffices to consider the case
when S is a point. Then N = OAWYy is an extension of 7y by the orthogonal
Lie algebra OWy. Since both OWy; and 7y are perfect C-Lie algebras, we see that
No) is perfect, hence every 1-dimensional representation of N(gy is trivial. Since
L, is either 1-dimensional or a sum of two 1-dimensional N(g)-invariant subspaces,
we are done. O

Actually we have proven that L is a quotient of the Dy-module Ay (M). Cer-
tainly, 3.5.2 implies

3.5.3 Proposition. One has a canonical isomorphism of twisted differential oper-
ators algebras Dy = Dy, if Qs is even, and Dy, = Daet 1, if Qs is odd. O

3.5.4 Remarks. (i) According to 1.4.4 the fibers Ly, , s € S, are canonically iden-
tified with det H(Cs, Wy) if Qg is even, i.e., if (', ) is non degenerate (if Qg is
odd, one has det L, = det®* HO(Cy, Wy)). Hence the automorphism - idy of our
data acts on Ly as £1 depending on whether dim H?(Cy, Wy) is even or odd. This
proves the theorem of Mumford that the parity of dim does not jump.

(ii) Of course we may consider the situation with several points aq, ... ,a, € C. By
a reason similar to 3.4.6 one may see that the corresponding line bundle L,, actually
does not depend on these points; certainly, we may delete only “even” points where
(, ) is non-degenerate. O

Now let us consider the situation 3.4.8 of vector symmetries. By 3.4.10 we have
a canonical isomorphism Dy, (cg.a,5) = Dy_.(Cs,a,E@E0,( , ))- By 3.5.4(i) the fibers
of the line bundle Ly = Ly(Cs,a, E @ E° (, )) coincide with det H°(C;, E) ®



32

det H°(Cy, E?) = det H°(Cy, E)/ det HY(Cy, E) = det RT'(Cy, E). Tt is easy to see
that L, = det Rm,E = the determinant line bundle of E' (about determinant line
bundles, see e.g. [KM]). By 3.5.4 (ii) and a version of 3.4.6 for vector symmetries
we may delete a point a above. Hence

3.5.5 Corollary. One has a canonical isomorphism Dy, (cs,5) = Daete—< gr, -0

Consider finally the pure Virasoro situation. We have an obvious embedding of
Harish-Chandra groupoids r : (V,7) — (W, A), F — (F,0p), T — AF (see
2.1.3). If Cg is an S-family of curves, a is an S-point of C's, we have an obvious
r-morphism of localization data ¥ cg ) — V(Cs,a,0c,) Which identifies Dy, (cg,a)
with ch(Cs,a,OcS)' Now 3.5.5 implies

3.5.6 Corollary. One has a canonical isomorphism Dy, (cg) = Dgeto—c Rrm.Ocy .0

3.6 Quadratic degeneration. In this section we will describe the determinant
bundle of a family of curves that degenerates quadratically. Below S = Spec C[[q]]
is a formal disc, 0 € S is the special point ¢ = 0, n = Spec C((q)) is the generic
point.

3.6.1 Lemma. There is a canonical 1-1 correspondence between the following
data (i) and (ii):

(i) A proper S-family of curves, Cs such that C,, is smooth and Cy has exactly one
singular point a which is quadratic, together with formal coordinates t1,t2 at a
such that q = t1ts.

(ii) A proper smooth S-family of curves C¢ together with two disjoint points a1, as €
Cs(S) and formal coordinates t; at a;.

Proof. Here is a construction of mutually inverse maps. Note that, according to
Grothendieck, we may replace any proper S-curve Bg by the corresponding formal
scheme Es = the completion of Bg along By.

(i) — (ii). Let Cg,t1,t2 be a (i)-data. The corresponding C¢,a;,t; are the
following ones. One has Cj = normalization of Cjy, so ¢; define formal coordi-
nates at points a1(0),a2(0) € C¢. To define C¥ as a formal scheme, we have to

~

construct the corresponding sheaf ch of functions on Cy. We demand that on
U=C¢\{a,a2} = Cy\{a} our @Cg coincides with O¢,. Note that any function
Y E @CS(V), where V' C U, has Laurent series expansions ¢;(t;,q) € C((¢;))[[q]] at
ai(0). We say that ¢ is regular at a;(0) if ¢i(t;,q) € C[[t;,q]]. This defines Ocy.
The points a; are defined by equations ¢; = 0.
(ii) — (i). Let C¥, a;,t; be (ii)-data. The zero fiber Cy of our curve Cs is Cj with
points a1, az glued together. The sheaf Oc, coincides with Ocy on U = Co \ {0} =
Cy\{a1,as}. For a Zariski open V C U a function ¢ € @CS (V') is regular at a if the
t;-Laurent series expansions ¢; € C((¢;))[[¢]] of ¢ at a; lie in C[[t1, t2]] € C((¢;))[[q]]
and @1 = @2 € C[[t1,t2]]. Here the embedding C[[t1,t2]] — C((¢1))[[¢]] is t1 —
t1,t2 — q/t1, and the one C[[t1, t2]] — C((t2))[[q]] is t1 — q/ta2, to — to. This
defines Ocy. O
Below we will say that a vector bundle E on a scheme X is stratified at x € X if

we are given an isomorphism F ~ A ®@¢ Ox on a formal neighbourhood of x (here
A is a vector space; A = E,).



33

3.6.2 Lemma. Let Cs and C¢ be the S-curves from 3.6.1. There is natural 1-1
correspondence between the data

(i) A vector bundle E on Cg together with a stratification of E at a.

(ii) A vector bundle EY on C¥ together with a stratifications of EV at a1, as and
an isomorphism of fibers E(\l/1 ~ Egz. g

3.6.3 Proposition. Let (Cs, E),(Cg, EY) be the related objects from 3.6.1, 3.6.2.
Then there is a canonical stratification of the line bundle L = det R, E/ det Rr) EY
on S.

Remark. Here “stratification” = “stratification at 0” = (isomorphism £ ~ Ly ®
Os). Note that £y = det RI'(Cy, Ep)/ det RT'(Cy, E) is naturally isomorphic to
det ™! E,, s0 3.6.3 is canonical isomorphism det RrY (CV, EV) = det E, det R, (C, E).

Proof. Construction. Let us compute our determinant bundles. Below we will use
notations from the proof of 3.6.1. Put A = E, = E; = E, . Our data identifies
the formal completion E; of E at a with A ® C[[t1,t2]], and the formal completion
of EY of EV at a; with A ® C[[t;,q]]. The restrictions of E' and EV to the formal
scheme U = (U,Oy) coincide; put P = HO(U, E|p) = IEHHO(U7 E/q"E). Also
put V = A® {C((t))[lql] © C((t2))[[q]]}, V3o = A @ {C[[ts, q]] © Cllta, q]]}, Vi =
A ® {C[[t1,t2]]. We may compute Rr.E, Rt EY by means of “adelic” complexes
for our formal schemes. Namely, RrYEY = Cone(P & Vo — V)[-1], Rm.E =
Cone(P®V4q1 — V)[—1]; here the map P — V is minus the Laurent series expansion
map, the map Vi1 — V is given by formula a @ t]"t5 — a @ {¢™t7""" + ¢"t5" "}
(see the proof of 3.6.1), and Vo — V is the obvious embedding.

Note that V' is a flat complete C|[g]]-module with the obvious Tate structure (see
1.4.10), V4o, V41 are lattices in V' and P is a colattice in V. So to compute our
determinants we may use Clifford modules. Namely, take W = V & V* with the
standard form ( , ); let M be the corresponding Clifford module such that My =
M/qM is an irreducible Clifford module for (Wy,( , )o). Then L(P) = P @& P+,
LViy) =V @ Vzﬂ; are maximal isotropic colattice and lattices respectively. A
C[[g]]-version of 1.4.9 shows that coinvariants My, py and invariants ML(Vi+) are
free C[[¢]]-modules of rank one, and there are canonical isomorphisms

det Ry BY = ME(Vo+) /My py, det R, E = M*V14) /M ).

Hence det Rm,F/det RrY BV = MFVi+) /ArL(Vo+) | In this description of the ratio
of determinants all the “global” data that may vary (encoded in P) disappeared;
we’ve got the standard “local” expression for it.

It remains to fix an isomorphism ~ : ME(Vo+) — ME(Vit) @ det A; the desired
stratification of the ratio of determinants then will be v(v)/v for a non-zero genera-
tor v (clearly it does not depend on M). Let aq, ... ,a; be a basis of A. Consider the
vectors €f ] = a, @tV ek, = a,®t5, k € Z, a=1,... ,£. Thisis a basis (in an obvi-
ous sense) of V; denote by e®* € V* the dual basis. The vectors {e¥,},k > 0, form
a basis of Vo1, and the vectors £, := ek, + ¢Fery, f5y = ¢Pe ¥ 4+ eky, Q) + €Y,
k > 1, form a basis of V1. In a slightly informal way our v could be defined as
k

follows. A generator of M*(Vo+) is an infinite wedge product /\ e.;, a generator of

k>0
a,l
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MEViH) @ det A is /\ Ik /\(egl +el) ® /\aa, and ~y just identifies these gener-
k>1 a a

a,t
ators. To be precise, consider the elements v, = H (fF fryekneks) € Cliff(W).
1<k<n
(6%

These ~,, do not depend on a choice of basis {a,} in A, and it is easy to see that
Yoo = limy,, € CIW is correctly defined. Let Voiq C Vi, Vier C Vig be sublat-

tices with bases {e¥,},k > 1, and {f*.},k > 1, respectively. It is easy to see that

Yoo (MEMVo++)) = MLVi++) (more precisely, v, (ML(Vo+)) = MEVit)modg™ 1 M).

Since ME(Vo+) = /\egi M EVor)  pE(Vi) = /\(egt1 +€%) - MEVi++) | we have
a,t e

/\(e(l]* —e9) - oo MLEWVor) = prL(Vit) | Put /\(e(f* —€3") Yoo @ /\aa e CIW ®

det A. This 7 does not depend on a choice of basis {a,} of A, and the desired
MEMVot) - MEWVit) @ det A is just multiplication by 7. O

3.6.4 Let CV be a curve, aj,as € CV, aj # ag, a pair of points, and t; a formal
parameter at a;. Consider the constant S-family C¢ := CV x S; let a; € C¥(S5),t;
be the “constant” points and parameters. According to 3.6.1 these define an S-
curve C'g with quadratic singularities along zero fiber and smooth generic fiber.
Consider the trivial vector bundles Oc,, Ocy; they correspond to each other by
3.6.2 correspondence. Note that det R/ Ocy = det RI'(CV, Ocv)®0Os is obviously
stratified, hence 3.6.3 defines the stratification of det Rm,.Oc¢, which is a natural
generator 7 of the C[[¢]]-module det™' RI'(CV,O¢v) ®c[lq)) det Rm.Ocg. Let us
compute v in a couple of simple situations.

3.6.5 Assume that CV is a disjoint union of two copies of P1’s, CV =P} [[ P}, a; €
]P’%,ag S ]P’% are “zero” points, t; are standard parameters at a;. Then the S-curve
Cs is the compactification of the family of affine curves A2 — S, g = toto. This is
a genus 0 curve, hence Rm,.Oc, = Og, so we have a canonical trivialization o of
det Rm,.Oc¢, of “global” origin. In fact, it coincides with our . To see this, note that
(in the notations of proof of 3.6.3) in our case P is colattice with basis {ef,e5}, k <
0, so one has P®Vi,, =V = P®Vy, ;. The operator (e +e3)- identifies ME(Vi++)
with ME(Vi+) hence det Rm,.Ocy = ML(V1++)/ML(p). The “global” trivialization
a comes from the isomorphism ML (Vi++) — Mp(py, m —— m mod L(P)M. The
trivialization v comes from composition M L(Vity) — M L(Vo++) — My, py where
the first arrow is inverse to multiplication by v, and the second one is projection
m +— m mod L(P)M. Since fF = e¥ mod P for k > 1, the formula for v, shows
that this composition coincides with projection MEXVi++) — M L(p), hence o = 7.

3.6.6 Assume now that CV = P!, a; = 0, a2 = 0o and t1, t5 are standard parameters
t and t~! respectively. Then the curve Cg coincides with the standard Tate elliptic
curve (see, e.g., [DR]), ¢ is a standard parameter on moduli space of elliptic curves
at 0co. The Tate curve carries a canonical relative 1-form v (that corresponds to the
standard invariant form on G,, via Tate’s uniformization). One has R°m.Oc, =
Og, R'm.0c, = (R°m.wcg)* by Serre duality (here wey is relative dualizing sheaf),
hence det Rm.Oc, = Rm.weo, and v is a canonical trivialization of det Rm,Ocs.
Let us calculate y. The colattice P has basis {ef + €5}, k € Z. One has Og =
R, Ocy = Og(eY +€9) = PN Viy, R'm.Oc, =V/P+Viy =V/P+ V. The
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relative differential v in local coordinates t; is C% = —%2, and the Serre duality
morphism is the sum of local residues at a;. Hence the functional v € (R'7,O¢,)* =
(V/P+ Vi )* € V*is ed* — eJ*. As above, multiplication by e} + € identifies
MEWVit+) with MEVY)  hence det Rr,Ocy = ML(V1++)/ML(p). The trivialization v
comes from the isomorphism ML(Vi++) — My py, m — (eYm) mod L(P)M. The
trivialization v comes from composition ML (Vi++) - MEVort) — My, p) where the
first arrow is inverse to multiplication by s isomorphism ML (Vo++) — M L(Vat+)
and the second arrow is m —— (e9m) mod L(P)M. Since ff = (1 — ¢*)e¥ mod P,

¥ = (1 —q¢")el mod P we see that v = [H (1 —¢*)]v, or, in terms of Dedekind’s

k>1
n-function n(q) = q1/24H(1 —¢%), one has
k>1
v=q"""n(q) .

One may reformulate this as follows. Recall that the line bundle A = det R, O¢ =
m.we on moduli space of elliptic curves carries a canonical global integrable con-
nection V such that the discriminant A is a global horizontal section of A®12 (with
respect to the corresponding connection on A®'2). We see that our + is a horizontal

section of a connection V + %%.
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§4. FusioN CATEGORIES

4.1 Recollections from symplectic linear algebra. Let V be a symplectic
R-vector space of dimension 2¢g with symplectic form ( , ). To (V,(, )) there
corresponds a canonical transitive groupoid 7y. In 1.1-1.3 below we give three
different constructions of 7y. Assume first that V # 0.

4.1.1 Let H = Hy be the Siegel upper half plane of V. A point of H is a complex
Lagrangian subspace L C Vg := V ® C such that i(z,z) > 0 for z # 0 € L.
Equivalently, one may consider a point of H as a complex structure ¢ on V such that
the form (-, 4,-) is symmetric and positive definite; here iy € End V' is multiplication
by ¢ € C with respect to ¢ (the 1-1 correspondence ¢ «— L is { — L, :=
the i-eigenspace of iy, L — {; := the complex structure that comes from the
isomorphism V — V¢ /L). The space H is a complex variety, and the L’s form a
rank g holomorphic bundle E on H. Put A := det L : this is a holomorphic line
bundle on H. Denote by H the space of A¥2\ { zero section }; the projection
H — H is a C*-fibration. Let H be the space of C'*°-sections H — H. One has
obvious maps

(4.1.1.1) He— HxH— H, ¢ (¢, h)— o(h).

Since H is contractible, these are homotopy equivalences. Note that for any
a € H the map i, : St — H, i,(e?) := e¥a, is a homotopy equivalence which
defines a canonical identification

(4.1.1.2) m(H,a) = Z.

For a topological space X let 7(X) be the fundamental groupoid of X: its
objects are points of X, and its morphisms are homotopy classes of paths. Put

T/, .= T(H).

4.1.2 Denote by A = Ay the grassmannian of real non-oriented Lagrangian sub-
spaces of V; the planes form a canonical Lagrangian sub-bundle Lg of V :=V x A.
Put Mg := det Lg: this is a real line sub-bundle of A9V,. Let A’ be the space
Ar \ {zero section}/ & 1: the map = —— 22 identifies A’ with the “positive ray” of
)\%2. The obvious projection A" — A is an R’ -torsor, hence a homotopy equiva-
lence. One has a canonical map

(4.1.2.1) v:N —H

defined by the formula v(x?)(h) = A%, where A\ € det L, C A9V is the unique
vector such that vol(x A A\) =1 (here vol= <g’!> € A?9V* is the canonical volume).

The map v induces an isomorphism of fundamental groupoids. Put 7}/ := 7 (A).
According to (1.1.1), 1.2.1) we have a canonical equivalence of groupoids

(4.1.2.2) o T T

4.1.3 Here is the third construction of 7y. For 3 Lagrangian planes one defines,
according to Kashiwara, their Maslov index 7(Lj, Lo, L3) as the signature of the
quadratic form B on L; & Lo @ L3 given by the formula B(zq, z2,x3) = (1, 22) +
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(2, x3) + (x3,21) (see [LV] ( )). Let 7" be the following groupoid. Its set of
objects is A. For L1, Ly € A we put Homz, (L1, L) = Z, and the composition of
morphisms L1 — Lo—Lg is given by the formula mon = m+n + 7(L1, Lo, L3).
Since T satisfies a cocycle formula [LV] (), the composition is associative.

Let us define a canonical isomorphism

(4.1.3.1) BT T

which is the identity on objects. To construct 8 we need to choose for each pair
Ly, Ly € A a canonical path 7r,,1, € Homzy (L2, L1) such that

(4.1.3.2) VLsLs © YLoLy = YLsL, + T(L1, L2, L3).

Then one defines 3 by the formula 8(n) = n+~, 1, for n € Homg, v (Le, L1) = Z
(vecall that Homzy/ (L2, L1) is a Z-torsor by 1.1.2).

To define vz, 1, consider the subset Ur,r, C A that consists of L’s such that
Li+Ly;DLD>LiNLy=LNL;y =LNLy. Aplane L € Uy, 1, defines a quadratic
form ¢, on Ly/L1 N Ly by the formula ¢y, (a) = (b,a) where b € Ly is a vector such
that b4+ a € L. In this way one gets a 1-1 correspondence between Uy, 1, and the
set of all non-degenerate forms on Ly /L1 N Ls. Let U;Lg C Ur, L, be the subspace

that corresponds to positive-definite forms, so Ug'l L, is contractible. Now ~yp, , is
the unique homotopy path from Lo to L; which, apart from its ends, lies in Uzrl Ly
One verifies (4.1.3.2) immediately.

4.1.4 Below we will denote by Ty either of the groupoids 7, 7{/, 7/ identified via
(4.1.2.2), (4.1.3.1). In case V = 0, the groupoid 7y, by definition, has a single
object 0 with End 0 = Z. For any V and y € 7y we will denote by ~ the generator
1€Z=Auty.

4.1.5 The groupoid 7y, has the following functorial properties. Let V be a symplectic
space, N C V a vector subspace such that ( )|y = 0, and let N1 be the { )-
orthogonal complement to N. Then N* /N has an obvious symplectic structure.
Since the pre-image of a Lagrangian plane in N+ /N is a Lagrangian plane in V,
we have an embedding Ay./y < Ay, which defines a canonical equivalence of
groupoids T]GL/N — Ty.

4.1.6 Now let V1, V5 be symplectic spaces. One has an obvious map AV1 x Ay, —
Avievs, (L1, Ls) — Ly ® Lo, and a similar map Hy, x Hy, — Hy,gv,, which
comes from multiplication det®? L4 x det®? Ly — det®? L4 @det®? Ly = det®2(L1@
Ls). These define morphisms between corresponding fundamental groupoids, com-
patible with the canonical equivalences (4.1.2.2). Hence we have a canonical mor-
phism TV1 X Tvz — TV169V2 .

4.2 The Teichmiiller groupoid. This groupoid appears in two equivalent ver-
sions: a “combinatorial” or “topological” version, and a “holomorphic” version.
4.2.1 An object of the “topological” Teichmiiller groupoid Teich’ is an oriented
surface S (possibly non-connected and with boundary) together with a set of points
Ps = {z,} of the boundary 05 such that each connected component of 9S contains
exactly one z, (we will denote this component 05, ). The morphisms are isotopy
classes of diffeomorphisms.
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Let us define an “enhanced” groupoid T'eich . For a surface S denote by H(.5)
the image of the canonical map H!(S,R) — H?!(S,R) (which is the same as
cohomology of a smooth compactification of S). An orientation of S defines a

—~—/

symplectic structure on H(S) (intersection pairing). Now an object of Teich is a
triple (S, Ps,y), where (S, Ps) € Teich’ and y € Ty (s). A morphism (S, Ps,y) —
(S’, Ps/,y') is a pair (p,7), where ¢ : (S, Pg) — (S’, Ps/) is a morphism in Teich/,
and 7 : p.(y) — ¥’ is a morphism in 7y (s/); the composition of morphisms is
obvious. .,

The projection Teich — Teich’', (S,Ps,y) — (S5, Ps), is surjective. For

——
any (S, Ps,y) € Teich the group Autﬁ\ia/(S, Pg,y) is a central extension of
—~—
Autreien (S, Ps) by Z(= Autr, 4 (y)). So we may say that Teich is a central
extension of Teich’ by Z. We will denote the generator of this Z by ~o.

Consider the functor T'eich’ — Sets, (S, Ps) — Ps = set of boundary com-
ponents of S. Clearly Teich’ is a fibered category over the groupoid of finite sets.
For a finite set A denote by T'eich’y the fiber over A (the objects of this groupoid
are pairs ((S, Ps),v), where (S, Ps) € Teich/, and v : Ps — A is a bijection). For
a bijection f: A — B, X € Teich/y, Y € Teichly; we will denote by Hom(X,Y')
the set of f-morphisms (i.e., the ones that induce f on the sets of boundary com-
ponents). We put Aut®(S, Ps) = Autjg, (S, Ps). We will use the same notations

—~—
for Teich .

For (S, Ps) € Teich’ and z, € Ps we denote by d,. € Aut’(S, Ps) the Dehn

twist around 0S,,. Since d,, acts as the identity on H(S) it lifts to the element

(dy,,,idy) € Auth,(S, Ps,y), which we will also denote by d,_. These d,_ lie

in the center. In particular, we have a canonical morphism Z"s — Aut®(S, Ps),
(ne,) — [Tdzies Zx 275 — Awt®(S, Ps,y), (ny,na,) — %" x [[dzi®.

4.2.2 Here is a “holomorphic” definition of the Teichmiiller groupoid. An object of
Teich” is a complex curve C' (smooth, projective, possibly reducible) together with
a finite set of points Po = {y.} C C equipped with non-zero co-tangent vectors
Vo € Q}J,ya' The morphisms are 1-parameter C'°°-class families of such objects
connecting two given ones, these families being considered up to homotopy. In
other words, Teich” is the Poincaré groupoid of the modular stack M of the above

——

structures. In the same way, T'eich is the Poincaré groupoid of the modular stack
M of the data (C,ya, Va,y), where (C,ya, Vo) € M, and y € det®*(HO(C, QL)) \
{0}. Clearly, the second modular stack is a C*-fibration over the first one, hence

——
Teich is a Z(= 7 (C*))-extension of Teich”.

—~—/

4.2.3 The groupoids Teich’ and Teich”, are canonically equivalent, as are Teich

——

and Teich . To define this equivalence, take (S, Ps) € Teich’. Consider the
data (u;{r.}), where p is a complex structure on S, and r, : S = {z € C :
|z| = 1} — 05, is a parametrization such that r,(1) = z, and r, extends pu-
holomorphically to the ring {z € C: 1 < |z|] < 1+ €¢}. We may glue a collection
of unit discs D, = {z € C : |z| < 1} (with their standard complex structure)
to S using 7. Denote the corresponding complex curve C' = C(S5, Ps; (¢, 7a))-
It is equipped with the set of points y, = 0 € D,, and the cotangent vectors
Vo =dzg € Qlc,o' Hence C(S, Ps; (11,74)) € Teich”. 1t is easy to see that for given
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(S, Pg) the data (p; {r.}) form a contractible space. So (S, Ps) € Teich’ defines a
canonical “homotopy point” in Teich’”. In this way we get a morphism of groupoids

Teich’ — Teich’ which is an equivalence of categories.
"

—_—~—

To lift this equivalence to Teich — Teich , note that H(S) = H*(C,R). The
complex structure on C' defines the Hodge subspace H(C,Q}) C H(S)c, which is
a point h¢c on the corresponding Siegel half plane (see 4.1.1). Now let us interpret
Th(s) as a fundamental groupoid of the space denoted by H in (4.1.1.1). For

—~—
y € Ty(s) put yo = y(he) € det®?(H(C, QL)) \ {0}. Our equivalence Teich —

——

Teich is given by the formula (S, Ps,y) — (C, Ya, Va, Yo )-

4.2.4 The above equivalence transforms ~, to the loop § — (C, ya, Va, e%y), and
transforms the Dehn twist d,, to the loop 6 — (C, ya, ewégua, Y).

4.3 Operations in Teich. We will need the following ones:
(i) One has a functor “disjoint union” [] : Teich x Teich — Teich. Accord-

P e

ing to 1.1.6 it lifts in a canonical way to a functor [] : Teich x Teich — Teich.

—_—

Clearly T'eich, Teich are strictly commutative monoidal categories, and the projec-
tion T'eich — Sets, (S, Ps) — Ps, commutes with [].
(ii) Deleting of a point. For a finite set A and o € A one has a canonical functor

P e g

dely : Teichy — Teich g\ (o), Teichy — Teichy\ (o). In “holomorphic” language
(4.2.2) this functor just deletes yq, V. In “topological” language (4.2.1) one should
delete the component 95, by glueing a “cup” to 95y, .

(iii) Sewing. Let A be a finite set, and «, 5 € A, a # 3, two elements. One has a

—_—~—

canonical Sewing Functor S, g : Teicha — Teich g\ (a,5y, Teicha — Teich g (a8} -
Let us define S, g in combinatorial language first. For a surface (S, A) € Teich’
choose a diffeomorphism ¢ : 9S,,— 0S,, ¢(rs) = g, reversing orientations.
Our S, 5(S,A) € Teich;l\ (a5} 18 S with two boundary components identified by
means of ¢. Since the ¢’s form a contractible space, this surface does not depend
on the choice of ¢. Note that either H(S) = H(S,,3(S,A4)) (if o and g lie in
different connected components of S), or H(S) coincides with a subquotient of
H(S.,5(S,A)) in a manner described in 4.1.5. In any case one has a canonical

—~— /
equivalence Ty (s) = TH(S, 5(5,4))- This defines Sq 5 : Teichy — Teich g\ (4,53

4.3.1 To define S, g in holomorphic language, take (C,y,vy) € Teich’y. Consider
a curve C, g with a single quadratic singularity obtained from C' by “clutching” y.
and yg together. One knows that curves with a single quadratic singularity form
a smooth part of the divisor of singular curves in the modular stack M A\{a,3} Of
curves with at most quadratic singularities. The fiber of the normal bundle N to
this divisor at C, s is canonically identified with T¢ , K ® T¢,,,. Hence vy L. 1/51
is a non-zero vector of this normal bundle. It defines a “point at infinity” of the
modular stack M 4\¢q g} of smooth curves (for a detailed account of “points at
infinity” see [D]), which is a correctly defined (up to unique canonical isomor-
phism) object S, (C,yy,vy) € Teichig\{aﬂ}. To lift S, to a functor between

——

Teich ’s, notice that the line bundle A over M with fibers A\c := det HY(C, Q)
extends canonically to a line bundle A\ over M: if C’ has quadratic singularities,
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one has A\¢r := det H*(C,wcr), where wer is the dualizing sheaf. Define the C*-

bundle M — M to be A®2 \ {zero section}. Recall that for any C’ € M one
has a canonical isomorphism )\%,2 = )\%2, where C’ is the normalization of C’ (re-
call that wcr/wg, is a skyscraper sheaf, supported at singular points, trivialized
canonically up to sign using residues). Hence the fibers of M over (C,yy,vy) and

Sa,8(C, Yy, Vo) are nearby fibers of the same C*-fibration, and therefore one has a
canonical identification of their fundamental groupoids. This defines the desired

——

12
lifting Sq,g : Teichy — Teich g\ (4 5y It is easy to verify that the equivalence 4.2.3
identifies the above “topological” and “holomorphic” constructions of S, g.

4.3.2 It is convenient to consider both sewing and deleting of points simultaneously.
To do this, consider a category, Sets?, whose objects are finite sets, and whose
morphisms f : A — B are pairs (if, ¢¢), where iy : B <— A is an embedding, and
¢5 = {¢ss} is a collection of two-element mutually non-intersecting subsets ¢ 5 of
A\ if(B). The composition is obvious: if g : B — C' is another morphism, then

gof = (ifoig, ¢sUg,). For f as above we put A} := qufg, Al = A\(z'f(B)UA}),
5

so A=iz(B)[1AG]] A}

Now fwy mor@i\s_gl f A — B we have a canonical functor f, : Teichy —
Teichg, Teichy — Teichp that deletes points in A(f) and sews pairwise points in
all ¢¢5’s. One has (g o f). = g« o fs, and each f, is a composition of elementary
deletings of a single point, and glueing of a single pair. Clearly these f,.’s define

a cofibered categories Teich, Teich# over Sets? with old fibers Teich 4, Teicha,
respectively.

Note that all these categories are strictly commutative monoidal categories with
respect to “disjoint union” operation []; all the functors commute with [].

4.4 Representations of Teich; central charge. Let A be a finite set. Denote
by R4 the category of finite dimensional C-representations of Teich (i.e., the

objects of R4 are functors L : Teichy — Vect), and by 7%,4 the same for Teich 4.
More generally, if @) is a component (i.e., a strictly full subcategory) of Teich 4,
we denote by R4 g the category of representations of (), identified with the full
subcategory of R 4 that consists of representations supported on @ (i.e., vanish off

Q). For a representation V' € ﬁA and X € Teichy we denote by Vx the value of
V at X.

4.4.1 Definition. A representation V € R4 has multiplicative central charge

——

a € C* if for any X € Teich the canonical element vg € AutX acts on Vx as
multiplication by a. O

For any a € C* denote by Raa C R4 the full subcategory of representations of
central charge a. In particular, Ri4 = Ra.

For any morphism f : A — B in Sets” the functor f, : %A — Teichp
defines the corresponding functor f* : 753 — ﬁA; one has f*(Ryp) C Raa. The
functors f* define a category R* fibered over Sets? with fibers R A, together with
fibered subcategories ’Rf C R* with fibers Raa.

4.4.2 Here is an explicit description of representations. From a combinatorial point
of view a representations V' € R 4 assigns to each surface (S, A) € Teich a local
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system Vg on the Lagrangian Grassmannian Ag(g) (see 4.1.2), and to each ¢ €
Hom((S, A), (5', A)) a lifting of the corresponding diffeomorphism Ay sy — Ap(s)
to Vg — Vsr. This V lies in R44 if the monodromy matrix of the loop vo = 1 €
Z = 1(Apf(s)) coincides with multiplication by a.

4.4.3 From a holomorphic point of view our V is a local system on the modular
stack//f\/lv 4; V lies in R,4 if the monodromy around the fiber of the projection
m: My — My equals multiplication by a.

Recall that C-local systems on smooth algebraic manifolds can be identified
with algebraic vector bundles with integrable connections (= lisse D-modules) hav-
ing regular singularities at infinity (see [D], [Bo]). So our V is a lisse D- module
on M 4 with regular singularities at oo. Assume that V € R,4. Choose ¢ € Z
(“additive central charge”) such that exp(2mic) = a. Let Dyc = D.y(x) be the
ring of differential operators on the “line bundle” A\®¢. This is a twisted differential
operator ring on My (see 3.2.6-3.2.8). Recall that Dyc-modules can be identified
canonically with D-modules on M A, monodromic along the fibers of 7 with mon-
odromy a (see, e.g., [V]). In particular, V is a lisse Dyc-module on M4 having
regular singularities at oco.

4.5 Axioms of a fusion category. We will start with preliminary data.

4.5.1 Let A be an abelian C-category (“category of modules”). We assume that A
is semisimple, for X € A the C-vector space EndX is finite dimensional, and there
are finitely many isomorphism classes of irreducibles. Denote by IrrA the set of
isomorphism classes of irreducible objects in \A.

We should also have the following data:

— a contravariant functor (“duality”) * : A° — A together with a natural iso-
morphism * x — idy

— a distinguished irreducible object (“vacuum module”) ¥ together with an iso-
morphism v : ¥ — %} such that *(v) o v = idy.

—an automorphism d of the identity functor id 4, called the Dehn automorphism,
such that dx = *d and dy = 1. Clearly to give d is the same as giving a collection
of numbers d; = d;, € C* for j € Irr A (here I; is an irreducible object of class j;
recall that Autl; = C*).

4.5.2 For any finite set B we have a category A®B: this is an abelian C-category
equipped with a polylinear functor ® : AP = HAb — A®B (Xy)pep —
beB

®X b, which is universal in an obvious sense (see [D] § for an extensive discussion
beB

in a less trivial situation). The category A®? is semisimple. Its irreducible objects
are tensor products of irreducibles in A, so IrrA®B = (IrrA)B. Any isomorphism
¢ : B — B’ induces a canonical equivalence A®5 — A®B' @X, — RX-1(p)-
4.5.3 We put A®? = Vect. One may identify A2} = A%®2 with the category
of C-linear functors F = A° — A. Namely, to an object X @ Y € A®? there
corresponds the functor Fxgy defined by formula Fxgy(Z) = Hom(Z,X) ® Y.
We define a canonical object (“regular representation”) R € A%®? as an object that
corresponds to the functor » : A° — A. Here is an explicit construction of R. For
each j € IrrA pick an irreducible object I; of class j. Then one has a canonical
isomorphism R = jerrralj®*Ij. Note that R is symmetric: for the transposition
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o = {1,2} acting on A®? one has a canonical isomorphism o(R) = R. So for any
two element set B we have a canonical object Rp € A®5.

4.5.4 For finite sets A, B and a morphism f : A — B in Sets* (see 4.3.2) we define
a C-linear functor f* : A®E — A®4 by the formula

f*(®Xb): ® XiJTl(a) & ®identu & ® Rqsf(;

beB a€iy(B) acAf PrsEDy

Clearly (go f)* = f*og*, so the f*’s define a fibered category A* over Sets” with
fibers Af = A®A. The tensor product functor @ : A®B1 x A®B2 —, A®(B:111B2)
defines on A* the structure of commutative monoidal category such that the pro-
jection A# — Sets™ is a monoidal functor.

4.5.4 Definition. A fusion structure on A is a collection of functors { ) :

A®A x Teichy — Vect, (X,S) — (X)g (here A is any finite set), together
with natural isomomorphisms (i), (ii):
(i) (X@Y)sur = (X)s®@(Y)r for X € A%AY € A®B S € Teicha, T € Teichp.
(i) (f*X)r = (X) .1 for any morphism f : A — B in Sets?#, X € AP, T €
Teicha.
These isomorphisms should be compatible in an obvious sense. We also demand
that:
a. For fized S € Teichy the functor ( g : A®4 — Vect is additive.
b. ( ) transforms Dehn automorphism to Dehn twist, i.e., for a finite set A, an
element o € A and a collection of objects X, € A, v € A, the automorphisms

of (®X4)s induced by ®2‘dx7 ®dx., € Aut ® X and by d, € AutS coincide.

gkals!
c. () is non degenerate in the sense that for any non-zero X € A there exists

Y € A such that (X ® Y)g, # 0 where Sy is a 2-sphere with two punctures.
We will say that (A,{ )) is a fusion category of multiplicative central charge

a € C* if for any X € A®4 the representation (X) of Teich lies in Raa. O

4.5.5 Clearly (ii) just means that X — (X) is a cartesian functor A# — R#
between categories fibered over Sets#. Since any morphism in Sets# is a successive
deleting of points and sewing of couples of points, we may rewrite (ii) as two
compatibilities. Namely o
(i) (X)ger,s = (X®ident,)s for any finite set A, « € A, X € A®A\} S € Teichy.
(ii)" (X)s, 55 = (X ® Rap)s for any finite set A, a pair of elements o, 3 € A, #

8, X € A®AM@BY S € Teichy.

4.5.6 Here is a reformulation of 4.5.5(ii)” in “holomorphic” language 4.4.3. For
X € A®AM@8Y our (X) is a lisse Dye-module with regular singularities at infinity.
As was explained in 4.3.1 we have a canonical surjective smooth map 7 : M4 —
N\ {zero section}, where N is the normal bundle to the (smooth part of) the
divisor at infinity of M 4\(n 53 We have the canonical specialization function Sp
that assigns to a lisse Dc-module with regular singularities at infinity on M 4\ (4,51,
the one on N \ {zero section}. Hence we have the Dy.-module 7*Sp(X) on My,
and 4.5.5 (i)’ is an isomorphism 7*Sp(X) = (X ® Rag).
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4.6 Fusion functors. Let (A, ( )) be a fusion category. Let A, B be finite sets.

Any object S € Teichap defines a functor Fg = ]-"?’B : A®A . A®B by the
formula Hom(Fs(X),Y) = (X @ xY)*, X € A®4 Y € A®B. We will call Fg the
fusion functor along S. The automorphisms of S act as automorphisms of Fs. Note
that if B = () then A®P = Vect and Fg = ( )g. If A= (), then F is a functor

Teichg — A®E, ie., an A®P-valued representation of Teichp.

—_—~—

Let C be a third finite set, T' € Teichg,c. We define T o S € Zfe\i_c/hAuc as the
surface obtained from 7' LI S by sewing the B-boundary components.

4.6.1 Lemma. There is a canonical isomorphism of functors Fros = Fg o Fr :
ABA — ABC,

Proof. For X € A®4,Z ¢ A®C one has

Hom(Fros(X),Z) = (X @ *Z)og (X ® R®P @ «Z) 75

4.5.Z(n')

() P XesLie(e2);
I;EITTA®B

= @ Hom(Fs(X), I;) @ Hom(Fr(I3), Z) = Hom(Fr o Fs(X), Z).
The last equality comes since
fs(X) = @Hom(fs(X), Ij-')* ® If

O

Now assume that A = {0}, B = {oo} are one point sets. Let Teich/{%m} C
T eich/{o, o} be the full subcategory of “cylinders”. So Teichi{%v oo} is a connected
groupoid; for (S5,0,00) € Tez'ch?om} the group (of its automorphisms) is a free
abelian group with generator dy = d3!. Denote by Sy = (So,0,00) the object
of Teich?o?oo} such that for any (5,0,00) € Teich?opo} one has Hom(Sp,S) = {
set of homotopy classes of paths in S connecting 0 and co}. This is a canonical
object of Teichi{%’oo}. Its “holomorphic” counterpart is (P, 0, 0o, dt(0),dt~1(c0)) €
Teichi{lg,oo}, where t is a standard parameter on P!. One identifies this point of
Teich” with Sy canonically by drawing the path R>¢ from 0 to co. Note that
since H(S) =0 for S € Teichi{%po} we have an obvious embedding Tez'chi{%m} —

——
Teich{om}; the “holomorphic” counterpart of this section comes since the line
bundle A is canonically trivialized over the “moduli space” of genus zero curves. So

P

we will consider Sy as a canonical object of T'eichy o}. Note that if A is any finite

P

set and T' € T'eich 5,0}, then one has an obvious canonical isomorphism SgoT" = T'.
According to 4.6.1 this gives a canonical isomorphism of functors Fgs, o Fr = Fr.
In fact, one has

4.6.2 Lemma. There is a canonical identification of the functor Fg, : A — A
with the identity functor id o that generates the above isomorphisms Fs,oFr = Fr

Jor all T' € Teich g0y -
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Proof. Assume that we know that Fg, is an equivalence of categories. Then the
desired isomorphism Fg, = id 4 would be F 5_01 (Fs, 0 Fs, = Fs,)- Since A is semi-
simple, to see that Fg, is an equivalence it suffices to prove that Fg, induces the
identity map of the Grothendieck group K (A). The irreducible I; form a basis in
K(A). Put Fs,(I;) = f]I;; we have to show that f/ = §7. We know that f/ € Zs.
Since ff = (I; ® *;)s, we see, by 4.5.4c, that any row or column of the matrix fz]
is non-zero. Since ,7-"20 = Fs,, these properties imply that Fg, = idg(a) (just note
that .7-"?% (I;) = Fs,(1;) implies Fg, induces a transposition of the set of those I;’s
that f/ # 0; hence Fg, is a surjective endomorphism of K (A), and hence it is the
identity). O

4.6.3 Assume now that S is a connected surface of genus 0 and B is a one point
set. Then the corresponding functors Fg : A®4 — A, together with * and d
from 4.5.1, define on A the structure of a balanced rigid tensor category (see, e.g.
[K]). Here are some details. Denote by S,, the surface obtained from a unit disc by
cutting out n holes with centers on the real line; the marked points lie on the real
line to the right:

Ss : o™t o*? ors Too

Put Fs, (X1 ®---®X,,) = X1®---®X,,. The axiom 1.5.4 (ii)” implies immedi-
ately that the operation ® : A" — A is strictly associative: one has X;®X,®X3 =
(X12X2)®X3 = X1®(X28X3). Consider the following diffeomorphism o of Sy
that fixes 052, and interchanges 0S2,, and 0S52;, (we move the holes in a way
that the marked point remain on the very right of the hole):

This diffeomorphism induces a natural isomorphism ox, x, : X3 X5 — X5 RX;.
It is easy to see that o satisfies the braid relations, and also one has a relation
0% =d,_d fd; 21 in AutS,. These imply the hexagon axiom for ®, and the axiom
0%, %, = Ux,8x, © (dx,®dx,)~" of balanced tensor categories.

4.7 The fusion algebra. The above tensor structure on A defines a commutative
ring structure on the Grothendieck group K (.A). One calls K(A) the fusion algebra
of A. Note that K(A) has a distinguished basis {I;} of irreducibles. By 4.5.5 (ii)’
the base element 1 that corresponds to vacuum module is the unit in K (A).

Now 4.6.2 implies that (K (A),{I;}) is a based ring in the sense of [L] 1.1. Ac-
cording to [L] 1.2, K(A) ® Q is a semisimple algebra. Hence K(.A) ® C has another
canonical basis — the one that consists of mutually orthogonal idempotents.

Let T be a torus (= oriented genus one surface). Choose a basis v1,v2 in H1(T,Z)
compatible with the orientation, so that 1,y are cycles on T' that intersect at one
point a. Consider the vector space (¢)r. Note that if we cut 7" along 71, then 7, will
become a path that connects two copies of a on the components of the boundary,
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hence it identifies this surface with the surface Sy of 4.6.2. According to 4.5.5 (ii)”,
4.6.2, the corresponding decomposition 4.5.5(ii)"” gives the basis in () numbered
by irreducibles in A, i.e., we have the isomorphism i, 5, : K(A) @ C — (¥)p
that transforms I;’s to this basis. Interchanging y; and 7, we get the isomorphism
ing—yy ¢ K(A) ® C — (¥)r. The composition i)' oiy, ., € AutK(A) ® C
is called the Fourier transform. According to the Verlinde conjecture, proved by
Moore-Zeiberg, the Fourier transform maps a canonical basis {I;} of irreducibles

to a basis proportional to the one given by the idempotents.
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§6. ALGEBRAIC FIELD THEORIES

6.1 Axioms. Let ¢ € C be any complex number. An algebraic rational field
theory (in dimension 1) of central charge ¢ consists of data (i) - (iv) subject to
axioms a-g below:
6.1.1
(i) A fusion category A of multiplicative central charge exp(2mic) (see 4.5.4)
(i) An additive “realization” functor r: A — (7,V;)e-mod (see 3.4.7).
We assume that for any X € A
a. 7(X) is a higher weight module, i.e., the “coordinate module” r(X)c((1)),dt(o)
is a (direct) sum of generalized eigenspaces 7(X)c()),» = {m € 7(X)c(w)) :
(Lo — A)Nm = 0 for N > 0} for the operator Lo (see 3.4.7, 7.3.1). Each
T(X)c(e)a A € C, is a finite dimensional vector space.
b. r(dx) = T,(x), where dx is the Dehn automorphism (see 4.5.1) and T is the
monodromy automorphism (see 7.3.2).
Note that these axioms imply that r(¥) is actually a (7,V).-module (since
T4y = idrey.-
(iii) A fixed “vacuum” vector 1 € Homy, (C, r(l)).
We assume that B
c. 11s a non-zero vector invariant with respect to the action of so,.(7-1r) C Tp

(see 3.4.1).

6.1.2. Now let S be a smooth scheme, 7 : C's — S a family of smooth projective
curves, A C Cg(S) a finite disjoint set of sections, and {v, },ca 1-jets of parameters
at points in A. This collection defines S-localization data 1. for (7,4, V) (see 3.4.7,
3.4.5). The corresponding algebra of twisted differential operators Dy, coincides
with Dy (see 3.5.6). Hence, by 3.3.5, we have the S-localization functor A, or®4 :
A®4 — Dye-mod. On the other hand, by 4.5.4, 4.4.3, the fusion structure on A
defines the functor ( )¢, : A®4 — Dye-mod such that for any ®X, € A®4 the
corresponding D y.-module (X,)c, is lisse with regular singularities at infinity.
Our next piece of data is
(iv) A morphism of functors v : Ay or®4 — ( )oq.

For X € A®4 denote by 7(X)a.cs = 7(X)au,.cs the Og-module that corre-
sponds to the S-object “formal completion of Cs at A with 1-jet of parameters
va” of Vi (see 3.4.3, 3.4.6, 3.4.7). If X = ®X,, then 7(X)a.cs = ®0s7(Xa)a.Cs-
Recall that Ay, o7r®4(X), considered as an Og-module, is a quotient of r(X) 4 cs-
For any section ¢ of r(X)a cs put (p)cg = v(¢) € (X)cg. This is the “correlator
of the field ¢ along C's”.

The following axioms should hold:

d. v commutes with base change, i.e., v is a morphism of Djy.-modules on the

modular stack M 4.

e. For a € A, objects X € A®AM} and a section ¢ € 7(S,7(X)a.cs) one has
(p)es = (P ® 14)cs. Here (p)cg is a section of (X))o, (we forget about the
point a), and (¢ ® 1,)c, is a section of (X ® W,)cs; the two D)y -modules
are identified via 4.5.5 (ii)’.

6.1.3 Now consider the two pointed curve Cy = (P, 0, 00, dt(0), dt ~*(o0)). We have
coordinates ¢ at 0 and t~! at co. For any object X € A consider the pairing

< >Co : T(*X)C((t))@T(X)(C((tfl)) = T(*X)C’O@@T(X)Coob — <*X®X>CO 4;2 End X
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Here we write simply C((¢)) for (C((t)),dt(0)) € V;. This pairing is a morphism of
End X-bimodules, hence it defines a linear map

i:r(xX)c()y) — Homgng x(7(X)c(-1)), End X) =: T(X)(E((tq)).

Note that T(X)(E((t—l)) is a i&:((t—l))- module in an obvious manner. Denote by
#7(X)e(-1y) C T(X)(’é((t_l)) the sum of generalized eigenspaces of the operator

Lo € Tg(uy)- The pairing ( )¢, is 7 (P! \ {0, 00})-invariant (by definition of Ay,
see 3.4.4), hence i commutes with the the Ly-action. By axiom a above we see that
i(r(xX)c(#)) C *#r(X)c(@-1y)- Our next axiom is
f. The map i :r(*X)c(u)) — *r(X)c(-1)) is an isomorphism of vector spaces.
It suffices to verify f for irreducible X’s only.

6.1.4 Our final axiom g (“factorization at infinity”) describes the asymptotic expan-
sion of correlators near the boundary of the moduli space. So consider the following
situation.

Let 7 : Cs — S = Spec C|[q]] be a proper flat family of curves such that the
generic fiber C), is smooth and the special fiber Cjy has exactly one singular point
which is quadratic. Let B = {b;} be a finite non-empty set of sections of m such
that the points b;(0) € Cy are pairwise different, and let v; € bjwc /s be a 1-jet of
coordinates at the b;’s. Then C = (Cy;, b;, ;) is a C((¢))-point of M p.

Let t1,t5 be formal coordinates at a such that t1t; = ¢q. According to 3.6.1 we
get a smooth S-curve C¢ with points aq1,as € C¢(S) and formal coordinates t; at
a;. Put A = B| |{a1,a2}. Then CV = (Cg,bi,al,a%Vi;qfldtl(al),dtg(ag)) is a
C((q))-point of M 4.

The S-curves Cg and C¢ define the corresponding determinant line bundles on
S. According to 3.6.3 their ratio is canonically stratified, hence the corresponding
rings of differential operators are canonically identified; we denote this algebra D).

For any object X € A®E we get the lisse Dyc-modules (X)¢ and (X ® R)ev
on 7 with regular singularities at ¢ = 0. According to 4.5.6 we have a canonical
isomorphism between their specializations to ¢ = 0 (these are D-modules on the
punctured tangent line at ¢ = 0). Since Spy is an equivalence of categories, we have
a canonical isomorphism of Djyc-modules (X)e = (X ® R)cv.

To formulate axiom g we need to consider a special vector in r(R). Recall that
R = @y e al; ® *#Ij. Choose a basis {el} in each r(I;)c(4) compatible with
grading by generalized eigenspaces of L. Here, as above, we write simply C((t))
for (C((t)),dt(0)) € V.

Below we will use the following notation: if F' € V is any local field, tr a
parameter in F', X € A and e € 7(X)c(), then e(py,y € 7(X)pat.(0) is a vector
that corresponds to e via the isomorphism (C((t)),dt(0)) = (F,dtr(0)), t — tp.

According to axiom f. above, we get the dual basis {*eJK} of r(*I;)c((1)), namely
K _ -1 _Kx

J

ket =i le
J
Now let ¢ = ¢(¢) be any section of 7(X)p ,,.c = r(X)B,ug,cv over S. Consider
the correlator af = (p® eﬁc((tl)) 1ty ® *eﬁc((tz)) t2)>cv: this is a section of

(X @ I; @ I;)cv. Note that (X ® I; ® «I;)cv is a finite dimensional C((g))-vector
space. One has

, where e]K* € *r(1;)(c(@-1y),t-1) is the dual basis to eﬁ(:((tfl)),tfl)'

6.1.5 Lemma. The series Zaf converges; its limit (¢ ®@cj)ev € (X Q1; ®*1;)cv
K
does not depend on a particular choice of basis {ef}. O
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Assuming the lemma, our final axiom is

g. One has (p)c = (¢ ® ZCj>Cv = Z<L,O ® Cj)ev via the above canonical
J J
isomorphism

<l’>c = <X & R)cv = EB(X ®IJ X *Ij)C\/.

Proof of 6.1.5. The independence of a choice of basis is straightforward. To prove
that our series converges it is convenient to add a parameter u, and consider a
base scheme S = Spec(C[u,u™]) x S together with an S-point of M4 defined by
the family C/ = (C;é,bi,al,ag;Vi,udtl,dtg). We get the lisse Dyc-module (X ®
I; ® xI;)cy on S, and a collection of sections ajK(u,q) = (p(q) ® eﬁc((tl))yutl) ®

*eﬁc((tz)),tz)>cl eI'(S,(X ®1; ®*Ij)cv). The old picture is just the restriction of
this one to the diagonal © = ¢~!. Our D-module has regular singularities along the
divisor u = 0o, s0 we may extend it to a vector bundle V to S~ = Spec(C[u~1]) x §
invariant with respect to operator ud,. Our lemma would follow if we show that
for any N > 0 one has af(u,q) € v NV for all but finitely many K’s. The

action of the operator ud, on aJK (u,q) was computed in 3.4.7.1. Namely, we have

udy (af (u,q)) = (©(q) @ Lo(ef) (c((t1))utr) @*e] )y , hence alf (u, q) is a generalized

eigenvector of ud, with eigenvalue equal to an eigenvalue of Lg at ef . Axiom a.
above implies that for any 7 € C/Z and ¢ € R the space @ r(Ij)cwyu C

p=p mod Z
Re pu>c

(1)) is finite dimensional. On the other hand, since (X ® I; ® xI;)cv is a lisse
module, there are only finitely many w € C/Z such that one has a section which
is a generalized eigenvector of ud, with eigenvalue mod Z equal to w. This implies
that for any ¢ € R all but finitely many aJK 's are generalized eigenvectors of w0,
with Re (eigenvalue) < ¢. This implies that all but finitely many of them lie in
u NV, g

6.1.6 Remark. We may consider the situation when a smooth curve degenerates to
a curve with several quadratic singular points. One trivially reformulates axiom g
for this situation; it is easy to see that this generalized version follows from axiom
g. above (the case of one singular point).

6.1.7 Here is an example of how axiom g works. Let C be a fixed curve, A C
C a finite set, {v,}, a € A, l-jets of coordinates at a’s, X € A®4 and ¢ €
7(X)a,c. Let x € C'\ A be a point, t, a parameter at z and Aq,... , A, € C
distinct complex numbers. Let z;(q) be C[[¢]] points of C' defined by the formula
ri(0) = w,t.(x:(q)) = Niqg- Put t; = t;,; — Nt these are parameters at x;’s for
q#0. Let Y1,...,Y, be objects in A, ¥; € 7(Yi)c(r))- We would like to compute
(@ € V1(c(t))t) © @ Unic(tn))ta))C E X QYL @+ @ Yn)(C A {2:}va,dti(z:)-
To do it one should blow up the point (z,0) € Cs = C x §; denote this curve
C%. Clearly A,{z;} are S-points of C%, and we have parameters t,,q/t, at the
(only) singular point of C{. The corresponding S-curve C’:gv is constant: one has
C’:gv = Cg [[P4; the formal parameters at a; = x € Cg, ag = 0o € P} are t,, t71,
respectively. We see that C comes from (C [[P!; z, 00; t5,t™!) via the construction
3.6.4. The points A, {z;} on C:qv are also constant, as well as coordinates ¢;: one
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has z; = \; € PLt; =t — \;. Hence

(X @Y1 @ @ Yn) (1A i biva,dts () = @(YE ® -+ ® Yy ® L) p1;x; 00:dt(s),q—1dt—1(c0))
J
X <*Ij & X>(C;I,A;dtm(1‘),l/A)

and

(P @ Y1et)) ) @ O Vn(c((ta))tn))C = D1(c(t-20)t-21) € @ Vn(c((t=An)t—An)
® e (C((E), g ")) pr © (ke (cira)) ha) @ ©)C-

6.2 Global vertex operators. Assume we have an algebraic field theory as in
6.1. Let C' be a smooth compact curve, A C C a finite set of points and v,, a € A,
a 1-jet of parameters at a’s.

6.2.1 For an object X € A®4 we have a finite dimensional vector space (X)c and a
linear map ( )¢ :r(X)a. — (X)c. Also for any n-tuple of points z1, - ,x, €
C\ A, z; # z; for i # j, we have a linear map ( )c :r(X)a,c @ r#)eyc®...®
T(Hé)xmc =

T X QK- W) aufar, any.c — (XK@ - @W)c = (X)c, where the last
equality is 4.5.5 (ii)’. Note that we need not fix here 1-jets of parameters at z;’s
since () is a (7, V).-module (see axiom b). We may rewrite this as a linear map

VA e @r()e.e — r(X)he © (X)e.

This construction may be rearranged in several ways:
6.2.2 Let the points x1,--- ,z, vary. On C"™ we have a locally free O¢cn-module
r()En with fibers T(%)%Z(zl,---,xn) = @r(¥)s,,c. OnU = (C'\ A)"\ {diagonals}
we have a morphism VA4 : r#)5" — Home(r(X) a,c, (X)c ® Oy) of Opy-modules
such that the value of VA at (z1,---,2,) coincides with Vz’:,. . For any open
set W C U we get a map

»Tn

Vi T(W,r(B)5 @ Q) — r(X)h o ® (X)o © Hp (W)

which is a composition of V' ® idgr and the canonical projection I'(W, Q) —
Hpp(W).

6.2.3 Assume that A = 4; U As and X = X; @ Xo, X; € A®4i Then r(X)ac =
r(X1)a,c ® r(X2)a,0), (X))o = Hom(r(X1)a, c,7(X2)}, o). Let us fix a
formal parameter t, at o such that dt,(a) = v,. These identify r(X;)a, ¢ with

3 9 * . . A

“coordinate modules” 7(X;)c((t,,)) and 7(X2)%, ¢ with a completion T'(*XQ)C((tA2))
of 7(xX2)c((ta,))- S0 we may rewrite the above Vi, .. ;, as

Va2 o @r()e, 0 ® (X1 © Xo)& — Hom(r(X1)c((ra, ) T+ X2)c((ra, ))-

The linear operators in the image of this map are called vertex operators.
6.2.4 Now assume that X; =Y, Xy = *.7-"’041”42 (Y), where .7:6417’42 P ARAL L A4
is the fusion functor from 4.6. Then (X; ® Xo)} = Hom(]—'éh’A2 (X1),*X5) has a
canonical element id, x,; hence we get

Ay, A A
Vatlz s @rlF)e,c — Hom(r(Y)e(wa, ) m(FE ™ (YV))e(ua, )
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Here are the first properties of vertex operators in this setting, that follow directly
from the axioms.
6.2.5 For j € {1,...,n} and ¢ € ), ,;7(¥)z,,c one has V;IlA%J 2, (p) =
VA (p® 1))
6.2.6 Put 7(C\ A, z1,... ,x,) ={7 € T(C\A) : 7(x;) =0} C T(C'\ A). Then the
linear map V2142 commutes with the 7(C'\ A,21,... ,x,)-action. Here 7(C'\
A,xy,...,2,) acts on the left hand side via 7(C'\ A, x1,... ,2,) — T(3,)0 C iwi)
(= Virasoro algebra at z;) and on the right hand side via the map 7(C'\ A) — N( A)
from 2.3.4. In particular, any vertex operator F' transforms via a finite dimensional
representation of 7 (C'\ A4, 1, ... ,2,) and F is fixed by a Lie subalgebra of 7 (C'\ A)
that consists of fields vanishing to sufficiently high order at the x;’s.
6.2.7 Let C’ be another curve, A’ = Ay L1 A3 C C’ a finite set of points, t,
formal parameters at o’ € A’, and {z},---,2],} € C"\ A’. Let (C o (), be
the C[[g]]-curve with zero fiber obtained from C LI C’ by clutching together the
points of As in C,C’, and where the ¢-deformation comes from using parameters
tay,ta, according to 3.6.4. Then A; U Az U{zy,... , 2} U{2],... 27, } is a finite
set of C[[g]]-points of (C' o C'),, and hence we have our vertex operators map

A O a0 @7 (F)p o — Hom(r(Y)c(r,, ),

F DTN AR
r(ff&;é?)q(Y)g((tA3))). On the other hand, it is easy to see that “topologically”

(C o "), coincides with “topological” composition Cy o C” from 4.6.1, where

Cq = (07 dtal (al)vq_ldttm(aZ)) € MAa ay € Alaa2 € A2-
Hence, by 4.6.1, one has f?&;é?)q — FA24s ]—"gql’Az.
Our next property, that follows directly from axiom g, is:
for any ¢ € ®@r()a, ., ¢' € @)y o one has

v o (@) = VEm™, (¢) o Vit

’ / ’
L AR S L IR Ty Ty, T1, »Tn

where composition of “infinite matrixes” is understood in a way similar to 6.1.5.

6.3 Local vertex operators. Assume we have a field theory as in 6.1.

6.3.1 Let C be a smooth curve. Denote by C the cotangent bundle of C' with
zero section removed; so a point of Cis a pair (z,v;), ¢ € C, v, is a 1-jet of
coordinates at z. Any object X € A defines a locally free Oz-module r(X)z
with fibers 7(X)z,) = 7(X)z,,c. A choice of a family of local parameters
defines a trivialization of r(X)s. More precisely, let ¢ be a function on a formal
neighbourhood of the diagonal A : C < C x C, A(z,v,;) = (z,vy, ), such that
tla =0, duyt(2, v, ) = Vg (80 Ly, ) = t(T, Vs, -) is a formal parameter at x); such
a t defines a trivialization s* : r(X)g) = r(X)c(1) @ Og-

This 7(X)g is a Dg-module in a canonical way; the D-module structure comes
from the Z¢(())-1-action on 7(X)c(w)). Explicitly, a vector field 7 € 75 C Dg
acts on r(X)z as follows. Choose (locally) a family ¢ of local parameters as above.
Let Vi be the flat connection that corresponds to the trivialization S*. Let 7% €
7~?C((t)) ® Og be the section defined by formula 7 = Sci)(Z(a; v, (t)0:): here

7-(33171’@1) is a vector field on C' x C equal to 7 in the C-directions and to 0 in the C'
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directions (hence 7(,, ,, )(t) is a function on the formal neighbourhood of A), and
Scr = Tegy) — ’f?c((t)) was defined in 3.4.1. Now for a section ¢ of 7(X)5 one has
7(¢) = Vo(7)(¢) — T (), where 7(¢p) is the T¢((1))-action on 7(X)c((r))-

6.5.2 Remarks. (i) One may explain the D 5-module structure on 7(X)5 as follows.
We have two natural actions of the Lie algebra 7¢ on 7(X)g. The first one — “Lie
derivative” — comes since 7(X)z is a natural sheaf, hence symmetries of C' (and
infinitesimal ones also) act on it. The second is an O-linear action that comes
because the fibers of r(X)z are Virasoro modules (using the splitting So,). Now
the D-module action of vector fields is the difference of these two actions.

(ii) For any étale map f : C" — C one has a canonical isomorphism f(X)s =
r(X)é, of Dg,-modules.

(i) If dx = idx (see 4.5), e.g., if X = J¥, then r(X) is actually a (7, V)-module,
hence r(X )z comes from a canonical D-module r(X)c on C.

6.3.3 For X1,---, X, € A consider the D-module M;r(X;)s = r(X1)g X ... X
r(Xn)a on C™. 1f C is compact, we also have a lisse D-module (X; @ -+ ® Xn)&
on C \ {diagonals} with regular singularities along the diagonals; the fiber of (X; ®
e ® Xp)g over (T1,v1,c 0 T, Vp) B8 (X1 ® - @ Xn) ({2}, {ms)) By 6.1.2 we
have a canonical morphism of Dg,-modules ( )z : Xr(X;)s — j.(®X;)5, where
j: C™\ {diagonals} — C.

6.3.4 For a moment let us drop the compactness assumption on C'; we will work
locally. For X € A let 7(X)"¢,cn be the completion of 7(X)s X Ocn around
the diagonal A : C — C x c", Al(z,v,) = (z,vg;x,---,2z). A choice of a
family of local parameters ¢ = (t,,,) identifies sections of r(X )% on With for-

i . L) . ) i ~
mal power series Xmy;, ... ;. 1) t,, where my;, ... ; are sections of r(X)z and

n

ti(%0, Vg, T1, 1 Tn) = (g, (Ti). Then r(X)%’Cn is a (non quasicoherent)
Dg, on-module in an obvious manner. Let ngcn D Og,cn denote the sheaf
of functions having (meromorphic) singularities at diagonals x; = x;, i,j > 0. Put
r(X)éCn = O?ch ®0z, r(X)/\aCn: this is also a Dg, .-module. A section
of r(X )gx o 18 a formal series
[T =)= (Smi, e 81+ tir), aij > 0.
Now let us define the “local” vertex operators:
6.3.5 Lemma. There is a canonical morphism of D, o -modules
por(E) oM Kri)e Br(X)g — T(X)gcn

such that (assuming C is compact) for any (T, Ve; Y1, Vy,; 3 Yms Vy,,) € CxCm,
T # Yi, Yi # yj fori # j, objects Y; € A, an element ¢, € 1(X)zp,, Yy, € 7(Yi)yiw,,
and a section o1, ,pn of r¥)c in a neighbourhood of x one has

(P1® R @Y @+ @y, )5 = ((P1 @+ @ pn B thg) Ay, ® - R Yy, )5
(as meromorphic functions on a formal neighbourhood of (x,...,z) € C™ with

values in (X @Y1 @ +++ @ Yin)(C\{a,y:} {va .y, }) tdentified with (¥ @ -+ @ @ X ®
Yi® - ®Yy) via 4.5.5 (ii)).
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Proof - construction. We will write an explicit formula for p. To do this consider
first P! with the standard parameter ¢. So ¢ defines a family of local parameters t,, =
t —ax on P!\ {oo}, and hence we have a trivialization s : r(¥p1\ {ooy = r(H)c (1)) ®
Op1\{oo}- For ¢ € r(l¥)c((1)) we denote by ¢ the corresponding “constant” section
of T(“A)[Pl\{oo}.

Now for @1, -+ ,on € T(l)c(@)) and 1,... ,z, € P*\ {oo}, z; # x; for i # j,
consider the vertex operator Vi , (¢l @ --- @ ¢t : r(X)ey) — r(X)é((t))k:
from 6.2.4 (here we identified the module 7(X)c(-1)) at oo with r(X)¢(y)) via
t=!+—t). In fact, this operator lies in End r(X).

[Proof. For any a € C* one has t,, = a(t — x); hence the automorphism = —— ax
of P! acts on 7(f)p1 (according to 6.3.2) by the formula @' —— (afop)t. This
implies immediately that if Lop; = ns@;, then Voo . (@¢!)(Loe) = (Lo + ny +
4 )V L (). Hence V0 .. (®¢!) maps Lo-generalized eigenspaces in
7(X)c((t)) to ones in r(X)é((t)); since the sum of these equals 7(X)c(()), we see

that Vgg’?.?. T (®cp§) maps T(X)(C((t)) to T(X)(C((t))-]

Clearly, Vi . (¢ @ -+ ® @) is a meromorphic function on (P \ {0,00})™ \
{diagonals} with values in End 7(X)¢((r)). Put p(pi®- @, @) = V™S 4 (91 @
- @ k) (o) for o € r(X)c((r)): we will consider p( ) as a formal power series
in variables ¢y, - - ,t,,t; = t(x;), with poles along diagonals ¢; = t;, with values in
(X)ew- N

Now consider our curve C. Choose a family of parameters f. It defines a
trivialization r(¥)c X --- M r(l)e M r(X)s — T(Hé)?&t)) @ 1(X)cw) @ Oy on
in a formal neighbourhood of the diagonal. We put pu(¢} @ -+ ® ¢l @ 1) =
(el @ - ® @l @ Ye((e))t)e,e in obvious notations (so we write down the above p
on our curve in the coordinates t, for each = € (). It is easy to see that u, so
defined, is independent of choice of the family of parameters and is a morphism of
D-modules.

To prove the correlators formula in 6.3.5 one proceeds as in 6.1.7: we should
consider the curve C!, as in 6.1.7 over C|[q]] and apply axiom g. O

We will often write pu(p1 @ -+ @ vn, @ ) = w1(z1) - - on(Tn)Y(x) € H(% -
2]

z;)"NC[[z1 — z, -+, 2y — 2]] ® 7(X),. The composition property 6.2.7 for global
vertex operators implies this associativity property of u:
6.3.6 One has

p1(21) -+ on (@)Y (2) =

p1(21)(p2(@2)(- - (pn(an)(x)) - --) € C((z1 — 2((- - ((2n — ) ...))) @ 7(X)a.

Also if one of the ¢;’s is equal to 1, we may delete it.

6.4 Chiral algebra. Consider the three step complex Loe = (Lo — L1 — L) of
sheaves for the Zariski or étale topology of C. Here Lo = r(¥)c, L1 = w®o. (),
the differential d : £o — L£; is the de Rham differential, and Lo = £1/dLs =
HHr(r(¥)c) is the sheaf of de Rham cohomology with coefficients in the Dc-
module r(l)¢, and d : L1 — Ly is the projection.

6.4.1 For sections 71,72 of £ we define a section 1 * v2 of £1 by the formula
v1 % ¥2 = Resipu(y1 @ v2), and a section {v1,72} € Lo by the formula {v1,72} =
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R%Ts,u(yl ®72). Here 71 @79 is a section of L1 X L1 = 02, Qo o (r)c®r()c),
p(y1 ®72) is a section of we B Ly = N2, @pir(H¥)c with poles along the diagonal,
Res; is residue around the diagonal along the first variable, and Res was defined in
2.2.4. Now the lemma 6.3.5 implies immediately that d({y1,72}) =71 * 2 +72 %7
and for ¢ € Lo one has (dp) * v = 0. Define the bracket [, | : Lo @ Lo — L,

by the formula [dy1,dy2]o0 = d(v1 *72), [dy1,72J01 = —[v2,dn)i0 = 1 * 2,
[71,72)1,1 = {71, 72} for v; € £4. The associativity property 6.3.6 implies

6.4.2 Lemma. This bracket provides L with the structure of DG Lie algebra. [J

This DG Lie algebra (or rather its zero component L) is called the chiral Lie
algebra of our field theory.

6.4.3 Consider a canonical embedding i : Oc — ()¢ of Deo-modules, i(f) = f- 1.

Denote by C, the three step complex Cy = O¢ 4, C1 = we — Cy = H; here
H = H}y and the differential C; — Cj is the canonical projection. We get a
canonical morphism i : Cy — L4 of complexes, i(f) = f-1. One may see that i is
actually an embedding (for i this will follow from 6.4.6), and obviously i(Cl) lies
in the center of the chiral algebra.

6.4.4 For any » € A consider the Dz-module r(X)z. The formula y(m) =
Resipu(y ® m) for v € Lo, m € 7(X)g defines a canonical action of Lo on r(X)z
that commutes with the D z-action.

6.4.5 For any local field F' we may consider the “local” version Lpe of the above
Lce. This is a differential graded Lie algebra constructed in a way similar to
6.4.1. If F' = F, is a local field at a point x € C, then L2 = F, ®o., Lcs,
Lp1 = F,®o0c Loty Lpo = Hpp(Fp,7(¥)e) = Ly /dLg2. For any X € A we have
a canonical map Lro @ r(X)p — r(X)p, y® m — y(m) = Resou(y ® m). Here
piy®m) € Hhp(F) @ r(X)r and one has (cf. 6.4.4):

6.4.6 Lemma. This map defines a representation of the Lie algebra Lzo onr(X)p.

The central subalgebra C— Lo, i(a) = a, (see 6.4.3) acts on r(X)p by the
formula i(a)(m) = am. O

In particular, i(C) # 0; this implies, by degeneration arguments, that i : Co — Lo
is an embedding in the “global” situation.

Now assume that C' is compact, x1,---,z, € C, x; # x;,v; are 1-jets of pa-
rameters at z;’s, and Xy, -+, X,, € A. Put U = C\ {x1, -+ ,z,}. Consider the
pairing ( )o : "(X1)a,c @ @ 1r(Xn)zp o — (X1 Q@ @ Xp)ozs - We
have an obvious “localization” morphism Lo(U) — Lo(F%,), hence a natural action
of Lo(U) on @r(X;)s; vi.c-

6.4.7 Lemma. The morphism { )¢ is Lo(U)-invariant.

Proof. Stokes formula: we rewrite for £ € Lo(U) = Q! @ r(¥)y the sum
X1 (i) - pn) as B Respy, () p(21) - - @(20))- B

6.5 Stress-energy tensor. TO BE REWRITTEN! POSSIBLE MISTAKES!
For any local field F' consider the linear map 7p_o/7p_1 — r(W)p/C-1, 7 —
7(1) (see 3.4.1; recall that 1 is fixed by Tp_; by axiom c). The one-dimensional
space Tr_o/7Tr_1 canonically coincides with the fiber at 0 of 7©2. Tensoring this
map with the dual line, we get for any curve C' a canonical section T of w%Z ®
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Oc(r(¥)c/Oc¢). This section is called the stress-energy tensor. Multiplication by

T defines a canonical map 7c — we @ Oc(rW)c/Oc) = L1/C4 i>L',0/C'o (see
6.4.3).

6.5.1 Lemma. (i) The composition T — Ly/Cy is a morphism of Lie algebras.
(i) The corresponding “local” projective action (see 6.4.5, 6.4.6) of Tr C Lor/C
on r(X)p coincides with the canonical Virasoro action.

Remark. One should have a canonical isomorphism between the induced extension
of T by Cy = H and the Virasoro extension from §2, but we do not know how to
establish it at a moment.

Proof. Let us sketch a proof of (ii); one proves (i) in a similar way. We may assume
that ' = C((t)). Let us compute the action of the operator Lg := tX*19, .- T C
E@((t))o/(c on T(X)((I((t))- Take e € r(X)(C((t)),e* S T(*X)(C((tfl)). Consider the
function v(2) = (-0, (1.)-e-e*)p; here z € P1\ {0,00}, (  )p1 is the correlator
for fields i@t_z(lz) € 7(¥)c((t—2)),t—=» € € at points z,0,00. By definition, the
matrix coefficient (Lx(e),e*) is equal to Res,—oz%t1v(2)dz. We have the invari-
ance property (= 0,—.(1.)-e-e*)+{(1.) 2= de-e*)+{(1.)-e- - 0e*) = 0. Deleting
1. by az - e, we get (Lg(e),e*) = —Res.—o(( 250 - €*) + (e = 0e*)) - ZK T dz.

*

To compute i@te one should expand i around ¢t = 0, and to compute i@te
one should expand i at t = oo.

Hence

(Lge,e*) = —ReszzozK“(—(Z 2" O, e*) e, z 20 ))dz = (KT 0se, €),

n>0 n>0
since (t*Ose, e*) + (e, t*0se*) = 0. We see that Ly = t5+19;, q.e.d. O

6.6 Theta functions. Consider the vector spaces ()c, where C' is a smooth
connected compact curve (with empty set of distinguished points). They are fibers
of a lisse \°-twisted D-module (¥) on the moduli space of smooth curves. For
a point x € C we have (¥)c = (W¥;)c, hence one has a canonical map 7, :
r¥)e,c — F)c. The image 7. = 7,(1) is independent of the choice of z (since
0:(72(1z)) = 0). As C varies, the ¢ form a holomorphic section of (J).

Here is an explicit formula for v on the moduli space of elliptic curves. Consider
the usual uniformization of the moduli space by the upper half plane H with pa-
rameter z; then ¢ = exp(2miz) is the standard parameter at infinity. The family
of elliptic curves degenerates when ¢ — 0 in the standard way described in 3.6.6.
Hence on H we get a canonical trivialization (#)g = @®Cj,, horizontal with re-
spect to the trivialization of A described in 3.6.6. In this trivialization we have
v(a) = 3271, (q), where v/ (¢) = ey @ 70 by axiom g. The “global” trivializa-
tion of A° given by 7(q)¢ differs from the above trivialization by ¢°/? (see 3.6.6). In

this global 7-trivialization the components of v are vz, (q) = qc/24tr1jc<(t))q_L0. We
b

d) S SLQ(Z) the

) is a linear combination with constant coefficients of other 7, ’s.

see that these are holomorphic functions on H and for any <ch

az+b
cz+d

function v, (
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§7. LISSE REPRESENTATIONS

7.1 Singular support, lisse modules. Let g be a Lie algebra, and U = U(g)
its universal enveloping algebra. Then U is a filtered algebra (Uy = C,U; = C +
g,U; = Ui for i > 0), grU = &;U;/U;_1 = S*(g). For ¢ € U; its symbol o;(¢p) is
o mod U;_q € Sig; if o € U; \ U;—1 we will write o(¢) = 0:(¢p).

7.1.1 Let M be a finitely generated g-module. Recall that a good filtration M, on
M is a U,-filtration such that M = UM;, NM; = 0 and grM, is a finitely generated
S*®(g)-module. For example, if My C M is a finite dimensional vector subspace
that generates M, then M; = U; My is a good filtration. Any two good filtrations
M,, M, on M are comparable, i.e., for some a one has My o C M, C My ,.

Define the singular support SSM of M to be the support of the S*®(g)-module
grM,, where M, is a good filtration on M. This is a Zariski closed canonical subset
of SpecS®(g) = g*; it does not depend on the choice of a good filtration M,. If
n is a generic point of SSM, then the length of the S*®(g)-module (grM,), only
depends on M; denote it £,(M). We will say that M is finite at 7 if £,(M) < oo:
this means that (grM,), is killed by an ideal of finite codimension in S*(g),.

7.1.2 Remarks. (i) If M is generated by a single vector, M ~ U/I, then SS(M) is
the zero set of symbols of elements of I.

(ii) A more precise way to speak about this subject needs the microlocalization
language, see e.g. [Lal, Appendix.

The algebra grU = S°®(g) carries a Poisson bracket defined by the formula
{fi»9;} = fig; — 9jfi mod Uiyj_o; here f; € S'(g), fi € Ui, fi = fi mod Uj_1,
and the same for g;, {fi,g;} € S 7'(g). One has the following integrability
theorem, due to O. Gabber [Ga]:

7.1.3 Theorem. Let M be a finitely generated U-module finite at any generic
point of SSM. Then SSM is involutive, i.e., if f,g € S®(g) vanish on SSM, then
so does {f,g}. O

7.1.4 Definition. A finitely generated module M is lisse if SSM = {0}. More
generally, we will say that M is lisse along a vector subspace ¢ C g if SSM N{+ =
{0}. O

Note that any quotient of a lisse module is lisse. Any extension of a lisse module
by a lisse module is lisse. Any finite dimensional M is lisse; the converse is true if
dim g < oo.

Explicitly, a module M is lisse if amd only if for a finite dimensional subspace
V C M that generates M and any g € g there exists N > 0 such that ¢¥V C
Un-1V.

7.2 Finiteness property. Let k C g be a Lie subalgebra. We will say that a g-
module M is a (g, k)-module if k£ acts on M in a locally finite way (i.e., for any = € M
one has dimU (k)x < 00). If such an M is finitely generated, then it carries a good
k-invariant filtration (e.g., take a finite dimensional k-invariant subspace My C M
that generates M and put M; = U;My). Hence SSM C k*+ = (g/k)* C g*.
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7.2.1 Lemma. Let M be a finitely generated (g, k)-module and n C g be a vector
subspace such that dimg/n—+k < oo and M 1is lisse alongn. Then dimM /nM < co.

Proof. Let M, be a K-invariant good filtration on M, so gr M, is a finitely generated
S*(g/k)-module. Consider the induced filtration on M/nM. It suffices to see
that dimgr(M/nM) < oco. But gr(M/nM) is a quotient of grM/ngrM (since
gTZM/nM = Mi/Mi—l + (Mz N NM), (g?“M/TLgTM)Z = Mi/Mi—l + nMi_l). The
latter is a finitely generated module with zero support over the finitely generated
algebra S®(g/k + n), hence it is finitely generated. O

We will use 7.3.1 as follows. Assume we are in a situation 3.3, so we have a Harish-
Chandra pair (g, K), an S-localization data 1) = (S#, N, ¢, ¢g) for (g, K) and the
corresponding S-localization functor Ay : (g, K)-mod — Dy-mod. Certainly, any
(g, K)-module M is a (g, k)-module and SSM is an Ad K-invariant closed subset
of k*+. Now 7.2.1 (together with 3.3.4) implies:

7.2.2 Corollary. Assume that the following finiteness condition holds:
(*) The sheaf gﬁ/k?‘; + ©(N(oy) is Og-coherent.

Then for a lisse (g, K)-module M the Dy-module Ay (M) is lisse (see 3.2.7).
More generally, if a (g, K)-module M is lisse along any subspace po(Npys) C 8,
s € S#, then Ay (M) is a lisse Dy-module. O

The following corollaries of 7.1.3 will be useful.

7.2.3 Lemma. Let M be a (g,k)-module such that SSM has finite codimension
in k. Then SSM is involutive. O

7.2.4 Corollary. Assume that a Harish-Chandra pair (g, K) has the property that
any Zariski closed Ad K-invariant subset of k* is either {0} or has finite codimen-
sion. Then for any (g, K)-module M the SS(M) is involutive. O

7.3 Lisse modules over Virasoro algebra. Consider the Virasoro algebra T.:
this is the central C-extension of Lie algebra 7 = C((t)) that corresponds to the
2 cocycle (f0:, g0). = cRes(f’”g%). It carries the filtration 7., : for n > 1,
Ton = t"T1C[[1])0;, for n < 0, To,, = C + t"FC[[t])0;. Put L; := t719; € 7.. One
also has the following Lie subalgebras of T.:

ny =T C by = C[[t]]td; C Py = C[[t]]0;, n_ =C[t )0, C b_ = C[t~']t,,

soby = LieK, n, =Lie K; (see 3.4.1). One has by@&n_®C = T,, bynb_—f = CL.
7.3.1 A higher weight 7-module of central charge c is a (7,,b;)-module M such
that 1 € C C ’]~'C acts as idy; and any m € M is killed by some ;ZV'm for n > 0.
Denote by 7..-mod the category of such modules. Note that any M € 7.;-mod
isa (’f’c, K1)-module. We will say that M is Lo-diagonalizable if M coincides with
the direct sum of Ly-eigenspaces.

Let M be a higher weight module. Denote by *xM the space of those linear
functionals ¢ on M that are finite with respect to the action of ‘Ly. The operators
L; := 'L_; define the 7,-action on M. Clearly *M is a higher weight module
called the (contravariant) dual to M. One has an obvious morphism M — % % M
which is an isomorphism if amd only if the generalized eigenspaces of Ly on M are
finite dimensional. In particular this holds when M is a finitely generated module.
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7.3.2 Remark. For M € 7., -mod consider the monodromy operator T' = exp(27miLyg).
Clearly T' commutes with the Virasoro action, i.e., T € AutM. Hence one has a
canonical direct sum decomposition M = @ ¢ /ZMg, where Mz is the generalized
exp(2mia)-eigenspace of M. Denote by 7. z-mod the subcategory of those M’s
that M = Mg. Clearly 7.,-mod = HaGC/ZTchE‘mOd-

7.3.3 Lemma. For any finitely generated M € 1., -mod there are exactly three
possibilities for SSM: it is either equal to {0}, or to T = (C+ by)t, or to
Tt = (C+ Pyt

Proof. Clearly SSM C T4 It is Ad K-invariant (the Ad K-invariance is obvious;
for any ¢t € C the operator exp(tLy) acts on M, hence SSM is also Ad exp(tLg)-
invariant). It is easy to see that any Ad K-invariant Zariski closed subset of ’]i{j
is either {0} or coincides with one of the vector spaces ’]i{ ns > 0. According to
7.2.4 this ’f’c_n is the Lie subalgebra of ’i; this implies 7.3.3. U

For a higher weight module M consider the subspace M"+ of singular vectors.
Clearly M"™+ =# 0 and it is Lg-invariant, so we have a decomposition M"™+ =
@M(nh*“) by generalized eigenspaces of Ly. We will say that a singular vector v
heC

has generalized weight h if v € M(nh+) (i.e., if (Lo — h)™v = 0 for n > 0), and that

v has weight h if Lov = hv. As usual, the Verma module M., = M), € ’]N'C+—mod
is a module generated by a single “vacuum” singular vector v of weight h with
no other relations. This M, is the free U(n_)-module generated by vy, hence any
submodule of M}, generated by a singular vector is a Verma module. Denote by
L., = Ly, the (only) irreducible quotient of Mj. Any irreducible higher weight
module is isomorphic to some Lj, and the L’s with different h’s non-isomorphic.
One has *Ljy = Ly,.
The following basic facts are due to Feigin-Fuchs [FF].

7.3.4 Proposition. Let M = M; be a Verma module, N C M is a non-zero
submodule. Then
(i) N is generated by < 2 singular vectors, i.e., N is either a Verma submodule or
a sum of two Verma submodules.
(i) N is an intersection of <2 Verma submodules.
(ii) M/N has finite length.
(iv) The spaces M(nhf) have dimension < 1, therefore, by (i), the irreducible con-
stituents of M have multiplicity 1. O

7.3.5 Lemma. Let P € ’Z~Z+—m0d be a finitely generated module. Then
(i) P admits a filtration of finite length ¢ with successive quotients isomorphic to a
quotient of a Verma module.
(ii) The mazximal semisimple quotient of P has length < {.
(7ii) Any submodule of P is finitely generated.

Proof. Note that P is a quotient of some module ) induced from a finite dimen-
sional by-module. Such @ has a filtration with successive quotients isomorphic to
Verma modules. This implies (i) and reduces (ii), (iii) to the case of Verma module
which follows from 7.3.4 (i). O
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7.3.6 Lemma. Let M = My, be a Verma module, N C M be a non-zero submodule,
L= M/N. One has
(i) SSM = T =n*
(ii) SSL is either {0} or equals to T,
(iii) If SSL =0, then L is irreducible and N is generated by two singular vectors.
(iv) If N is a proper Verma submodule, then the coinvariants Liw_ n_) are infinite
dimensional.

Proof. (i) is obvious. To prove (ii) take a non-zero ¢ € U(n_) such that v, € N.
The symbol o(¢) vanishes on SSL, hence SSL # n*, and we are done by 7.3.3.

(iii) By 7.3.4 (iii) any reducible L has a quotient such that the corresponding N
is a Verma submodule. Since a quotient of a lisse module is lisse, (iii) is reduced
to a statement that for any proper Verma submodule N = M, C M} one has
SS My, /My # 0. By 7.2.1 this follows from (iv).

(iv) The commutant [n_, n_] is Lie subalgebra of n_ with basis L_3, L_4, L_5, .. ..
The quotient n_/[n_,n_] is abelian Lie algebra with basis L_1, L_5. To prove (iv)
note that My, , 7 is a free module over U(n_/[n_,n_]) = C[L_1, L 5] with gen-
erator Uy, and (Mpy/Mpu/)ja_ n_] is a quotient of My, ) modulo the C[L_;, L_»]
submodule generated by the image vy, of vy (since Mp, = U(n_)vp/). Since
Uy = Pup, where P is a polynomial of weight h' — h # 0, we see that our coin-
variants (Mp/Mp/)n_n_] = C[L_1,L_5]/PC[L_1,L_5] are infinite dimensional.
U

7.3.7 We will say that an irreducible module Ly, € ’i+—mod is minimal, or a Belavin-
Polyakov-Zamolodchikov module, if the conditions (i), (ii) below hold:
(i) For some integers p, g such that 1 < p < ¢, (p,q) = 1, one has

c=cpg=1-6(p—0q)°/pq

(clearly p, q are uniquely defined by c)
(ii) For some integers n,m, 0 < n < p,0 < m < ¢ one has

1
h=hpm=-—I[(ng—mp)?— (p—q)?.
nm 4pq[(nq mp)” — (p —q)7]

Clearly hy m = hp—p,g—m. For given ¢ = ¢, 4 there is exactly %(p —1)(¢g—1)
different minimal irreducible modules. Note that L., o is always minimal (since
0=hiq).

7.3.8 Proposition. ([FF] ) An irreducible module Ly, is minimal iff both the
following conditions hold:
(i) Ly, is dominant which means that Ly is not isomorphic to a subquotient of any

My b # h.
(ii) The kernel Ny of the projection My — Ly is generated by exactly 2 singular
vectors (see 7.3.4 (i)). O

7.8.9 Remarks. (i) For h = hpm,c = cpq the singular vectors from 7.3.8 (ii) have
weights h —nm, h — (p —n)(q —m). They are different by 7.3.4 (iv) (or by a direct
calculation).

(ii) It is easy to see, using contravariant duality, that L; is dominant iff M}
is a projective object in the category of Lg-diagonalizable higher weight modules.
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Equivalently, this means that M} = limM,sn) is a projective covering of L in

the category ﬁ+—mod. Here M ,(ln) is the higher weight module generated by the
singular vector v that satisfies the only relation (Lo — h)™v = 0.

7.3.10 Proposition. For an irreducible module L = L;, = My /Ny, the following
conditions are equivalent:

(i) L is lisse

(i) L is minimal

(iii) The coinvariants Ly, 1 are finite-dimensional

(iv) The invariants L*~"~1 are finite dimensional

(v) For some non-zero ¢ € U([n_,n_]) one has pv, € Ny,

Proof. One has (i) = (iii) by 7.2.1, (ili) <= (iv) by contravariant duality, (ii)
<= (iii) by [FF], (v) = (i) by 7.3.5 (ii) (since o(yp) vanishes on SSL, one has
SSL # TX,. It remains to show that (ii) = (v). So let L, be minimal. Put
T = Um_,n_])v, C Mj. We wish to see that the projection T' — L; is not
injective. This follows since the asymptotic dimension of T' is larger than the
one of Lj. Precisely, according to the character formula for L (see [K| prop. 4)
the function logtry (exp(2ntLy)) is asymptotically equivalent as ¢ — 0 to wa /12t
for some constant o < 1. On the other hand, one has logtrr(exp(—2ntLy)) =
log trar, (exp(2mt L)) +log(1—exp(—27t))+log(1l —exp(—4nt)) (since as Lo-module
My, is isomorphic to vy ® S(L_1,L_3,---), where the generators L_; of the sym-
metric algebra have weights i, and T is isomorphic to v, ® S(L_3, L_,,---)). This
function is asymptotically equivalent to 7/12¢. Since the spectrum of Ly is real,
this implies that T — L;, is not injective. O

7.8.11 Remark. For ¢ = ¢p 4, h = h11 = 0 one may prove that (ii) = (i) in a very
elementary way. Namely, by 7.3.8 (ii) one knows that Lg is minimal iff Ny does
not coincide with the submodule N’ of M, generated by L_ivy. Choose minimal
i such that for certain ¢ € U(n_); one has vy € Ny \ N’. Then the symbol of ¢
is prime to L_1, hence, by 7.3.5 (ii), Lo is lisse. This remark, due essentially to
Drinfeld, was a starting point for the results of this paragraph. O

7.3.12 Proposition. The following conditions on a higher weight module M are
equivalent
(i) M is a finitely generated lisse module

(i) M is isomorphic to a finite direct sum of minimal irreducible modules.

(iii) One has dim M!"-"-1 < oo

Proof. By 7.3.10 we know that (i) <= (ii) = (iii). We will use the following facts:
(*) Let Lj be a minimal irreducible module. Then any quotient of length 2 of M ,(Ln)
(see 7.3.9 (ii)) is actually a quotient of M) = M,(Ll) (i.e., is Lo-diagonalizable).
(**) If Lp,, Ly, are minimal and hy # ho, then M}, and M}y, have no common
irreducible component.

Here (*) follows from the fact that N, C M}, coincides with the 1st term of
Jantzen filtration, see [FF]; for (**) see [FF]. Note that (*) implies, by 7.3.8, 7.3.9
(ii), that

(***) Ext'(Lp,, Lp,) = 0 for any minimal Ly, , Ly, .

Now we may prove that (i) = (ii). By 7.3.10 it suffices to show that a lisse

module M is semisimple. Consider the maximal semisimple quotient P = M /N
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(see 7.3.5 (ii)). We have to show that N = 0. By 7.3.5 (iii) there is an irreducible
quotient @ = N/T of N, so we have a non-trivial extension 0 — Q@ — M/T —
P — 0 with lisse M/T. According to 7.3.9 (ii) and (**) we see that there exists
at most one minimal L, such that Ext!(Ly,Q) # 0. By (*) and 7.3.9 (i) for such
Ly, one has dim Ext!(Ly,Q) = 1. This implies that M/T is isomorphic to a direct
sum of minimal irreducible modules and a length 2 module which is a non-trivial
extension of a minimal module Lj by Q. By 7.3.9 (ii) and (*) this extension is a
quotient of a Verma module. By 7.3.5 (ii) it is non-lisse, hence M /T is non-lisse.
Contradiction.

Let us prove that (iii) = (ii). Let M be a module such that dim MM+"+] = <
oo. Let M’ C M be a maximal semisimple submodule of M. By 7.3.10 M’ is a direct
sum of minimal irreducible modules. Clearly the length of M’ is < r, so it suffices
to show thatM’ = M. Note that any non-zero submodule N C M intersects M’
non-trivially (if NN M’ = 0 then, shrinking N if necessary, we may assume that N is
a quotient of a Verma module. If N has finite length, then it contains an irreducbile
submodule, which lies in M’. If N has infinite length, then, by 7.3.4, dim N"+ = oo;
since N™ C M[™+"+] this is not true). Assume that M/M’ # 0. Replacing M
by an appropriate submodule that contains M we may assume that M/M’ is a
quotient of a Verma module, in particular M /M’ is Lg-diagonalizable. Consider
the dual extension 0 — *(M/M') — «M — *M’ — 0. One has *M’' = @®Ly,,
hence, by 7.3.8, 7.3.9 (ii) the projection &M}, — &Lj, = *M’ lifts to the map
®M ;(LQ) — «M. This map is surjective (otherwise the dual to its cokernel would
intersect M’ trivially), hence *M has finite length. Replacing x(M/M’) by its
irreducible quotient we may assume that M /M’ is irreducible.

As above (see the proof (i) = (ii))*M is a direct sum of irreducible minimal
modules plus a length two non-trivial extension of a minimal module Lj. By
7.39 (ii), 7.3.4 (ii) and (*) above this length two extension is a quotient of M},
by a Verma submodule. By 7.3.6 (iv) the coinvariant (+M);,_ ., are of infinite

dimension. Since (*M)pm_ w1 = (M*=r-1)* e are done. O

7.3.13 Now for n > 1 consider the product of Virasoro algebras ’j'c”: this is a central
C-extension of 7" with cocycle ((f;0:), (gi0t))e = Z(fiat,gi8t>c (see 3.4.1). The

above theory extends to ’Z~'C" in an easy manner. Namely, we have a standard
subalgebra ny = [[ny; C by = [[by; C py = [[pys, ny C b = [[by,f =
birNb_ = C" etc. of in One defines the corresponding category 7} -mod of higher
weight modules in an obvious manner. We have an obvious functor ® : [[ Zc4+-mod
— 1% -mod, (My,...,M,) — M; ®...® M,. Clearly SSM; ® ... ® M,, =
SSM; x SSMy x -+ x §SSM,,.

For i = (h;) € C" we have the corresponding Verma module M, = ® M}, and
its unique irreducible quotient Ly = ®Ly,; any irreducible higher weight module is
isomorphic to a unique Ly. It follows from 7.3.4 (iv) that any submodule N C M}
is tensor product ®N; of submodules N; C Mj,,, so the structure of N is clear from
7.3.4. The lemma 7.3.5 (with its proof) remains valid for 7} -mod. The version of

7.3.6 for ’i” case (with obvious modifications) follows immediately from the case
n = 1. A module Ly = ®Ly, is called minimal if all L, are minimal (see 7.3.7).
The analog of 7.3.8 (with “2 singular vectors” replaced by “2n singular vectors”)
remains obviously valid, as well as 7.3.9. The proposition 7.3.10 remains valid and
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follows directly from the case n = 1. The proposition 7.3.12 remains valid together
with its proof.
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§8. MINIMAL MODELS

These were defined by Belavin, Polyakov and Zamolodchikov [BPZ]. Let us start
with a general representation-theoretic construction.
8.1 Fusion functors for Virasoro algebra. Let C' be a compact smooth curve,
A,B C C be two finite sets of points such that AN B = ,A # (. For a
central charge ¢ € C we have Virasoro algebra 74 which is central C-extension of
TA = HZL (where 7, = vector fields on punctured formal disc at a) and similar

acA

algebras 7.2, 7AYB. One has a canonical surjective map 74 x 7.F — TAYB (which
is factorization by {(a, —a)} C C x C); the morphisms 7A — 7A“B «— T B are
injective. One also has the canonical embedding i 5 : 7(U) — TA“B| where
U= C\(AUB), and the ones is : T(C\ A) — TA,ip : T(C\ B) — 1.
There is also a canonical morphism jg : 7(C \ A) — 7.2 which is composition of
the obvious embedding 7(C' \ A) — 75 and the section sp, : 78 — 7.B. The
restriction iAuBlT(C\ 4 T(C\NA) — TAYB coincides with ia + jp.

8.1.1 Assume we have a positive divisor d = > nyb > 0 supported on B. Let
T(C\ A,d) C T(C\ A,d) be the Lie subalgebra of vector fields vanishing of order
>np+ 1 at any b € B. Clearly one has 7(C'\ A,dy) C T(C \ A,ds) for di > ds,
and T(C\ A,0)/T(C\ A,d) = TP /TP, where TP = [[Tn,»- Let eq : TP —
TA/is(T(C\ A,d)) be the composition

T2 — TP /30, (Tp.a) — T2 [iaus(T(U)) + 50, (T5.a0)<T [ia(T(C\ A, d)).

C

The maps tq are compatible, so we have € = limeg : 72 — lim7T 4 /i o (T (C\ A, d)).

d d

8.1.2 Now we are able to define the (contravariant) fusion functor F¢ : ’ch —mod —
’iB — mod.

Let M be any i’cA—module (soleCcC ’ch acts as idyr). Put Fo(M) =
U M*io(T(C\ A,d)) C M*; therefore an element of Fo (M) is a linear functional
d

on M invariant with respect to some i4(7(C \ A,d)). For r € T2, { € Fo(M)
put 7(¢) = te(r)(¢). It is easy to see that this formula is correct, 7(¢) lies in

Fo(M) ¢ M* and (1,¢) — 7(¢) is TB-action on Fg(M). This way Fo (M)
becomes 7.P-module. One has an easy

8.1.3 Lemma.
(i) One has Fo(M) = UfC(M)TB’d; and Fo(M)TB.a = (Mzc\a,a)*

(ii) Let N be any T2 -module s.t. N = UNTBvd. Then Hom(N,FcM) =

(M & N)ran]* (here we consider M @ N as TAYB _module via the surjection

zj—cA « zj;B _ 7-CA|_|B)' ]
(From now on let us fix a central charge ¢ = ¢, from the list 7.3.7(i). We

will assume that our virasoro modules have central charge c. Let M be a finitely
generated higher weight 7;*-module.
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8.1.4 Corollary. (i) Fc(M) is finitely generated lisse higher weight ’ch-module.
(ii) For any finitely generated higher weight T.2-module N one has (M®N)7w) =

(M ®N)’T(U); where N is the mazimal lisse quotient of N.

Proof. (i) Use 8.1.3 (i), 7.2.1, 7.3.12 (inversion 7.3.13).

(i) First note that the maximal lisse quotient N exists and has finite length by 7.3.5,
7.3.8,7.3.12. By 8.1.3 (ii), 8.1.4 (i) one has (M ® N)7 ;) = Hom(N, Fo(M)) =

Hom(N, Fo(M)) = (M @ N)y ). q.e.d. 0

For h = (hy) € CB let LP = ®Lc,hb be the irreducible 7.2-module of higher

beB
weight h.

8.1.5 Corollary. One has a canonical isomorphism Mz ay = (M ® L(?)T(U).

Proof. Clearly Mzc\a) = (Indggg)\A)M)T(U). But Indggg)\A)M coincides, as

7 (U)-module, with iAUB-module M® Pf, where P,g = ®Pc,o,b, P., is a quo-
beB

tient of Verma module M, o modulo relation L_jv9 = 0. Clearly Lf is maximal

lisse quotient of PP (see 7.3.8), and 8.1.5 follows from 8.1.4 (ii). O

8.1.6 Corollary. Let dy be the divisor Zb. Consider the action of Lie algebra
beB

T(C\ A0)/T(C\ A, d) =TP/TP = CP on coinvariants Mz q,). This ac-

tion is semisimple. For h = (hy) € CB the (hy)-component M) is equal to the

coinvariants (M & LhB)T(U). This space vanishes unless all hy lie in the list 7.5.7

(ii).

Proof. Similar to 8.1.5; the semi-simplicity of CB-action follows from 7.3.12 (ii). O

8.1.7 Corollary. Assume that B consists of two points by, by. Let T(C \ A, B)'

C T(C\ A,0) be the Lie subalgebra of vector fields that project to {(a,—a)} C C?
via the projection to T(C'\ A,0)/T(C \ A,dy) = C*>. Then Mrc\a,py = ®(M ®
Le b, ® Leny,)7(v), where Ley runs the list 7.3.7 (ii) of irreducible lisse modules.

Proof. Similar to 8.1.6. ]

8.2 Localization of lisse modules. Let 7 : Cs — S be a family of smooth
projective curves, A C Cs(S) be a finite non-empty disjoint set of sections, v, are
1-jets of parameters at a € A. By 3.4.3-3.4.7 these define the S-localization data for
(’Z~;A, v1). Consider the corresponding S-localization functor A, : (iA,vl)c—mod

— Djye-modules on S. Assume as above that M is a lisse (72, v;).-module.

8.2.1 Lemma. The Dyc-module Ay, (M) is lisse with reqular singularities at in-
finity.

Proof. Lissing follows from 7.2.2; the statement on regular singularities follows from
8.2.5 below. O

8.2.2 Assume now that S = SpecC|[g]], 7 : Cs — S be a projective family of curves
such that the generic fiber (), is smooth and the closed fiber Cy has the only singular
point b which is quadratic, A C Cg(.S) be a finite non-empty disjoint set of sections,
and {v,} be a 1-jet of coordinates at a € A.
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This collection defines an S-localization data “with logarithmic singularities at
g = 0” for (’ch,vl). (The definition of “S-loc. data 1 with log. sing. at q =
0” coincides with 3.3.3 but we replace the condition that N is a transitive Lie
algebroid by the one that a canonical map o : N — 7g has image equal to 79 =
qTs = Cl[q]]gdy. As in 3.3 such data defines an Og-extension Aj of 7¢ and
the corresponding associative algebra D%C which is isomorphic to the subalgebra of
Dcjq) generated by C[[q]] = Os and qd,. We have the corresponding S-localization
functor Acy : (TA v1)-mod — D0 _-mod. The definition of this 9 repeats word-for-
word 3.4.3-3.4.7: we get the loc. data with logarithmic singularities just because
T2 consists precisely of those vector fields that could be lifted to Cs \ A(S). Note
that the “vertical” part N = kero C N is a free Og-module and Ng)/qN(o)
coincides with the Lie algebra 7 (Cy \ A, B)’, where C{ is the normalization of Cj
and B = {by,by} is the preimage of b (see 8.1.7). According to 3.5 the algebra
DEL coincides with the algebra DAc of differential operators on the determinant

bundle A¢ generated by “qd,” and (’)S

Now let t1,t3 be formal coordinates at b such that ¢ = t1t2. Let C¥ be the
corresponding smooth S-curve (our b’s are the a’s in 3.6.1). We have canonical
points by, by € C¥(S) with parameters t1,ts. Take 1-jets of parameters ¢~ 'dt;, dts
(see 6.1.4) at b’s. These, together with A,v4, define C((q))-localization data for

(’]NZA“B ,v1). The corresponding algebra coincides with Dkgv , so we have the local-
7

ization functor Acy : (TAYB v)-mod — Dje,, -mod.
n

8.2.3 Let ‘H be a lisse Dyc -module, ie. a finite dimensional C((t))-vector space

with D-action. An h-lattice Hp, C H, where h € C, is a C[[t]]-lattice in H invariant
with respect to the action of D{. and such that the operator q9, € D)\c /q acts

CV
on Hp/qH, as multiplication by h Certainly, such Hj, exists iff H has regular
singularities at 0 with monodromy equal to h mod 7Z; if Hj, exists, it is unique, so
we’ll call it “the” h-lattice.
From now on let M be a lisse iA—module.

8.2.4 Lemma. Foranyh € C, ACnV (M ® Lpy, @ Lpp, ) is a lisse module that admits
the h-lattice ACX (M ® Lp @ Lp)p,.

Proof. “lisse” follows from 8.1.4 (ii), 7.2.1. The existence of h-lattice follows easily
from 3.4.7.1. O

According to 3.6.3 we have a canonical isomorphism D>\c =D ,\c . Denote this
algebra Dy.. So, by 8.2.4, we have for any h € C a DY,- module DAc J(MeL,®

Lp)p, which is zero if Ly, is not lisse (i.e. if A # hyy, from 7.3.7 (ii)) by 8.1.4 (ii).
On the other hand, we have the DY.-module Ac(M).

8.2.5 Proposition. There is a canonical isomorphism of D.-modules

Acs(M) =P Acy (M ® Ly, @ Ly
h



91

Proof. First, note that Acg (M) is a coherent Og-module by a version of 7.2.2
“with logarithmic singularities”. Namely, Aoy (M) is a coherent DY.-module, and
its singular support C Spec(grD3.) is 0 section since M is lisse; hence Acy (M) is
Og-coherent.

Let e; be a basis of Ljc(()) that consists of Lo-eigenvectors, so Loe; = (h—n;)e;
for n; € Z > 0; let e} be the dual basis in Lyc()) = *Lnc(r))- It is easy to see that
ACX (M ®Lp® L), C ACrY (M ® Ly ® L) is Og-submodule generated by images
of elements ¢,,,"* ® e; @ e}, where m € M ¢y, €i € Linc((t1)),q-1t), €] € Ln(C((t2)),t2)
(see 6.1.4 for notations).

To prove 8.2.5 it suffices to construct a morphism of DY.-modules Acg (M) —
©Acy ()n which induces isomorphism mod ¢ (since both are coherent Og-modules,
and the one on the right hand has no ¢-torsion, this morphism will be isomorphism).

The h-component of this morphism just maps the image of m € Ma,cg = Ma cy
in Acy(M) to the image of Zm ®e; ®e; in Acy(M ® L @ Lp). It is easy
to see that this formula defines a correctly defined morphism of DY.-modules (cf.

6.1.5). It induces isomorphism modulo g by 8.1.7 (since Acy (M)/q = My /4Ny =
M’T(CS/\A,B)/’ see 822) ]

8.3 Definition of minimal theories. Now we may define the minimal theory.
Pick central charge ¢ = ¢, 4 from the list 7.3.7(i).

The fusion category A = A, , is category of finitely generated lisse higher weight
modules for Virasoro algebra 7. of central charge c¢. By 7.3.12 it satisfies the
conditions listed in the beginning of 4.5.1. The data from 4.5.1 ar the following
ones:

The duality functor * : A° — A is contravariant duality (see 7.3.1).

The vacuum module ¥ is L, ,; the isomorphism #§ = I is canonical one (that
identifies the vacuum vectors).

The Dehn automorphism d is equal to the monodromy automorphism T =
exp2nil, from 7.3.2.

We will define a canonical fusion structure on A simultaneously with the struc-
tures 6.1 of algebraic field theory. Namely, our realization functor r : A — (’i, v1)-
mod is “identity” embedding. The vacuum vector 1 € r(W) = Lg is vp.

Let 7 : Cg — S, A C Cs(S),va, be as in 6.1.2. Assume that A # (). For any
X € A®4 the Dye-module Ay (X) is lisse holonomic with regular singularities at
00. We put (X)cg = Ay, (X) and 7 from 6.1.2 (iv) is identity map.

Assume now that A = (). We should define a canonical lisse Dyc-module (¥)c.
Let us make the base change and consider ng : Co = Cg xg Cg — Cg: this is a
family of curves with a canonical (diagonal) section a. Consider the Dyc-module
() ; thisis alisse D ye-module on Cg generated by the holomorphic section (1)¢ .
Note that (1), is horizontal along the fibers of 7 : C's — S. Hence there exists a
(unique) Djye-module (¥)cy on S together with a holomorphic section (1)¢, such
that <Héa>c'c = 7T*<H4>Cs’ <1>Cc = 7r>k<1>05'

Note that the axioms 4.5.4 (ii) and 6.1.2e hold by 8.1.5. The axiom 6.1.3f holds
automatically. It remains to define the isomorphism 4.5.5 (ii) that will satisfy the
axiom ¢ from 6.1. This was done in 8.2.5 above (note that since *L;, = Ly, we have
R=®L;,® Lh)



92

By the way, the covariant fusion functor .7-"&4 B from 4.6 is *F¢ for contravariant
Fe from 8.1 (by 8.1.3 (iii)).



