Moduli of (complex) abelian varieties: homology and compactifications

Samuel Grushevsky

Stony Brook University

Raum, Zeit, Materie SFB seminar January 5, 2016

(Complex) Elliptic curves = Riemann surfaces of genus one

- · Geometrically:
- Algebraically: $E_{\lambda} = \text{closure of } \{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{C}^2$
- Analytically: E = C/Λ, for Λ a lattice of full rank:
 - $\Lambda \approx \mathbb{Z}^2$; $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{C}$; So $E_\tau = \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$.

When are two elliptic curves equal?biholomorphic? What does "equal" mean?

As complex manifolds, biholomorphic?

... or isomorphic as algebraic varieties?

... or as lattices?

These are all equivalent!

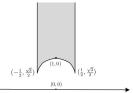
Theorem

 $E_{\lambda} \approx E_{\lambda'}$ if and only if $j(\lambda) = j(\lambda')$.

Theorem

Any holomorphic map $E_{\tau} \to E_{\tau'}$ lifts to a linear map $\mathbb{C} \to \mathbb{C}$. Then $E_{\tau} \approx E_{\tau'}$ if and only if $\exists \begin{pmatrix} a & b \\ a & b \end{pmatrix} \in SL(2, \mathbb{Z})$ such that $\tau' = (\tau + b)(\tau + d)^{-1}$ Moduli of (complex) elliptic curves with a marked point Difficulty: any elliptic curve has infinitely many automorphisms $z \mapsto z + a$, for any $a \in \mathbb{C}$.

Thus mark a point on E and require the automorphisms to fix it.



- Global geometry not immediately visible.
- Orbifold points τ = e^{2πi/3} and τ = i: extra automorphisms.
- The moduli space is not compact.
- · Compactified by adding the point at infinity, then

$$\mathcal{M}_{1,1} = \mathcal{A}_1 = \mathbb{P}^1$$

with three "special" points on \mathbb{P}^1 .

Generalizing moduli of elliptic curves. Approach 1: Riemann surfaces

 \mathcal{M}_g :=moduli of compact Riemann surfaces of genus $g \geq 1$, up to biholomorphism.

- A Riemann surface of genus g > 1 has at most 84(g 1) automorphisms, thus no need to mark any points to get a good moduli space.
- *M_g* is a complex orbifold of dimension 3g − 3 [RIEMANN].
- *M_g* has a nice *Deligne-Mumford compactification M_g*, which is a smooth orbifold, with simple normal crossing boundary.
- Geometry and topology of M_g and M_g are studied extensively.
- The homology or Chow rings of M_g or M_g are very difficult and very big, but there is a natural tautological subring.
- Strong Faber's conjectures on the tautological ring.

Generalizing moduli of elliptic curves. Approach 2: abelian varieties algebraically

Abelian variety: a projective g-dimensional variety A (a compact submanifold of \mathbb{CP}^N), group structure on points.

Principal polarization: the first Chern class of an ample line bundle Θ with one section.

(Ample means has positive curvature; equivalently, the space of sections of $\Theta^{\otimes n}$ embeds A into \mathbb{CP}^N , for n large enough)

(for g = 1, this is just one point on A)

 \mathcal{A}_g : the moduli space of principally polarized abelian varieties up to an algebraic isomorphism.

Generalizing moduli of elliptic curves. Approach 3: complex abelian varieties analytically

Abelian variety $A_{\tau} := \mathbb{C}^g / \mathbb{Z}^g + \mathbb{Z}^g \tau$, where the Period matrix τ lies in the Siegel upper half-space

$$\mathcal{H}_{g} := \{ \tau \in Mat_{g \times g}(\mathbb{C}) \mid \tau = \tau^{t}, Im \tau > 0 \}$$

Polarization Θ_{τ} : the zero locus in A_{τ} of the theta function

$$\theta(z) := \sum_{n \in \mathbb{Z}^d} \exp\left((\pi i n^t (\tau n + 2z)\right).$$

Isomorphism of principally polarized abelian varieties: a biholomorphism that preserves polarization.

Moduli of abelian varieties, complex-analytically

Theorem

Any holomorphic map $A_\tau\to A_{\tau'}$ lifts to a linear holomorphic map $\mathbb{C}^g\to\mathbb{C}^g$. It follows that

$$A_g = Sp(2g, \mathbb{Z}) \setminus \mathcal{H}_g$$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \circ \tau = (C\tau + D)^{-1}(A\tau + B).$

Properties of \mathcal{A}_g :

- Smooth orbifold: for any τ, Stab(τ) ⊂ Sp(2g, Z) is finite.
- dim_C $\mathcal{A}_g = \frac{g(g+1)}{2} = \dim_{\mathbb{C}}(\text{symmetric } Mat_{g \times g}(\mathbb{C})).$
- H^{*}(A_g) = H^{*}(Sp(2g, ℤ)) in general is extremely complicated.
- A_g is not compact.
- There are many approaches to compactifying A_g!

Stable cohomology of \mathcal{A}_g

Hodge vector bundle: the rank g vector bundle $\mathbb{E} \to \mathcal{A}_g$ of holomorphic 1-forms: it has fiber $H^{1,0}(\mathcal{A})$ over $[\mathcal{A}]$.

Hodge classes $\lambda_i := c_i(\mathbb{E}) \in H^{2i}(\mathcal{A}_g, \mathbb{Q})$ the Chern classes of the Hodge bundle (also in Chow $CH^i(\mathcal{A}_g)$).

Theorem (BOREL)

 $H^{k}(\mathcal{A}_{g}, \mathbb{Q})$ is independent of g, for g > k, and is freely generated by $\{\lambda_{2i+1}\}$.

Borel's proof is about group cohomology of $Sp(2g, \mathbb{Z})$. Since \mathcal{H}_g is contractible, $H^*(\mathcal{A}_g) = H^*(Sp(2g, \mathbb{Z}))$.

(Of course no approach in sight to stabilization of $CH^k(\mathcal{A}_g)$)

Question Why don't the λ_{2i} appear?

Relation among the Hodge classes on \mathcal{A}_g

 $\mathbb{E}\oplus\overline{\mathbb{E}}$ is the rank 2g bundle over \mathcal{A}_g , with fiber

$$H^1(A,\mathbb{C}) = H^{1,0}(A,\mathbb{C}) \oplus H^{0,1}(A,\mathbb{C}).$$

Thus $c_i(\mathbb{E} \oplus \overline{\mathbb{E}}) = 0$ for i > 0.

Theorem (MUMFORD'S Basic identity)

 $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1 \in H^*(\mathcal{A}_g).$

Corollary

All even λ 's can be expressed as polynomials in odd λ 's:

$$\lambda_2 = \frac{\lambda_1^2}{2}, \qquad \lambda_4 = \lambda_1 \lambda_3 - \frac{\lambda_1^4}{8}, \qquad \dots$$

Stable cohomology of \mathcal{M}_g

Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ sends a Riemann surface to its Jacobian. Hodge bundle and classes pull back, the basic identity pulls back.

Theorem (HARER)

 $H^k(\mathcal{M}_g,\mathbb{Q})$ is independent of g, for $g \gg k$.

Theorem (MADSEN-WEISS [MUMFORD'S conjecture])

 $H^k(\mathcal{M}_g)$ is freely generated by $\kappa_i \in H^{2i}(\mathcal{M}_g)$ for g > 3k.

Mumford-Morita-Miller kappa classes:

$$\begin{split} \Psi :=& (c_1 \text{ of }) \text{ the line bundle over } \mathcal{M}_{g,1} \text{ with } \Psi|_{X,p} = T_p^* X. \\ \pi : \mathcal{M}_{g,1} \to \mathcal{M}_g \text{ the forgetful map;} \qquad \qquad \kappa_i := \pi_*(\Psi^{i+1}). \end{split}$$

Proofs are topological: $M_g = T_g/MCG_g$, the Teichmüller space is contractible. HARER, MADSEN-WEISS deal with $H^*(MCG_g)$.

Tautological rings of \mathcal{A}_g and \mathcal{M}_g

 λ_i on \mathcal{A}_g and κ_i on \mathcal{M}_g are defined also outside of stable range.

Tautological ring $R^*(A_g)$: subring of cohomology generated by λ_i . Tautological ring $R^*(M_g)$: subring of cohomology generated by κ_i . (Should also consider these as subrings in the Chow).

Theorem (VAN DER GEER)

The only relations in $R^*(\mathcal{A}_g)$ are $\lambda_g = 0$ and the basic identity $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1.$

 $\implies R^*(\mathcal{A}_g)$ has Poincaré duality with socle in dimension $2 \cdot \frac{g(g-1)}{2}$.

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has Poincaré duality with socle in dimension $2 \cdot (g-2)$.

Faber's conjecture: status and corollaries

Faber's conjecture

 $R^*(\mathcal{M}_g)$ has Poincaré duality with socle in complex dimension $2 \cdot (g-2)g - 2$.

- Vanishing: $R^k(\mathcal{M}_g) = 0$ for k > g 2. **True** [IONEL, LOOIJENGA, GRABER-VAKIL, ...]
- Socle: $R^{g-2}(\mathcal{M}_g) = \mathbb{Q}$. **True** [FABER, LOOIJENGA]
- Perfect Pairing: R^k(M_g) × R^{g-2-k}(M_g) → R^{g-2}(M_g) = Q is a perfect pairing, R^k = (R^{g-k})^{*}.

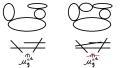
Not known! Fails for the analog for $\overline{\mathcal{M}}_{g,n}, \mathcal{M}_{g,n}^{ct}$ [PETERSEN, PETERSEN-TOMMASI]

Conjecture says $R^*(\mathcal{M}_g)$ "looks like" cohomology of a compact X of dimension 2 (g-2), with no odd cohomology. What is X? How to test the conjecture? Want to use intersection theory, but cannot on the open space \mathcal{M}_g . Intersection used for $\overline{\mathcal{M}}_g$.

Compactifying \mathcal{M}_g

Deligne-Mumford compactification $\overline{\mathcal{M}}_g$: boundary is a collection of irreducible divisors, normal crossing.

Curves of compact type: $\mathcal{M}_g^{ct} = \overline{\mathcal{M}}_g \setminus \delta_0.$



Tautological rings of $\overline{\mathcal{M}}_g$ and \mathcal{M}_g^{ct} : generated by κ_i , all boundary strata, κ_i and Ψ pushed from the boundary, ...

Faber's questions

Does $R^*(\overline{\mathcal{M}}_g)$ have duality with socle in dimension 3g - 3?

Compactifying A_g : Satake-Baily Borel compactification

Satake compactification: As a set, $\mathcal{A}_{S}^{\text{Sat}} = \mathcal{A}_{g} \sqcup \mathcal{A}_{g-1} \sqcup \ldots \sqcup \mathcal{A}_{0}.$ To put scheme structure: $\lim_{t \to \infty} {\binom{it \quad z^{t}}{z \quad \tau'}} := \tau'.$

More generally, cross out all rows and columns with infinities (in fact, take out the kernel of $Im \tau$):

$$\lim_{\substack{t_1, t_2 \to \infty \\ \tau_1, t_2 \to \infty}} \begin{pmatrix} \tau_1 & * & * & * & \tau_2 \\ * & * & it_1 & * & * \\ * & it_1 & * & * & * \\ * & * & it_2 & * \\ \tau_2^t & * & * & * & \tau_3 \end{pmatrix} := \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2^t & \tau_3 \end{pmatrix}.$$

- As a set, A^{Sat} is very easy to describe.
- There is no reasonable universal family of abelian varieties over $\mathcal{A}_{s}^{\text{pet}}.$
- A^{Sat}_g is very singular, boundary is codimension g.

Tautological ring of $\mathcal{A}_{g}^{\mathsf{Sat}}$

 $R^*(\mathcal{A}_g^{Sat})$ is the ring generated by Hodge classes λ_i .

Theorem (EKEDAHL-OORT)

The class of $A_{g-1} \subset A_g^{Sat}$ is a multiple of λ_g .

Theorem (VAN DER GEER in H^* , ESNAULT-VIEHWEG in CH^*)

The only relation in $R^*(\mathcal{A}_g^{\text{Sat}})$ is the basic identity $(1 + \lambda_1 + \ldots + \lambda_g) \cdot (1 - \lambda_1 + \ldots + (-1)^g \lambda_g) = 1.$

Curiosity

Note that $R^*(\mathcal{A}_g^{\mathsf{Sat}}) = R^*(\mathcal{A}_{g+1})$. Why?

Toroidal compactifications of \mathcal{A}_g

Idea: bigger than \mathcal{A}_g^{Sat} , with a universal family.

Universal family of abelian varieties $\mathcal{X}_g \to \mathcal{A}_g$: fiber A over [A]. Then set $\lim_{t\to\infty} \begin{pmatrix} it & z^t \\ z & \tau' \end{pmatrix} := (\tau', z) \in \mathcal{X}_{g-1}$.

So $\mathcal{A}_{g}^{Tor} = \mathcal{A}_{g} \ \sqcup \ \mathcal{X}_{g-1} \sqcup$???. How to continue further? Maybe

$$\lim_{\substack{t_1,t_2\to\infty\\z_1\ z_2\ z_1\ z_2\ \tau'}} \left(\begin{matrix} it_1 & x & z_1^t\\ x & it_2 & z_2^t\\ z_1 & z_2 & \tau' \end{matrix} \right) := (\tau',z_1,z_2) \in \mathcal{X}_{g-2}^{\times 2} ?$$

No good! Codimension 2 degeneration, need to record x. Correct approach: don't go to infinity, consider $Ker(Im(\tau))$.

Data for compactification: for each $k \leq g$ a decomposition of $Sym_{\geq 0}^2(\mathbb{R}^k)$ into polyhedral cones, invariant under $GL_k(\mathbb{Z})$.

Toroidal compactifications $\mathcal{A}_{g}^{\mathsf{Perf}}$ and $\mathcal{A}_{g}^{\mathsf{Vor}}$

Perfect cone compactification $\mathcal{A}_{\varphi}^{\mathsf{Perf}}$

- The boundary $\partial \mathcal{A}_{g}^{\mathsf{Perf}}$ is irreducible, \mathcal{X}_{g-1} is dense within it.
- Maps to A^{Sat}_g, the structure over A_{g-k} is some toric variety bundle over X^{×k}_{g-k} independent of g — only depends on k.
- Is the canonical model of \mathcal{A}_g for $g \ge 12$ for the minimal model program, i.e. $\mathcal{K}_{\mathcal{A}_p^{\text{perf}}}$ is ample. [SHEPHERD-BARRON]
- No known universal family over A^{Perf}_g.

Second Voronoi compactification $\mathcal{A}_{\varphi}^{\mathsf{Vor}}$

- The boundary ∂A^{Vor}_g has many (likely ≫ g) irreducible divisorial components.
- Maps to $\mathcal{A}_g^{\text{Sat}}$, exist boundary divisors mapping to \mathcal{A}_k for small k.
- There exists a universal family of semiabelic varieties over $\mathcal{A}_g^{\mathrm{Vor}}$. [ALEXEEV]

Intersection theory of divisors on \mathcal{A}_{g}^{Tor}

$$\begin{split} & L := \lambda_1; \ D := \text{the sum of all boundary divisors.} \\ & (L \text{ and } D \text{ span } H^2(\mathcal{A}_g^{\text{Perf}}) = \text{Pic}(\mathcal{A}_g^{\text{Perf}})) \end{split}$$

Conjecture [G.-HULEK]

The intersection number $L^a D^{\frac{g(g+1)}{2}-a}$ is zero unless $a = \frac{k(k+1)}{2}$.

Theorem (ERDENBERGER-G.-HULEK)

The conjecture holds for $g \leq 4$ for any a.

Theorem (G.-HULEK)

The conjecture holds for $a > \frac{(g-3)(g-2)}{2}$ for any g.

Any reason for this to hold?

Note $\frac{k(k+1)}{2}$ are dimensions of boundary strata of $\mathcal{A}_g^{\mathsf{Sat}}$...

Stable cohomology of $\mathcal{A}_{g}^{\mathsf{Sat}}$

Theorem (CHARNEY-LEE)

The cohomology $H^k(\mathcal{A}_g^{\text{Sat}})$ is independent of g for g > k, and is freely generated by $\lambda_1, \lambda_3, \lambda_5, \ldots$ and $\alpha_3, \alpha_5, \ldots$.

Proof purely topological.

Theorem (CHEN-LOOIJENGA)

No polynomial in the classes α_i is algebraic.

Also gives a more algebraic proof.

Thus it is natural to still define the (algebraic) tautological ring of \mathcal{A}_{g}^{fat} to be generated by λ_{i} .

Stable cohomology of $\mathcal{A}^{\mathsf{Perf}}_{\sigma}$

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^{g(g+1)-k}(\mathcal{A}_g^{\mathsf{Perf}})$ is independent of g for g > k, and is purely algebraic.

 $\mathcal{A}_{g}^{\mathsf{Perf}}$ is singular, so there is no Poincaré duality, can have

$$H^{g(g+1)-k}(\mathcal{A}_g^{\operatorname{Perf}}) \not\simeq H_k(\mathcal{A}_g^{\operatorname{Perf}}).$$

 $\label{eq:matrix} \text{Smooth matroidal locus } \mathcal{A}_g^{\text{Matr}} = \mathcal{A}_g^{\text{Perf}} \cap \mathcal{A}_g^{\text{Vor}}. \quad [\text{Melo-Viviani}]$

Theorem (G.-HULEK-TOMMASI)

The cohomology $H^k(\mathcal{A}_g^{Matr})$ is independent of g for g > k, and is purely algebraic.

Extended tautological ring

Dream

• Prove that $H^k(\mathcal{A}_g^{Perf})$ stabilizes. [J. GIANSIRACUSA-SANKARAN, in progress]

- Understand the stable failure of Poincaré duality on $\mathcal{A}^{\mathsf{Perf}}_{\sigma}$
- Understand the algebraic generators x_i of stable cohomology.
- Define extended tautological ring of $\mathcal{A}_{g}^{\text{Perf}}$, generated by x_{i} .
- Formulate an analog of extended Faber's conjecture.
- Prove that the extended tautological ring contains the classes of natural geometric subvarieties, starting with $\mathcal{A}_{i}^{Perf} \times \mathcal{A}_{a-i}^{Perf}$

Theorem (G.-HULEK)

The class of the locus of products in A_{A}^{Perf} is tautological. The (more or less) class of the locus of intermediate Jacobians of cubic threefolds is tautological in $\mathcal{A}_5^{\text{Perf}}$.

Stable cohomology of $\overline{\mathcal{M}}_{\sigma}$ or $\mathcal{A}_{\sigma}^{\text{Vor}}$?

Since dim $H^2(\overline{\mathcal{M}}_g) = 1 + |g/2|$, can't have stabilization.

Conjecturally, dim $H^2(\mathcal{A}_{\sigma}^{Vor}) \gtrsim g$, so no stabilization either.

Maybe other compactifications of \mathcal{M}_g ? The Torelli map $\mathcal{M}_g \to \mathcal{A}_g$ extends to $\overline{\mathcal{M}}_g \to \mathcal{A}_g^{\mathsf{Perf}}$. [ALEXEEV-BRUNYATE].

However, $\mathcal{M}_g^{ct} \rightarrow \mathcal{A}_g$, contracts each δ_i to a codimension 3 locus. Thus H^6 of the image does not stabilize.

Question

Is there any reasonable compactification of \mathcal{M}_g whose homology stabilizes?

Trying to explain the phenomena

 $\mathcal{A}_g^{\mathsf{Sat}}, \mathcal{A}_g^{\mathsf{Perf}}, \mathcal{A}_g^{\mathsf{Vor}} \text{ are singular (even as stacks/orbifolds)}.$

Goresky-Macpherson intersection homology for singular spaces.

- For smooth X, IH*(X) = H*(X); so IH*(A_g) = H*(A_g).
- For X compact, IH*(X) satisfies Poincaré duality.
- For any X, have IH_k(X) → H_k(X), such that the image is contained in the set of algebraic classes.

Stable intersection homology

Theorem [BOREL+LOOIJENGA, SAPER-STERN]

The stable intersection cohomology of $\mathcal{A}_{g}^{\text{Sat}}$ is equal to the stable cohomology of \mathcal{A}_{g} (i.e. is generated by λ_{2i+1}).

(Recall that stable $H^k(A_g^{Sat})$ is freely generated by $\lambda_1, \lambda_3, \lambda_5, ...$ and $\alpha_3, \alpha_5, ...$, and that no polynomial in α_i is algebraic.) [CHARNEY-LEE, LOOIJENGA]

Theorem (G.-HULEK)

For $g \leq 4$, $IH^*(\mathcal{A}_g^{Sat}) = R^*(\mathcal{A}_g^{Sat})$, except possibly for $IH^{10}(\mathcal{A}_4^{Sat})$.

Question

Is there a stable decomposition theorem for $\mathcal{A}_g^{\text{Perf}} \to \mathcal{A}_g^{\text{Sat}}$? Does $IH^k(\mathcal{A}_g^{\text{Perf}})$ stabilize? Is it equal to stable $H^k(\mathcal{A}_g^{\text{Perf}})$ or to stable $H^{g(g+1)-k}(\mathcal{A}_g^{\text{Perf}})$?