Equations for affine invariant manifolds, via degeneration

Samuel Grushevsky

Stony Brook University

BiSTRO seminar
May 31, 2021

- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller
- Uses Frederik's thesis

Strata of holomorphicmeromorphic differentials

- $X \in \mathcal{M}_{g}=$ genus g Riemann surface
- $z_{1}, \ldots, z_{n} \in X=$ distinct numbered marked points
- $\omega \in H^{0}\left(X, K_{X}\right)=H^{1,0}(X, \mathbb{C})=$
holomorphic $\omega \in H^{0}\left(X, K_{X}+\sum m_{i} z_{i}\right)=$ meromorphic 1-form on X

Definition

For $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{\geq 0} \in \mathbb{Z}$ the stratum is

$$
\mathcal{H}_{g, n}(\mu):=\left\{\left(X, z_{1}, \ldots, z_{n}, \omega \neq 0\right): \operatorname{ord}_{z_{i}} \omega=m_{i}\right\}
$$

and ω has no zeroes or poles on $X \backslash\left\{z_{1}, \ldots, z_{n}\right\}$.
Projectivized stratum $\mathcal{P}_{g, n}(\mu):=\mathcal{H}_{g, n}(\mu) / \mathbb{C}^{*}$

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.
- $\mathrm{GL}^{+}(2, \mathbb{R})$ action on the stratum. In local period coordinates $\mathcal{H}_{g, n}(\mu) \simeq \mathbb{C}^{N} \simeq\left(\mathbb{R}^{2}\right)^{\times N}$, and let $\mathrm{GL}^{+}(2, \mathbb{R})$ act on \mathbb{R}^{2}. ($N=2 g+n-1$ for holomorphic, $N=2 g+n-2$ for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.
(Linear equations with \mathbb{R} coefficients are preserved by $\mathrm{GL}^{+}(2, \mathbb{R})$)

Theorem (Filip)

affine invariant manifold $:=$ orbit closure in a holomorphic stratum

- Teichmüller curves $=$ closed orbits; map to complex curves in $\mathcal{P}_{g, n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, ...)
- Gothic locus and quadrilateral constructions
(McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright)
- Meromorphic strata: ???

Idea:

Study orbit closures via degenerations

Degenerations

- $\mathcal{H}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential
- $\mathcal{P}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface
- No orbit closure in $\mathcal{P}_{g, n}(\mu)$ is compact. Can consider

$$
\lim _{\lambda \rightarrow \infty}\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) \circ(X, \omega)
$$

- What about $\lim _{\lambda \rightarrow \infty}\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right) \circ(X, \omega)$?

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)=\equiv \overline{\mathcal{M}}_{g, n}(\mu) / \mathbb{C}^{*}$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with their components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu)$ is a product of strata of meromorphic differentials, satisfying some linear conditions on residues.

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure
$F:=$ (local) defining equation for M near $p \in M$
Write $F(X, \omega)=\int_{\gamma} \omega=0$ for some $\gamma \in H_{1}(X$, Zeroes; $\mathbb{C})$

- Suppose $F(X, \omega)=\int_{\alpha} \omega-\int_{\beta} \omega$, where $\alpha \cdot \beta=1$ are intersecting classes in $H_{1}(X ; \mathbb{Z})$
- Suppose within M can pinch α to a node, without pinching anything else crossed by β
- "Near" such a limit point cannot distinguish β from $N \alpha+\beta$, for $N \in \mathbb{Z}$
- So locally could have $\int_{\beta} \omega=N \int_{\alpha} \omega$ for any $N \in \mathbb{Z}$
- Infinitely many components, certainly non-algebraic ...
- $M \subset \mathcal{H}_{g, n}(\mu)$; closure $\bar{M} \subset \equiv \overline{\mathcal{M}}_{g, n}(\mu)$.
- Fix $p_{0} \in \partial \bar{M}$.

Fix $\Gamma:=$ dual graph of X_{0}, with level structure.

- Horizontal edges $E^{h o r}(\Gamma)$ connect vertices of same level.

Vertical edges connect vertices of different levels.

- $p_{0} \in D_{\Gamma}:=$ open boundary stratum of $\overline{\equiv \overline{\mathcal{M}}_{g, n}}(\mu)$.
(fixed dual graph, no further degenerations; fixed prong-matching, all locally in $\overline{\equiv \overline{\mathcal{M}}_{g, n}}(\mu)$)
- $\forall p=(X, \omega) \in M$ sufficiently close to p_{0} can be obtained by plumbing some $q \in D_{\Gamma}$.
Nodes e at q are opened up to seams at p, aka vanishing cycles $\lambda_{e} \in H_{1}(X ; \mathbb{Z})$.

Monodromy argument [Benirschke]

Lemma

For any $p=(X, \omega) \in M$ sufficiently close to p_{0}, let $\left\{\lambda_{e}\right\}_{e \in E(\Gamma)}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_{e} \in \mathbb{Z}$ such that

$$
\sum_{e} n_{e}\left\langle F, \lambda_{e}\right\rangle \int_{\lambda_{e}} \omega=0
$$

is also a defining equation for M at p.

Proof

Let $f: \Delta \rightarrow \bar{M}$ map $0 \mapsto p_{0}$ and $\frac{1}{2} \mapsto p$. Analytically continue coordinates from p along a loop around zero, starting and returning to p, and keep writing the equation F.

Components of $\partial \bar{M}$

$$
\begin{aligned}
\operatorname{codim}_{\equiv \overline{\mathcal{M}}_{g, n}(\mu)} D_{\Gamma} & =(\text { number of levels in } \Gamma \text { minus } 1) \\
& +(\text { number of horizontal nodes })
\end{aligned}
$$

Theorem (BD-)

If $\operatorname{dim} \bar{M} \cap D_{\Gamma}=\operatorname{dim} M-1$, then either

- 「 has two levels, and no horizontal nodes, or- 「 is all at one level, and periods over any two horizontal vanishing nodes are proportional on M.for any two horizontal vanishing cycles λ_{1}, λ_{2}, there is a defining equation for M of the form $c \int_{\lambda_{1}} \omega=\int_{\lambda_{2}} \omega$.

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)
If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related,
(i.e. $\exists F$ a defining equation for M such that $\left\langle F, \lambda_{1}\right\rangle \cdot\left\langle F, \lambda_{2}\right\rangle \neq 0$, F cannot be written as $F \neq F_{1}+F_{2}$ with $\left\langle F_{1}, \lambda_{2}\right\rangle=\left\langle F_{2}, \lambda_{1}\right\rangle=0$ \ldots or there is a chain of such F 's) then there is a defining equation for M of the form $c \int_{\lambda_{1}} \omega=\int_{\lambda_{2}} \omega$.

Example:

$$
c_{1} \int_{\alpha_{1}} \omega+c_{2} \int_{\alpha_{2}} \omega+c_{3} \int_{\alpha_{3}} \omega=0
$$

(and \nexists other equations crossing a subset of $\beta_{1}, \beta_{2}, \beta_{3}$) implies that periods over $\beta_{1}, \beta_{2}, \beta_{3}$ are pairwise proportional.

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$
Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, let $\left\{\lambda_{e}\right\}_{e \in E^{\text {hor }}(\Gamma)}$ be the set of all horizontal vanishing cycles. Then

- The space of linear relations among periods over λ_{e} is generated by pairwise proportionalities $c \int_{\lambda_{e_{i}}} \omega=\int_{\lambda_{e_{j}}} \omega$.
(3) If $\lambda_{e_{i}}$ and $\lambda_{e_{j}}$ are M-cross-related, then there is a defining equation $F_{i j}$ that crosses only $\lambda_{e_{i}}, \lambda_{e_{j}}$ and no other horizontal vanishing cycles.
- (1) always holds for divisorial degenerations - here for any D_{Γ}
- The proof crucially uses the result of Avila-Eskin-Möller that $T M \subset H_{1}(X ; \mathbb{Z})$ is symplectic.
- For non-minimal strata, can have complicated relations among λ_{e} in $H_{1}(X$, Zeroes; $\mathbb{Z})$.

Counterexample to generalizing the statement for the minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Theorem (BD-)

(1) The space of linear relations among periods over horizontal vanishing cycles λ_{e} is generated by pairwise proportionalities $c \int_{\lambda_{e_{i}}} \omega=\int_{\lambda_{e_{j}}} \omega$.
(3) If $\lambda_{e_{i}}$ and $\lambda_{e_{j}}$ are M-cross-related, then there is a defining equation $F_{i j}$ that crosses only $\lambda_{e_{i}}, \lambda_{e_{j}}$ and no other horizontal vanishing cycles.

Counterexample in $\mathcal{H}_{5,8}(1,1,1,1,1,1,1,1)$:
4-branched double covers of $\mathcal{H}_{2,2}(1,1)$

Then $2 \int_{\lambda_{1}} \omega+2 \int_{\lambda_{2}} \omega+2 \int_{\lambda_{3}} \omega=0$ holds on M, but there are no pairwise proportionalities among $\int_{\lambda_{i}} \omega$.

Linear subvarieties in general

Definition

A linear subvariety in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

- Any interesting examples in holomorphic strata?
- In general not preserved by the $\mathrm{GL}^{+}(2, \mathbb{R})$ action.

Theorem (Benirschke)

Any boundary stratum $\bar{M} \cap \partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ of any linear subvariety is a product of linear subvarieties for the strata corresponding to the components of the nodal curve.

Theorem (BD-)

(1) For any defining equation F of M, the collection of periods over vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.
(2) The space of defining equations of M can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.
(0. Local equations for \bar{M} near p_{0} in plumbing coordinates on $\equiv \overline{\mathcal{M}}_{g, n}(\mu)$ can be computed explicitly from the local linear defining equations nearby.

- In particular, \bar{M} locally near ∂M looks like a toric variety (possibly non-normal).

How to apply this

Example: ruling out a linear subvariety in $\mathcal{H}_{3,3}(1,1,2)$:

Then the one equation $\int_{\gamma_{1}} \omega=\int_{\gamma_{2}} \omega$ does NOT define an affine invariant manifold, because otherwise must have $\int_{\lambda} \omega=0$ as another defining equation.

Cylinder Deformation Theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.
M-parallel cylinders: remain parallel for all nearby $(X, \omega) \in M$.

Theorem (Wright)

Let \mathcal{C} be a maximal collection of M-parallel cylinders, for some $(X, \omega) \in M$. Then applying $G L^{+}(2, \mathbb{R})$ to cylinders in \mathcal{C} and leaving the rest of X untouched gives a flat surface also in M.

- So, in a way, the relations on M involving curves on cylinders only involve curves on M-parallel cylinders.
- BD- give a new proof, for linear subvarieties of meromorphic strata, if all coefficients of defining equations are real.
- The theorem is for smooth Riemann surfaces. Our proof is by degeneration to nodal Riemann surfaces.

Idea of our proof of Cylinder Deformation Theorem

(1) To get close to the boundary, apply $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$, as $\lambda \rightarrow \infty$, to all of X, not just \mathcal{C}. This stretches cylinders and limits to nodes. Q: What do cylinders look like near $\partial \equiv \overline{\mathcal{M}}{ }_{g, n}(\mu)$?
A: For a sufficiently small neighborhood of a boundary point, all circumference curves of cylinders of sufficiently large modulus come from vanishing horizontal cycles.
(2) Write the defining equations for M at $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) \circ(X, \omega)$ as sums of equations that don't cross any horizontal vanishing cycles, and equations H crossing some set $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$.
(0) The nodes crossed by each H are M-cross-related, so periods over vanishing cycles are pairwise proportional.
(-So all of $\lambda_{1}, \ldots, \lambda_{k}$ lie on M-parallel cylinders.

- So deforming $\lambda_{1}, \ldots, \lambda_{k}$ all at once preserves the equation H, and so stays on M.

Thank you

(and please apply this)

