Equations for affine invariant manifolds, via degeneration

Samuel Grushevsky

Stony Brook University

BiSTRO seminar May 31, 2021

- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller
- Uses Frederik's thesis

Strata of holomorphicmeromorphic differentials

- $X \in \mathcal{M}_g$ = genus g Riemann surface
- *z*₁,..., *z*_n ∈ X = distinct numbered marked points
- $\omega \in H^0(X, K_X) = H^{1,0}(X, \mathbb{C}) =$ holomorphic $\omega \in H^0(X, K_X + \sum m_i z_i) =$ meromorphic 1-form on X

Definition

For $\mu = (m_1, \dots, m_n) \in \mathbb{Z}_{\geq 0} \in \mathbb{Z}$ the stratum is

$$\mathcal{H}_{g,n}(\mu) := \{ (X, z_1, \dots, z_n, \omega \neq 0) \colon \operatorname{ord}_{z_i} \omega = m_i \}$$

and ω has no zeroes or poles on $X \setminus \{z_1, \ldots, z_n\}$.

Projectivized stratum $\mathcal{P}_{g,n}(\mu) := \mathcal{H}_{g,n}(\mu)/\mathbb{C}^*$

Period coordinates and $GL^+(2,\mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of H₁(X, {z₁,..., z_n}; Z) = H₁(X, Zeroes; Z).
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of H₁(X \ Poles, Zeroes; Z).
- GL⁺(2, \mathbb{R}) action on the stratum. In local *period coordinates* $\mathcal{H}_{g,n}(\mu) \simeq \mathbb{C}^N \simeq (\mathbb{R}^2)^{\times N}$, and let GL⁺(2, \mathbb{R}) act on \mathbb{R}^2 .
 - (N = 2g + n 1 for holomorphic, N = 2g + n 2 for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.

(Linear equations with \mathbb{R} coefficients are preserved by $GL^+(2, \mathbb{R})$)

Theorem (Filip)

For holomorphic strata, orbit closures are (quasi-projective) algebraic

Towards classifying $GL^+(2, \mathbb{R})$ orbit closures

affine invariant manifold := orbit closure in a holomorphic stratum

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g,n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, ...)
- Gothic locus and quadrilateral constructions (McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright)
- Meromorphic strata: ???

Idea:

Study orbit closures via degenerations

Degenerations

- *H*_{g,n}(μ) is not compact: can degenerate the Riemann surface and/or the differential
- $\mathcal{P}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface
- No orbit closure in P_{g,n}(µ) is compact. Can consider

$$\lim_{\lambda\to\infty} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \circ (X,\omega)$$

• What about $\lim_{\lambda\to\infty} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \circ (X, \omega)$?

Moduli of multi-scale differentials [BCG-M]

$$\begin{split} \mathbb{P} &\equiv \overline{\mathcal{M}}_{g,n}(\mu) = \Xi \overline{\mathcal{M}}_{g,n}(\mu) / \mathbb{C}^* \text{ is a compactification of } \mathcal{P}_{g,n}(\mu) \text{ that} \\ &\text{ is algebraic, smooth (as an orbifold), } \overline{=} \overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}, \\ &\text{ boundary } \partial \Xi \overline{\mathcal{M}}_{g,n}(\mu) \text{ is a normal crossing divisor.} \end{split}$$

Points of $\partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with their components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$ is a product of strata of meromorphic differentials, satisfying some linear conditions on residues.

Why degenerations restrict linear equations

 $\mathcal{H}_{g,n}(\mu) \supset M :=$ affine invariant manifold=orbit closure F := (local) defining equation for M near $p \in M$

Write $F(X, \omega) = \int_{\gamma} \omega = 0$ for some $\gamma \in H_1(X, Zeroes; \mathbb{C})$

- Suppose F(X, ω) = ∫_α ω − ∫_β ω, where α ⋅ β = 1 are intersecting classes in H₁(X; Z)
- Suppose within M can pinch α to a node, without pinching anything else crossed by β
- "Near" such a limit point cannot distinguish β from $N\alpha + \beta$, for $N \in \mathbb{Z}$
- So locally could have $\int_{\beta} \omega = N \int_{\alpha} \omega$ for any $N \in \mathbb{Z}$
- Infinitely many components, certainly non-algebraic

Vertical and horizontal vanishing cycles

- $M \subset \mathcal{H}_{g,n}(\mu)$; closure $\overline{M} \subset \Xi \overline{\mathcal{M}}_{g,n}(\mu)$.
- Fix p₀ ∈ ∂M.
 Fix Γ := dual graph of X₀, with level structure.
- Horizontal edges E^{hor}(Γ) connect vertices of same level. Vertical edges connect vertices of different levels.
- $p_0 \in D_{\Gamma} :=$ open boundary stratum of $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$. (fixed dual graph, no further degenerations; fixed prong-matching, all locally in $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$)
- ∀p = (X, ω) ∈ M sufficiently close to p₀ can be obtained by plumbing some q ∈ D_Γ.
 Nodes e at q are opened up to seams at p, aka vanishing

cycles $\lambda_e \in H_1(X; \mathbb{Z})$.

Monodromy argument [Benirschke]

Lemma

For any $p = (X, \omega) \in M$ sufficiently close to p_0 , let $\{\lambda_e\}_{e \in E(\Gamma)}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_e \in \mathbb{Z}$ such that

$$\sum_{e} n_{e} \left\langle F, \lambda_{e} \right\rangle \int_{\lambda_{e}} \omega = 0$$

is also a defining equation for M at p.

Proof

Let $f : \Delta \to \overline{M}$ map $0 \mapsto p_0$ and $\frac{1}{2} \mapsto p$. Analytically continue coordinates from p along a loop around zero, starting and returning to p, and keep writing the equation F.

Components of $\partial \overline{M}$

 $\begin{aligned} \operatorname{codim}_{\Xi\overline{\mathcal{M}}_{g,n}(\mu)} D_{\Gamma} &= (\operatorname{number of levels in } \Gamma \text{ minus } 1) \\ &+ (\operatorname{number of horizontal nodes}) \end{aligned}$

Theorem (BD-)

If dim $\overline{M} \cap D_{\Gamma} = \dim M - 1$, then either

- Γ has two levels, and no horizontal nodes, or
- Γ is all at one level, and periods over any two horizontal vanishing nodes are proportional on M.for any two horizontal vanishing cycles λ₁, λ₂, there is a defining equation for M of the form c ∫_λ ω = ∫_λ ω.

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)

If two horizontal vanishing cycles λ_1, λ_2 are *M*-cross-related, (i.e. $\exists F$ a defining equation for *M* such that $\langle F, \lambda_1 \rangle \cdot \langle F, \lambda_2 \rangle \neq 0$, *F* cannot be written as $F \neq F_1 + F_2$ with $\langle F_1, \lambda_2 \rangle = \langle F_2, \lambda_1 \rangle = 0$... or there is a chain of such *F*'s) then there is a defining equation for *M* of the form $c \int_{\lambda_1} \omega = \int_{\lambda_2} \omega$.

Example: β_1 β_2 $\alpha_1 = \alpha_1$ β_2 $\alpha_1 = \alpha_2$ β_2 $\beta_1 = \alpha_2$ β_1 $\alpha_1 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_1 = \alpha_2$ $\beta_2 = \alpha_2$ $\beta_3 = \alpha_2$ $\beta_4 = \alpha_3$ $\beta_4 = \alpha_4$ $\beta_4 = \alpha_4$

(and $\not\exists$ other equations crossing a subset of $\beta_1, \beta_2, \beta_3$) implies that periods over $\beta_1, \beta_2, \beta_3$ are *pairwise* proportional.

Minimal holomorphic stratum $\mathcal{H}_{g,1}(2g-2)$

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g,1}(2g-2)$ affine invariant manifold, let $\{\lambda_e\}_{e \in E^{hor}(\Gamma)}$ be the set of all horizontal vanishing cycles. Then

- The space of linear relations among periods over λ_e is generated by pairwise proportionalities c J_{λe}, ω = J_{λe}, ω.
- If λ_{ei} and λ_{ej} are M-cross-related, then there is a defining equation F_{ij} that crosses only λ_{ei}, λ_{ej} and no other horizontal vanishing cycles.
 - (1) always holds for divisorial degenerations here for any D_Γ
 - The proof crucially uses the result of Avila-Eskin-Möller that TM ⊂ H₁(X; ℤ) is symplectic.
 - For non-minimal strata, can have complicated relations among λ_e in $H_1(X, Zeroes; \mathbb{Z})$.

Counterexample to generalizing the statement for the minimal holomorphic stratum $\mathcal{H}_{g,1}(2g-2)$

Theorem (BD-)

- The space of linear relations among periods over horizontal vanishing cycles λ_e is generated by pairwise proportionalities c ∫_{λ_e} ω = ∫_{λ_e} ω.
- If λ_{ei} and λ_{ej} are M-cross-related, then there is a defining equation F_{ij} that crosses only λ_{ei}, λ_{ej} and no other horizontal vanishing cycles.

Counterexample in $\mathcal{H}_{5,8}(1,1,1,1,1,1,1,1)$: 4-branched double covers of $\mathcal{H}_{2,2}(1,1)$

Then $2\int_{\lambda_1} \omega + 2\int_{\lambda_2} \omega + 2\int_{\lambda_3} \omega = 0$ holds on M, but there are no pairwise proportionalities among $\int_{\lambda_1} \omega$.

Linear subvarieties in general

Definition

A linear subvariety in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

- Any interesting examples in holomorphic strata?
- In general not preserved by the GL⁺(2, ℝ) action.

Theorem (Benirschke)

Any boundary stratum $\overline{M} \cap \partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ of any linear subvariety is a product of linear subvarieties for the strata corresponding to the components of the nodal curve.

General structural results for linear subvarieties

Theorem (BD-)

For any defining equation F of M, the collection of periods over vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.

- The space of defining equations of M can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.
- Local equations for M near p₀ in plumbing coordinates on ΞMg,n(μ) can be computed explicitly from the local linear defining equations nearby.
- In particular, M locally near ∂M looks like a toric variety (possibly non-normal).

How to apply this

Example: ruling out a linear subvariety in $\mathcal{H}_{3,3}(1,1,2)$:

Then the one equation $\int_{\gamma_1}\omega=\int_{\gamma_2}\omega$ does NOT define an affine invariant manifold, because otherwise must have $\int_\lambda\omega=0$ as another defining equation.

Cylinder Deformation Theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.

M-parallel cylinders: remain parallel for all nearby $(X, \omega) \in M$.

Theorem (Wright)

Let C be a maximal collection of M-parallel cylinders, for some $(X, \omega) \in M$. Then applying $GL^+(2, \mathbb{R})$ to cylinders in C and leaving the rest of X untouched gives a flat surface also in M.

- So, in a way, the relations on M involving curves on cylinders only involve curves on M-parallel cylinders.
- BD- give a new proof, for linear subvarieties of meromorphic strata, if all coefficients of defining equations are real.
- The theorem is for *smooth* Riemann surfaces. Our proof is *by degeneration* to nodal Riemann surfaces.

Idea of our proof of Cylinder Deformation Theorem

- To get close to the boundary, apply (^λ₀ ⁰₋₁), as λ → ∞, to all of X, not just C. This stretches cylinders and limits to nodes.
 Q: What do cylinders look like near ∂ΞM_{g,n}(µ)?
 A: For a sufficiently small neighborhood of a boundary point, all circumference curves of cylinders of sufficiently large modulus come from vanishing horizontal cycles.
- Write the defining equations for M at (^λ₀ 0, ¹₀) ∘ (X, ω) as sums of equations that don't cross any horizontal vanishing cycles, and equations H crossing some set {λ₁,...,λ_k}.
- The nodes crossed by each H are M-cross-related, so periods over vanishing cycles are pairwise proportional.
- So all of \u03c6₁,..., \u03c6_k lie on M-parallel cylinders.
- So deforming λ₁,...,λ_k all at once preserves the equation H, and so stays on M.

Thank you

(and please apply this)