Equations for affine invariant manifolds, via degeneration

Samuel Grushevsky

Stony Brook University

BiSTRO seminar
May 31, 2021

- Joint work with Frederik Benirschke and Benjamin Dozier
- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller
- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller
- Uses Frederik's thesis
- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller
- Uses Frederik's thesis
- Thanks to Fred for those pictures that are nice!

Strata of holomorphic differentials

Strata of holomorphic differentials

- $X \in \mathcal{M}_{g}=$ genus g Riemann surface
- $z_{1}, \ldots, z_{n} \in X=$ distinct numbered marked points

Strata of holomorphic differentials

- $X \in \mathcal{M}_{g}=$ genus g Riemann surface
- $z_{1}, \ldots, z_{n} \in X=$ distinct numbered marked points
- $\omega \in H^{0}\left(X, K_{X}\right)=H^{1,0}(X, \mathbb{C})=$ holomorphic 1-form on X

Strata of holomorphic differentials

- $X \in \mathcal{M}_{g}=$ genus g Riemann surface
- $z_{1}, \ldots, z_{n} \in X=$ distinct numbered marked points
- $\omega \in H^{0}\left(X, K_{X}\right)=H^{1,0}(X, \mathbb{C})=$ holomorphic 1-form on X

Definition

For $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{\geq 0}$ the stratum is

$$
\mathcal{H}_{g, n}(\mu):=\left\{\left(X, z_{1}, \ldots, z_{n}, \omega \neq 0\right): \operatorname{ord}_{z_{i}} \omega=m_{i}\right\}
$$

and ω has no zeroes on $X \backslash\left\{z_{1}, \ldots, z_{n}\right\}$.

Strata of meromorphic differentials

- $X \in \mathcal{M}_{g}=$ genus g Riemann surface
- $z_{1}, \ldots, z_{n} \in X=$ distinct numbered marked points
- $\omega \in H^{0}\left(X, K_{X}\right)=H^{1,0}(X, \mathbb{C})=$ holomorphic 1-form on X

Definition

For $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{\geq 0}$ the stratum is

$$
\mathcal{H}_{g, n}(\mu):=\left\{\left(X, z_{1}, \ldots, z_{n}, \omega \neq 0\right): \operatorname{ord}_{z_{i}} \omega=m_{i}\right\}
$$

and ω has no zeroes on $X \backslash\left\{z_{1}, \ldots, z_{n}\right\}$.

Strata of meromorphic differentials

- $X \in \mathcal{M}_{g}=$ genus g Riemann surface
- $z_{1}, \ldots, z_{n} \in X=$ distinct numbered marked points
- $\omega \in H^{0}\left(X, K_{X}+\sum m_{i} z_{i}\right)=$ meromorphic 1-form on X

Definition

For $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}$ the stratum is

$$
\mathcal{H}_{g, n}(\mu):=\left\{\left(X, z_{1}, \ldots, z_{n}, \omega \neq 0\right): \operatorname{ord}_{z_{i}} \omega=m_{i}\right\}
$$

and ω has no zeroes or poles on $X \backslash\left\{z_{1}, \ldots, z_{n}\right\}$.

Strata of meromorphic differentials

- $X \in \mathcal{M}_{g}=$ genus g Riemann surface
- $z_{1}, \ldots, z_{n} \in X=$ distinct numbered marked points
- $\omega \in H^{0}\left(X, K_{X}+\sum m_{i} z_{i}\right)=$ meromorphic 1-form on X

Definition

For $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}$ the stratum is

$$
\mathcal{H}_{g, n}(\mu):=\left\{\left(X, z_{1}, \ldots, z_{n}, \omega \neq 0\right): \operatorname{ord}_{z_{i}} \omega=m_{i}\right\}
$$

and ω has no zeroes or poles on $X \backslash\left\{z_{1}, \ldots, z_{n}\right\}$.
Projectivized stratum $\mathcal{P}_{g, n}(\mu):=\mathcal{H}_{g, n}(\mu) / \mathbb{C}^{*}$

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.
- $\mathrm{GL}^{+}(2, \mathbb{R})$ action on the stratum. In local period coordinates $\mathcal{H}_{g, n}(\mu) \simeq \mathbb{C}^{N} \simeq\left(\mathbb{R}^{2}\right)^{\times N}$, and let $\mathrm{GL}^{+}(2, \mathbb{R})$ act on \mathbb{R}^{2}.

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.
- $\mathrm{GL}^{+}(2, \mathbb{R})$ action on the stratum. In local period coordinates $\mathcal{H}_{g, n}(\mu) \simeq \mathbb{C}^{N} \simeq\left(\mathbb{R}^{2}\right)^{\times N}$, and let $\mathrm{GL}^{+}(2, \mathbb{R})$ act on \mathbb{R}^{2}.
($N=2 g+n-1$ for holomorphic, $N=2 g+n-2$ for meromorphic)

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.
- $\mathrm{GL}^{+}(2, \mathbb{R})$ action on the stratum. In local period coordinates $\mathcal{H}_{g, n}(\mu) \simeq \mathbb{C}^{N} \simeq\left(\mathbb{R}^{2}\right)^{\times N}$, and let $\mathrm{GL}^{+}(2, \mathbb{R})$ act on \mathbb{R}^{2}.
($N=2 g+n-1$ for holomorphic, $N=2 g+n-2$ for meromorphic)

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.
- $\mathrm{GL}^{+}(2, \mathbb{R})$ action on the stratum. In local period coordinates $\mathcal{H}_{g, n}(\mu) \simeq \mathbb{C}^{N} \simeq\left(\mathbb{R}^{2}\right)^{\times N}$, and let $\mathrm{GL}^{+}(2, \mathbb{R})$ act on \mathbb{R}^{2}.
($N=2 g+n-1$ for holomorphic, $N=2 g+n-2$ for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.
- $\mathrm{GL}^{+}(2, \mathbb{R})$ action on the stratum. In local period coordinates $\mathcal{H}_{g, n}(\mu) \simeq \mathbb{C}^{N} \simeq\left(\mathbb{R}^{2}\right)^{\times N}$, and let $\mathrm{GL}^{+}(2, \mathbb{R})$ act on \mathbb{R}^{2}. ($N=2 g+n-1$ for holomorphic, $N=2 g+n-2$ for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.
(Linear equations with \mathbb{R} coefficients are preserved by $\mathrm{GL}^{+}(2, \mathbb{R})$)

Period coordinates and $\mathrm{GL}^{+}(2, \mathbb{R})$ action

- Local coordinates on a holomorphic stratum: integrals of ω over a basis of $H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{Z}\right)=H_{1}(X$, Zeroes; $\mathbb{Z})$.
- Local coordinates on a meromorphic stratum: integrals of ω over a basis of $H_{1}(X \backslash$ Poles, Zeroes; $\mathbb{Z})$.
- $\mathrm{GL}^{+}(2, \mathbb{R})$ action on the stratum. In local period coordinates $\mathcal{H}_{g, n}(\mu) \simeq \mathbb{C}^{N} \simeq\left(\mathbb{R}^{2}\right)^{\times N}$, and let $\mathrm{GL}^{+}(2, \mathbb{R})$ act on \mathbb{R}^{2}. ($N=2 g+n-1$ for holomorphic, $N=2 g+n-2$ for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.
(Linear equations with \mathbb{R} coefficients are preserved by $\mathrm{GL}^{+}(2, \mathbb{R})$)

Theorem (Filip)

For holomorphic strata, orbit closures are (quasi-projective) algebraic varieties.

Towards classifying $\mathrm{GL}^{+}(2, \mathbb{R})$ orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

Towards classifying $\mathrm{GL}^{+}(2, \mathbb{R})$ orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g, n}(\mu)$

Towards classifying $\mathrm{GL}^{+}(2, \mathbb{R})$ orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g, n}(\mu)$
- Covering constructions

Towards classifying $\mathrm{GL}^{+}(2, \mathbb{R})$ orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g, n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, ...)

Towards classifying $\mathrm{GL}^{+}(2, \mathbb{R})$ orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g, n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, ...)
- Gothic locus and quadrilateral constructions (McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright).

Towards classifying $\mathrm{GL}^{+}(2, \mathbb{R})$ orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g, n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, ...)
- Gothic locus and quadrilateral constructions (McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright).
- Meromorphic strata: ???

Towards classifying $\mathrm{GL}^{+}(2, \mathbb{R})$ orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

- Teichmüller curves $=$ closed orbits; map to complex curves in $\mathcal{P}_{g, n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, ...)
- Gothic locus and quadrilateral constructions (McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright).
- Meromorphic strata: ???

Idea:

Study orbit closures via degenerations.

Degenerations

Degenerations

- $\mathcal{H}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential

Degenerations

- $\mathcal{H}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential
- $\mathcal{P}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface

Degenerations

- $\mathcal{H}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential
- $\mathcal{P}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface
- No orbit closure in $\mathcal{P}_{g, n}(\mu)$ is compact. Can consider

$$
\lim _{\lambda \rightarrow \infty}\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) \circ(X, \omega)
$$

Degenerations

- $\mathcal{H}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential
- $\mathcal{P}_{g, n}(\mu)$ is not compact: can degenerate the Riemann surface
- No orbit closure in $\mathcal{P}_{g, n}(\mu)$ is compact. Can consider

$$
\lim _{\lambda \rightarrow \infty}\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) \circ(X, \omega)
$$

- What about $\lim _{\lambda \rightarrow \infty}\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right) \circ(X, \omega)$?

Moduli of multi-scale differentials [BCG-M]

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold),

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\overline{\overline{\mathcal{M}}_{g, n}}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$,

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\overline{\overline{\mathcal{M}}}{ }_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces,

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with components ordered by "scale" (how fast the volume went to zero),

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero),

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component,

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\overline{\overline{\mathcal{M}}}{ }_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\overline{\overline{\mathcal{M}}}{ }_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a product of strata of meromorphic differentials

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a product of strata of meromorphic differentials, satisfying some linear conditions on residues.

Moduli of multi-scale differentials [BCG-M]

$\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a compactification of $\mathcal{P}_{g, n}(\mu)$ that is algebraic, smooth (as an orbifold), $\bar{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) \rightarrow \overline{\mathcal{M}}_{g, n}$, boundary $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a normal crossing divisor.
Points of $\partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\mathbb{P} \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ is a product of strata of meromorphic differentials, satisfying some linear conditions on residues.

Why degenerations restrict linear equations

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure
$F:=($ local $)$ defining equation for M near $p \in M$
Write $F(X, \omega)=\int_{\beta} \omega=0$ for $\omega \in H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{C}\right)$

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure
$F:=$ (local) defining equation for M near $p \in M$
Write $F(X, \omega)=\int_{\beta} \omega=0$ for $\omega \in H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{C}\right)$

- Suppose $F(X, \omega)=\int_{\alpha} \omega-\int_{\beta} \omega$, where $\alpha \cdot \beta=1$ are intersecting classes in $H_{1}(X: \mathbb{Z})$

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure
$F:=($ local $)$ defining equation for M near $p \in M$
Write $F(X, \omega)=\int_{\beta} \omega=0$ for $\omega \in H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{C}\right)$

- Suppose $F(X, \omega)=\int_{\alpha} \omega-\int_{\beta} \omega$, where $\alpha \cdot \beta=1$ are intersecting classes in $H_{1}(X: \mathbb{Z})$
- Suppose within M can pinch α to a node

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure
$F:=($ local $)$ defining equation for M near $p \in M$
Write $F(X, \omega)=\int_{\beta} \omega=0$ for $\omega \in H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{C}\right)$

- Suppose $F(X, \omega)=\int_{\alpha} \omega-\int_{\beta} \omega$, where $\alpha \cdot \beta=1$ are intersecting classes in $H_{1}(X: \mathbb{Z})$
- Suppose within M can pinch α to a node
- "Near" such a limit point cannot distinguish β from $N \alpha+\beta$, for $N \in \mathbb{Z}$

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure
$F:=($ local $)$ defining equation for M near $p \in M$
Write $F(X, \omega)=\int_{\beta} \omega=0$ for $\omega \in H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{C}\right)$

- Suppose $F(X, \omega)=\int_{\alpha} \omega-\int_{\beta} \omega$, where $\alpha \cdot \beta=1$ are intersecting classes in $H_{1}(X: \mathbb{Z})$
- Suppose within M can pinch α to a node
- "Near" such a limit point cannot distinguish β from $N \alpha+\beta$, for $N \in \mathbb{Z}$
- So locally could have $\int_{\beta} \omega=N \int_{\alpha} \omega$ for any $N \in \mathbb{Z}$

Why degenerations restrict linear equations

$\mathcal{H}_{g, n}(\mu) \supset M:=$ affine invariant manifold=orbit closure
$F:=($ local $)$ defining equation for M near $p \in M$
Write $F(X, \omega)=\int_{\beta} \omega=0$ for $\omega \in H_{1}\left(X,\left\{z_{1}, \ldots, z_{n}\right\} ; \mathbb{C}\right)$

- Suppose $F(X, \omega)=\int_{\alpha} \omega-\int_{\beta} \omega$, where $\alpha \cdot \beta=1$ are intersecting classes in $H_{1}(X: \mathbb{Z})$
- Suppose within M can pinch α to a node
- "Near" such a limit point cannot distinguish β from $N \alpha+\beta$, for $N \in \mathbb{Z}$
- So locally could have $\int_{\beta} \omega=N \int_{\alpha} \omega$ for any $N \in \mathbb{Z}$
- Infinitely many components, certainly non-algebraic ...

Vertical and horizontal vanishing cycles

Vertical and horizontal vanishing cycles

- $M \subset \mathcal{H}_{g, n}(\mu)$; closure $\bar{M} \subset \equiv \overline{\mathcal{M}}_{g, n}(\mu)$.

Vertical and horizontal vanishing cycles

- $M \subset \mathcal{H}_{g, n}(\mu)$; closure $\bar{M} \subset \equiv \overline{\mathcal{M}}_{g, n}(\mu)$.
- Fixed $p_{0} \in \partial \bar{M}$.
$\Gamma:=$ dual graph of X_{0}, with level structure

Vertical and horizontal vanishing cycles

- $M \subset \mathcal{H}_{g, n}(\mu)$; closure $\bar{M} \subset \equiv \overline{\mathcal{M}}_{g, n}(\mu)$.
- Fixed $p_{0} \in \partial \bar{M}$.
$\Gamma:=$ dual graph of X_{0}, with level structure
- Horizontal edges connect vertices of same level. Vertical edges connect vertices of different levels.

Vertical and horizontal vanishing cycles

- $M \subset \mathcal{H}_{g, n}(\mu)$; closure $\bar{M} \subset \equiv \overline{\mathcal{M}}_{g, n}(\mu)$.
- Fixed $p_{0} \in \partial \bar{M}$.
$\Gamma:=$ dual graph of X_{0}, with level structure
- Horizontal edges connect vertices of same level. Vertical edges connect vertices of different levels.
- $p_{0} \in D_{\Gamma}:=$ boundary stratum of $\overline{\overline{\mathcal{M}}}{ }_{g, n}(\mu)$.

Vertical and horizontal vanishing cycles

- $M \subset \mathcal{H}_{g, n}(\mu)$; closure $\bar{M} \subset \equiv \overline{\mathcal{M}}_{g, n}(\mu)$.
- Fixed $p_{0} \in \partial \bar{M}$.
$\Gamma:=$ dual graph of X_{0}, with level structure
- Horizontal edges connect vertices of same level. Vertical edges connect vertices of different levels.
- $p_{0} \in D_{\Gamma}:=$ open boundary stratum of $\equiv \overline{\mathcal{M}}_{g, n}(\mu)$. (fixed dual graph, no further degenerations; fixed prong-matching, all locally in $\overline{\overline{\mathcal{M}}}{ }_{g, n}(\mu)$)

Vertical and horizontal vanishing cycles

- $M \subset \mathcal{H}_{g, n}(\mu)$; closure $\bar{M} \subset \equiv \overline{\mathcal{M}}_{g, n}(\mu)$.
- Fixed $p_{0} \in \partial \bar{M}$.
$\Gamma:=$ dual graph of X_{0}, with level structure
- Horizontal edges connect vertices of same level. Vertical edges connect vertices of different levels.
- $p_{0} \in D_{\Gamma}:=$ open boundary stratum of $\equiv \overline{\mathcal{M}}_{g, n}(\mu)$.
(fixed dual graph, no further degenerations; fixed prong-matching, all locally in $\left.\overline{\overline{\mathcal{M}}} \overline{\mathcal{M}}_{g, n}(\mu)\right)$
- $\forall p=(X, \omega) \in M$ sufficiently close to p_{0} can be obtained by plumbing some $q \in D_{\Gamma}$.
Nodes e are opened up to seams, aka vanishing cycles $\lambda_{e} \in H_{1}(X, \mathbb{Z})$.

Monodromy argument [Benirschke]

Monodromy argument [Benirschke]

Lemma

For $p_{0} \in \partial M \cap D_{\Gamma}$, for any $p=(X, \omega) \in M$ sufficiently close to p_{0}, let $\left\{\lambda_{e}\right\}$ be the collection of all vanishing cycles on X.

Monodromy argument [Benirschke]

Lemma

For $p_{0} \in \partial M \cap D_{\Gamma}$, for any $p=(X, \omega) \in M$ sufficiently close to p_{0}, let $\left\{\lambda_{e}\right\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_{e} \in \mathbb{Z}$ such that

$$
\sum_{e} n_{e}\left\langle F, \lambda_{e}\right\rangle \int_{\lambda_{e}} \omega=0
$$

is also a defining equation for M at p.

Monodromy argument [Benirschke]

Lemma

For $p_{0} \in \partial M \cap D_{\Gamma}$, for any $p=(X, \omega) \in M$ sufficiently close to p_{0}, let $\left\{\lambda_{e}\right\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_{e} \in \mathbb{Z}$ such that

$$
\sum_{e} n_{e}\left\langle F, \lambda_{e}\right\rangle \int_{\lambda_{e}} \omega=0
$$

is also a defining equation for M at p.

Proof

Monodromy argument [Benirschke]

Lemma

For $p_{0} \in \partial M \cap D_{\Gamma}$, for any $p=(X, \omega) \in M$ sufficiently close to p_{0}, let $\left\{\lambda_{e}\right\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_{e} \in \mathbb{Z}$ such that

$$
\sum_{e} n_{e}\left\langle F, \lambda_{e}\right\rangle \int_{\lambda_{e}} \omega=0
$$

is also a defining equation for M at p.

Proof

Let $f: \Delta \rightarrow M$ map $0 \mapsto p_{0}$ and $\frac{1}{2} \mapsto p$.

Monodromy argument [Benirschke]

Lemma

For $p_{0} \in \partial M \cap D_{\Gamma}$, for any $p=(X, \omega) \in M$ sufficiently close to p_{0}, let $\left\{\lambda_{e}\right\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_{e} \in \mathbb{Z}$ such that

$$
\sum_{e} n_{e}\left\langle F, \lambda_{e}\right\rangle \int_{\lambda_{e}} \omega=0
$$

is also a defining equation for M at p.

Proof

Let $f: \Delta \rightarrow M$ map $0 \mapsto p_{0}$ and $\frac{1}{2} \mapsto p$. Analytically continue coordinates from p along a loop around zero, starting and returning to p, and keep writing the equation F.

Components of $\partial \bar{M}$

Components of $\partial \bar{M}$

Recall: $\operatorname{codim}_{\equiv \overline{\mathcal{M}}}^{\underline{g}, n}(\mu) \quad D_{\Gamma}=$

Components of $\partial \bar{M}$

Recall: codim ${\bar{\Xi} \overline{\mathcal{M}}_{g, n}(\mu)} D_{\Gamma}=($ number of levels in Γ minus 1$)+$ (number of horizontal nodes)

Components of $\partial \bar{M}$

Recall: codim $\bar{\Xi}_{\overline{\mathcal{M}}_{g, n}(\mu)} D_{\Gamma}=($ number of levels in Γ minus 1$)+$ (number of horizontal nodes)

Theorem (BD-)

If $\operatorname{dim} \bar{M} \cap D_{\Gamma}=\operatorname{dim} M-1$, then either

- 「 has two levels and no horizontal nodes

Components of $\partial \bar{M}$

Recall: $\operatorname{codim}_{\equiv \overline{\mathcal{M}}_{g, n}(\mu)} D_{\Gamma}=L(\Gamma)+H(\Gamma)$
Theorem (BD-)
If $\operatorname{dim} \bar{M} \cap D_{\Gamma}=\operatorname{dim} M-1$, then either

- 「 has two levels and no horizontal nodes

Components of $\partial \bar{M}$

Recall: $\operatorname{codim}_{\equiv \overline{\mathcal{M}}_{g, n}(\mu)} D_{\Gamma}=L(\Gamma)+H(\Gamma)$

Theorem (BD-)

If $\operatorname{dim} \bar{M} \cap D_{\Gamma}=\operatorname{dim} M-1$, then either

- $L(\Gamma)=1 ; \quad H(\Gamma)=0$, or

Components of $\partial \bar{M}$

Recall: $\operatorname{codim}_{\equiv \overline{\mathcal{M}}_{g, n}(\mu)} D_{\Gamma}=L(\Gamma)+H(\Gamma)$

Theorem (BD-)

If $\operatorname{dim} \bar{M} \cap D_{\Gamma}=\operatorname{dim} M-1$, then either

- $L(\Gamma)=1 ; \quad H(\Gamma)=0$, or
- $L(\Gamma)=0$ and

Components of $\partial \bar{M}$

Recall: $\operatorname{codim}_{\equiv \overline{\mathcal{M}}}^{g, n}(\mu) D_{\Gamma}=L(\Gamma)+H(\Gamma)$
Theorem (BD-)
If $\operatorname{dim} \bar{M} \cap D_{\Gamma}=\operatorname{dim} M-1$, then either

- $L(\Gamma)=1 ; \quad H(\Gamma)=0$, or
- $L(\Gamma)=0$ and periods over any two horizontal vanishing nodes are proportional on M

Components of $\partial \bar{M}$

Recall: $\operatorname{codim}_{\equiv} \overline{\mathcal{M}}_{g, n}(\mu) D_{\Gamma}=L(\Gamma)+H(\Gamma)$
Theorem (BD-)
If $\operatorname{dim} \bar{M} \cap D_{\Gamma}=\operatorname{dim} M-1$, then either

- $L(\Gamma)=1 ; \quad H(\Gamma)=0$, or
- $L(\Gamma)=0$ and for any two horizontal vanishing cycles λ_{1}, λ_{2}, there is a defining equation for M of the form $c \int_{\lambda_{1}}=\int_{\lambda_{2}}$

Proportionality of periods over horizontal vanishing cycles

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)
If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related,

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)

If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related, ($\exists F$ a defining equation for M such that $\left\langle F, \lambda_{1}\right\rangle \cdot\left\langle F, \lambda_{2}\right\rangle \neq 0$,

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)

If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related, ($\exists F$ a defining equation for M such that $\left\langle F, \lambda_{1}\right\rangle \cdot\left\langle F, \lambda_{2}\right\rangle \neq 0$, and F cannot be written as $F \neq F_{1}+F_{2}$ with
$\left\langle F_{1}, \lambda_{2}\right\rangle=\left\langle F_{2}, \lambda_{1}\right\rangle=0$)

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)

If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related, then there is a defining equation for M of the form $c \int_{\lambda_{1}} \omega=\int_{\lambda_{2}} \omega$.

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)

If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related, then there is a defining equation for M of the form $c \int_{\lambda_{1}} \omega=\int_{\lambda_{2}} \omega$.

Non-Example in $\mathcal{H}_{3,3}(1,1,2)$:

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)

If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related, then there is a defining equation for M of the form $c \int_{\lambda_{1}} \omega=\int_{\lambda_{2}} \omega$.

Non-Example in $\mathcal{H}_{3,3}(1,1,2)$:

Proportionality of periods over horizontal vanishing cycles

Theorem (BD-)

If two horizontal vanishing cycles λ_{1}, λ_{2} are M-cross-related, then there is a defining equation for M of the form $c \int_{\lambda_{1}} \omega=\int_{\lambda_{2}} \omega$.

Non-Example in $\mathcal{H}_{3,3}(1,1,2)$:

Then the one equation $\int_{\gamma_{1}} \omega=\int_{\gamma_{2}} \omega$ does NOT define an affine invariant manifold.

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, $\lambda_{1}, \ldots, \lambda_{k}:=$ horizontal vanishing cycles. Then

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, $\lambda_{1}, \ldots, \lambda_{k}:=$ horizontal vanishing cycles. Then
(1) The space of linear relations among periods over λ_{i} is generated by pairwise proportionalities c $\int_{\lambda_{i}} \omega=\int_{\lambda_{j}} \omega$.

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, $\lambda_{1}, \ldots, \lambda_{k}:=$ horizontal vanishing cycles. Then
(1) The space of linear relations among periods over λ_{i} is generated by pairwise proportionalities $c \int_{\lambda_{i}} \omega=\int_{\lambda_{j}} \omega$.
(2) If λ_{i} and λ_{j} are M-cross-related, then there is a defining equation $F_{i j}$ that crosses only λ_{i}, λ_{j} and no other horizontal vanishing cycles.

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, $\lambda_{1}, \ldots, \lambda_{k}:=$ horizontal vanishing cycles. Then
(1) The space of linear relations among periods over λ_{i} is generated by pairwise proportionalities $c \int_{\lambda_{i}} \omega=\int_{\lambda_{j}} \omega$.
(2) If λ_{i} and λ_{j} are M-cross-related, (that is, $\exists F,\left\langle F, \lambda_{i}\right\rangle \cdot\left\langle F, \lambda_{j}\right\rangle \neq 0$, and F is not a sum ...) then there is a defining equation $F_{i j}$ that crosses only λ_{i}, λ_{j} and no other horizontal vanishing cycles.

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, $\lambda_{1}, \ldots, \lambda_{k}:=$ horizontal vanishing cycles. Then
(1) The space of linear relations among periods over λ_{i} is generated by pairwise proportionalities $c \int_{\lambda_{i}} \omega=\int_{\lambda_{j}} \omega$.
(2) If λ_{i} and λ_{j} are M-cross-related, then there is a defining equation $F_{i j}$ that crosses only λ_{i}, λ_{j} and no other horizontal vanishing cycles.

- (1) in general holds for divisorial degenerations - here for any D_{Γ}

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, $\lambda_{1}, \ldots, \lambda_{k}:=$ horizontal vanishing cycles. Then
(1) The space of linear relations among periods over λ_{i} is generated by pairwise proportionalities $c \int_{\lambda_{i}} \omega=\int_{\lambda_{j}} \omega$.
(2) If λ_{i} and λ_{j} are M-cross-related, then there is a defining equation $F_{i j}$ that crosses only λ_{i}, λ_{j} and no other horizontal vanishing cycles.

- (1) in general holds for divisorial degenerations - here for any D_{Γ}
- The proof crucially uses the result of Avila-Eskin-Möller that $T M \subset H_{1}(X ; \mathbb{Z})$ is symplectic

Minimal holomorphic stratum $\mathcal{H}_{g, 1}(2 g-2)$

Easier because there are no relative periods. Coordinates: $H_{1}(X ; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g, 1}(2 g-2)$ affine invariant manifold, $\lambda_{1}, \ldots, \lambda_{k}:=$ horizontal vanishing cycles. Then
(1) The space of linear relations among periods over λ_{i} is generated by pairwise proportionalities $c \int_{\lambda_{i}} \omega=\int_{\lambda_{j}} \omega$.
(2) If λ_{i} and λ_{j} are M-cross-related, then there is a defining equation $F_{i j}$ that crosses only λ_{i}, λ_{j} and no other horizontal vanishing cycles.

- (1) in general holds for divisorial degenerations - here for any D_{Γ}
- The proof crucially uses the result of Avila-Eskin-Möller that $T M \subset H_{1}(X ; \mathbb{Z})$ is symplectic
- For non-minimal strata, can have complicated relations among the classes of λ_{i} in $H_{1}(X$, Zeroes; $\mathbb{Z})$

Linear subvarieties in general

Linear subvarieties in general

Definition

A linear subvariety in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

Linear subvarieties in general

Definition

A linear subvariety in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

- Any interesting examples in holomorphic strata?

Linear subvarieties in general

Definition

A linear subvariety in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

- Any interesting examples in holomorphic strata?
- In general not preserved by the $\mathrm{GL}^{+}(2, \mathbb{R})$ action.

Linear subvarieties in general

Definition

A linear subvariety in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

- Any interesting examples in holomorphic strata?
- In general not preserved by the $\mathrm{GL}^{+}(2, \mathbb{R})$ action.

Theorem (Benirschke)

Any boundary stratum $\bar{M} \cap \partial \equiv \overline{\mathcal{M}}_{g, n}(\mu)$ of any linear subvariety is a product of linear subvarieties for the strata corresponding to the components of the nodal curve.

General structural results

General structural results

Theorem (BD-)

(1) For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.

General structural results

Theorem (BD-)

(1) For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.
(2) The space of defining equations can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.

General structural results

Theorem (BD-)

(1) For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.
(2) The space of defining equations can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.
(3) Local equations for $\overline{\mathcal{M}}$ near p_{0} in plumbing coordinates on三 $\overline{\mathcal{M}}_{g, n}(\mu)$ can be computed explicitly from the local linear defining equations nearby.

General structural results

Theorem (BD-)

(1) For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.
(2) The space of defining equations can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.
(3) Local equations for $\overline{\mathcal{M}}$ near p_{0} in plumbing coordinates on三 $\overline{\mathcal{M}}_{g, n}(\mu)$ can be computed explicitly from the local linear defining equations nearby.
(9) In particular, $\overline{\mathcal{M}}$ locally near ∂M looks like a toric variety (possibly non-normal).

Cylinder deformation theorem [Wright]

Cylinder deformation theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.
M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Cylinder deformation theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.
M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let \mathcal{C} be a maximal collection of M-parallel cylinders, for some $(X, \omega) \in M$. Then applying $G L^{+}(2, \mathbb{R})$ to cylinders in \mathcal{C} and leaving the rest of X untouched gives a flat surface in M.

Cylinder deformation theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.
M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let \mathcal{C} be a maximal collection of M-parallel cylinders, for some $(X, \omega) \in M$. Then applying $G L^{+}(2, \mathbb{R})$ to cylinders in \mathcal{C} and leaving the rest of X untouched gives a flat surface in M.

- In a way, this says that the only relations on M among the curves on cylinders are only with curves on M-parallel cylinders.

Cylinder deformation theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.
M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let \mathcal{C} be a maximal collection of M-parallel cylinders, for some $(X, \omega) \in M$. Then applying $G L^{+}(2, \mathbb{R})$ to cylinders in \mathcal{C} and leaving the rest of X untouched gives a flat surface in M.

- In a way, this says that the only relations on M among the curves on cylinders are only with curves on M-parallel cylinders.
- BD- give a new proof, for linear subvarieties of meromorphic strata, if all coefficients of defining equations are real.

Cylinder deformation theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.
M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let \mathcal{C} be a maximal collection of M-parallel cylinders, for some $(X, \omega) \in M$. Then applying $G L^{+}(2, \mathbb{R})$ to cylinders in \mathcal{C} and leaving the rest of X untouched gives a flat surface in M.

- In a way, this says that the only relations on M among the curves on cylinders are only with curves on M-parallel cylinders.
- BD- give a new proof, for linear subvarieties of meromorphic strata, if all coefficients of defining equations are real.
- The theorem is for smooth Riemann surfaces. Our proof is by degeneration to nodal Riemann surfaces.

