Equations for affine invariant manifolds, via degeneration

Samuel Grushevsky

Stony Brook University

BiSTRO seminar May 31, 2021 • Joint work with Frederik Benirschke and Benjamin Dozier

- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller

- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller
- Uses Frederik's thesis

- Joint work with Frederik Benirschke and Benjamin Dozier
- Applies a compactification constructed with Matt Bainbridge, Dawei Chen, Quentin Gendron, Martin Möller
- Uses Frederik's thesis
- Thanks to Fred for those pictures that are nice!

- $X \in \mathcal{M}_g = \text{genus } g$ Riemann surface
- $z_1, \ldots, z_n \in X = \text{distinct numbered marked points}$

- $X \in \mathcal{M}_g = \text{genus } g$ Riemann surface
- $z_1, \ldots, z_n \in X = \text{distinct numbered marked points}$
- $\omega \in H^0(X, K_X) = H^{1,0}(X, \mathbb{C}) = \text{holomorphic 1-form on } X$

- $X \in \mathcal{M}_g = \text{genus } g$ Riemann surface
- $z_1, \ldots, z_n \in X = \text{distinct numbered marked points}$
- $\omega \in H^0(X, K_X) = H^{1,0}(X, \mathbb{C}) = \text{holomorphic 1-form on } X$

Definition

For $\mu=(m_1,\ldots,m_n)\in\mathbb{Z}_{\geq 0}$ the *stratum* is

$$\mathcal{H}_{g,n}(\mu) := \{(X, z_1, \dots, z_n, \omega \neq 0) \colon \operatorname{ord}_{z_i} \omega = m_i\}$$

and ω has no zeroes on $X \setminus \{z_1, \ldots, z_n\}$.

- $X \in \mathcal{M}_g = \text{genus } g$ Riemann surface
- $z_1, \ldots, z_n \in X = \text{distinct numbered marked points}$
- $\omega \in H^0(X, K_X) = H^{1,0}(X, \mathbb{C}) = \text{holomorphic 1-form on } X$

Definition

For $\mu=(m_1,\ldots,m_n)\in\mathbb{Z}_{\geq 0}$ the *stratum* is

$$\mathcal{H}_{g,n}(\mu) := \{(X, z_1, \dots, z_n, \omega \neq 0) \colon \operatorname{ord}_{z_i} \omega = m_i\}$$

and ω has no zeroes on $X \setminus \{z_1, \ldots, z_n\}$.

- $X \in \mathcal{M}_g = \text{genus } g$ Riemann surface
- $z_1, \ldots, z_n \in X = \text{distinct numbered marked points}$
- $\omega \in H^0(X, K_X + \sum m_i z_i) = \text{meromorphic 1-form on } X$

Definition

For $\mu = (m_1, \dots, m_n) \in \mathbb{Z}$ the *stratum* is

$$\mathcal{H}_{g,n}(\mu) := \{(X, z_1, \dots, z_n, \omega \neq 0) \colon \operatorname{ord}_{z_i} \omega = m_i\}$$

and ω has no zeroes or poles on $X \setminus \{z_1, \ldots, z_n\}$.

- $X \in \mathcal{M}_g = \text{genus } g$ Riemann surface
- $z_1, \ldots, z_n \in X = \text{distinct numbered marked points}$
- $\omega \in H^0(X, K_X + \sum m_i z_i) = \text{meromorphic 1-form on } X$

Definition

For $\mu=(m_1,\ldots,m_n)\in\mathbb{Z}$ the *stratum* is

$$\mathcal{H}_{g,n}(\mu) := \{(X, z_1, \dots, z_n, \omega \neq 0) : \operatorname{ord}_{z_i} \omega = m_i\}$$

and ω has no zeroes or poles on $X \setminus \{z_1, \ldots, z_n\}$.

Projectivized stratum $\mathcal{P}_{g,n}(\mu) := \mathcal{H}_{g,n}(\mu)/\mathbb{C}^*$

• Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \ldots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.

- Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \ldots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.
- Local coordinates on a *meromorphic* stratum: integrals of ω over a basis of $H_1(X \setminus \text{Poles}, \text{Zeroes}; \mathbb{Z})$.

- Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \ldots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.
- Local coordinates on a *meromorphic* stratum: integrals of ω over a basis of $H_1(X \setminus Poles, Zeroes; \mathbb{Z})$.
- $\mathsf{GL}^+(2,\mathbb{R})$ action on the stratum. In local *period coordinates* $\mathcal{H}_{g,n}(\mu) \simeq \mathbb{C}^N \simeq (\mathbb{R}^2)^{\times N}$, and let $\mathsf{GL}^+(2,\mathbb{R})$ act on \mathbb{R}^2 .

- Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \ldots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.
- Local coordinates on a *meromorphic* stratum: integrals of ω over a basis of $H_1(X \setminus Poles, Zeroes; \mathbb{Z})$.
- $\mathsf{GL}^+(2,\mathbb{R})$ action on the stratum. In local *period coordinates* $\mathcal{H}_{g,n}(\mu) \simeq \mathbb{C}^N \simeq (\mathbb{R}^2)^{\times N}$, and let $\mathsf{GL}^+(2,\mathbb{R})$ act on \mathbb{R}^2 . (N=2g+n-1 for holomorphic, N=2g+n-2 for meromorphic)

- Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \dots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.
- Local coordinates on a *meromorphic* stratum: integrals of ω over a basis of $H_1(X \setminus Poles, Zeroes; \mathbb{Z})$.
- $\mathsf{GL}^+(2,\mathbb{R})$ action on the stratum. In local *period coordinates* $\mathcal{H}_{g,n}(\mu) \simeq \mathbb{C}^N \simeq (\mathbb{R}^2)^{\times N}$, and let $\mathsf{GL}^+(2,\mathbb{R})$ act on \mathbb{R}^2 . (N=2g+n-1 for holomorphic, N=2g+n-2 for meromorphic)

- Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \ldots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.
- Local coordinates on a *meromorphic* stratum: integrals of ω over a basis of $H_1(X \setminus Poles, Zeroes; \mathbb{Z})$.
- $\mathsf{GL}^+(2,\mathbb{R})$ action on the stratum. In local *period coordinates* $\mathcal{H}_{g,n}(\mu) \simeq \mathbb{C}^N \simeq (\mathbb{R}^2)^{\times N}$, and let $\mathsf{GL}^+(2,\mathbb{R})$ act on \mathbb{R}^2 . (N=2g+n-1 for holomorphic, N=2g+n-2 for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.

- Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \ldots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.
- Local coordinates on a *meromorphic* stratum: integrals of ω over a basis of $H_1(X \setminus Poles, Zeroes; \mathbb{Z})$.
- $\mathsf{GL}^+(2,\mathbb{R})$ action on the stratum. In local *period coordinates* $\mathcal{H}_{g,n}(\mu) \simeq \mathbb{C}^N \simeq (\mathbb{R}^2)^{\times N}$, and let $\mathsf{GL}^+(2,\mathbb{R})$ act on \mathbb{R}^2 . (N=2g+n-1 for holomorphic, N=2g+n-2 for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.

(Linear equations with $\mathbb R$ coefficients are preserved by $\mathsf{GL}^+(2,\mathbb R)$)

- Local coordinates on a *holomorphic* stratum: integrals of ω over a basis of $H_1(X, \{z_1, \ldots, z_n\}; \mathbb{Z}) = H_1(X, \mathbb{Z})$.
- Local coordinates on a *meromorphic* stratum: integrals of ω over a basis of $H_1(X \setminus Poles, Zeroes; \mathbb{Z})$.
- GL⁺(2, \mathbb{R}) action on the stratum. In local *period coordinates* $\mathcal{H}_{g,n}(\mu) \simeq \mathbb{C}^N \simeq (\mathbb{R}^2)^{\times N}$, and let GL⁺(2, \mathbb{R}) act on \mathbb{R}^2 . (N = 2g + n 1 for holomorphic, N = 2g + n 2 for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period coordinates by linear equations with real coefficients.

(Linear equations with $\mathbb R$ coefficients are preserved by $\mathsf{GL}^+(2,\mathbb R)$)

Theorem (Filip)

For holomorphic strata, orbit closures are (quasi-projective) algebraic varieties.

(affine invariant manifold:=orbit closure in a holomorphic stratum)

• Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g,n}(\mu)$

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g,n}(\mu)$
- Covering constructions

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g,n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, . . .)

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g,n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, . . .)
- Gothic locus and quadrilateral constructions (McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright).

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g,n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, . . .)
- Gothic locus and quadrilateral constructions (McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright).
- Meromorphic strata: ???

(affine invariant manifold:=orbit closure in a holomorphic stratum)

- Teichmüller curves = closed orbits; map to complex curves in $\mathcal{P}_{g,n}(\mu)$
- Covering constructions
- Upper bounds on the rank of primitive orbit closures (Mirzakhani-Wright, Apisa-Wright, . . .)
- Gothic locus and quadrilateral constructions (McMullen-Mukamel-Wright, Eskin-McMullen-Mukamel-Wright).
- Meromorphic strata: ???

Idea:

Study orbit closures via degenerations.

• $\mathcal{H}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential

- $\mathcal{H}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential
- ullet $\mathcal{P}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface

- $\mathcal{H}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential
- ullet $\mathcal{P}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface
- No orbit closure in $\mathcal{P}_{g,n}(\mu)$ is compact. Can consider

$$\lim_{\lambda \to \infty} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \circ (X, \omega)$$

- $\mathcal{H}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface and/or the differential
- ullet $\mathcal{P}_{g,n}(\mu)$ is not compact: can degenerate the Riemann surface
- No orbit closure in $\mathcal{P}_{g,n}(\mu)$ is compact. Can consider

$$\lim_{\lambda \to \infty} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \circ (X, \omega)$$

• What about $\lim_{\lambda \to \infty} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \circ (X, \omega)$?

Moduli of multi-scale differentials [BCG-M]

Moduli of multi-scale differentials [BCG-M]

 $\mathbb{P} \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ is a compactification of $\mathcal{P}_{g,n}(\mu)$

Moduli of multi-scale differentials [BCG-M]

 $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a compactification of $\mathcal{P}_{g,n}(\mu)$ that is algebraic, smooth (as an orbifold),

 $\mathbb{P} \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \text{ is a compactification of } \mathcal{P}_{g,n}(\mu) \text{ that is algebraic,} \\ \text{smooth (as an orbifold), } \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n},$

 $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a compactification of $\mathcal{P}_{g,n}(\mu)$ that is algebraic, smooth (as an orbifold), $\Xi\overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}$, boundary $\partial\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a normal crossing divisor.

 $\mathbb{P} \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \text{ is a compactification of } \mathcal{P}_{g,n}(\mu) \text{ that is algebraic,} \\ \text{smooth (as an orbifold), } \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}, \text{ boundary} \\ \partial \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \text{ is a normal crossing divisor.}$

Points of $\partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces,

 $\mathbb{P} \overline{\overline{\mathcal{M}}}_{g,n}(\mu) \text{ is a compactification of } \mathcal{P}_{g,n}(\mu) \text{ that is algebraic,} \\ \text{smooth (as an orbifold), } \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}, \text{ boundary} \\ \partial \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \text{ is a normal crossing divisor.}$

Points of $\partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with components ordered by "scale" (how fast the volume went to zero),

 $\mathbb{P} \overline{\overline{\mathcal{M}}}_{g,n}(\mu) \text{ is a compactification of } \mathcal{P}_{g,n}(\mu) \text{ that is algebraic,} \\ \text{smooth (as an orbifold), } \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}, \text{ boundary} \\ \partial \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \text{ is a normal crossing divisor.}$

Points of $\partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero),

 $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a compactification of $\mathcal{P}_{g,n}(\mu)$ that is algebraic, smooth (as an orbifold), $\Xi\overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}$, boundary $\partial\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a normal crossing divisor.

Points of $\partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component,

 $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a compactification of $\mathcal{P}_{g,n}(\mu)$ that is algebraic, smooth (as an orbifold), $\Xi\overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}$, boundary $\partial\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a normal crossing divisor.

Points of $\partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

 $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a compactification of $\mathcal{P}_{g,n}(\mu)$ that is algebraic, smooth (as an orbifold), $\Xi\overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}$, boundary $\partial\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a normal crossing divisor.

Points of $\partial \equiv \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a product of strata of meromorphic differentials

 $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a compactification of $\mathcal{P}_{g,n}(\mu)$ that is algebraic, smooth (as an orbifold), $\Xi\overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}$, boundary $\partial\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a normal crossing divisor.

Points of $\partial \equiv \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a product of strata of meromorphic differentials, satisfying some linear conditions on residues.

 $\mathbb{P} \overline{\overline{\mathcal{M}}}_{g,n}(\mu) \text{ is a compactification of } \mathcal{P}_{g,n}(\mu) \text{ that is algebraic,} \\ \text{smooth (as an orbifold), } \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \to \overline{\mathcal{M}}_{g,n}, \text{ boundary} \\ \partial \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu) \text{ is a normal crossing divisor.}$

Points of $\partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ correspond to nodal Riemann surfaces, with components fully, weakly ordered by "scale" (how fast the volume went to zero), together with a meromorphic differential on each component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of $\mathbb{P}\Xi\overline{\mathcal{M}}_{g,n}(\mu)$ is a product of strata of meromorphic differentials, satisfying some linear conditions on residues.

 $\mathcal{H}_{g,n}(\mu) \supset M :=$ affine invariant manifold=orbit closure

 $\mathcal{H}_{g,n}(\mu)\supset M:=$ affine invariant manifold=orbit closure F:=(local) defining equation for M near $p\in M$ Write $F(X,\omega)=\int_{\beta}\omega=0$ for $\omega\in H_1(X,\{z_1,\ldots,z_n\};\mathbb{C})$

 $\mathcal{H}_{g,n}(\mu) \supset M$:=affine invariant manifold=orbit closure F :=(local) defining equation for M near $p \in M$ Write $F(X,\omega) = \int_{\beta} \omega = 0$ for $\omega \in \mathcal{H}_1(X,\{z_1,\ldots,z_n\};\mathbb{C})$

• Suppose $F(X,\omega) = \int_{\alpha} \omega - \int_{\beta} \omega$, where $\alpha \cdot \beta = 1$ are intersecting classes in $H_1(X : \mathbb{Z})$

 $\mathcal{H}_{g,n}(\mu) \supset M$:=affine invariant manifold=orbit closure F :=(local) defining equation for M near $p \in M$ Write $F(X,\omega) = \int_{\beta} \omega = 0$ for $\omega \in \mathcal{H}_1(X,\{z_1,\ldots,z_n\};\mathbb{C})$

- Suppose $F(X,\omega) = \int_{\alpha} \omega \int_{\beta} \omega$, where $\alpha \cdot \beta = 1$ are intersecting classes in $H_1(X : \mathbb{Z})$
- ullet Suppose within M can pinch lpha to a node

 $\mathcal{H}_{g,n}(\mu) \supset M$:=affine invariant manifold=orbit closure F :=(local) defining equation for M near $p \in M$ Write $F(X,\omega) = \int_{\beta} \omega = 0$ for $\omega \in \mathcal{H}_1(X,\{z_1,\ldots,z_n\};\mathbb{C})$

- Suppose $F(X,\omega) = \int_{\alpha} \omega \int_{\beta} \omega$, where $\alpha \cdot \beta = 1$ are intersecting classes in $H_1(X : \mathbb{Z})$
- ullet Suppose within M can pinch lpha to a node
- "Near" such a limit point cannot distinguish β from $N\alpha + \beta$, for $N \in \mathbb{Z}$

 $\mathcal{H}_{g,n}(\mu) \supset M :=$ affine invariant manifold=orbit closure F := (local) defining equation for M near $p \in M$ Write $F(X,\omega) = \int_{\beta} \omega = 0$ for $\omega \in \mathcal{H}_1(X,\{z_1,\ldots,z_n\};\mathbb{C})$

- Suppose $F(X,\omega) = \int_{\alpha} \omega \int_{\beta} \omega$, where $\alpha \cdot \beta = 1$ are intersecting classes in $H_1(X : \mathbb{Z})$
- ullet Suppose within M can pinch lpha to a node
- "Near" such a limit point cannot distinguish β from $N\alpha + \beta$, for $N \in \mathbb{Z}$
- \bullet So locally could have $\int_{\beta}\omega=N\int_{\alpha}\omega$ for any $\textit{N}\in\mathbb{Z}$

 $\mathcal{H}_{g,n}(\mu)\supset M:=$ affine invariant manifold=orbit closure F:=(local) defining equation for M near $p\in M$ Write $F(X,\omega)=\int_{\beta}\omega=0$ for $\omega\in H_1(X,\{z_1,\ldots,z_n\};\mathbb{C})$

- Suppose $F(X,\omega) = \int_{\alpha} \omega \int_{\beta} \omega$, where $\alpha \cdot \beta = 1$ are intersecting classes in $H_1(X : \mathbb{Z})$
- ullet Suppose within M can pinch lpha to a node
- "Near" such a limit point cannot distinguish β from $N\alpha + \beta$, for $N \in \mathbb{Z}$
- So locally could have $\int_{\beta} \omega = N \int_{\alpha} \omega$ for any $N \in \mathbb{Z}$
- Infinitely many components, certainly non-algebraic . . .

• $M \subset \mathcal{H}_{g,n}(\mu)$; closure $\overline{M} \subset \overline{\Xi} \overline{\mathcal{M}}_{g,n}(\mu)$.

- $M \subset \mathcal{H}_{g,n}(\mu)$; closure $\overline{M} \subset \Xi \overline{\mathcal{M}}_{g,n}(\mu)$.
- Fixed $p_0 \in \partial \overline{M}$. $\Gamma :=$ dual graph of X_0 , with level structure

- $M \subset \mathcal{H}_{g,n}(\mu)$; closure $\overline{M} \subset \Xi \overline{\mathcal{M}}_{g,n}(\mu)$.
- Fixed $p_0 \in \partial \overline{M}$. $\Gamma :=$ dual graph of X_0 , with level structure
- Horizontal edges connect vertices of same level.
 Vertical edges connect vertices of different levels.

- $M \subset \mathcal{H}_{g,n}(\mu)$; closure $\overline{M} \subset \Xi \overline{\mathcal{M}}_{g,n}(\mu)$.
- Fixed $p_0 \in \partial \overline{M}$. $\Gamma :=$ dual graph of X_0 , with level structure
- Horizontal edges connect vertices of same level.
 Vertical edges connect vertices of different levels.
- $p_0 \in D_{\Gamma} :=$ boundary stratum of $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$.

- $M \subset \mathcal{H}_{g,n}(\mu)$; closure $\overline{M} \subset \overline{\Xi}\overline{\mathcal{M}}_{g,n}(\mu)$.
- Fixed $p_0 \in \partial \overline{M}$. $\Gamma :=$ dual graph of X_0 , with level structure
- Horizontal edges connect vertices of same level.
 Vertical edges connect vertices of different levels.
- $p_0 \in D_{\Gamma} :=$ open boundary stratum of $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$. (fixed dual graph, no further degenerations; fixed prong-matching, all locally in $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$)

- $M \subset \mathcal{H}_{g,n}(\mu)$; closure $\overline{M} \subset \Xi \overline{\mathcal{M}}_{g,n}(\mu)$.
- Fixed $p_0 \in \partial \overline{M}$. $\Gamma :=$ dual graph of X_0 , with level structure
- Horizontal edges connect vertices of same level.
 Vertical edges connect vertices of different levels.
- $p_0 \in D_{\Gamma}$:=open boundary stratum of $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$. (fixed dual graph, no further degenerations; fixed prong-matching, all locally in $\Xi \overline{\mathcal{M}}_{g,n}(\mu)$)
- $\forall p = (X, \omega) \in M$ sufficiently close to p_0 can be obtained by plumbing some $q \in D_{\Gamma}$. Nodes e are opened up to seams, aka vanishing cycles $\lambda_e \in H_1(X, \mathbb{Z})$.

Lemma

For $p_0 \in \partial M \cap D_{\Gamma}$, for any $p = (X, \omega) \in M$ sufficiently close to p_0 , let $\{\lambda_e\}$ be the collection of all vanishing cycles on X.

Lemma

For $p_0 \in \partial M \cap D_\Gamma$, for any $p = (X, \omega) \in M$ sufficiently close to p_0 , let $\{\lambda_e\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_e \in \mathbb{Z}$ such that

$$\sum_{e} n_{e} \langle F, \lambda_{e} \rangle \int_{\lambda_{e}} \omega = 0$$

is also a defining equation for M at p.

Lemma

For $p_0 \in \partial M \cap D_\Gamma$, for any $p = (X, \omega) \in M$ sufficiently close to p_0 , let $\{\lambda_e\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_e \in \mathbb{Z}$ such that

$$\sum_{e} n_{e} \langle F, \lambda_{e} \rangle \int_{\lambda_{e}} \omega = 0$$

is also a defining equation for M at p.

Proof

Lemma

For $p_0 \in \partial M \cap D_\Gamma$, for any $p = (X, \omega) \in M$ sufficiently close to p_0 , let $\{\lambda_e\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_e \in \mathbb{Z}$ such that

$$\sum_{e} n_{e} \langle F, \lambda_{e} \rangle \int_{\lambda_{e}} \omega = 0$$

is also a defining equation for M at p.

Proof

Let $f: \Delta \to M$ map $0 \mapsto p_0$ and $\frac{1}{2} \mapsto p$.

Lemma

For $p_0 \in \partial M \cap D_\Gamma$, for any $p = (X, \omega) \in M$ sufficiently close to p_0 , let $\{\lambda_e\}$ be the collection of all vanishing cycles on X. Then for any defining equation F for M at p, there exist $n_e \in \mathbb{Z}$ such that

$$\sum_{e} n_{e} \langle F, \lambda_{e} \rangle \int_{\lambda_{e}} \omega = 0$$

is also a defining equation for M at p.

Proof

Let $f: \Delta \to M$ map $0 \mapsto p_0$ and $\frac{1}{2} \mapsto p$. Analytically continue coordinates from p along a loop around zero, starting and returning to p, and keep writing the equation F.

 $\mathsf{Recall} \colon \mathsf{codim}_{\Xi\overline{\mathcal{M}}_{g,n}(\mu)} D_\Gamma =$

Recall: $\operatorname{codim}_{\Xi\overline{\mathcal{M}}_{g,n}(\mu)}D_{\Gamma}=$ (number of levels in Γ minus 1) + (number of horizontal nodes)

Recall: $\operatorname{codim}_{\Xi\overline{\mathcal{M}}_{g,n}(\mu)}D_{\Gamma}=(\operatorname{number of levels in }\Gamma\operatorname{minus }1)+(\operatorname{number of horizontal nodes})$

Theorem (BD-)

If dim $\overline{M} \cap D_{\Gamma} = \dim M - 1$, then either

• Γ has two levels and no horizontal nodes

Recall:
$$\operatorname{codim}_{\Xi\overline{\mathcal{M}}_{g,n}(\mu)} D_{\Gamma} = L(\Gamma) + H(\Gamma)$$

Theorem (BD-)

If dim $\overline{M} \cap D_{\Gamma} = \dim M - 1$, then either

• Γ has two levels and no horizontal nodes

Recall:
$$\operatorname{codim}_{\equiv \overline{\mathcal{M}}_{g,n}(\mu)} D_{\Gamma} = L(\Gamma) + H(\Gamma)$$

Theorem (BD-)

•
$$L(\Gamma) = 1$$
; $H(\Gamma) = 0$, or

Recall:
$$\operatorname{codim}_{\equiv \overline{\mathcal{M}}_{g,n}(\mu)} D_{\Gamma} = L(\Gamma) + H(\Gamma)$$

Theorem (BD-)

- $L(\Gamma) = 1$; $H(\Gamma) = 0$, or
- $L(\Gamma) = 0$ and

Recall: $\operatorname{codim}_{\equiv \overline{\mathcal{M}}_{\sigma,n}(\mu)} D_{\Gamma} = L(\Gamma) + H(\Gamma)$

Theorem (BD-)

- $L(\Gamma) = 1$; $H(\Gamma) = 0$, or
- $L(\Gamma) = 0$ and periods over any two horizontal vanishing nodes are proportional on M

Recall: $\operatorname{codim}_{\Xi \overline{\mathcal{M}}_{\sigma,n}(\mu)} D_{\Gamma} = L(\Gamma) + H(\Gamma)$

Theorem (BD-)

- $L(\Gamma) = 1$; $H(\Gamma) = 0$, or
- $L(\Gamma) = 0$ and for any two horizontal vanishing cycles λ_1, λ_2 , there is a defining equation for M of the form $c \int_{\lambda_1} = \int_{\lambda_2}$

Theorem (BD-)

If two horizontal vanishing cycles λ_1,λ_2 are M-cross-related,

Theorem (BD-)

If two horizontal vanishing cycles λ_1, λ_2 are M-cross-related, ($\exists F$ a defining equation for M such that $\langle F, \lambda_1 \rangle \cdot \langle F, \lambda_2 \rangle \neq 0$,

Theorem (BD-)

If two horizontal vanishing cycles λ_1, λ_2 are M-cross-related, ($\exists F$ a defining equation for M such that $\langle F, \lambda_1 \rangle \cdot \langle F, \lambda_2 \rangle \neq 0$, and F cannot be written as $F \neq F_1 + F_2$ with $\langle F_1, \lambda_2 \rangle = \langle F_2, \lambda_1 \rangle = 0$)

Theorem (BD-)

If two horizontal vanishing cycles λ_1,λ_2 are M-cross-related, then there is a defining equation for M of the form $c\int_{\lambda_1}\omega=\int_{\lambda_2}\omega.$

Theorem (BD-)

If two horizontal vanishing cycles λ_1,λ_2 are M-cross-related, then there is a defining equation for M of the form $c\int_{\lambda_1}\omega=\int_{\lambda_2}\omega.$

Non-Example in $\mathcal{H}_{3,3}(1,1,2)$:

Theorem (BD-)

If two horizontal vanishing cycles λ_1,λ_2 are M-cross-related, then there is a defining equation for M of the form $c\int_{\lambda_1}\omega=\int_{\lambda_2}\omega$.

Non-Example in $\mathcal{H}_{3,3}(1,1,2)$:

Theorem (BD-)

If two horizontal vanishing cycles λ_1,λ_2 are M-cross-related, then there is a defining equation for M of the form $c\int_{\lambda_1}\omega=\int_{\lambda_2}\omega.$

Non-Example in $\mathcal{H}_{3,3}(1,1,2)$:

Then the one equation $\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$ does *NOT* define an affine invariant manifold.

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

For $M \subset \mathcal{H}_{g,1}(2g-2)$ affine invariant manifold, $\lambda_1, \ldots, \lambda_k :=$ horizontal vanishing cycles. Then

• The space of linear relations among periods over λ_i is generated by pairwise proportionalities $c \int_{\lambda_i} \omega = \int_{\lambda_i} \omega$.

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

- The space of linear relations among periods over λ_i is generated by pairwise proportionalities $c \int_{\lambda_i} \omega = \int_{\lambda_i} \omega$.
- ② If λ_i and λ_j are M-cross-related, then there is a defining equation F_{ij} that crosses only λ_i, λ_j and no other horizontal vanishing cycles.

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

- The space of linear relations among periods over λ_i is generated by pairwise proportionalities $c \int_{\lambda_i} \omega = \int_{\lambda_i} \omega$.
- ② If λ_i and λ_j are M-cross-related, (that is, $\exists F, \langle F, \lambda_i \rangle \cdot \langle F, \lambda_j \rangle \neq 0$, and F is not a sum ...) then there is a defining equation F_{ij} that crosses only λ_i, λ_j and no other horizontal vanishing cycles.

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

- The space of linear relations among periods over λ_i is generated by pairwise proportionalities $c \int_{\lambda_i} \omega = \int_{\lambda_i} \omega$.
- ② If λ_i and λ_j are M-cross-related, then there is a defining equation F_{ij} that crosses only λ_i, λ_j and no other horizontal vanishing cycles.
 - (1) in general holds for divisorial degenerations here for any D_Γ

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

- The space of linear relations among periods over λ_i is generated by pairwise proportionalities $c \int_{\lambda_i} \omega = \int_{\lambda_i} \omega$.
- ② If λ_i and λ_j are M-cross-related, then there is a defining equation F_{ij} that crosses only λ_i, λ_j and no other horizontal vanishing cycles.
 - (1) in general holds for divisorial degenerations here for any D_Γ
 - The proof crucially uses the result of *Avila-Eskin-Möller* that $TM \subset H_1(X; \mathbb{Z})$ is symplectic

Easier because there are no relative periods. Coordinates: $H_1(X; \mathbb{Z})$

Theorem (BD-)

- The space of linear relations among periods over λ_i is generated by pairwise proportionalities $c \int_{\lambda_i} \omega = \int_{\lambda_i} \omega$.
- ② If λ_i and λ_j are M-cross-related, then there is a defining equation F_{ij} that crosses only λ_i, λ_j and no other horizontal vanishing cycles.
 - (1) in general holds for divisorial degenerations here for any D_Γ
 - The proof crucially uses the result of *Avila-Eskin-Möller* that $TM \subset H_1(X; \mathbb{Z})$ is symplectic
 - For non-minimal strata, can have complicated relations among the classes of λ_i in $H_1(X, Zeroes; \mathbb{Z})$

Definition

A *linear subvariety* in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

Definition

A *linear subvariety* in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

Any interesting examples in holomorphic strata?

Definition

A *linear subvariety* in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

- Any interesting examples in holomorphic strata?
- In general *not* preserved by the $GL^+(2,\mathbb{R})$ action.

Definition

A *linear subvariety* in a meromorphic stratum is an algebraic variety locally near any point given by linear equations, with arbitrary complex coefficients.

- Any interesting examples in holomorphic strata?
- In general *not* preserved by the $GL^+(2,\mathbb{R})$ action.

Theorem (Benirschke)

Any boundary stratum $\overline{M} \cap \partial \Xi \overline{\mathcal{M}}_{g,n}(\mu)$ of any linear subvariety is a product of linear subvarieties for the strata corresponding to the components of the nodal curve.

Theorem (BD-)

• For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.

Theorem (BD-)

- For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.
- ② The space of defining equations can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.

Theorem (BD-)

- For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.
- The space of defining equations can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.
- **3** Local equations for $\overline{\mathcal{M}}$ near p_0 in plumbing coordinates on $\overline{\Xi}\overline{\mathcal{M}}_{g,n}(\mu)$ can be computed explicitly from the local linear defining equations nearby.

Theorem (BD-)

- For any defining equation F, the collection of periods over all vertical vanishing cycles that cross a given level i and are crossed by F satisfy a linear relation.
- The space of defining equations can be generated by equations that only cross horizontal nodes at one level, and equations that do not cross any horizontal nodes at all.
- **3** Local equations for $\overline{\mathcal{M}}$ near p_0 in plumbing coordinates on $\overline{\Xi}\overline{\mathcal{M}}_{g,n}(\mu)$ can be computed explicitly from the local linear defining equations nearby.
- In particular, $\overline{\mathcal{M}}$ locally near ∂M looks like a toric variety (possibly non-normal).

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.

M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.

M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let $\mathcal C$ be a maximal collection of M-parallel cylinders, for some $(X,\omega)\in M$. Then applying $GL^+(2,\mathbb R)$ to cylinders in $\mathcal C$ and leaving the rest of X untouched gives a flat surface in M.

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.

M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let $\mathcal C$ be a maximal collection of M-parallel cylinders, for some $(X,\omega)\in M$. Then applying $GL^+(2,\mathbb R)$ to cylinders in $\mathcal C$ and leaving the rest of X untouched gives a flat surface in M.

 In a way, this says that the only relations on M among the curves on cylinders are only with curves on M-parallel cylinders.

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.

M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let $\mathcal C$ be a maximal collection of M-parallel cylinders, for some $(X,\omega)\in M$. Then applying $GL^+(2,\mathbb R)$ to cylinders in $\mathcal C$ and leaving the rest of X untouched gives a flat surface in M.

- In a way, this says that the only relations on M among the curves on cylinders are only with curves on M-parallel cylinders.
- BD- give a new proof, for linear subvarieties of *meromorphic* strata, if all coefficients of defining equations are *real*.

Definition

Parallel flat cylinders: periods of ω over circumference curves are real multiples of each other.

M-parallel cylinders: remain parallel for all $(X, \omega) \in M$.

Theorem (Wright)

Let $\mathcal C$ be a maximal collection of M-parallel cylinders, for some $(X,\omega)\in M$. Then applying $GL^+(2,\mathbb R)$ to cylinders in $\mathcal C$ and leaving the rest of X untouched gives a flat surface in M.

- In a way, this says that the only relations on M among the curves on cylinders are only with curves on M-parallel cylinders.
- BD- give a new proof, for linear subvarieties of *meromorphic* strata, if all coefficients of defining equations are *real*.
- The theorem is for *smooth* Riemann surfaces. Our proof is *by degeneration* to nodal Riemann surfaces.